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ABSTRACT
For many applications that require semantic understanding of short
texts, inferring discriminative and coherent latent topics from short
texts is a critical and fundamental task. Conventional topic models
largely rely on word co-occurrences to derive topics from a collec-
tion of documents. However, due to the length of each document,
short texts are much more sparse in terms of word co-occurrences.
Data sparsity therefore becomes a bottleneck for conventional topic
models to achieve good results on short texts. On the other hand,
when a human being interprets a piece of short text, the understand-
ing is not solely based on its content words, but also her background
knowledge (e.g., semantically related words). The recent advances
in word embedding offer effective learning of word semantic rela-
tions from a large corpus. Exploiting such auxiliary word embed-
dings to enrich topic modeling for short texts is the main focus of
this paper. To this end, we propose a simple, fast, and effective topic
model for short texts, named GPU-DMM. Based on the Dirichlet
Multinomial Mixture (DMM) model, GPU-DMM promotes the
semantically related words under the same topic during the sam-
pling process by using the generalized Pólya urn (GPU) model. In
this sense, the background knowledge about word semantic relat-
edness learned from millions of external documents can be easily
exploited to improve topic modeling for short texts. Through ex-
tensive experiments on two real-world short text collections in two
languages, we show that GPU-DMM achieves comparable or bet-
ter topic representations than state-of-the-art models, measured by
topic coherence. The learned topic representation leads to the best
accuracy in text classification task, which is used as an indirect e-
valuation.

Categories and Subject Descriptors
I.2.7 [Natural Language Processing]: Text analysis
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1. INTRODUCTION
Short texts have become a fashionable form of information on

the Internet. Examples include web page snippets, news headlines,
text advertisements, tweets, status updates, and questions/answers,
to name a few. Given the large volume of short texts available, ef-
fective and efficient models to discover the latent topics from short
texts become fundamental to many applications that require seman-
tic understanding of textual content, such as user interest profil-
ing [38], topic detection [37], comment summarization [31], con-
tent characterizing [32], and classification [34].

Conventional topic modeling techniques, e.g., pLSA and LDA,
are widely used to infer latent topical structure from text corpus [2,
12]. In these models, each document is represented as a multinomi-
al distribution over topics and each topic is represented as a multi-
nomial distribution over words. Statistical techniques (e.g., Gibbs
sampling) are then employed to identify the underlying topic distri-
bution of each document as well as word distribution of each topic,
based on the high-order word co-occurrence patterns [29]. These
models and their variants have been studied extensively for various
tasks in information retrieval and text mining [14, 36, 42]. Despite
their great success on many tasks, conventional topic models ex-
perience a large performance degradation over short texts because
of limited word co-occurrence information in short texts. In oth-
er words, data sparsity impedes the generation of discriminative
document-topic distributions, and the resultant topics are less se-
mantically coherent.

Several ingenious strategies have been proposed to deal with the
data sparsity problem in short texts. One strategy is to aggregate a
subset of short texts to form a longer pesudo-document. Conven-
tional topic models are then applied over these pesudo-documents.
The aggregation is often guided by auxiliary metadata information.
For example, in the context of Twitter, tweets can be aggregated
based on their hashtags, users, locations, or timestamps before ap-
plying LDA [13, 19, 38]. However, a limitation of this strategy is
that additional metadata may not be available always, e.g., web
page snippets. Another strategy is to restrict the document-topic
distribution, such that each short text is sampled from a single top-
ic, known as mixture of unigrams or Dirichlet Multinomial Mixture
(DMM) model [26,40,42]. Given the limited content in a short tex-
t, this simplification is reasonable and it alleviates the data sparsity
problem to some extent. It is reported to be a better alternative to
conventional LDA models [39,42]. The third strategy is to design a
brand new topic model by explicitly incorporating additional word
co-occurrence information. Examples include modeling word co-
occurrence patterns [39] and using soft-clustering mechanism for
further word co-occurrence augmentation [30]. However, the word
co-occurrence information that can be captured by these models
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is limited to the short text corpus itself. Given two words having
strong semantically relatedness but rarely co-occurring in a short
text corpus, these models can not fully capture the semantic relat-
edness between the two words.

When a human being interprets a piece of text, the understanding
is not solely based on its content, but also her background knowl-
edge, e.g., semantic relatedness between words. It is also natural to
exploit external lexical knowledge to guide the topic inference over
short texts. Existing works in this line largely rely on either ex-
ternal thesauri (e.g., WordNet) or lexical knowledge derived from
documents in a specific domain (e.g., product comments) [5–7].
The availability of such knowledge becomes vital for these models.
This calls for a more generic model that can be effectively applied
to short texts, without the need of manually constructed thesauri,
and not limited to external documents in specific domains.

In this paper, we propose a new topic model for short texts,
named GPU-DMM. GPU-DMM is designed to leverage the gen-
eral word semantic relatedness knowledge during the topic infer-
ence process, to tackle the data sparsity issue. Effective learning
of general word semantic relatedness is now feasible and practical
with the recent development in neural network techniques, which
have contributed improvements in many tasks in Information Re-
trieval (IR) and Natural Language Processing (NLP) [9, 10, 16, 17,
43]. Specifically, neural network language models, e.g., Contin-
uous Bag-of-Words (CBOW), Continuous Skip-gram model, and
Glove model [20, 27], learn word vectors (also called word embed-
dings) with the aim of fully retaining the contextual information for
each word, including both semantical and syntactical relations. The
shallow neural network structure designed in these techniques is
computationally effective on large text corpus. For instance, train-
ing skip-gram based word embeddings on a Google News corpus
with 100 billion words takes less than one day on a modest comput-
er.1 That is, general word semantic relatedness knowledge can be
efficiently learned from a very large text corpus, in any language.
In fact, there are many pre-trained word embeddings learned from
resources like Wikipedia, Twitter, and Freebase, publication avail-
able on the Web.2

