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ABSTRACT
Many users casually reveal their locations such as restaurants, land-
marks, and shops in their tweets. Recognizing such fine-grained
locations from tweets and then linking the location mentions to
well-defined location profiles (e.g., with formal name, detailed ad-
dress, and geo-coordinates etc.) offer a tremendous opportunity for
many applications. Different from existing solutions which perform
location recognition and linking as two sub-tasks sequentially in a
pipeline setting, in this paper, we propose a novel joint framework to
perform location recognition and location linking simultaneously in
a joint search space. We formulate this end-to-end location linking
problem as a structured prediction problem and propose a beam-
search based algorithm. Based on the concept of multi-view learn-
ing, we further enable the algorithm to learn from unlabeled data
to alleviate the dearth of labeled data. Extensive experiments are
conducted to recognize locations mentioned in tweets and link them
to location profiles in Foursquare. Experimental results show that
the proposed joint learning algorithm outperforms the state-of-the-
art solutions, and learning from unlabeled data improves both the
recognition and linking accuracy.
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1. INTRODUCTION
Through tweets (i.e., short messages up to 140 characters), users

share their opinions, emotions, daily life activities and other infor-
mation. In many tweets, users casually or implicitly reveal their
locations at fine-grained granularity, such as restaurants, landmark
buildings, and schools, to name a few. Recognizingmentions of fine-
grained locations, and more importantly, linking these mentions to
well-defined locations (e.g.,with formal name and geo-coordinates)
offer a tremendous opportunity for many applications. Examples
include user profiling, precise location-based services, and even
disaster management [24, 28, 33].

Recognizing fine-grained location mentions and linking these
mentions to well-defined locations are both challenging tasks. Here
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Figure 1: A location profile with attributes from Foursquare.

a fine-grained location is a focused geographic entity such as dis-
trict, area, street, road or a specific point location such as hotels,
landmarks, schools, shopping centers, and restaurants etc., similar
to the definition of point-of-interest (POI) [24, 28, 37].1 Due to the
informal writing of tweets, locations in tweets are often mentioned
in casual manner with incomplete name, nickname, acronym, or
even self-defined short forms with ambiguity. For example, mac
may refer to McDonald’s chain restaurant or product from Apple.
The word popular is often used by Singapore users to refer to the
Popular Bookstore in Singapore. Even if we successfully recog-
nize mac in a tweet as a location mention, linking this mention
to a well-defined location (i.e., a specific McDonald’s branch with
geo-coordinates in this case) remains challenging, because there
could be many branches in a small geographical region. On the
other hand, before location linking is possible, a collection of well-
defined locations is essential in this task.

In this study, we utilized Foursquare2 to get a large collection of
well-defined locations. Foursquare offers a profile page for each
location through crowdsourcing and check-ins. A Location Profile
(LP) contains name, categories, address, geo-coordinates and rat-
ings etc (see Figure 1). Note that, for the POIs with the same name,
for example the chain movie theaters Golden Village in Singapore,
distinct location profiles are created in Foursquare each with its own
addresses and geo-coordinates. Figure 1 shows the location profile
of Golden Village located in VivoCity, a popular shopping mall in
Singapore.3 To summarize, our task is end-to-end location linking,
i.e., to recognize location mentions in tweets, and link mentions to
well-defined locations, in the form of location profiles derived from
Foursquare.

At first glance, our problem can be treated as a specific case of tra-
ditional end-to-end entity linking problem, because in our case only
location entities are considered but not other types of entities like

1We use “fine-grained location” (or simply location) with “POI” interchangeably.
2
https://foursquare.com/about/

3Golden Village: http://4sq.com/8HTd5G VivoCity: http://4sq.com/6nH2dl



persons and organizations. Existing solutions [10, 14, 34, 35] pro-
posed for end-to-end entity linking often address the problem with
two separate steps in a pipeline: first to recognize entity mentions
and then to link the recognized entities. One major limitation of this
pipelined framework is the error propagation from entity recogni-
tion to entity linking, and there is no feedback from the linking step
to the recognition step. One type of errors is the recognition system
may mistakenly predict two location mentions as a single mention.
For example, it may predict "Golden Village VivoCity" as a single lo-
cation mention, instead of two location mentions: "Golden Village"
(the movie theater shown in Figure 1) and "VivoCity" (the shopping
mall). In fact, there is no linkable location profile for "Golden Vil-
lage VivoCity", but linkable location profiles for "Golden Village" and
"VivoCity". Another kind of errors occurs if the recognition system
leaves off one or more words from a multi-word mention, causing
the linking system to link to no or a wrong location profile. The
main challenge to fixing the two types of errors is to get feedback
from entity linking to guide entity recognition. Although many
studies attempt to jointly perform entity recognition and entity link-
ing [16,18,30,32,43], we are aware of only one work [43] on fixing
the aforementioned errors. Nevertheless, the solution in [43] still
relies on the pipelined framework (see Section 2 for more details).

