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ABSTRACT
Despite considerable progress in recent years on Tag-based Social
Image Retrieval (TagIR), state-of-the-art TagIR systems fail to pro-
vide a systematic framework for end users to ask why certain im-
ages are not in the result set of a given query and provide an ex-
planation for such missing results. However, as humans, such why-
not questions are natural when expected images are missing in the
query results returned by a TagIR system. Clearly, it would be
very helpful to users if they could pose follow-up why-not ques-
tions to seek clarifications on missing images in query results. In
this work, we take the first step to systematically answer the why-
not questions posed by end-users on TagIR systems. Our answer
not only involves the reason why desired images are missing in the
results but also suggestion on how the query can be altered so that
the user can view these missing images in sufficient number. We
present three explanation models, namely result reordering, query
relaxation, and query substitution, that enable us to explain a va-
riety of why-not questions. We present an algorithm called wine
(Why-not questIon aNswering Engine) that exploits these models
to answer why-not questions efficiently. Experiments on nus-wide
dataset demonstrate effectiveness as well as benefits of wine.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Information Filtering; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval—Search Pro-
cess

Keywords
Social Image, Flickr, Tag-based image search, Why-not questions,
Explanation models

1. INTRODUCTION
The prevalence of digital photography devices (e.g., digital cam-

eras, mobile phones) and increasing popularity of social image shar-
ing platforms and applications (e.g., Flickr, Picasa, and Instagram)
have made huge volume of images available online. Many of these
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(a) Q(Rome) (b) Q(Rome Colosseum)

Figure 1: Search results of the two queries in Example 1.

online images are socially tagged by their uploaders or viewers
and are searchable by tags, which are free-form keywords. Con-
sequently, techniques to support Tag-based Social Image Retrieval
(TagIR) for finding relevant high-quality images using keyword
queries have recently generated tremendous research and commer-
cial interests. In simple words, given a keyword query (or search
query) which expresses a user’s information need, a TagIR search
engine returns a ranked list of images where the images annotated
with the most relevant tags to the query are ranked higher.

Most existing efforts in TagIR attempt to improve its search ac-
curacy or diversify its search results so as to maximize the proba-
bility of satisfying users’ search intents [15,16]. Despite the recent
progress towards this goal, it is often challenging to generate high
quality search results for a search query which can satisfy search
intents of different users. This is because the search intents of users
are not always precise and hence difficult to interpret accurately.
Often, desired images may be unexpectedly missing in the search
results. However, state-of-the-art TagIR systems lack explanation
capability for users to seek clarifications on the absence of expected
images (i.e., missing images) in the result set. Consider the follow-
ing set of user problems1:

Example 1. Ann is planning a trip to Rome to visit its famous
landmarks. She issues a search query “Rome” on a tag-based so-
cial image search engine. The top-20 matches to her query re-
trieved by the search engine are depicted in Figure 1(a). Expect-
edly, many images of Rome’s famous landmarks appear as top re-
sult matches, such as the Spiral Stairs, the Gallery of Map, and the
Sistine Chapel. However, surprisingly, there are no images related
to the Colosseum, a famous landmark of Ancient Rome, in the top-
100 results. So why is it not in the result set? Note that expanding
the query by adding the keyword Colosseum to it would garner
images related to Colosseum (Figure 1(b)). However, Ann would
1All search results presented in our examples are obtained using a TagIR system fol-
lowing the best performing configuration in [13] on nus-wide data collection.



(a) Q(lake) (b) Q(lake Hangzhou China)

Figure 2: Search results related to Example 2.

lose images of other interesting landmarks, depriving her to get a
bird eye view of different attractions of Rome.

Example 2. Bob has returned from a trip to China. He really
enjoyed the scenic Xi Hu lake in Hangzhou city of the Zhejiang
province. However, Bob has forgotten its name. Hence, he posed
the following query to retrieve images related to Xi Hu lake: “lake
Hangzhou Zhejiang China”. Surprisingly, no result is returned
by the search engine! Why not? Note that searching for “lake”
alone is ineffective as Bob primarily wants images of Xi Hu lake
and not other lakes. In fact, the query “lake” returns more than
4000 images, many of these are irrelevant (Figure 2(a)).

Example 3. Carlos, a young archaeologist researching on
Mesoamerican culture, hopes to find images related to their pyra-
mids. He submits the query “pyramid” which returns mostly im-
ages related to Egyptian and Louvre pyramids (Figure 3(a)). So
why are Mesoamerican pyramids not in the result set? Perplexed,
Carlos expands the query by adding the keyword “Mesoamerica”,
hoping to retrieve relevant images. However, only four images
are now returned and among them, only two are really relevant
to Mesoamerican pyramids (Figure 3(b)). Are there only two im-
ages of Mesoamerican pyramids in the image collection? Think-
ing that his modified query may be too strict, Carlos now removed
the keyword “pyramid” from the query. However, only five ad-
ditional results are returned now and none of these additional im-
ages are relevant (Figure 3(c)). So why not more images related to
Mesoamerican pyramids can be retrieved?

There is one common thread throughout these problems encoun-
tered above, despite the differences in search queries: the user
would like to know why certain images are missing in the top-m
result set of a given query (Examples 1 and 2) or not there in suf-
ficient number (Example 3) and suggestion on how his/her query
can be altered effectively to view these missing images in sufficient
number. In this paper we refer to this problem as the Why Not?
problem in TagIR (formally defined in Section 3). Note that in the
above examples, one cannot expect the users to sift through the
underlying social image dataset to seek for explanation when they
encounter missing results.

At a first glance, it may seem that any large-scale social image
search engine (e.g., Flickr) may facilitate answering these original
queries more effectively simply because they have very large col-
lection of social images compared to the nus-wide data collection
used in the aforementioned examples. For instance, the query in
Example 2 returns several images related to Xi Hu lake when posed
directly on Flickr2. Unfortunately, users’ expectations are just too
diverse to eliminate the Why Not? problem in Flickr (detailed in
Section 7). For example, consider the query “pyramid” in Exam-
ple 3 directly on Flickr. It only retrieves a single image related to
Mesoamerican pyramid in its top-50 result set! In fact, even in large
image collection provided by web search engines (e.g., Google,
Bing) where data associated with images are not as sparse as social
images, the Why Not? problem is still encountered. For example,
2All results related to Flickr and Google Images are last accessed on July 14th, 2013.
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Figure 3: Search results of the three queries in Example 3.

suppose we issue the query “Manchester city” on Google Im-
ages. Interestingly, majority of top-50 images retrieved by it are
about the Manchester City Football Club! For a user who is not a
soccer fan, this result is unsatisfactory due to lack of images related
to the city of Manchester.

Our initial investigation shed some light on the possible reasons
for the Why Not? problem. First, the desired images may be
ranked very low in the search results because the same keyword
query may express very different search intents for different users.
The top-ranked images may be considered relevant by some users
but not by others. For instance, reconsider Example 1. The reason
Ann could not see the images related to Colosseum is because they
are ranked too low. The first Colosseum image is ranked 217-th in
the result set and Ann is unlikely to explore more than 100 images
to search for Colosseum.

Second, the set of tags associated with images may be noisy and
incomplete. Note that tags are not from controlled vocabulary and
are assigned by users with various different motivations. Conse-
quently, not all keywords mentioned in the search query may ap-
pear as tags in relevant images. For instance, consider Example 2.
A user may not annotate an image related to Xi Hu lake with the
tag Zhejiang even if she tags it with Hangzhou. In fact, none of
the images related to Xi Hu lake are tagged with Zhejiang in the
underlying image collection! However, it is unrealistic to expect a
user to be aware of this fact.