Shown in Figure 1, the proposed GPU-DMM extends the Dirich-
let Multinomial Mixture (DMM) model by incorporating the learned
word relatedness from large text corpus through the generalized
Pólya urn (GPU) model [18] in topic inferences. More specifical-
ly, GPU-DMM promotes the semantically relevant words under
the same topic after sampling a topic for a short document. In this
sense, GPU-DMM links the semantically relevant words together,
even if they share very limited or no co-occurrences in the current

1https://code.google.com/p/word2vec
2Details are listed at https://github.com/3Top/word2vec-api

collection of short texts being modeled. A filtering strategy is al-
so introduced in GPU-DMM to guide the topic inference process,
such that only appropriate external knowledge is exploited for the
sampled topic. Because GPU-DMM takes in the word embed-
dings that have been learned from external documents, the model
is fast and flexible in taking in word embeddings learned from any
other large text collections. On two real-world datasets in two d-
ifferent languages (i.e., snippets of an English search engine, and
questions from Q&A service in Chinese), GPU-DMM discovers
more prominent topics and achieves better classification accuracy
than existing state-of-the-art alternatives. The main contributions
of this paper are summarized as follows:

1. We develop a simple, fast, and effective topic model to learn
the latent topic patterns over short texts. The model is flexi-
ble in directly taking in word semantic relations learned from
large text corpus, which is domain free and ease to access.
To the best of our knowledge, this is the first work for a topic
model to incorporate the general word semantic relatedness
knowledge based on word embeddings with GPU model.

2. On two real-world short text collections in two languages,
we evaluate the proposed GPU-DMM against a few state-
of-the-art alternatives for short texts. Experimental results
demonstrate our model’s superiority, in topic coherence, text
classification accuracy, and learning speed.

3. We empirically study the impact of two document represen-
tation inference methods. Our results suggest that the sum-
mation over each word’s contribution within a short docu-
ment is more appropriate for topic-focused downstream ap-
plications, e.g., text classification.

2. RELATED WORK
We review recent advances on learning better topic represen-

tations on short texts. We then focus on the models with word
embeddings because our model uses word embeddings as external
knowledge.

Topic Models for Short Texts. Conventional topic models such
as pLSA and LDA are designed to implicitly capture word co-
occurrence patterns at document-level, to reveal topic structures.
Thus more word co-occurrences would lead to more reliable and
better topic inference. Because of the length of each document,
conventional topic models suffer a lot from the data sparsity prob-
lem in short texts, leading to inferior topic inferences. Earlier stud-
ies focus on exploiting external knowledge to help refine the topic
inference of short texts. Phan et al. proposed to infer topic structure
of short texts by using the learnt latent topics from Wikipedia [28].
Similarly, Jin et al. infer latent topics of short texts for clustering by
using auxiliary long texts [15]. These models require a large regu-
lar text corpus of high quality, which may not be always available
in some domains and/or languages.

Given the limited context information in short texts, many ag-
gregation strategies have been studied by merging short texts in-
to long pseudo-documents. Conventional topic modeling is then
applied to infer the latent topics. In [38], the authors aggregate
tweets from the same user as a pseudo-document before perform-
ing standard LDA model. Other metadata that have been used for
short text aggregation include hashtags, timestamps, and named en-
tities [13, 19, 42]. However, favorable metadata may not be avail-
able in some domains, e.g., search snippets and news headlines.
These studies suggest that topic models specifically designed for
general short texts are imperative.



A simple and effective topic model, named Dirichlet Multino-
mial Mixture (DMM) model, has been employed to discover latent
topics in short texts in many tasks [40, 42]. DMM is based on the
assumption made in the mixture of unigrams model proposed by
Nigam et al. [26], i.e., each document is sampled from a single la-
tent topic. Given the limited content of short texts, this assumption
is reasonable and is proven to be more effective than conventional
topic models in many studies [30, 39, 42]. Yin and Wang [40] pro-
pose a collapsed Gibbs Sampling algorithm for DMM and show its
effectiveness in short text clustering. Due to its simplicity and ef-
fectiveness, we develop GPU-DMM on the basis of DMM, as its
name suggests.

Recently, many efforts have been spent towards intensifying the
word co-occurrence information from the collection of short texts
being modeled. Yan et al. propose a novel biterm topic model
(BTM) to explicitly model the generation of word co-occurrence
patterns instead of single words as do in many topic models [39].
Their experimental results show that BTM produces discriminative
topic representations as well as more coherent topics for short texts.
Inspired by the aforementioned aggregation strategies, Quan et al.
propose a self-aggregation based topic model (SATM) for short
texts [30]. SATM assumes that each short text is a segment of a
long pseudo-document and shares the same topic proportion of the
latter. The topic inference and the aggregation process is conduct-
ed in a mutual reinforcement manner, such that the aggregation is
based on the topical similarity of the texts and vice versa. However,
setting an appropriate number of long pseudo-documents in SATM
is not an easy task. Further, the inference process involving both
text aggregation and topic sampling is time-consuming.

Topic Models for Short Texts with Word Embeddings. Word
embeddings, first introduced in [33], have been successfully ap-
plied in language models and many NLP tasks, such as named en-
tity recognition and parsing [1, 22]. Word embeddings are useful
because they encode both syntactic and semantic information of
words into continuous vectors and similar words are close in vector
space.

Most relevant to ours is the work by Nguyen et al. [24]. They
propose a topic model with word embeddings for short texts, called
LF-DMM. Built based on DMM, LF-DMM replaces the topic-word
multinomial distribution with a two-component mixture of a Dirich-
let multinomial component and a continuous word embedding com-
ponent. That is, each word in a short text is generated from either
the Dirichlet multinomial distribution or the probability estimated
by using word embeddings with respect to the sampled topic. A
switch variable is utilized to decide which component is used to
generate a word. Rather than using Bayesian parameter estimation,
a simple and hard coded switch probability value is used for the
switch variable in LF-DMM. This simple switch mechanism could
incur some noise into the inference process. In order to estimate the
word embedding component of each word, the topics are projected
into the same latent continuous space as word embeddings by opti-
mizing a regularized log-linear model. However, this optimization
process is computational expensive. Similarly, Das et al. propose
a LDA based topic model by using multivariate Gaussian distribu-
tions with word embeddings [11]. Our work differs significantly
from these studies. GPU-DMM exploits the general word seman-
tic relatedness knowledge provided by auxiliary word embeddings
by using the generalized Pólya urn model in the topic inference of
short texts. Compared with existing approaches of incorporating
word embeddings in topic model, GPU reduces the computational
cost significantly. To the best of our knowledge, GPU-DMM is

the first attempt to combine word embeddings and GPU model for
solving sparsity problem of short texts.