In this paper, we propose a novel joint model named JoRL (Joint
Recognition and Linking), based on structured perceptron with
inexact search [8,19]. Our joint model is a singlemodel, performing
location mention recognition and linking simultaneously, which
is significantly different from the pipelined approach where the
two sub-tasks are carried out sequentially. In addition, the joint
model makes it easy to introduce arbitrary global features to fix the
aforementioned errors.

To train JoRL, sufficient labeled data is crucial. However, data la-
beling is tedious and time-consuming. Thus, it is worth considering
semi-supervised learning to utilize unlabeled data. As mentioned
earlier, our proposed joint model is based on structured percep-
tron [8,19], which is an online algorithm and generates models that
output merely a prediction with no additional confidence measures.
Thus, the traditional bootstrapping methods (based on selecting un-
labeled data whose predicted output has a high confidence score)
cannot be directly applied. In this work, we employ the concept
of multi-view learning [12], and implement the consensus maxi-
mization principle [4], i.e., it minimizes the error on the labeled
data and maximizes the agreement on the unlabeled data. With
this principle, we do not need to know the confidence score of each
predicted output, but to make consensus on the outputs of multiple
independent hypotheses. Finally, we develop this principle into a
semi-supervised structured perceptron algorithm, which generates
much more accurate models with the help of unlabeled data. We
summarize our contributions as follows.

• We propose and define an end-to-end location linking task,
which consists of fine-grained location recognition from tweets
and then linking the location mentions to well-defined location
profiles collected from Foursquare.
• We propose a novel joint model, JoRL, which is based on struc-

tured perceptron with inexact search, to perform location recog-
nition and linking simultaneously.
• We propose a semi-supervised structured perceptron algorithm,

based on the concept of multi-view learning, to alleviate the
dearth of labeled data.
• We conduct extensively experiments on tweets for fine-grained

location recognition and linking to a collection of location pro-
files from Foursquare. Experiment results demonstrate the ef-
fectiveness of the proposed joint model.

2. RELATED WORK
Location Extraction from Tweets. Extracting locations from
tweets has attracted much attention recently [20, 24, 28, 36, 44].
By retraining off-the-shelf NER tools using annotated tweets, two
studies show that the performance of extracting fine-grained loca-
tion mentions remains inferior [28,44]. Li and Sun [24] propose to
build a POI inventory from Foursquare check-in tweets, and develop
a time-aware POI tagger. The tagger identifies fine-grained loca-
tion mentions and achieves state-of-the-art performance. All above
work focuses on addressing the geo/non-geo ambiguity, which aims
to predict whether a mention is a location [2]. The geo/geo ambi-
guity (i.e., different locations share the same name), is not resolved.
The two most related studies resolving geo/geo ambiguity using
heuristic rules, are at coarse level of granularity [20, 36]. Different
from these work, we aim to resolve the two levels of ambiguities
simultaneously at a fine-grained level of granularity.

Other studies attempt to predict the locations of Twitter users
[6, 7, 13, 17, 21, 31] or tweets [5, 15, 23, 27, 40]. Most solutions
estimate a Twitter user’s or a tweet’s location at coarse level of
granularity, ranging from country, state, to city levels. Here, we do
not predict locations for Twitter users or tweets, but aim to extract
and link the fine-grained location mentions from tweet content.
Entity Linking (EL) for Tweets. Tweet entity linking aims to link
the entity mentions detected from tweets with their mapping entities
in a knowledge base like Wikipedia. Some studies [29, 42] assume
that the named entities are pre-detected, and focus on developing
techniques to improve the linking accuracy. Other studies [16,
18, 32] perform entity mention detection and entity linking jointly.
However, all these studies generate candidate mentions and their
mapping entities based on a dictionary constructed fromWikipedia,
and then predicts whether a pair of mention-entity is a truemapping.
They evaluate the performance solely on the final linking accuracy,
and do not perform entity type classification. Moreover, these
methods cannot identify the entitymentions that do not have amatch
in the dictionary. In this paper, we target on linking the location
mentions in a tweet with their corresponding location profiles. We
extract all possible location mentions in a tweet, even if the surface
form of a location mention does not exist in the dictionary and is
unlinkable to any location profile.
Joint NER and EL. Recent research [30,43] shows that jointly per-
forming NER and EL on formal text mutually enhances both tasks.
Sil and Yates [43] re-rank a set of candidate mentions and entities,
which are over-generated according to a pipelined method (i.e., first
recognize then link entities). The success of the re-ranking model
lies in the dependency between mention boundary decisions and
entity linking decisions. However, their method post-processes the
output of a pipelined method, and entity type classification cannot
be performed in their re-ranking model. Luo et al. [30] develop a
joint model for NER and EL based on semi-CRF [39]. The success
of their joint model lies in the consistency between the entity type
of a mention and the category of the mapping entity. Their method
only addresses local features; capturing long-distance and cross-
task dependencies through global features will make their model
very complex. As there is only one entity type (i.e., location) in our
task, the consistency between entity type and category becomes less
meaningful. Thus, their method cannot be directly adopted. In this
work, we propose a novel jointmodel based on inexact search, which
makes it possible to introduce arbitrary global features to capture
various dependencies. Our joint model performs mention boundary
detection, type classification, and location linking simultaneously.
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Figure 2: Overview of the pipeline architecture and the JoRL framework for end-to-end location linking.