Third, the query formulated by the user may be too restrictive
due to the user’s limited understanding of the data collection. That
is, there may be a mismatch between the tags that the user expects
to be associated with her desired images and the actual tags that
annotate these images in the data collection. In Example 3, Carlos
failed to retrieve sufficient number of images annotated with the tag
Mesoamerica because it is rarely used in tagging images in the im-
age collection. However, Carlos is unlikely to have this knowledge
or possess the skill to alter the query to retrieve his desired images.

Clearly, it would be very helpful to Ann, Bob, and Carlos if they
could simply pose a follow-up why-not question to the TagIR en-
gine to seek an explanation for desired missing images and sugges-
tions on how to retrieve them. In this paper, we propose a novel
framework called wine (Why-not questIon aNswering Engine) to
address this problem. We assume that a user specifies a why-not
question in wine using a why-not tag. For instance, in Example 1,
after receiving the results as in Figure 1(a), Ann may use a why-
not tag Colosseum to seek some images related to Colosseum to
appear in the result list. Similarly, in Example 2, Bob may issue a
why-not tag lake to specify why he cannot view images related to
lakes in Hangzhou. Our proposed framework automatically gen-
erates explanation to a why-not question and recommends refined
query, if necessary, whose result may not only includes images re-



lated to the search query but also to the why-not question. To the
best of our knowledge, this is the first systematic effort to formulate
and address the Why Not? problem in TagIR.

We propose three complimentary explanation models, namely
result reordering, query relaxation, and query substitution, that
are designed to address three different scenarios of the Why Not?
problem (detailed in Sections 3.3 and 4-6). Going a step further, we
also describe techniques that provide a user useful suggestions on
how to alter her query in order to retrieve these desired images. A
key feature of wine is its portability as it is orthogonal to the result
retrieval and ranking mechanism of the underlying search engine.

It may seem that the Why Not? problem can be addressed by
leveraging existing search techniques such as query expansion, query
suggestion, and search result clustering. Unfortunately, this is not
the case. Specifically, these techniques assume that the search en-
gine captures a user’s information need in one way or another by
analyzing either the underlying data including click-through data
or by presenting the search results in a more organized manner.
However, unlike a why-not question in the Why Not? problem,
these techniques do not accept explicit feedback from a user when
she is unsatisfied with the search results. Consequently, by mod-
ifying a query without such user input, a search engine may gen-
erate answers to a modified query that do not agree on the user’s
original search intent. For instance, in Example 1, if we add the
why-not tag Colosseum to “Rome” (based on query expansion)
then the search intent morphs from “famous landmarks of Rome
including Colosseum” to “Colosseum in Rome”. Consequently, as
depicted in Figure 1(b), such query expansion leads to loss of im-
ages of interesting landmarks in Rome other than Colosseum. No-
tably a why-not question should not alter the original search intent.
As another example, consider the query “pyramid” in Example 3.
An existing query suggestion technique may recommend the tags
“Egypt”, “Louvre”, “Giza”, “Sphinx”, etc., reflecting the com-
monly associated concepts to pyramid. Clearly, such suggestion
not only modifies the search intent of Carlos, but also fails to ad-
dress his why-not question. That is, without the explicit why-not
tag “Mesoamerica”, state-of-the-art query suggestion models may
fail to speculate that Carlos’ interest is in Mesoamerican pyramid.

2. RELATED WORK
Tag-based Social Image Retrieval (TagIR). The research efforts
in TagIR can be broadly categorized into three types, namely index-
ing, scoring, and ranking. Indexing an image in TagIR involves two
complementary tasks: (i) determining the set of tags best describ-
ing the image [3, 18], and (ii) quantifying how accurately each of
these tags objectively describe the visual content of the image (also
known as tag relevance [8]). Scoring aims to compute a relevance
score between a keyword query and a tagged image. Relevance
score computation typically considers the matching score between
the keyword and the image tags and other factors derived from
search logs and user click-through data [7,12]. Ranking determines
the order in which search results (e.g., the top-ranked images) are
presented to the searcher. The default image ranking is solely based
on the relevance score [8]. More sophisticated methods may diver-
sify the search results so as to satisfy the different possible search
intents expressed by the same keyword query [15, 16].

It may seem that our proposed explanation models are closely as-
sociated with search results re-ranking [9] and query
expansion/substitution [1, 17]. However, search results re-ranking
techniques rely on positive user inputs (e.g., a user selects rele-
vant results from the initial search results) to improve user satisfac-
tion [5, 9] whereas wine allows a user to specify explicit negative
feedback through a why-not tag instead of initial search results.

(a) α = 0.4 (b) α = 0.9

Figure 4: Reordered results for query (Rome) with why-not tag
Colosseum.

Naturally, results re-ranking techniques cannot be effectively ap-
plied to address all why-not questions because there are very few
positive results or even no results for users to provide any input.

Zha et al. [17] adopts the query suggestion model from IR into
TagIR. Consequently, the suggested tags in [17] are selected to be
closely related to the query but distinct among each other. Further-
more, a few representative images are retrieved for each suggested
tag to assist users in understanding the suggested tags. However,
when there are very few results matching a user query, the co-
occurrence based technique used in this scheme becomes unreli-
able. For instance, Example 2 demonstrates a case where the query
is too selective so that adding new tags into the query fail to im-
prove the result quality. Another example is the query “Leningrad”
(Q26 in Section 7) which returns only five images. Consequently, in
contrast to wine, it fails to suggest the query “saintpetersburg”
instead in order to retrieve more images. In addition, wine provides
clear explanation for reasons behind such suggestion.

Why-Not Questions in Databases. More germane to this work
are recent efforts in the database community to provide automatic
explanation to a why-not question [2, 6, 14]. To answer why-not
questions (i.e., why some expected data items are not shown in
the result set) on relational databases, multiple answer models have
been proposed, including: database modification, manipulation iden-
tification, and query modification. However, these approaches can-
not be trivially extended to TagIR setting due to fundamental differ-
ences in data model and query processing technique. Particularly,
this is because: (i) the social image data in TagIR is not represented
using relational structure and (ii) there is no concept of query plan,
which was exploited by these models, in the context of TagIR.

3. THE WHY NOT? PROBLEM
We begin by introducing some terminology that is necessary to

the understanding of the Why Not? problem. Then, we formally
define the problem that we are addressing in this paper. Lastly, we
introduce the explanation models and present the wine algorithm.

3.1 Terminology
Given a social image collectionD and the set of all tags T inD,

each image d ∈ D is user-annotated by a set of tags Td ⊆ T . The
set of images annotated by tag t is denoted as D(t). Given T ⊆ T ,
we denote the set of images annotated by all tags in T as D(T ).

Given a search query Q with n query tags t1, . . . , tn, let R(Q,D)
(or simply R(Q) when the context is clear) denote the image search
result list of Q on D. For simplicity, we shall assume ti ∈ T ,∀(i =

1, 2, . . . , n). Each result image dr ∈ R(Q) is annotated by query
tags t1, . . . , tn and is associated with a relevance score, denoted
as rel(dr,Q). R(Q) is assumed to be listed by descending order of



the relevance scores. Recall that wine is independent of the results
ranking technique used to support TagIR. Hence, we can use any
state-of-the-art relevance score computation technique [7, 12, 13]
for computing rel(dr,Q). By abusing the notation of lists, we de-
note the list of images in R(Q) as the image set D(Q). We use Rm(Q)
or Dm(Q) interchangeably to denote the top-m images in R(Q).