3. GPU-DMM
As its name suggests, the proposed GPU-DMM model is built

upon the Dirichlet Multinomial Mixture (DMM). Given a short
document, GPU-DMM samples a topic for it based on the con-
ditional probabilities similar to DMM. The words that are highly
relevant to the topic are then selected, and their semantically relat-
ed words are extracted and promoted by using the GPU model [18].
As shown in Figure 1, the auxiliary word embeddings utilized in
GPU-DMM is pre-learned using the state-of-the-art word embed-
ding techniques from large document collections. Next, we present
the details of the proposed model GPU-DMM.

3.1 Dirichlet Mixture Model
Dirichlet Mixture Model is a generative probabilistic model with

the assumption that a document is generated from a single top-
ic [26, 40]. That is, all the words within a document are generated
by using the same topic distribution.

Given a short text corpus of D documents, with a vocabulary of
size V , and K pre-defined latent topics, each document d is asso-
ciated with a specific topic k. Then the Nd words in document d
{wd,1, wd,2, . . ., wd,Nd} are generated by the topic-word multino-
mial distribution p(w|z = k) = φk by assuming independence of
the words themselves. More formally, with the Dirichlet priors of
α and β, the generative process of DMM is described as follows:

1. Sample a topic proportion θ ∼ Dirichlet(α)

2. For each topic k ∈ {1, ...,K}
Draw a topic-word distribution φk ∼ Dirichlet(β)

3. For each document d ∈ {1, ..., D}
(a) Sample a topic zd ∼Multinomial(θ)

(b) For each word w ∈ {wd,1, ..., wd,Nd}
Sample a word w ∼Multinomial(φzd)

The hidden variables in the generative process can be approxi-
mated by applying Gibbs sampling. Following the approach in [40],
a topic z is sampled for each document in every iteration according
to the following conditional distribution:

p(zd = k|~z¬d, ~d) ∝

mk,¬d + α

D − 1 +Kα
×

∏
w∈d

∏Nw
d

j=1(nw
k,¬d + β + j − 1)∏Nd

i=1(nk,¬d + V β + i− 1)
(1)

where Nw
d is term frequency of word w in document d, mk,¬d is

the number of documents assigned to topic k, nw
k,¬d is the num-

ber of times that word w is assigned to topic k, and nk,¬d =∑V
w n

w
k,¬d. Symbol ¬d means that document d is excluded from

the counting. The posterior distribution is calculated by using point
estimation:

p(w|z = k) =
nw
k + β∑V

w n
w
k + V β

(2)

3.2 Auxiliary Word Embeddings
Because of the length of short texts, the words with high seman-

tic relatedness may not frequently co-occur in the same short texts.
On the other hand, because the word embeddings are learnt with
the aim to retain words’ global contextual information, the learnt
word embeddings capture the general word co-occurrence pattern-
s. That is, words that are semantically or syntactically similar to



Table 1: Example words and their co-occurrences with seman-
tically related words in the Snippet dataset.

Example (Freq.) Word (Freq., #co-occur with example word)
artworks (20) paintings (17, 1) artist (53, 3)
movie (333) cinema (33, 10) filmography (19, 7)
fiction (45) book (142, 3) literary (12, 2)
company (143) business (431, 16) industry (117, 4)
stock (131) price (39, 1) equity (15, 2)

each other are projected to be closer in the latent space. Next, we
illustrate this point using some example words.

Table 1 lists 5 example words in the left-hand column (i.e., "art-
works", "movie", "fiction", "company", "stock"). The number fol-
lowing each word in paraphrase is the document frequency of the
word in the Web snippet dataset. This short text dataset contains
12, 340 Web search snippets (see Section 4.1 for more details). For
example, "artworks (20)" means that the word "artworks" appears
in 20 short documents in the Snippet dataset. In the right-hand col-
umn, for each word, we show two semantically related words ob-
tained from pre-trained word embeddings. The word embeddings
used here are learned from the aforementioned Google News cor-
pus with 100 billion words of vocabulary size of 3 million. The
two numbers following each word are (i) the document frequency
of the word, and (ii) the number of co-occurrences with the ex-
ample word on the left-hand side, in the Web snippet dataset. For
instance, "movie" appears in 333 snippets, "cinema" appears in 33
snippets, and the two word co-occur in 10 snippets.

Shown in the table, the words obtained from word embeddings
indeed show strong semantic relatedness with the example words.
More importantly, the semantic relations provided by word embed-
dings are much broader than the limited lexical relations defined
in an external thesauri (e.g., synonymy, antonym and adjective-
attribute relations in WordNet). The table also shows that seman-
tically related words may not co-occur frequently in the short text
collection. We therefore believe that incorporating auxiliary word
embeddings learned from large corpus would significantly enhance
topic modeling on short texts.

3.3 Incorporating Word Embeddings by GPU
It has been validated that the topic coherence measure based on

word co-occurrence pattern is a reliable indicator of topic quali-
ty and is highly consistent with the human expert annotation [21].
Accordingly, it is reasonable that the words with high semantic re-
latedness should be clustered together under the same topic. In the
following, we present how GPU-DMM achieves this through the
generalized Pólya urn model [18].