Structured Perceptron with Inexact Search. This technique has
demonstrated its effectiveness in many NLP tasks [8, 19, 45]. Re-
cently, this technique has been successfully applied to jointly per-
form extraction of entitymentions, relations, and events from formal
text [25,26]. Similarly, we employ this technique to jointly perform
location recognition and linking. However, due to the noise and
informal writing nature of tweets, our problem faces different chal-
lenges. More importantly, we further extend this technique to be
applied in a semi-supervised learning setting, which is fundamen-
tally different from the techniques [25, 26].
Multi-view Learning. Multi-view learning algorithms, such as co-
training [3], address the problemof semi-supervised learning, where
a learning algorithmhas access to limited amount of labeled data and
(typically much larger) unlabeled data. The co-training algorithm
learns two initially independent hypotheses which bootstrap each
other. Dasgupta et al. [11] and Abney [1] give PAC bounds on the
error of co-training in terms of the disagreement rate of hypotheses
on unlabeled data in two independent views. This justifies the direct
minimization of the disagreement [4]. Themost relevant to ourwork
is the use of a multi-view hidden markov perceptron to minimize
the error on the labeled data and the disagreement on the unlabeled
data [4]. Our work is significantly different from the work [4] in
that: their decoding algorithm is based on exact inference, while
ours is based on inexact search, which makes the loss function and
update rules fundamentally different.

3. PROBLEM STATEMENT
We first define the end-to-end location linking problem, and then

introduce a solution based on the traditional pipeline architecture
(see Figure 2(a)). The joint model will be presented in Section 4.

3.1 Problem Definition
Given a tweet x published by a user from a predefined geograph-

ical region, and a Collection of Location Profiles (CLP) which con-
sists of location profiles of POIs in the same geographical region,
the task of end-to-end location linking is to identify all location
mentions M = {m1,m2, ...,m|M|} in x and to link each identi-
fied mention mi to the corresponding location profile ei in CLP,
mi → ei. If there is no mapping location profile in CLP for mi,
thenmi → NIL, where NIL denotes thatmi is unlinkable.

Recall that we use the two terms POI and location (or fine-grained
location) interchangeably, referring to a focused geographic entity
such as district, area, street, road or a specific point location such as
hotels, schools, shopping centers, and restaurants.

3.2 The Pipeline Architecture
A straightforward solution is to first recognize location mentions

and then to link the locations, shown in Figure 2(a). Next, we present
a solution with state-of-the-art methods for the two sub-tasks.

3.2.1 Location Recognition
Location recognition aims to detect the boundaries of all possible

mentions and then determine whether a candidate mention is a true

Table 1: Location profile mapping dictionaryD. The subscript
number is the index of the mapping location profile in CLP.

key (Surface Form) value (Mapping Location Profile [Index])

Golden Village
Golden Village[5278]
Golden Village[5279]

...
VivoCity VivoCity[2515]
Vivo City VivoCity[2515]
Cable Car Cable Car[3746]

location. The main challenge here is to resolve the geo/non-geo
ambiguity (e.g., whether a mention mac is a McDonald’s restau-
rant or an Apple product) [2]. Li and Sun [24] propose to use a
POI inventory and several types of features to train a linear-chain
Conditional Random Fields (CRF) model [22] to extract POIs with
their temporal awareness label from tweets, which has gained state-
of-the-art performance. We use the method [24] to address the
location recognition sub-task. Specifically, the location recognition
subtask is casted as a sequential token tagging task, and the BILOU
scheme [38] is applied. Figure 3(a) shows example BILOU tags (y)
for the tokens in an input tweet (x). The features used for the CRF
model are the token-based features listed in Table 2.

3.2.2 Location Linking
Location linking aims to link a detected location mention mi to

its mapping location profile ei from CLP. If there is no mapping
location profiles in CLP, then mi → NIL. The main challenge
here is to resolve the geo/geo ambiguity (e.g., a location mention of
mac refers to which particular McDonald’s restaurant) [2].
Location Profile Mapping Dictionary. To link a location mention
mi, the set of candidate location profiles Ri that may be referred
by mi needs to be retrieved. Among ei ∈ Ri, the best mapping
profile is then linked bymi. To this end, we build a location profile
mapping dictionaryD, as shown in Table 1.
The D.key column of the mapping dictionary is a set of surface

forms that a location mention may appear in, andD.value column
is the set of location profiles that can be mapped by each key.
Note that, the same location profile (e.g., VivoCity[2515]) may be
mapped by multiple surface forms (e.g., VivoCity and Vivo City),
and the same surface form may have mappings to many location
profiles. For example, Golden Villagemay be mapped to one of the
12 movie theaters located at different places.
Location Profile Linking. If there is more than one candidate
profile for mi, i.e., |Ri| > 1, we define a linking quality measure
LQ(rij) for each rij ∈ Ri to find the most likely link formi:

LQ(rij) = ωT ∗ f(rij) = ωT
local ∗ flocal(rij) + γ ∗Coh(rij). (1)

In this equation, flocal(rij) is the vector representation of local
features derived from location profile rij , and ωlocal is the weight
vector. Based on the intuition that multiple locations mentioned in a
single tweet are often geographically close to each other, we define a
geographical coherenceCoh(rij) for each candidate location profile
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Figure 3: Example BILOU scheme and output structure representation y for an example input tweet x.

rij (to be formally defined shortly). The geographical coherence is
also known as global feature, and γ is its weight. Both local and
global features are summarized in the rows named "location profile-
related features" in Table 2.