3.2 Problem Statement
A user asks a why-not question of the form “Why do (top-m)

results of my query Q not contain sufficient number of images re-
lated to S.” The predicate S is defined using a why-not tag tw. So the
aforementioned question is equivalent to the following form “Why
do (top-m) results of my query Q not contain sufficient number of
images related to tag tw.” For example, consider the query in Exam-
ple 1. Here the query is “Rome” and the user Ann wishes to know
why the top-100 results of her query do not contain any images
related to Colosseum. Hence, tw = “Colosseum”.

Note that in this paper we focus on a single why-not tag. While
more complex collection of why-not tags could be allowed in the-
ory, our initial analysis of users suggested that such tag collection is
often difficult to interpret as the semantics of the why-not question
may become unclear (e.g., view images with all why-not tags vs
some why-not tags). It is even more challenging when the why-not
tags themselves do not appear in the data collection3.

When attempting to answer a why-not question during social im-
age search, we have three known pieces from which to draw in-
formation: the query Q, the search results R(Q) with their rele-
vance scores, and the question tw. An answer to a why-not question
should exploit these information to return to the user potential rea-
sons for the image(s) of interest is missing from the (top-m) results.
Further, it should suggest solutions that will enable the user to re-
trieve and view these missing image(s) along with other relevant
results. This leads to a formulation of the Why Not? problem.

Definition 1. Let Q be a search query on a social image database
D, and Rm(Q) be the set of top-m ranked search results, where
0 < m ≤ |R(Q)|. Let tw be the why-not question and α be a config-
urable parameter indicating the ratio of desired number of images
related to tw in Rm(Q). Then the goal of the Why Not? problem is
to find an answer� comprising (a) the reason for |R(tw)∩Rm(Q)|

|Rm(Q) < α ,
and (b) a suggestion, if executed, ensures any one of the followings:
(i) |R(tw)∩Rm(Q)|

|Rm(Q)| ≥ α , or (ii) |R(tw)∩Rm(Q′)|
|Rm(Q′)| ≥ α , or (iii) |R(t′w)∩Rm(Q′)|

|Rm(Q′)| ≥ α ,
where Q′ is a modification to Q based on the suggestion and t′w is a
closely related tag to tw.

3.3 Explanation Models
We propose the following three explanation models to tackle the

Why Not? problem.

Result Reordering Model: Intuitively, in this explanation model
we reorder the search results R(Q) so that images related to the
why-not tag tw in R(Q) appear in the top-m results. A key advantage
of this approach is that it is simple, fast and is particularly well-
suited when the relevant images are in R(Q) but ranked too low
(e.g., Example 1). Sample output of promoting the why-not tag
Colosseum in Example 1 is depicted in Figure 4(a).

Query Relaxation Model: In this model, we identify the set of
selective tags in Q which are responsible for filtering majority of
the relevant images related to tw from R(Q). These tags can then
be removed from Q. Note that this model is suitable when the fol-
lowing two conditions are satisfied: (i) there are few images related
3This issue can be addressed by building a query interpretation module on top of wine
to interpret the why-not question and allow wine to evaluate multiple why-not tags
using the proposed explanation models. However, this is orthogonal to the problem.

to tw in R(Q); but (ii) there are a large number of images related
to tw in the image collection D. Clearly, the former condition is
reasonable since if there are enough images in R(Q), result reorder-
ing is a simpler and more effective solution. The latter condition is
intuitive because if there are too few relevant images in the image
collection, it is impossible for large number of images related to tw

appearing in the result set. For example, consider Example 2. This
model identifies that Zhejiang is a selective tag and advises Bob
to remove it from the original query in order to view images related
to Xi Hu lake. Figure 2(b) depicts the results containing images of
Xi Hu lake for the relaxed query “lake Hangzhou China”.

Query Substitution Model: This explanation model is suitable
when there are too few relevant images annotated by tw in D (as
in Example 3). Consequently, it is impossible to either interpret
which images are relevant to the why-not tag or deduce its rela-
tions with other tags using D alone. Therefore, we leverage an ex-
ternal data source (Wikipedia) to interpret the semantics of tw and
use this knowledge to infer some closely related tags to tw in D.
These tags can then be used as a new query to retrieve the desired
images. For instance, consider Example 3. The query “pyramid
Mesoamerica” is modified to “pyramid Maya” after identifying
maya to be most closely related to mesoamerica using Wikipedia.
This new query generated 27 query results and many of which are
images of Mesoamerican pyramid.

3.4 The WINE Algorithm
Algorithm 1 outlines the procedure for answering the why-not

question using the aforementioned explanation models. It takes
five inputs, namely, the original query Q, the why-not tag tw, the
number of displayed results m, a set of Wikipedia articlesW, and
a user-configurable desired image ratio α . Note that α represents
the fraction of images related to tw that the user intends to see in
her top-m results. Obviously, the why-not question is formulated
by the user as α is too low for her satisfaction in the current result
set. Hence, the goal of wine is to explain to the user why there are
insufficient images related to tw in Rm(Q) and provide her sugges-
tion, if executed, will ensure that there are sufficient images related
to tw in Rm(Q) without modifying the user’s search intent in Q. To-
wards this goal, Algorithm 1 chooses among the three explanation
models by comparing α × m with two variables s1 and s2. Specif-
ically, s1 is the number of images in both R(Q) and R(tw) and s2

is the number of images in R(tw). Obviously, s1 ≤ s2. We now
describe the explanation model selection process.

If s1 > α ×m (Line 4), then Rm(Q) contains fewer than α ×m re-
sults related to tag tw but R(Q) contains many such images at lower
ranks. This scenario is illustrated using a Venn diagram in Fig-
ure 5(a). The gray shaded circle represents the images in Rm(Q)
which are displayed to the user. The black shaded area represents
images related to tw that appear in R(Q) but not in Rm(Q). Observe
that the intersection between Rm(Q) and R(tw) is small but the in-
tersection between R(Q) and R(tw) is large enough. In this case, a
simple but effective solution is to first notify the user that images
related to tw are lowly ranked (Line 5) and then invoke the Result
Reordering model (Reorder method in Line 7) to reorder the re-
sults (elaborated in Section 4). Note that the reordering ensures
that |Rm(Q)∩R(tw)|

|Rm(Q)| ≥ α . The effect of reordering is illustrated in Fig-
ure 5(b) where there are now more images with tag tw in Rm(Q)
(the striped area). Notice that the size of Rm(Q) remains unchanged
(always equal to m).