Generalized Pólya Urn Model can be understood in terms of col-
ored balls in a urn, where the probability of seeing a ball of each
color is linearly proportional to the number of balls of that color in
the urn. In a simple Pólya urn model, when a ball of a particular
color is sampled from the urn, the sampled ball along with a new
ball of that color is put back into the urn. This process is equiva-
lent to the Gibbs sampling process utilized for the topic inference
with Dirichlet-Multinomial distribution under the i.i.d assumption.
In the generalized Pólya urn model, when a ball of a particular col-
or is sampled, a certain number of balls of similar colors are put
back along with the original ball and a new ball of that color. In
this sense, the set of balls of similar colors are promoted as a whole
from this iterative process. By analogy with the GPU model, in our
case, given a ball of word w, the balls of similar colors refer to the
semantically related words to word w. As the result, sampling a

word w in topic t not only increases the probability of w itself un-
der topic t, but also increases the association between the topic and
w’s semantically related words. Several existing works exploit the
GPU model and the external thesauri or domain-specific knowledge
for better topic inference of the standard LDA [5–7, 21]. Howev-
er, these works rely on the specific domain knowledge, which may
restrict their usage in a broader range. Here, we exploit the combi-
nation of GPU model and the global word relatedness knowledge,
leading to a generic solution for short text topic modeling.

Formally, given pre-trained word embeddings, we measure the
semantic relatedness between two words w and w′ by the cosine
similarity between their vector representations in the latent space
(i.e., the word embeddings of the two words). The semantic re-
latedness between the word pair is denoted by sr(w,w′). Then a
word semantic relatedness matrix M can be constructed, consisting
of all word pairs whose semantic relatedness score is higher than a
predefined threshold ε, i.e., M = {〈wi, wj〉|sr(wi, wj) > ε}. The
threshold ε is set to filter less semantic related word pairs.

Being a preliminary study on exploiting general word seman-
tic relatedness knowledge based on word embeddings, we fix the
amount of promotion µ for each semantically related wordw′ when
working on word w. The promotion matrix A with respect to each
word pair is defined below, where Mw is the row in M correspond-
ing to word w. Note that Mw includes the word w itself.

Aw,w′ =


1 w=w′

µ w′ ∈ Mw and w′ 6= w

0 otherwise
(3)

The weight µ could be set based on the auxiliary word embeddings
under use.

Incorporating the GPU model with DMM gives us the proposed
GPU-DMM model. However, simply taking all word pairs in ma-
trix M may not be the best choice for topic modeling in short texts,
explained next.

Word Filtering. Based on DMM, GPU-DMM samples a short
text from a single topic. All words in the short text are assigned to
the same topic. Take a short text "info website web cern consortium
server project world copy first" as an example. This document can
be assigned to a computer related topic. However, words like con-
sortium and first, along with their semantically related words, could
be irrelevant to computer related topics. This scenario is prevalent
in many short texts and could be harmful to DMM based topic mod-
els. In this sense, simply adopting GPU model for every word in
a document to promote their semantically related words under the
sampled topic could adversely affect the quality of the topic. This
calls for an appropriate strategy to reinforce only the semantically
related words if and only if a word has strong ties with the sam-
pled topic. To this end, we propose a nonparametric probabilistic
sampling strategy as follows:

Sd,w ∼ Bernoulli(λw,zd) (4)

λw,z =
p(z|w)

pmax(z′|w)
(5)

pmax(z|w) = max
k

p(z = k|w)

p(z = k|w) =
p(z = k)p(w|z = k)∑K
i=1 p(z = i)p(w|z = i)

(6)

In Equation 4, Sd,w indicates whether GPU is applied to word
w given document d and topic zd, where λw,zd is defined in E-
quation 5. Observe from Equation 5, Sd,w is strongly related to
the ratio of the conditional topic probability zd given word w to its



Algorithm 1: GPU-DMM
input : Topic number K, α, β, µ, M and D short documents
output: The posterior topic-word distribution

1 foreach d ∈ D do
2 zd ← z ∼Multinomial(1/K);
3 mz ← mz + 1;
4 ñz ← ñz + 1;
5 foreach w ∈ d do
6 ñw

z ← ñw
z +Nw

d ;
7 Sd,w ← 0;

8 foreach iteration do
9 UpdateWordTopicProb() ; /* See Eq. 6 and 8 */

10 foreach d ∈ D do
11 z ← zd;
12 mz ← mz − 1;
13 foreach w ∈ d do
14 UpdateCounter (Sd,w, A, d, w, False);

15 zd ← z ∼ p(zd = z|~z¬d, ~d);
16 mz ← mz + 1;
17 foreach w ∈ d do
18 UpdateGPUFlag (Sd,w); /* See Eq. 4 */
19 UpdateCounter (Sd,w, A, d, w, True);

maximal topic probability. That is, if word w is highly relevant to
topic z in terms of p(z|w), GPU model is more likely to be applied
to w when the sampled topic of its document is indeed z.

Because Gibbs sampling is a stochastic process (i.e., the topic of
a document is randomly sampled), there is a chance that an incor-
rect topic is sampled for a document. However, given the dominant
topic of a document, the semantically related words of an irrelevant
word are less likely to be promoted under the topic, because of the
above probabilistic sampling strategy. The adverse impact of an
incorrect sampled topic can not be aggravated by using GPU mod-
el. In the proposed word filtering strategy, calculating p(z = k|w)
(see Equation 6) for every wordw of a document and topic k is very
time-consuming. For efficiency purpose, we calculate p(z = k|w)
at the beginning of each iteration, and use these static values during
the whole iteration, detailed next.

Model Inference. GPU-DMM and DMM model share the same
generative process and graphical representation, but differ in topic
inference process. In GPU-DMM, the GPU-based Gibbs sampling
is applied during the topic inference process.