We then denote ω = 〈ωlocal, γ〉 as the weight vector of all the
features f(rij) =

〈
flocal(r

i
j), Coh(r

i
j)
〉
. In order to learn the

weight vector ω automatically, we use a max-margin technique [41,
42] based on labeled data.

The geographical coherenceCoh(rij) of a candidate location pro-
file rij is measured based on the geographical distance between the
geo-coordinates of rij and those of the (possible) mapping location
profiles of the other location mentions in the same tweet.

Coh(rij) =
1

|M | − 1

∑
1≤c≤|M|

c6=i

nDist(rij , ec) (2)

nDist(rij , ec) = max
{
0, 1−

dist(rij , ec)

distMAX

}
(3)

Coh(rij) is only validwhen there aremultiple locationmentions in a
single tweet, i.e., |M | ≥ 2. In Equation 2, ec is themapping location
profile for a mention mc ∈ M (where c 6= i), and nDist(rij , ec)
is normalized distance between rij and ec. Defined in Equation 3,
dist(rij , ec) is the haversine distance between the geo-coordinates of
rij and ec, and distMAX is the maximum haversine distance between
two locations within the predefined geographical region.

During location linking, the mapping location profile ec for a
location mention mc is unknown and also needs to be linked in
this task. To address this problem, we use an effective greedy al-
gorithm, named iterative substitution algorithm, to jointly optimize
the selection of mapping location profiles for all the location men-
tions in a single tweet. This algorithm has gained state-of-the-art
performance for list linking [41] and tweet entity linking [42].
NIL Prediction. Because the mapping location profiles of some
location mentions may not exist in CLP, we have to predict unlink-
able location mentions. If the size of candidate location profiles
Ri for location mentionmi is zero, we predictmi as an unlinkable
location mention and returnmi → NIL undoubtedly. Otherwise,
we will get ei = arg maxrij∈R

i LQ(rij). Here, we have to vali-
date whether mi → ei holds. We adopt a simple and widely used
method to learn a NIL-threshold τ to validate mi → ei. That is,
mi → ei holds if LQ(ei) > τ , andmi → NIL otherwise.

4. JOINT RECOGNITION AND LINKING
The pipeline architecture has two limitations similar to those

stated in [25, 26]. First, it prohibits interactions between the two-
subtasks. Errors from location recognition propagate to location
linking and there is no feedback from the linking step to the recog-
nition step. Second, it over-simplifies the whole task as a set of
independent local classifiers without taking into account of cross-
task dependencies. Inspired by the work of Li et al. [25,26], we cast

the whole task into a structured prediction problem, which performs
the two sub-tasks jointly and overcomes aforementioned limitations.

4.1 Structured Prediction Formulation
We now introduce a new representation for the output of end-to-

end location linking task.
Output Structure. Given an input tweet x, the output structure y
consists of two types of nodes:

• Segment Node S(l, r, t): A segment is a sequence of charac-
ters. l and r denote the left and right boundaries of a segment,
1 ≤ l ≤ r ≤ |x|, |x| is the length of tweet x; t ∈ T is the type
of the segment, T = {POI,NPOI,O}. t = POI if the seg-
ment is a true location mention and t = NPOI if the segment
has ambiguity to be a location (e.g., mac) but is predicted not
a location mention. Type O denotes that the segment is clearly
not a location mention. Length of type O segment is always 1.
• Linking Node L(l, r, e): This kind of node is produced only

for POI type of segment. l and r denote the left and right
boundaries of a segment, and e is the linked location profile of
the segment. e = NIL if the location is unlinkable.

Figure 3(b) shows the output structure representation y for an ex-
ample input tweet x. The two nodes S(4, 5, POI), L(4, 5, 5278)
denote the segment "GoldenVillage" is a locationmention and links
to the location profile with index ID 5278, respectively.

With the new structured representation, end-to-end location link-
ing becomes a structured prediction problem, which is to predict
the most probable output structure ŷ for a given tweet x.
Structured Prediction. Let x ∈ X be an input tweet, CLP be a
collection of location profiles, and y′ ∈ Y(x,CLP) be a candidate
output structure, our goal is to predict the most probable output
structure ŷ for x and the prediction function is as follows:

ŷ = arg max
y′∈Y(x,CLP)

wT ·Φ(x, y′,CLP) (4)

where Φ(x, y′,CLP) is the feature vector that characterizes the
input tweet x together with a candidate output structure y′, and w
is the corresponding feature weights. When the context is clear, we
will use Φ(x, y′) instead of Φ(x, y′,CLP) for short.
With the current problem definition, end-to-end location linking

can be performed naturally in a joint search space simultaneously,
shown in Figure 2(b). Next, we show that the proposed joint frame-
work overcomes limitations of the pipeline architecture by enabling
cross-task dependencies.