If s1 ≤ α × m but s2 > α × m and Q is a multi-tag query (Line
9), then the scenario indicates the followings. First, there are in-
sufficient images in R(Q) related to tw so that, no matter how we
reorder R(Q), we cannot propel sufficient number of images related



Algorithm 1: Algorithm wine.
Input: A set of n query tags Q = {t1, . . . , tn} with search result R(Q),

why-not tag tw with search result R(tw), set of Wikipedia
articlesW, the number of displayed results m, the desired
image ratio α

Output: A list of images R(Qnew) addressing the why-not question tw
1 Set f lag = false /* true if user accepts a suggestion */;
2 s1 ← |R(Q) ∩ R(tw)|;
3 s2 ← |R(tw)|;
4 if s1 > m × α then

// m × α < s1 ≤ s2
5 Send notification �;
6 if f lag = true then
7 R(Qnew)← Reorder(R(Q), tw,R(tw),m,α);

8 return R(Qnew)

9 else if s2 > m × α and Q is multi-tag query then
// s1 ≤ m × α < s2

10 (�,T ′)← Relax(Q, tw);
11 if f lag = true then
12 Qnew = Q\T ′;
13 Generate results R(Qnew);
14 return R(Qnew)

15 else
// s1 ≤ s2 < m × α

16 (�, t′w)← Substitute(Q, tw, β );
17 if f lag = true then
18 Modify Q to Qnew based on t′w;
19 Generate results R(Qnew);
20 return R(Qnew)

to tw to the top-m results. Second, if s2 > α × m, then there are
sufficient number of images annotated with tw in D which can be
potentially retrieved using queries other than Q. Consequently, if
Q is multi-tag, then it can be relaxed to Qnew to retrieve more results
related to tw. This situation is illustrated in Figure 5(c). Unlike in
Figures 5(a)-(b), the intersection between R(Q) and R(tw) is small
(black area) but R(tw) remains large. So, it is reasonable to relax Q
to a new query Qnew such that its intersection with R(tw) is larger.
Such query relaxation process is invoked by the Relax procedure
(Line 10). Specifically, this procedure efficiently identifies the se-
lective tags in Q and suggest to the user to remove them in order
to retrieve result set R(Qnew) ⊇ R(Q) which contains more images
related to tw. Hence, its output consists of a notification� that sug-
gests the removal of a selective tagset T ′ from the query. If the
user accepts this suggestion ( f lag is set to true) then Q is modi-
fied to Qnew by removing these selective tag(s) and a new result set
R(Qnew) is generated based on the modified query (Lines 11-13).
We elaborate on the Relax procedure in Section 5.

Lines 16-20 reflect the case when s2 ≤ α × m. In this case,
D contains too few images tagged with tw. Furthermore, Q simply
cannot be relaxed (a tag cannot be removed from Q) as it is possible
for Q to be single-tag query. Figure 5(d) illustrates such situation
when R(tw) is too small. However, as tags are inherently noisy, it
is possible to retrieve images related to tw but annotated by closely-
related tags. We use an external source W (a set of Wikipedia
articles), to find the most closely related tags t′w in D to tw and Q
such that it is associated with sufficiently large number of images
in D. The intuition behind this approach is that since tw and t′w are
closely related, an image relevant to t′w is likely to be relevant to tw

as well. These steps are encapsulated in the Substitute procedure
which returns a notification � that suggests closely related tag t′w
for refining Q (Line 16). Figure 5(d) depicts such situation where
R(t′w)∩ R(Qnew) is significantly larger than R(tw)∩ R(Q). If the user

Rm(Q)

R(tw) ∩ Rm(Q)

Rm(Q)

R(tw)

R(Q)
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R(tw)
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R(tw) ∩ Rm(Q)

R(Q)

R(tw)
R(Qnew)
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Figure 5: Venn diagram representation of the three models.

accepts the suggestion, then the algorithm substitutes the original
query with Qnew and generates the new results R(Qnew) (Lines 17-
19). Note that we ensure |R(Qnew)| ≥ α × m to avoid retrieving too
few results. We shall elaborate on this step in Section 6.

Notice that both the query relaxation and query substitution mod-
els aim to increase the size of R(tw) ∩ R(Q) (the black area in Fig-
ure 5) while the main objective of our solution is to ensure that
R(tw) ∩ Rm(Q) (the shaded area in Figure 5) exceeds α ×m. There-
fore, for these models result reordering is applied (if necessary)
when R(Qnew) is generated (Lines 13 and 19).

4. THE RESULT REORDERING MODEL
In short, the result reordering model reranks the original result

images so that there are at least α × m images relevant to the why-
not tag appearing in the top-m results Rm(Q). Given the query Q,
each result image d ∈ R(Q) is assigned a new score by linearly
combining the relevance score rel(d, tw) of the why-not tag tw and
the original score rel(d,Q) as follows.

relw(d,Q, tw) = (1 − θ ) × rel(d,Q) + θ × rel(d, tw) (1)

where θ =
rel(d0 ,Q)

rel(d0,Q)+rel(dw,tw) , d0 is the (1−α)m-th results in R(Q)\R(tw)
and dw is the α × m-th result in R(Q) ∩ R(tw). Note that we assume
rel(d, tw) = 0 when d < R(tw).

Informally, Equation 1 ensures that there are α × m results with
tag tw in Rm(Q) by ensuring that the α ×m-th result in R(Q)∩R(tw)
appears at the m-th result in Rm(Q) while maintaining the rela-
tive order among all results in R(Q)\R(tw) and among all results
in R(Q) ∩ R(tw). The desired image ratio 0 ≤ α ≤ 1 indicates how
many results in the top-m displayed results need to be replaced by
images relevant to tw. In other words, α indicates the user’s level
of dissatisfaction to the current result list R(Q). Let us illustrate the
intuition behind α with an example. Reconsider Example 1 and the
why-not question “Colosseum”. If we set α to a low value4 (e.g.,
α = 0.4) then we can retrieve images related to Colosseum as well
as other landmarks as top results (Figure 4(a)). On the other hand,
if the value of α is high (e.g., α = 0.9) then more images related
to Colosseum will be laid out as top results (Figure 4(b)). That is,
appropriate value of α is driven by specific user’s need.

Algorithm 2 outlines the procedure to realize the result reorder-
ing model. The key aspect here is that it is designed to avoid sorting
R(Q) again as it incurs a cost of O(|R(Q)| log(|R(Q)|)) which can be

4Inwine a user does not need to specify any numeric value to set α . Rather she simply
drags a slider in the gui to specify different α values and interactively view the changes
in the results (result reordering is very fast as we shall demonstrate in Section 7).



potentially expensive when R(Q) is large. Observe that only the
scores of images in R(Q) ∩ R(tw) are modified. Thus, only these
images need to be re-sorted. Also notice that |R(Q) ∩ R(tw)| is
usually small since users typically ask the why-not question when
|R(Q) ∩ R(tw)| � |R(Q)|. Accordingly, after computing θ (Lines 1-
3), we partition R(Q) into two groups, namely L1 and L2, corre-
sponding to R(Q)∩R(tw) and R(Q)\R(tw), respectively (Lines 5-10).
Each image d in L1 is assigned a new score relw(d,Q, tw) computed
by Equation 1 (Line 7) and re-sorted based on this score (Line 11).
Note that the relevance score of each image in L2 is the same as
that in the original query results. Lastly, these two sorted lists are
merged into the final result list L (Line 12). The time complexity
of Algorithm 2 is O(|R(Q)| + |R(Q) ∩ R(tw)| log(|R(Q) ∩ R(tw)|)).

5. THE QUERY RELAXATION MODEL
While result reordering model can efficiently display relevant

images with the why-not tag tw, it is ineffective when there are
too few images with tag tw in the result set. Notice that arbitrar-
ily removing one or more query tags may not be effective as the
query may become too generic leading to the retrieval of too many
irrelevant results (e.g., query “lake” in Example 2). Hence, a tech-
nique to effectively identify the “culprit” query tag(s) in a query for
removal is desirable. The query relaxation model is proposed to
address this issue. We begin by introducing the notion of selective
tagset which we shall be exploiting subsequently.