The GPU model is nonexchangeable, which suggests that the
joint probability of the words under a specific topic is not invariant
to the permutation of those words. This results in a more complex
inference process. Following the work of Mimno et al. [21], we
approximate the true Gibbs sampling distribution by treating each
word as if it was the last word, ignoring its implications for subse-
quent words and their topic assignments. Accordingly, the condi-
tional distribution for Gibbs sampling in Equation 1 is rewritten for
GPU-DMM as follows:

p(zd = k|~z¬d, ~d) ∝

mk,¬d + α

D − 1 +Kα
×

∏
w∈d

∏Nw
d

j=1(ñw
k,¬d + β + j − 1)∏Nd

i=1(ñk,¬d + V β + i− 1)
(7)

In the Equation 7, ñk,¬d is the number of words associated with
topic k, ñw

k,¬d is the number of balls of wordw in the urn of topic k,

Algorithm 2: UpdateCounter (Sd,w,A, d, w, promotion)

1 if promotion == True then
2 if Sd,w == 1 then /* To apply GPU */
3 foreach w′ ∈ Mw do
4 ñz ← ñz +Nw

d · Aw,w′ ;
5 ñw′

z ← ñw′
z +Nw

d · Aw,w′ ;

6 else
7 ñz ← ñz + 1;
8 ñw

z ← ñw
z + 1;

9 else
10 if Sd,w == 1 then /* GPU was applied */
11 foreach w′ ∈ Mw do
12 ñz ← ñz −Nw

d · Aw,w′ ;
13 ñw′

z ← ñw′
z −Nw

d · Aw,w′ ;

14 else
15 ñz ← ñz − 1;
16 ñw

z ← ñw
z − 1;

mk,¬d is the number of documents associated with topic k, symbol
¬d means that document d is excluded from the counting, same as
in Equation 1. The posterior distribution in Equation 2 for GPU-
DMM is rewritten in Equation 8:

p(w|z = k) =
ñw
k + β∑V

w ñ
w
k + V β

(8)

The details of the Gibbs sampling process of GPU-DMM is de-
scribed in Algorithm 1. At first, GPU-DMM initializes the topic
assignment for each document with a uniform distribution without
applying the GPU model (Lines 1-6). This initialization process is
the same as in DMM. In each iteration of Gibbs sampling, we first-
ly calculate the conditional topic distribution, p(z = k|w) for each
k and w, based on Equations 6 and 8 (Line 9). These values will
be used during the whole iteration. Then, the topic of each docu-
ment d is resampled based on the conditional distribution in Equa-
tion 7 (Lines 10-14). During this process, GPU-DMM subtracts
the corresponding counts for each word w based on the flag Sd,w

in the previous iteration by calling the function UpdateCounter()
(Line 14, Equation 4).

Shown in Algorithm 2, if Sd,w = 1, meaning that the related
words Mw for word w have been promoted in the last iteration,
then the corresponding counts of each related word w′ ∈ Mw are
subtracted proportional to Aw,w′ (Lines 11-13 in Algorithm 2). Re-
call that the semantic relatedness knowledge Mw of word w also
contains w itself, i.e., w ∈ Mw (see Equation 3). The substrac-
tion process is applied to both w itself and its semantically related
words. Otherwise, if the related words were not promoted in the
last iteration, then simple subtraction is applied to w as the same in
DMM (Lines 15, 16 in Algorithm 2).

With the new sampled topic, the flag Sd,w for each word w is
updated based on Equation 4 (Line 18 in Algorithm 1). Then the
corresponding counts for word w are added based on the updated
flag Sd,w through function UpdateCounter() (Line 19 in Algorith-
m 1). Similarly, if Sd,w = 1, w and all its related words are pro-
moted. Otherwise, simple update as in DMM is applied (Lines 2-8
in Algorithm 2)

This iterative process continues until the predefined number of
iterations is reached.



Model Complexity. We now analyze the time complexity of GPU-
DMM with reference to DMM. The time complexity of DMM in
an iteration is O(KD ¯̀), where K is the number of topics, D is the
number of documents, and ¯̀is the average document length. Being
extended with GPU model, GPU-DMM has a time complexity of
O(KD ¯̀+D ¯̀τ+KV ), where τ is a coefficient by considering the
cost involved by applying the GPU model. The τ value depends on:
(i) the average number of words for which GPU model is applied
based on Equation 4, and (ii) the average number of semantically
related words for each word appear in the short text corpus. KV is
the computation required for calculating all p(z = k|w).

Note that the size of the semantic relatedness knowledge Mw for
word w obtained from auxiliary word embeddings could be large,
but not all these semantically related words appear in the underly-
ing short texts being modeled. In this sense, τ is expected to be
relatively small. It is expected that KV < KD ¯̀. Hence, GPU-
DMM does not add too much computational cost to DMM.

4. EXPERIMENT
In this section, we conduct extensive experiments to evaluate

the proposed GPU-DMM against the state-of-the-art alternatives.3

The performance in terms of topic coherence and document clas-
sification are reported over two publicly available datasets, i.e., an
English Web search snippet dataset and a Chinese Q&A dataset.
We also report the time taken per iteration for all models evaluated
in our experiments. The experimental results show that our pro-
posed model provides promising performance in both effectiveness
and efficiency.

4.1 Datasets
BaiduQA dataset is a collection of 648, 514 questions crawled
from a popular Chinese Q&A website4. Each question is annotated
with a category label by its asker. This dataset was prepared and has
been previously used in [8, 39]. The dataset was preprocessed by
the authors, e.g., Chinese word segmentation and duplicate words
removal. That is, every word has frequency of 1 in the question
containing it. In our experiments, we removed the extremely short
questions that contain only a single word.

Web Snippet (Snippet for short) dataset contains 12, 340 Web
search snippets. This dataset has been used in a few studies [4,
28,35]. Each snippet belongs to one of 8 categories. We performed
the following preprocessing on this dataset: (1) convert letters to
lowercase; (2) remove all non-alphabetic characters and stop word-
s5; (3) remove the words with fewer than 3 characters; (4) remove
words with document frequency less than 3 in the dataset. As in the
BaiduQA dataset, we further remove duplicate words within each
snippet, reinforcing its data sparsity.