4.2 Joint Decoding Algorithm
Decoding (aka inference) procedure, the key step in both training

and test, aims to search for the best output structure under the
currentmodel parameters. Unfortunately, it is intractable to perform
the exact search in our JoRL framework. The reasons are two-
fold: (1) Since the output structure contains mention boundary
detection, segment type classification, and location profile linking
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at the same time, the search space becomes much more complex;
and (2) We hope to make use of arbitrary global features from
the entire output structure to capture long-distance and cross-task
dependencies, which makes the inference even harder.

To address this problem, we employ beam-search, an instance of
inexact search, to approximate Equation 4. Specifically, we pro-
pose a beam-search algorithm, similar to the multiple-beam algo-
rithm [25,26,45], to incrementally expand partial output structures
for an input tweet, to find the optimal output structure with the best
score.

Let d̂t be the maximum length of a segment with type t. The
k-best partial output structures for x ending at the i-th token is:

B[i] = arg topk
y[1:i]∈Y(x,CLP,i)

wT ·Φ(x, y[1:i]) (5)

where y[1:i] denotes the partial output structure whose last segment
ends at the i-th token, and Y(x,CLP, i) stands for the search space.

Our proposed joint decoding algorithm is shown in Algorithm 1.
For each token index i, it maintains a beam B[i] for the partial
output structures whose last segments end at the i-th token. Two
kinds of actions, corresponding to the two kinds of nodes, are taken
during the decoding:

• Recognition Action (Lines 3-10): The algorithm enumerates
all possible length (i.e., d = 1...d̂t) of segments ending at the
current token index i with various types, generating possible
segment nodes {S(j, i, t)}. Each segment node S(j, i, t) is then
appended to each existing partial output structure y[1:i−d] from
the previous beamB[i−d] to form a new partial output structure
y[1:i] (Line 8). Finally, the k-best partial output structures are
recorded in the current beam B[i].
• Linking Action (Lines 11-20): After the recognition action,

the algorithm checks whether the type t of the last segment
node S(j, i, t) of each partial output structure y[1:i] is POI . If
t = POI , then the algorithm enumerates all possible candidate
location profiles, that could be linked to the mention x[j,i], to-
gether with a default NIL, generating possible linking nodes
{L(j, i, e)}. Each linking node L(j, i, e) is then appended to
the current partial output structure y[1:i] to form a new partial
output structure y′[1:i] (Line 16). If t is not POI , the current
partial output structure y[1:i] remains the same (Line 19). Fi-
nally, all partial output structures after taking the linking action
are re-ranked, and the new k-best partial output structures are
recorded in the current beam B[i].

There are |x| steps to incrementally search for the optimal output
structures, where |x| is the length of the input tweet x, in number

Algorithm 1 Joint Decoding Algorithm based on Beam-Search
Input: a tweet x = x[1...|x|], and a CLP

k: beam size
T : types of a segment
d̂t: maximum length of a segment with type t, t ∈ T

Output: best output structure ŷ for x
1: initialize |x| empty beams B[1...|x|]
2: for i ∈ 1...|x| do

/* recognition action */
3: buf ← ∅
4: for t ∈ T do
5: for d ∈ 1...d̂t do
6: j ← max(1, i− d+ 1)
7: for y[1:i−d] ∈ B[i− d] do
8: y[1:i] ← Append(y[1:i−d], S(j, i, t))

9: buf ← buf ∪ {y[1:i]}
10: B[i]← k-best(buf)

/* linking action */
11: buf ← ∅
12: for y[1:i] ∈ B[i] do
13: S(j, i, t)← Last_Segment_Node(y[1:i])
14: if t is POI then
15: for e ∈ Candidate_Entities(x[j:i],CLP) ∪ {NIL} do
16: y′

[1:i]
← Append(y[1:i], L(j, i, e))

17: buf ← buf ∪ {y′
[1:i]
}

18: else
19: buf ← buf ∪ {y[1:i]}
20: B[i]← k-best(buf)
21: return B[|x|][0]

of tokens. The time complexity for the recognition action is at most
k · |T | · d̂t and for linking action is k · (|E| + 1), respectively.
Thus, the overall time complexity of the joint decoding algorithm is
O(|x|·k·(|T |·d̂t+|E|)), where |T | is the number of segment types,
and |E| is the num of candidate entities for a specific segment.
Figure 4 illustrates the decoding at the tokens "Village" and

"VivoCity" by considering again the tweet shown in Figure 3(b).
Here we only present a small search space for simplicity. Suppose
we have already taken the two actions when decoding at the token
"Village", and one possible partial output structure is illustrated in
Figure 4(a). Now, we move on to token "VivoCity" (Figure 4(b)).
First, the algorithm generates all possible segment nodes ending
at the token "VivoCity". Four possible segment nodes are illus-
trated with gray rectangles in the figure. They are S(6, 6, O),
S(6, 6, NPOI), S(6, 6, POI), and S(4, 6, POI), respectively.
Then, these segment nodes are appended to the preceding partial