5.1 Selective Tagset
We first introduce relevance-aware cardinality and relevance-

aware selectivity to facilitate exposition. The relevance-aware car-
dinality of a set of query tags T ⊆ Q, denoted as card(T ), is the
weighted sum of the relevance scores of all images annotated by all
tags in T . The relevance score used here is the one associated with
the why-not tag (rel(d, tw)). Then, card(T ) is formally defined as:

card(T ) =
∑
d∈D

rel(d, tw) (2)

Intuitively, a set of query tags T is selective when removing a sin-
gle tag from T would generate significantly larger size of query re-
sults. Accordingly, given T , we define a child set of T as a (|T |−1)-
subset of T 5. We denote the set of all child sets of T as children(T ).
Then, the relevance-aware selectivity of T , denoted as select(T ), is
defined as follows.

select(T ) =

∑
T ′∈children(T ) card(T ′)
|children(T )|

card(T )
(3)

Informally, a selective tagset of a multi-tag query Q is a set of
tags Tmax ⊂ Q which has maximum relevance-aware selectivity
among all possible tagsets in Q. If there are more than one set
then the tie is broken arbitrarily. Formally,

Definition 2. Let Q = {t1, t2, . . . , tn} be a search query where
n ≥ 2. Let tw be the why-not tag. Then Tmax ⊂ Q is a selective tagset
iff @ T ′ ⊂ Q such that select(T ′) > select(Tmax) where T ′ , Tmax.

5.2 The RELAX Algorithm
We now discuss the algorithm to efficiently detect the selective

tagset of a multi-tag query Q. Obviously, computing selectivity
is straightforward when the cardinalities of all 2n subsets of Q are
known. The brute-force approach for this task requires traversing
all images with tag tw for each subset resulting in a time complexity
of O(2nD(tw)). Clearly, this is inefficient. Hence, we propose an
algorithm that scans D(tw) only once to detect the selective tagset.
5A k-subset of a set is a subset with exactly k elements.

Algorithm 2: Algorithm Reorder.
Input: Result images R(Q), why-not tag tw with search results R(tw),

α , the number of displayed results m
Output: A reordered list of result images L

1 d0 ← the [(1 − α) × m]-th result in R(Q)\R(tw);
2 dw ← the [α × m]-th result in R(Q) ∩ R(tw);
3 θ ←

rel(d0 ,Q)
rel(d0 ,Q)+rel(dw ,tw) ;

4 Initialize two empty temporary list L1 and L2;
5 for each result image d ∈ R(Q) do
6 if d ∈ R(tw) then
7 relw(d,Q, tw) = (1 − θ ) × rel(d,Q) + θ × rel(d, tw);
8 Add d to L1 with score relw(d,Q, tw);
9 else

10 Add d to L2 with score rel(d,Q);

11 Sort all images in L1 by their assigned scores descendingly;
12 L← merge(L1,L2);
13 return L

Algorithm 3: Algorithm Relax.
Input: A set of query tags Q = {t1, . . . , tn} with search result R(Q),

why-not tag tw with search result R(tw)
Output: The most selective subset T ′ ⊂ Q, Notification �

1 Initialize the cardinality of each subset of Q to 0;
2 for each image d ∈ D(tw) do
3 T ← Q ∩ Td ;
4 Increase card(T ) by rel(d, tw);

5 for i = 1→ n do
6 for each subset T ⊆ Q do
7 if ti ∈ T then
8 T ′ ← T\{ti};
9 card(T ′)← card(T ′) + card(T );

10 for each subset T ⊆ Q,T , ∅ do

11 select(T ) =

∑
T ′∈children(T ) card(T ′ )

|children(T )|
card(T ) ;

12 Tmax ← the subset T with maximum relevance-aware selectivity;
13 Generate notification � based on Tmax;
14 return (�,Tmax)

Observe that based on Equation 2, an image d contributes its rel-
evance score to the cardinality of a tagset T when T ⊆ Td . There-
fore, T ⊆ Q∩Td . Let exactCard(T ′) be the sum of relevance scores
rel(d, tw) of all images d ∈ D(tw) such that Q∩Td = T ′. Then Equa-
tion 2 can be rewritten as:

card(T ) =
∑

T⊆T ′⊆Q

exactCard(T ′) (4)

That is, the contributing images to card(T ) are split into 2|Q|−|T |

groups, each corresponds to a superset T ′ of T . Notice that (Q∩Td)
is unique for all d. Therefore, exactCard(T ′) can be computed for
all sets T ′ ⊆ Q in a single scan over D(tw).

Each subset T of Q = {t1, . . . , tn} can be encoded as an n-bit
bitarray such that the i-th bit is 1 iff ti ∈ T . Using bitarray encod-
ing, a set is a superset of another set iff its bitarray supersedes the
other set’s bitarray6. Furthermore, the bitarrays can be arranged
in an n-dimension hypercube such that two bitarrays are connected
when they are different in only one bit. The sums are then com-
puted using the Hypercube algorithm [11], a popular algorithm in
parallel computing. In brief, given an n-dimension hypercube with
2n nodes, each is labeled with an n-bit bitarray and assigned a value,
the hypercube algorithm computes the sum of all values and stores
6Bitarray b1 supersedes bitarray b2 when b1 ∧ b2 = b2



that sum at a node (assumed to be 00...0). The computation con-
sists of n steps. At step i, the current sum of values at all nodes
whose i-bit is 1 is added to the current sum of values of the corre-
sponding nodes whose i-bit is 0. After n-steps, the total sum of all
values in the hypercube is at node 00...0.

Not that although we do not employ parallel computation for
finding the selective tagset, the Hypercube algorithm has a valu-
able property that can also be exploited for sequential computation.
After n steps, the value at each node a is the sum of the original val-
ues at all nodes whose bitarrays supersede a’s bitarray. Specifically,
we can compute the cardinality of all subsets of Q using Equation 4
by a single n-step hypercube process having complexity O(2n−1n).

Algorithm 3 realizes the above intuitions to compute the selec-
tive tagset. Lines 1-4 compute the exactCard(T ) of each subset
T of Q while Lines 5-9 add them into card following Equation 4
and the Hypercube algorithm. Lines 10-11 compute the selectiv-
ity score from the cardinality score following Equation 3. Line 12
simply finds the subset of Q with maximum relevance-aware selec-
tivity. Based on this subset, the algorithm generates the explanation
� for the user (Line 13). Notice that the relevance-aware selectivity
of all query tag subsets is computed in the aforementioned steps.
Consequently, we can easily extend our approach to notify the user
with top-k most selective tagsets instead of the only most selective
tagset and allow her to select the desired tagset for removal. The
time complexity of the algorithm is O(n × 2n−1 + |D(tw)|). Notice
that in practice, n is usually small and n � D(tw).

6. THE QUERY SUBSTITUTION MODEL
The query relaxation model discussed in the preceding section

is not effective when there are very few images (if any) associated
with a why-not tag in the entire image collection. In this case,
even the most relaxed query fails to retrieve sufficient number of
desired results (Example 3). In this section, we present the query
substitution model to tackle such scenario.