Statistics on the two datasets after preprocessing is reported in
Table 2. Observe that the BaiduQA dataset is much more sparser
with a larger vocabulary and much shorter documents compared to
the Snippet dataset.

4.2 Experimental Setup
Word Embeddings. For the Snippet dataset, we use the pre-trained
300-dimensional word embeddings from the Google News corpus.6

For the BaiduQA dataset, we train 100-dimensional word embed-

3Our implementation is available at https://github.com/NobodyWHU/GPUDMM
4http://zhidao.baidu.com
5Stop word list is from NLTK: http://www.nltk.org/
6https://code.google.com/p/word2vec

Table 2: Statistics on the two datasets. #Label: the number of
ground truth labels or categories; #Docs: the total number of
documents; #Words: average number of words per document.

Dataset #Label #Docs #Words Vocabulary
Snippet 8 12,265 10.72 5,581

BaiduQA 35 179,042 4.11 26,560

dings from 7 million Chinese articles crawled from Baike website,7

using Goolge’s Word2Vec toolkit with Skip-gram algorithm [20].
If a word has no embedding, the word is considered as having no
word semantic relatedness knowledge.

As mentioned in Section 3.2, a parameter ε is required to deter-
mine the semantic relatedness knowledge provided by the auxiliary
word embeddings. We employ a simple manual process to decide
the value of ε. The value of ε is determined by manually examining
some randomly sampled words. More specifically, a random set of
100 words are selected from the word embeddings, then the top-
100 most related words to each of the selected words are computed
based on the cosine similarity of their vector representations i.e.,
sr(w,w′). These semantically related words are printed along with
their cosine similarity scores to the selected word in descending or-
der. Then we manually choose a reasonable ε after examining these
related words. Based on the values, we set ε to 0.5 and 0.7 respec-
tively for GPU-DMM over the Snippet and BaiduQA datasets. We
argue that the optimal value of ε depends on both the external text
corpus and the algorithm used in learning the word embeddings.

After setting ε, we observe that for some words, the number of
semantic relatedness words (i.e., the size of Mw) is very large. For
example, there are 129 words semantically related to word hous-
ton, including dallas, altanta, orlando, and cleveland. In fact, most
of the 129 words refer to geographic areas like the word houston
itself. Another example is word carl, which is highly related to
many English names like gordon, henry, and james. Such words
often refer to semantic relatedness in some specific domains (e.g.,
geographical, temporal, or person names) rather than general con-
cepts as the examples listed in Table 1. Hence, in our experiments,
we simply disregard all the related words in Mw if |Mw| > 20 8.

As shown in the model overview in Figure 1, the preparation
of word embeddings and M is independent of the proposed GPU-
DMM model. The preparation can be done off-line.

Methods and Parameter Setting. We compare our GPU-DMM
against the following four state-of-the-art topic models specific to
short texts. For all the methods in comparison, we set the hyper-
parameters α = 50/K and β = 0.01 unless explicitly specified
elsewhere.

• Biterm Topic Model (BTM) learns the topics by directly
modeling the generation of word co-occurrence patterns in
the short text corpus [39]. In BTM, a biterm is an unordered
word pair co-occurred in a short context.

• Self-Aggregation based Topic Model (SATM) assumes that
each short text is sampled from a long pseudo-document un-
observed in the current text collection [30]. It requires to set
the number of pseudo-documents as a parameter. We tune
the number of pseudo-documents from 100 to 1000 with a
step of 100 in terms of classification accuracy over the two
datasets (See Section 4.4) and set it to 200 and 700 respec-

7http://baike.baidu.com/
8The advanced filtering strategy is deferred to our future work.



tively, on the Snippet and BaiduQA datasets, for achieving
the best classification results.

• Dirichlet Multinomial Mixture (DMM) assumes that each
short document has only one topic, and works as the basis of
our model [40].

• Latent Feature model with DMM (LF-DMM) integrates
word embeddings into DMM by replacing the topic-word
Dirichlet multinomial component with a mixture of two com-
ponents: a Dirichlet multinomial component, and a word em-
bedding component [24]. A hard constraint in LF-DMM is
that all words in the short text corpus should have corre-
sponding word embeddings. Therefore we remove all the
words without the related word embeddings. We use the
implementation provided by the authors and use the recom-
mended settings with λ = 0.6, α = 0.1, β = 0.01 as in their
paper.9

As for GPU-DMM, we need to set the amount of promotion µ for
each semantically related word. We empirically set µ to be 0.1 and
0.3 respectively for BaiduQA and Snippet datasets.

Note that [11] also proposes a LDA-based model by using mul-
tivariate Gaussian distributions with auxiliary word embeddings.
Their model assumes a Multinomial topic distribution for each doc-
ument, which has been proven to be inappropriate for short texts [13,
30, 42]. Hence, we exclude this model from the comparison.

We run Gibbs sampling for 1, 000 iterations and report the av-
erage results over 5 runs for all methods. The only exception is
that 2, 000 iterations (1, 500 iterations with baseline model + 500
iterations with LF-DMM) are run for LF-DMM, as in its original
paper [24]. We evaluate the performance of all models in terms of
topic coherence and text classification. The statistical significance
is based on the student t-test.

4.3 Evaluation by Topic Coherence
The topics generated by each model are evaluated by the topic

coherence metric. Traditionally, topic models are evaluated using
perplexity. However, as shown in [3], perplexity does not reflect
the semantic coherence of a topic. It can sometimes be contrary
to human judgments. Topic coherence measures the extent that the
most probable words of a topic tend to co-occur together within the
same documents. It has been shown to be a better metric to assess
topic quality [21].

Following [8], we use the PMI-Score proposed in [23] to cal-
culate topic coherence. Given a topic k and its top T words with
highest probabilities (w1, . . ., wT ), the PMI-Score of k is:

PMI(k) =
2

T (T − 1)

∑
1≤i<j≤T

log
p(wi, wj)

p(wi)p(wj)
(9)

In this equation, p(wi) is the probability that word wi appears in a
document, and p(wi, wj) is the probability that words wi and wj

appear in the same document. The overall topic coherence for each
model is the averaged PMI-Score over all learnt topics. A higher
topic coherence indicates the better learnt topics. Note that an ex-
ternal corpus is needed to calculate the PMI-Scores in Equation 9.
In our experiments, we use 3 million English Wikipedia articles
and 7 million Chinese Baike articles for the Snippet and BaiduQA
datasets, respectively.