Algorithm 2 Structured Perceptron Algorithm with Beam-Search
& Early-Update (Learning from labeled data)
Input: labeled data DL = {xi, yi}ni=1

I: maximum iteration number
Output: model parameters w

1: initialize w← 0

2: for t ∈ 1...I do
3: for each (x, y) ∈ DL do
4: (y′, z)← BeamSearch(x, y,w)
5: if z 6= y′ then
6: w← w + Φ(x, y′)−Φ(x, z)
7: return w

output structures in the beams of "Village" and "at", respectively.
The figure shows four lines of this process, indicated by the cir-
cled numbers 1-4 in the figure. Next, the algorithm enumerates
all possible candidate location profiles with a default NIL for
the two segment nodes S(6, 6, POI) and S(4, 6, POI), gener-
ating the following three linking nodes L(6, 6, 2515), L(6, 6,NIL)
and L(4, 6,NIL). Then, the three linking nodes are linked by
the two segment nodes with arrows as shown in the figure. Fi-
nally, S(6, 6, POI) and L(6, 6, 2515), other than S(4, 6, POI)
and L(4, 6,NIL), are preferred by the model because the indica-
tive global feature for fixing under-segmentation error (see Sec-
tion 4.5.2) takes effect.

4.3 Learning from Labeled Data
We now learn the model parameters w from labeled samples.

The learning problem is formulated as an optimization problem:
given a set of n labeled samples DL = {xi, yi}ni=1, and a loss
function `(xi, yi, ŷi), our goal is to minimize the empirical risk,
given byRL:

RL =
1

n

n∑
i=1

`(xi, yi, ŷi) (6)

`(xi, yi, ŷi) = h
(
w ·Φ(xi, yi)−w ·Φ(xi, ŷi)

)
(7)

In Equation 7, h(z) = max(0,−z) is defined as a slightly modified
version of hinge loss. If the predicted ŷi is different from the ground
truth yi, a loss is produced; otherwise there is no loss.

In our implementation, we apply structured perceptron [8], an
extension of the standard perceptron for structured prediction, to
estimate the model parametersw from labeled data. The perceptron
learns w in an online fashion. For each labeled example (xi, yi),
the algorithm uses Equation 4 to search for the best output structure
ŷi for xi under the current model. If ŷi is incorrect, then the
parameters are updated as follows:

w← w + Φ(xi, yi)−Φ(xi, ŷi) (8)

Huang et al. [19] proved the convergence of structured percep-
tron when violation-fixing update methods such as early-update [9]
is applied to beam search. In this work, we use early-update method
for model training [9], as shown in Algorithm 2. For each train-
ing example (x, y), the algorithm performs BeamSearch, which is
identical to the decoding algorithm in Algorithm 1 with the follow-
ing one exception. If y′, the prefix of the ground truth y, falls out
of the beam after each execution of k-best function (Lines 10 and
20 in Algorithm 1), then y′ and the top partial output structure z
in the current beam are returned for updating parameters (Line 4 in
Algorithm 2). Following [8], to avoid overfitting, we use averaged
parameters to decode the test examples.

4.4 Learning from Labeled and Unlabeled Data
Supervised learning often requires a large number of labeled sam-

ples. It is worth considering semi-supervised learning to further use
unlabeled data. However, structured perceptron [8, 19] is an online
algorithm, which generates models that output merely a prediction
with no additional confidence measure. The traditional bootstrap-
ping methods, which are based on selecting unlabeled data whose
predicted output has a high confidence score, cannot be directly
applied.

In this work, we employ the concept of multi-view learning [12],
and implement the consensus maximization principle [4]. The ob-
jective is to minimize the error on the labeled data and maximize
the agreement on the unlabeled data frommultiple models. In other
words, we aim to make consensus on the outputs of multiple in-
dependent hypotheses. To this end, we propose a semi-supervised
structured perceptron algorithm.

Given n labeled examples DL = {xi, yi}ni=1, and m unlabeled
examples DU = {xj}n+m

j=n+1, in the multi-view learning scenario,
we decompose the feature map Φ(x, y) into multiple feature maps
Φv(x, y), each being a representation for one view v ∈ V . We
assume that each featuremap is sufficient for learning and predicting
the output structure ŷv for an input x, irrespective of whether it is
labeled or unlabeled.

ŷv = arg max
y′∈Y(x,CLP)

wvT ·Φv(x, y′)

According to the consensus maximization principle, we aim to min-
imize the error on the labeled data and the disagreement on the
unlabeled data. Thus, our goal is to minimize the empirical risk,
given byRL+U :

RL+U =
1

n|V |

|V |∑
v=1

n∑
i=1

`1(xi, yi, ŷ
v
i )

+
λ

m
(
V
2

) |V |∑
u,v=1
u 6=v

n+m∑
j=n+1

`2(xj , ŷ
u
j , ŷ

v
j ) (9)

In RL+U , λ is a trade-off parameter to determine the overall
influence of the disagreement on the unlabeled data. `1(xi, yi, ŷvi )
is the loss on a labeled example (xi, yi) on one view representation
v ∈ V , which is similar to Equation 7 except that the feature map
and weights are based on view v.