The lack of existence of sufficient images matching the why-not
tag poses two intertwining challenges. Firstly, the user-specified
why-not tag cannot be leveraged directly for generating explana-
tion to the why-not question as it is unlikely that the user wishes to
see a very small number of result images (if any) associated with
this tag. Secondly, while the desired images are likely to be anno-
tated by some closely related tag(s) to the why-not tag, it is difficult
to find these related tags using traditional tag co-occurrence or tag
relevance measures as both of these require sufficiently large num-
ber of matching images to be effective.

In order to address the aforementioned challenges, we resort to
the external source Wikipedia to interpret the why-not tag. Specifi-
cally, we shall use it to measure the strength of relationship between
tags to find a closely related tag tc to the why-not tag. It is then used
in lieu of the why-not tag to guide the why-not question answering
process as well as modification of the query.

In particular, tc must satisfy the following three conditions: (a)
it must annotate sufficiently large number of images in the image
collection; (b) it should be closely related to the why-not tag tw; and
(c) it should be related to the query keywords Q. The first condition
is obvious. Otherwise tc would offer little benefit compared to the
why-not tag. The remaining conditions ensure necessary semantic
relationship between tc, tw, and query tag(s). Notice that we use the
phrase closely related for the second condition whereas related for
the last. This is because tc must be closest to the why-not tag. We
now formally quantify the relatedness of a selected tag tc.

Definition 3. Given a query Q = {t1, . . . , tn}, a why-not tag tw,
and a term tc, the tag relatedness of tc, denoted as Φ(tc), is defined

Algorithm 4: Algorithm Substitute.
Input: A set of n query tags Q = {t1, . . . , tn} with search result R(Q),

why-not tag tw with search result R(tw), a configurable
parameter β

Output: The closely related tag tc, Notification �

1 Initialize (n + 1) sorted lists s0, s1, . . . , sn, each stores the most similar
tags to tw, t1, . . . , tn, each neighbor tag also has large enough images in
the image collectionD;

2 Initialize weights wi with w0 = β and wi =
1−β

n for 1 ≤ i ≤ n;
3 Initialize a heap H with at most k tags, when it is full, the minimum is

removed;
4 for each i ∈ [0, n] do
5 t ← si.next() whose score is in scorei(t);
6 for each j ∈ [0, n], j , i do
7 score j(t)←WLM(t, t j);

8 score(t) = weightedSum(w0, score0(t), . . . ,wn, scoren(t));
9 Add t to H;

10 thresDesci ← wi × (si.peekNext() − si.last());

11 threshold ← weightedSum(w0, s0.last(), . . . ,wn, sn.last());
12 while threshold > H.min do
13 i← arg mini∈[0,n] thresDesci;
14 t ← si.next() whose score is in scorei(t);
15 for each j ∈ [0, n], j , i do
16 score j(t)←WLM(t, t j);

17 score(t) = weightedSum(w0, score0(t), . . . ,wn, scoren(t));
18 Add t to H if score(t) > H.min;
19 thresDesci ← wi × (si.peekNext() − si.last());
20 threshold ← weightedSum(w0, s0.last(), . . . ,wn, sn.last());

21 Related tag tc ← H.max;
22 Generate notification � based on tc;
23 return (�, tc)

as follows:

Φ(t) = (1 − β )
∑

1≤i≤n sim(tc, ti)
n

+ β ∗ sim(tc, tw)

where β ∈ [0, 1] and sim denotes tag similarity of a pair of tags.

Clearly, in the above definition the key challenge is to com-
pute tag similarity as we cannot simply compute it using tag co-
occurrence or tag relevance measures.

6.1 Tag Similarity Computation
We compute tag similarity by adopting the Wikipedia Link Mea-

sure (wlm), an efficient and highly accurate technique to measure
the similarity between two Wikipedia articles using hyperlinks [10].
Computing tag similarity usingwlm consists of two steps as in [10],
disambiguation and article similarity. The disambiguation process
corresponds to the mapping process from each tag to each article.
Specifically, this step exploits two heuristics: dominant meanings
and mutual disambiguation. While a tag can have many mean-
ings, it usually has only a few dominant meanings frequently used
in most cases. For example, the tag pyramid probably refers to
either the geometric shape pyramid or a building with that shape,
but rarely refers to the arena at Memphis. Mutual disambiguation
means that when two tags are used together, they are probably re-
lated to each other. For instance, in Example 3 since pyramid
and mesoamerica are used together, pyramid probably refers to
a building and not a geometric shape.

The article similarity docSim(a1, a2) between two articles a and
b is computed using wlm as:

docSim(a, b) = 1 −
log(max(|A|, |B|)) − log(|A ∩ B|)

log(|W |) − log(min(|A|, |B|))



where A and B are the sets of all articles that link to a and b, re-
spectively, and W is the entire Wikipedia. The intuition behind the
above formula is that two related articles tend to be referred to by
lots of common articles. Finally, the tag similarity of a tag pair is
computed as the article similarity of their disambiguated articles.

Let us illustrate the process using the tags pyramid and
mesoamerica. In Wikipedia, mesoamerica only matches to a sin-
gle article about Mesoamerica region whereas pyramid can match
to multiple articles. Among them, only pyramid shape and pyra-
mid building are dominant meanings. The article similarity be-
tween the Mesoamerica article and the two pyramid articles are
then computed and compared. The larger one is the similarity be-
tween Mesoamerica and pyramid building. Thus, they are the dis-
ambiguated meanings of mesoamerica and pyramid, respectively.
Hence, their similarity is the similarity score between the two tags.

6.2 The SUBSTITUTE Algorithm
We now discuss the algorithm to locate a tag with highest tag

relatedness value efficiently and refine the query Q accordingly.
Observe that the tag relatedness of tc is effectively a linear com-
bination of its similarities to all the query tags and the why-not tag
which can be pre-computed and pre-sorted. Hence, we can cast our
problem as the combining fuzzy grade problem which can be solved
efficiently using the Threshold Algorithm (ta) [4].

Algorithm 4 outlines the procedure to identify a tag tc with high-
est tag relatedness value. Specifically, we extend the ta as fol-
lows. Recall from Definition 3, the similarity to the why-not tag
has largest impact on the overall score. Therefore, it is reasonable
to proceed on the list storing the why-not tag’s similarities faster
instead of same speed as in ta. To this end, for each sorted list, we
can estimate the threshold decrease when the next processed node
is select from this list and choose the list with maximum threshold
decrease. This optimization ensures the quickest termination.

Let us elaborate on Algorithm 4 now. Line 1 initializes (n + 1)
sorted lists containing the most similar tags to the why-not tag
and the query tags. Each list is assumed to support three func-
tions next() to proceed the list, last() to look at the last tag seen by
sorted access and peekNext() to peek the next tag but does not pro-
ceed the list. Line 2 initializes the weights following Definition 3
which shall be used in the weightedSum() function to compute the
weighted sum of all similarity scores. Line 3 initializes a min-heap
H which automatically discards the minimum score tag when a tag
with larger score is added. That is, H stores the top-k most re-
lated tags. Lines 4-10 simply process the first tag within each list
similarly to the steps of ta. Note that processing the first tag of
all lists is required to initialize the threshold (Line 11). Lines 13-
20 are repeatedly executed until the threshold is smaller than the
minimum value of H. Within each loop, the next processed tag is
retrieved from the list with maximum threshold decrease (Line 13).
Lines 14-20 are similar to Lines 5-11. Observe that since H stores
top-k related tags, we can easily extend our approach to notify the
user with top-k closely related tags instead of most closely related
tag and allow her to select the desired tag for query modification.