Figures 2 and 3 report the topic coherence of all models on the t-
wo datasets with number of top words per topic T ={5, 10, 20} and
number of topics K = {40, 60, 80}, respectively. On the Snippet
9Authors’ implementation is available at https://github.com/datquocnguyen/LFTM

dataset, GPU-DMM achieves the best topic coherence across all
settings, and the improvement over other baseline models are sta-
tistical significance at the 0.01 level. BTM is the second best mod-
el in most cases, and always outperforms DMM and LF-DMM. On
BaiduQA dataset, LF-DMM outperforms all other models in 6 out
of 9 settings. GPU-DMM achieves the best performance in the rest
3 settings, and performs the second best overall. On both datasets,
GPU-DMM significantly outperforms DMM at the 0.01 level.

Recall that the BaiduQA dataset was preprocessed with Chinese
word segmentation by the dataset provider [8, 39]. For learning
word embeddings and evaluating topic coherence, we used ICT-
CLAS10, a Chinese word segmentation tool, to segment the words
in the 7 million Chinese articles. The differences in Chinese word
segmentation might introduce some performance variations.

4.4 Evaluation by Short Text Classification
With topic modeling, we can represent each document with it-

s topic distribution p(z|d). Hence, the quality of the topics can
be assessed by the accuracy of text classification using the topic-
level representation, as an indirect evaluation. A better classifica-
tion accuracy means that the learnt topics are more discriminative
and representative. Here, we employ a linear kernel Support Vector
Machines (SVM) classifier in sklearn11 with default parameter set-
tings. The classification accuracy is computed through 5-fold cross
validation on both datasets.

Methods for Topic-level Representation. Three models DMM,
LF-DMM and GPU-DMM all assume only one topic for each
short document. Estimating the topic distribution directly based on
the topic assignment in the last Gibbs samplings for these models
is inappropriate. It is reported that the post inference of document
representation p(z|d) based on p(w|z) and p(z) is important for the
classification accuracy [30]. There are two ways to infer p(z|d):

• Naïve Bayes (NB) rule:

p(z = k|d) ∝ p(z = k)

Nd∏
i=1

p(wi|z = k)

• Summation over words (SW):

p(z = k|d) ∝
∑
w

p(z = k|w)p(w|d)

where p(w|d) is estimated based on the relative frequency of
w in d.

Both the NB and SW representations have been used in earlier
studies. BTM uses a variant of SW post inference by replacing w
with biterm b [39]. However, in their comparison, they use NB
method for DMM instead. SW method is used for DMM and LDA
and proven to largely improve the classification accuracy in [30].
However, no studies have conducted a thorough comparison of the
two methods.

Here, we first compare the two document representation meth-
ods by using DMM, GPU-DMM, and BTM on Snippet dataset.
Table 3 reports the classification accuracy of using the two meth-
ods with different settings on the number of topicsK={40, 60, 80}.
Observe that using SW method leads to large performance im-
provement over NB method in topic-level representation of short
documents, regardless the number of topics or the underlying top-
ic model. Table 3 also shows that GPU-DMM achieves the best
classification accuracy over all settings, followed by DMM. Simi-
lar observations hold on BaiduQA dataset (results not shown).

10http://ictclas.nlpir.org
11http://scikit-learn.org/
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Figure 2: Topic Coherence on Snippet Dataset
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Figure 3: Topic Coherence on BaiduQA Dataset

Table 3: Classification accuracy of two post inference methods
(NB and SW) on Snippet dataset. The best results are high-
lighted in boldface for each K setting.

Model Method K = 40 K = 60 K = 80

DMM NB 0.7180 0.7590 0.7470
SW 0.8298 0.8522 0.8479

GPU-DMM NB 0.7510 0.7600 0.7650
SW 0.8539 0.8667 0.8722

BTM NB 0.7100 0.7120 0.6700
SW 0.8100 0.8183 0.8272

Table 4: The top 3 topics and their proportions in an example
document by using DMM.

SW NBTop
Topic Id p(z|d) Topic Id p(z|d)

1 37 0.3187 37 0.9999
2 36 0.0820 27 2.92e-09
3 27 0.0760 36 4.57e-10

To better understand the big difference in classification accura-
cy by using the two different representation methods NB and SW,
we show the top 3 topics with the corresponding p(z|d) values for a
random document in Snippet dataset by the two methods in Table 4.
Observe that the top-3 topics for the document are the same (i.e.,
topic Ids 27, 36, 37) inferred by both methods NB and SW. The
relative proportions of each topic inferred by the two methods are
tremendously different, particularly for the second and third topics.
Using NB method, top-1 topic dominates the topic representation.

Table 5: Average classification accuracy of the 5 models on two
datasets, with different number of topic K settings. The best
results are highlighted in boldface on each dataset. † indicates
that the difference to the best result is statistically significant at
0.01 level.

Dataset Model K = 40 K = 60 K = 80

Snippet

BTM 0.8100† 0.8183† 0.8272†

DMM 0.8298† 0.8522† 0.8479†

SATM 0.8284† 0.8231† 0.8235†

LF-DMM 0.7414† 0.7409† 0.7462†

GPU-DMM 0.8539 0.8667 0.8722

BaiduQA

BTM 0.5098† 0.5336† 0.5486†

DMM 0.5228† 0.5476† 0.5532†

SATM 0.4872† 0.4567† 0.4605†

LF-DMM 0.4240† 0.4486† 0.4868†

GPU-DMM 0.5439 0.5637 0.5708

Because NB method calculates p(z|d) by a series of product of
p(w|z) over w, some irrelevant words could incur too much penal-
ty for topic z. It was well studied that Naive Bayes makes unreal-
istic independence assumptions, push probabilities towards 0 and
1 [25]. As the result, NB method leads to extremely sparse topic
distribution, equivalent to using the direct topic assignment. This
is not a desired method for short texts. In the rest of this paper, we
only report the classification accuracies by using the SW method.