`1(xi, yi, ŷ
v
i ) = h

(
wv ·Φv(xi, yi)−wv ·Φv(xi, ŷ

v
i )
)

If the predicted ŷvi is the same as the ground truth yi, then there is
no loss; otherwise a loss is produced and the parameters are updated
as follows:

wv ← wv + Φv(xi, yi)−Φv(xi, ŷ
v
i ). (10)

In RL+U , `2(xj , ŷuj , ŷvj ) is the loss on an unlabeled example
xj , which measures the pairwise disagreement between any two
independent views u ∈ V and v ∈ V (u 6= v).

`2(xj , ŷ
u
j , ŷ

v
j ) = h

(
1

2

(wu ·Φu(xj , ŷ
u
j )−wu ·Φu(xj , ŷ

v
j )

wu ·Φu(xj , ŷuj )

)2
+
1

2

(wv ·Φv(xj , ŷ
v
j )−wv ·Φv(xj , ŷ

u
j )

wv ·Φv(xj , ŷvj )

)2)
Specifically, for each unlabeled example xj , the algorithm use
BeamSearch to search for the best output structure ŷuj and ŷvj for
views u and v under the current models wu and wv , respectively.



Algorithm 3 Structured Perceptron Algorithm with Beam-Search
& Early-Update (Learning from labeled and unlabeled data)
Input: labeled data DL = {xi, yi}ni=1

unlabeled data DU = {xj}n+m
j=n+1

I: maximum iteration number
V : set of independent views, |V | ≥ 2
λ: trade-off parameter

Output: model parameters wv , v ∈ V
1: initialize wv ← 0, v ∈ V
2: for t ∈ 1...I do

/*Learning from labeled data */
3: for each (x, y) ∈ DL do
4: for each view v ∈ V do
5: (y′, zv)← BeamSearch(x, y,wv)
6: if zv 6= y′ then
7: wv ← wv + Φv(x, y′)−Φv(x, zv)

/*Learning from unlabeled data */
8: for each x ∈ DU do
9: for each two independent views u and v do
10: ŷu ← BeamSearch(x,wu)
11: ŷv ← BeamSearch(x,wv)
12: if ŷu 6= ŷv then
13: update wu, wv according to Eq. 11 and 12
14: return wv , v ∈ V

If ŷuj is the same as ŷvj , then there is no loss; otherwise a loss is
produced and the parameters are updated as follows:

wu ← wu + λ
n

m
ηu1 Φu(xj , ŷ

u
j ) + λ

n

m
ηu2 Φu(xj , ŷ

v
j ) (11)

wv ← wv + λ
n

m
ηv1Φv(xj , ŷ

v
j ) + λ

n

m
ηv2Φv(xj , ŷ

u
j ) (12)

where

ηu1 =
(f2 − f1)f2

f3
1

ηu2 =
f1 − f2
f2
2

ηv1 =
(g1 − g2)g1

g32
ηv2 =

g2 − g1
g22

f1 = wu ·Φu(xj , ŷ
u
j ) g1 = wv ·Φv(xj , ŷ

u
j )

f2 = wu ·Φu(xj , ŷ
v
j ) g2 = wv ·Φv(xj , ŷ

v
j )

The algorithm for learning from labeled and unlabeled data is
shown in Algorithm 3. Lines 3-7 are used to learn feature weights
from the labeled data which are similar to Algorithm 2. Lines 8-13
are specific for fine-tuning of the feature weights according to the
disagreement on the unlabeled examples. Finally, the k-best partial
output structures for x ending at the i-th token is calculated as:

B[i] = arg topk
y[1:i]∈Y(x,CLP,i)

|V |∑
v=1

wvT ·Φv(x, y[1:i]) (13)

In our experiments, we set |V | = 2, which is commonly used in
many studies on multi-view learning. To avoid overfitting, we also
use averaged parameters to decode test examples [8].

4.5 Features
All the features are listed in Table 2. The table also shows how the

features are split to two independent views for multi-view learning.

4.5.1 Local Features
All the features derived from individual segments are known

as local features. Specifically, local features include token-based
and segment-based features for location recognition, and location
profile-related and NIL-related features for location linking.

Token-based Features: Although the output structure is defined
based on segments, we can still derive token-based features from
the tokens contained in the segments. Specifically, a segment node
S(l, r, t) is converted toBILOU tags for tokenswithin it. The token-
based features are those that are used in the pipeline architecture.
Segment-based Features: This set of features captures the proper-
ties of a segment, like the segment itself and surrounding words.
Location Profile-related Features: These features are directly de-
rived from a location profile including its popularity, whether it is
the only candidate location profile for a surface name and surface
matching.
NIL-related Features: The features are indicators for NIL predic-
tion. For example, whether there are location profiles whose name
match a segment’s surface form exactly.
4.5.2 Global Features
We develop three kinds of global features. The geographical

coherence feature introduced in Section 3.2.2 is one of them. It
captures long-distance dependencies within a task. The other two
kinds of features, by capturing cross-task dependencies, overcome
the two limitations in pipeline architecture discussed in Section 1.
Note that, these two kinds of features cannot be directly used in
any step of the pipeline because 1) these features are segment-
based while the features used in the CRF model are token-based; 2)
these features encode the feedback information from the linking step
which cannot be obtained in the recognition step of the pipeline;
3) these features are not designed for linking purpose, but to give
feedback to the recognition step.
Fixing Under-segmentation Error: An under-segmentation error
occurs if the system wrongly recognizes two mentions that happen
to appear near one another to a single location mention [43]. To
address this, we encode two binary features.