The worst case time complexity of Algorithm 4 is basically the
time complexity of ta which is O(|T |n/(n+1)k1/n+1) where T is the
set of all tags in the image collection D and n is the query size.
Theoretically, in the worst-case, Algorithm 4 may iterate through
all tags in T . However, in practice, it is very unlikely. Since k
is usually small, the top-k related tags to the why-not tags and the
query tags are very likely to be very similar to either the why-not
tag or the query tags. Consequently, Algorithm 4 usually terminates
quickly and the execution time is very short. Additionally, for each
tag (i.e., keyphrase) in Wikipedia, we only need to sort and store a

Table 1: Sample queries for evaluating result reordering model
Id Query [Why Not tag] |R(Q)| |R(tw)| |R(Q) ∩ R(tw)| F(Q, tw)
Q1 Rome [colosseum] 909 20 18 7
Q2 music [classical] 2213 119 27 6
Q3 sea [fish] 9016 2279 556 6
Q4 Paris [Louvre] 2338 2279 178 4
Q5 Paris [arcdetriomphe] 2338 190 30 2
Q6 Paris architecture [cathedral] 250 967 25 0
Q7 sky clouds [bird] 8525 4031 132 1
Q8 sky clouds [plane] 8525 2014 345 1
Q9 newyork [statueofliberty] 3822 46 25 3
Q10 sunset sunrise sky [horizon] 238 1195 43 40

small list of similar tags. This space optimization is crucial since
there are more than three million articles in Wikipedia.

7. EXPERIMENTS
wine is implemented in Java 1.7 using Lucene 3.0.3 as the un-

derlying index engine7. All experiments are conducted on an Intel
Xeon X5570 machine with 12gb memory. In our experiments, un-
less specified otherwise, we set the number of displayed images
m = 50 and the desired image ratio α = 0.2.

7.1 Experimental Setup
Dataset. Since off-the-shelf image search engines (e.g., Flickr)

typically disallow full access to their data and some statistics (e.g.,
relevance scores) which are required by wine, we cannot evaluate
wine directly on top of such search engines. Hence, we are con-
fined to conduct experiments using the nus-wide dataset containing
269,648 images from Flickr. All tags provided in the dataset are
used in our experiments without filtering. The underlying TagIR
system used in our experiments follows the best performing con-
figuration in [13] for multi-tag queries to facilitate evaluation of
the query relaxation and query substitution models. For query sub-
stitution, we used the English Wikipedia dump released on 30 Jan-
uary, 20108 which contains 3.2 million articles and more than 266
million hyperlinks.

Query Set. We asked 14 volunteers (undergraduate students in
computer science and business majors) each to evaluate a subset of
more than 500 randomly chosen queries. A volunteer may issue a
why-not tag if the results returned by a query do not completely sat-
isfy his/her search intent. 114 queries received why-not tags from
the volunteers. Note that some queries (e.g., Q7, Q8) received mul-
tiple why-not tags resulting in 125 query why-not tag pairs. Then,
for each query and why-not tag pair, we asked the volunteers to
label which result images are relevant in the original and modified
result set, taking into account both the original query and the is-
sued why-not tag. Out of these 125 queries, 60, 36, and 29 queries
invoked the result reordering, query relaxation, and query substitu-
tion models, respectively. Due to space limitation, here we chose to
report 30 queries (10 queries per model) as described in Tables 1-3.
These queries are chosen based on multiple factors. First of all, for
these queries most volunteers demonstrated low satisfaction. Sec-
ondly, we ensure that the number of keywords in these queries vary
from 1 to 4. Note that the average number of keywords in a search
query is 2.2 [13]. Thirdly, we ensure that the number of images
satisfying these queries vary significantly (i.e., R(Q) is varied from
0 to 9016). Last but not the least, majority of these queries fail
to return sufficient number of result images annotated by the why-
not tags even when they are posed directly on Flickr. Specifically,
among the top-50 Flickr results 9, the number of images annotated

7The video of wine is available at http://youtu.be/A42i2geQZVk.
8http://download.wikimedia.org/enwiki/20100130/.
9The setting used is the default setting of Flickr search available at http://www.
flickr.com/search/?q={query}.



Table 2: Sample queries for evaluating the query relaxation model
Id Query [Why Not tag] |R(Q)| |R(tw)| |R(Q) ∩ R(tw)| Selective tag(s) New query |R(Qnew)| |R(Qnew) ∩ R(tw)| F(Q, tw)
Q11 Apple Computer [iPhone] 152 196 4 computer apple 1318 97 0
Q12 Apple Computer [laptops] 152 37 8 computer apple 1318 15 3
Q13 Las Vegas Nevada [casino] 44 140 5 las nevada vegas 224 54 24
Q14 sea summer [surfing] 592 310 6 summer sea 9016 81 1
Q15 sea summer [tornado] 592 628 1 summer sea 9016 13 0
Q16 sea summer [carnival] 592 348 1 sea summer 5055 76 4
Q17 christmas night [santaclaus] 146 44 3 night christmas 1400 31 1
Q18 christmas night [firework] 146 48 1 christmas night 8806 28 0
Q19 sky cloud rain [rainbow] 92 1245 7 cloud skyrain 384 33 2
Q20 lake Hangzhou Zhejiang China [lake] 0 4336 0 zhejiang lake hangzhou china 8 8 43

by the why-not tag tw is reported in the last columns of Tables 1-
3 (F(Q, tw)). Observe that it is smaller than 10 (α < 0.2) for all
but four queries. This demonstrates the need for why-not questions
even in very large social image collection such as Flickr.

Performance Metric. We conducted experiments to evaluate the
effectiveness and efficiency of the three explanation models. The
effectiveness is measured by Precision@K (P@m), which is the
ratio of the relevant images among the top-m retrieved images for
a query (m = 50 in our evaluation). To the best of our knowledge,
this is the first work to answer why-not questions in TagIR. Hence,
there is a lack of benchmark dataset for the evaluation. The labels
annotated by the volunteers are used as ground-truth labels.

7.2 Effectiveness of the Explanation Models
The sample queries and related features used for effectiveness

study are reported in Tables 1-3. Notice that |R(Q) ∩ R(tw)| and
|R(tw)| for each query satisfies the condition necessary to invoke the
corresponding model with m = 50 and α = 0.2. The P@50 of all
queries are reported in Figure 6 (for the time being, the reader is
requested to ignore the bars related to Coo and prf).

Result Reordering. Observe that the original results of Q1-Q10

have relatively high P@50, reflecting the fact the user is gener-
ally capable of forming suitable queries for their needs. However,
we also notice that their P@50 remains imperfect and for some
queries’ it is as low as 0.4. Such imperfection reflects the fact the
some of users’ expectations have not been met. For instance, in Q3

for the query sea, the user expects some images related to fishes
in the sea. But these images are missing in the original results. In
summary, our results clearly show that the simple result reordering
model can improve or at least maintain the P@50 for all sample
queries and, for some queries, bring the precision close to perfect
(Q7, Q8, Q10).