Classification Accuracy. Table 5 reports the document classifica-
tion accuracy on the two datasets by using the 5 models in compar-
ison. We make the following observations.
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Figure 4: Effect of weight µ under K = 40

First, our GPU-DMM model significantly outperforms other
state-of-the-art models on both datasets. Particularly, the signifi-
cant performance gains of GPU-DMM with respect to DMM are
achieved on all K = {40, 60, 80} settings. This validates that
incorporating general word semantic relatedness knowledge based
on word embeddings with GPU models is beneficial for short text
topic modeling.

Second, in our experiments, DMM is the second best perform-
ing model in the document classification task. Although BTM was
shown to perform better than DMM in [39], as we discussed ear-
lier, the NB based document representation was used for DMM
in [39], which may be the reason for the poorer performance. By
using the SW inference method, we show that BTM is inferior to
DMM in this classification task on both datasets. This result sug-
gests that generating biterms may bring little discriminative word
co-occurrence knowledge, which is also observed in [30, 41].

Third, SATM delivers mixed performance on the two dataset-
s. On Snippet dataset, it performs slightly better than BTM when
K = 40 and K = 60; it performs much poorer than BTM on
BaiduQA dataset. Surprisingly, we observe that LF-DMM per-
forms the worst among all models on both datasets even though
it also exploits word embeddings. One possible reason for its mod-
est performance is that harnessing the semantic relatedness via a
two-component mixture may need a more complex mechanism. A
simple switch mechanism with an indication variable used in LF-
DMM may not optimally balance the two components.

Effect of the Promotion Weight µ. We now study the effect of
weight µ in GPU-DMM (see Equation 3). Figure 4 depicts the
classification accuracy of different µ settings under K = 40 on the
two datasets. Note that, when µ = 0, GPU-DMM is equivalent to
the DMM model.

While GPU-DMM obtains significant improvements over DM-
M (i.e., µ = 0) with any positive µ values on Snippet dataset, it
only achieves positive gains when µ is relatively small on BaiduQA
dataset, i.e., µ ≤ 0.5. Specifically, on BaiduQA dataset, the best
accuracy is achieved when µ = 0.1, further increasing µ result-
s in performance degradation. Reported in Table 2, documents in
BaiduQA is much shorter than that in Snippet dataset. Because of
the very limited context information in such short document (4.11
words per document on average), that chance of sampling an incor-
rect topic for a document becomes high. Setting a larger µ means
more related words in the wrongly sampled topic are promoted,
leading to poorer results.

4.5 Efficiency
In the last set of experiments, we compare the running time of

the models. We implement GPU-DMM, DMM, SATM and BTM
models in Java, and use the Java implementation provided by its
authors for LF-DMM.

Table 6: Time cost (in seconds) per iteration of each model
on two datasets, with different settings on number of topics
K = {40, 60, 80}. The best and the second best results are
highlighted in boldface and underlined respectively.

Dataset Model K = 40 K = 60 K = 80

Snippet

BTM 0.572 0.832 1.121
DMM 0.042 0.069 0.088
SATM 0.392 0.451 0.478

LF-DMM 5.209 7.234 9.702
GPU-DMM 0.085 0.115 0.217

BaiduQA

BTM 1.411 2.042 2.603
DMM 0.355 0.566 0.843
SATM 10.120 10.345 11.711

LF-DMM 13.028 20.493 31.822
GPU-DMM 1.558 1.862 2.318

Table 6 reports the average run-time (in seconds) per iteration for
each model. The simplest model DMM, is the most efficient one
as expected. GPU-DMM is slightly slower than DMM, being the
second most efficient model. This result is expected because GPU-
DMM shares similar Gibbs sampling process with DMM. The ex-
tension of the sampling process by taking in semantically related
words through GPU does not cost much in terms of computation.
The average run-time of GPU-DMM is less than 3 times of DMM
for different topic numbers K on both datasets. This observation is
consistent with the analysis made in Section 3.3.

SATM is much faster than BTM on Snippet dataset, but requires
much more time than BTM on BaiduQA dataset. As being de-
scribed in [30], the computational cost of SATM is positively pro-
portional to the number of pseudo-documents. Hence, the large
difference in the run-time on the two datasets is due to the setting
of the optimal number of pseudo-documents, i.e., 200 and 700 re-
spectively on the two datasets. LF-DMM is the slowest model in
this comparison. As discussed in Section 2, LF-DMM estimates
the word embedding component for each topic by projecting the
topic into the vector space, where a regularized log-linear has to be
optimized. This process is time-consuming.

In summary, our earlier results and the results in Table 6 suggest
that GPU-DMM is a desired choice for short text topic modeling,
with respect to both effectiveness and efficiency.

5. CONCLUSION
Unlike normal documents, short texts carry limited context infor-

mation, causing severe sparsity problems when applying conven-
tional topic models. In this paper, we propose a new topic model,
named GPU-DMM, to leverage global word co-occurrence knowl-
edge to help distil better topics over short texts. Instead of extract-
ing word semantic relatedness knowledge from external thesauri,
we propose to harness the knowledge from the results of the recent
neural network language model techniques. GPU-DMM enhances
the topic similarity for two semantically related words which rarely
co-occur in short texts. We conduct extensive experiments on t-
wo real-world short text corpora. The experimental results show
that GPU-DMM outperforms existing state-of-the-art alternatives
in terms of effectiveness and efficiency. Nevertheless, there is still
room to improve our model in the future. For example, we would
like to adjust the promotion weight µ based on the topic and corre-
lated word pair together, which is a fixed value in this work. More-
over, it is interesting to validate the effectiveness of using other
word embedding techniques like Glove [27].
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