Query Relaxation. Expectedly, we observe significant increase
in result sizes (|R(Qnew)|) for this model (Table 2) for Q11-Q20. By
observing the changes in result sizes, it is clear that the query relax-
ation model successfully identifies and removes the selective tag(s)
from the original query. For instance, for Q19, a user expects to
see rainbow when searching for rainy skies but rainbows usually
only appear in clear rather than cloudy sky. Similarly, in Q13 and
Q20, Vegas and Hangzhou are common names for “Las Vegas”
and “Zhejiang”, respectively. Hence, the latter tags are not nec-
essary. We also observe that query relaxation helps to rectify user’s
knowledge. For Q11, although Apple Computer was a former name
of Apple Inc., it has dropped the word “Computer” when iPhone
products were launched (as suggested by our solution). Figure 6
reports significant increase in P@50 values for most queries after
query relaxation (Q11 – Q20). Particularly, Q14, Q17, Q19 and Q20

reach near perfect value.
Query Substitution. Table 3 reports the top-3 most closely re-

lated tags based on Wikipedia and the suggested new queries. Note
that in an interactive TagIR system, a user can select one of these
related tags for new query formulation. In our evaluation, we al-
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ways choose the most closely related tag (top-1) for query substi-
tution. For instance, the why-not tag “mesoamerica” in Q21 is
replaced by “maya” to form a new query “pyramid maya”. Note
that a user may also use the query tag as why-not tag as in Q26 to
reflect that images retrieved by tag “leningrad” are not what the
user expects for “leningrad”. Note that Leningrad is the for-
mer name of Saint Petersburg and, due to its recent popularity,
there are significantly more images related to the modern Saint
Petersburg than to the historical Leningrad in Flickr. Hence,
using tag “saintpetersburg” will retrieve more relevant images.

The P@50 values of the original results and the results of the
substituted queries are reported in Figure 6 (Q21–Q30). Among the
10 sample queries, six underwent significant increase in P@50 after
query substitution, three do not have significant changes in P@50
(Q21, Q22 and Q25) while the remaining one suffers a slight drop in
P@50 (Q30) but the result qualities are not necessarily worst. Q30

highlights a situation where the image collection indeed has too few
relevant data on picasso. Consequently, all suggested queries are
not truly similar to picasso. Nevertheless, we notice that the drop
in P@50 is small (6%).

7.3 Comparison with Query Expansion
Next, we compare wine with two popular query expansion tech-

niques based on tag co-occurrence and pseudo-relevance feedback,
denoted as Coo and Prf, respectively [1]. In brief, Coo expands a
query by finding the top-N tags which co-occurs with most query
keywords, where tag co-occurrence is measured using Jaccard co-
efficient. Prf expands the query by analyzing the top-100 results
from the original query and finding the top-N most significant tags
in these images. The tag significance is measured as KL-divergence
between their distribution in the top-ranked images and the whole
collection. We set N = 5.

The P@50 of Coo and Prf are reported in Figure 6 which clearly
shows the superiority of wine. For example, consider Q11 and
Q12 which are identical queries (apple computer) except that the
follow-up why-not questions are different (iphone versus
laptops). Thus, Coo and Prf detect same expanded tags for both
Q11 and Q12 but their results on Q12 is clearly better than on Q11.
It is because, our dataset (nus-wide) is built when iPhone is newly
introduced but laptops and macbook have had a long history. Thus,
both Coo and Prf can only expand using tags macbook or laptop
but not phone or iphone. Meanwhile, wine can exploit the why-
not tag and correctly modify the queries on both cases. Similarly,



Table 3: Sample queries for evaluating the query substitution model
Id Query [Why Not tag] |R(Q)| |R(tw)| |R(Q) ∩ R(tw)| Top-3 most related tag(s) New query |R(Qnew)| F(Q, tw)
Q21 pyramid [Mesoamerica] 605 9 4 maya teotihuacan aztec pyramid maya 27 1
Q22 skating [winters] 248 9 0 winter spring summer fall snow winter skating 62 7
Q23 Balkan [Serbian] 62 9 2 serbia montenegro bulgaria balkan serbia 51 6
Q24 pagoda lake [Zhejiang] 35 6 0 hangzhou jiangsu guangxi hangzhou 20 4
Q25 Lombardy lake [brescia] 3 8 0 lakegarda verona trento lakegarda 13 10
Q26 Leningrad [Leningrad] 5 5 5 saintpetersburg moscow kiev saintpetersburg 21 9
Q27 Persian city [Persepolis] 11 9 0 fars shiraz yazd iranian safavid fars 22 4
Q28 Japan [ninja] 3647 55 1 ninja katana samurai ninja 55 0
Q29 India [bangalore] 2938 0 0 bangalore karnataka chennai bangalore india 85 1
Q30 painting [picasso] 1294 74 0 cubism painter impressionism cubism 595 0
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Figure 7: The impact of α and efficiency of wine.

for Q21, both Coo and Prf fail to speculate that the user’s intent
could be on Mesoamerican pyramid while for Q6, both cannot
recognize that cathedral architecture is a crucial part of Paris
architecture. Furthermore, when the original results are irrele-
vant, Prf also suffers from query drift problem [1]. For example,
Prf expands Q13 with tags jet, flying, and flight. Since wine
uses explicit user feedback (i.e., the why-not tag), it does not suf-
fer from these problems and offer better results. However, we also
notice that, for queries where original results are fairly good (e.g.,
Q10, Q22, Q23), query expansion have comparable performance with
wine. For example, for Q10, query sky sunrise sunset are ex-
panded with tags clouds, sun, blue, and sea and images with
both sky and sea tend to have a horizon (why-not tag).

7.4 Effect of α

In this experiment, we measure the effect of α and m on the ef-
ficiency of our proposed algorithms. We select two sample queries
for each model and execute them using the corresponding model
across different values of α and for m ∈ {20, 50, 100}. All queries
are selected so that the conditions to execute their corresponding
models are met. Figure 7 reports results of our experiment. We use
Qi( j) to denote query Qi for m = j. From the results, it is clear that
our proposed algorithms are efficient across the whole spectrum of
α and m and both these parameters do not greatly influence the
query performance. It is worth noting that wine is efficient even if
we consider very large image collection as it is not very sensitive to
the underlying dataset size. wine focuses only on the top-m result
images or the cases when the result size is too small. In both these
scenarios, the number of images it needs to process is fractionally
small compared to the underlying data.

8. CONCLUSIONS & FUTURE WORK
We have proposed a novel framework called wine for explain-

ing why-not questions on query results in a TagIR system. wine
exploits three explanation models to automatically generate expla-
nation for a user’s why-not question as well provide suggestion for
effective query modification to retrieve desired images. We empir-
ically demonstrated that the techniques presented herein produce
good quality response to user’s why-not questions. Despite the
proven effectiveness of wine in handling a wide variety of why-

not questions, it suffers from two limitations. First, wine assumes
that search results of a query are returned as a ranked list of im-
ages. While this is true for a broad spectrum of image search en-
gines, more sophisticated search engines may organize the result
images in form of clusters or summaries and directly return them
to the user. It is interesting to explore how a user can pose why-not
questions on them. Second, our query substitution model leverages
Wikipedia to discover closely-related keywords of a why-not tag.
Here we assume that such keywords indeed exists in Wikipedia.
However, in certain cases (e.g., images related to recent events)
such closely-related tag may exists in the image collection but not
in Wikipedia. We are currently exploring howwine can be extended
to address these limitations. Additionally, we intend to study the
Why Not? problem in the context of social video search (e.g.,
Youtube). In summary, the results of this paper are an important
first step in this regard.
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