The first feature is to penalize the output structure with under-
segmentation error. The feature is triggered (and set to 1) if the
current segment (e.g., "Golden Village VivoCity") is not in the dictio-
nary, but its two sub-segments (e.g., "Golden Village" and "VivoCity")
are both in the dictionary. The second feature is to reward the out-
put structure with the right segmentation and linking. The feature
value is triggered (and set to 1) if a segment appears in the address
attribute of another segment’s mapping location profile within the
same tweet. Suppose we have already linked the segment "Golden
Village" to the location profile shown in Figure 1 (this movie theater
is located inside VivoCity), the next segment "VivoCity" appears in
the address attribute of the linked "Golden Village". Then the current
output structure is rewarded by triggering this feature.
Fixing Mis-segmentation Error: A mis-segmentation error oc-
curs if the system leaves off one or more words from a multi-word
location mention [43]. We also use two binary features to address
this.

The first feature is to penalize the output structure with mis-
segmentation error. If the following word (e.g., "Bar") of an already
linked segment (e.g., "Cable Car") matches a category in its linked
location profile, then this feature is set to 1. Here, we consider the
mention of "Cable Car Bar" in a sentence is the complete location
mention of the location, although the name of the matching location
profile is indeed "Cable Car". The second feature is to reward
the output structure with the right segmentation and linking. This
feature is set to 1 if the current segment has been successfully linked
to a location profile such that the segment contains the location
profile’s name and one of its categories. For example, "Starbucks
Café" successfully linked to a location profile named "Starbucks"
with category "Café" is rewarded by triggering this feature.



Table 2: Summary of the features used in this work.
Local Features for Location Recognition View

Token-based Features

The word itself and its lowercased form

1

The word shape: all capitalized, is-capitalized, all-numerics, alphanumeric
Word prefixes and suffixes, from 1 to 3 characters
Bag-of-words of the context window up to 5 words
POS tags of the preceding word, the current word, and the following word
Brown clustering features based on the 4th, 8th, and 12th bits of the path4
Pre-label of words with the POI Inventory based on BILOU schema

Segment-based Features

The segment itself and its lowercased form

2The segment shape: whether all the words are all-capitalized, initial-capitalized
Bag-of-words in a segment’s contextual window of size 2
POS tags of the current segment’s surrounding two words
Whether the segment appears in the POI Inventory

Local Features for Location Linking View

Location Profile-related Features

Popularity: #visits, #visitors, rating
1Whether this is the only candidate location profile for a surface form

Whether there are other words that appear in both the tweet and a location profile’s address attribute
Surface Matching: Jaccard similarity between a mention and a location profile’s name attribute 2

NIL-related Features
Whether there is no candidate location profile from CLP 1Whether there is any location profile’s name attribute that exactly matches the segment’s surface form
Min/max/average scores for the features about popularity and surface matching 2

Global Features for Location Linking (capturing long-distance dependences within a task) View
Location Profile-related Features Geographical Coherence: Averaged distance from the other mapping location profiles’ geo-locations 2
Global Features for Location Recognition & Linking (capturing cross-task dependences) View

Fixing Under-segmentation Error Penalize the output structure with under-segmentation error 1Reward the output structure with the right segmentation and linking

Fixing Mis-segmentation Error Penalize the output structure with under-segmentation error 2Reward the output structure with the right segmentation and linking

Table 3: Example check-in tweets and linking location profiles
Check-in Tweets [Foursquare link masked] Mapping Location Profiles
I’m at Golden Village (Singapore) [link] Golden Village[5278]
I’m at Vivo City (Singapore) [link] VivoCity[2515]
Ice Age 4 (@ Golden Village) [link] Golden Village[5279]
quiet day at work. (@ Cable Car) [link] Cable Car[3746]

5. EXPERIMENTS

5.1 Data Preparation
Check-in Tweets. We collect 326,853 tweets that are associated
with Foursquare check-ins for constructing location profiles, map-
ping dictionary, and POI inventory (to be discussed shortly). These
check-in tweets were posted by Foursquare apps to Twitter by users
in Singapore. A check-in tweet usually contains formal or infor-
mal location names. Table 3 shows two kinds of common check-in
tweets. The first two simply report users’ current locations, while
the latter two report users’ activities at the locations. Observe that
check-in tweets are relatively well formatted, and the location names
can be reliably extracted by applying handcrafted regular expres-
sions. Their mapping location profiles from Foursquare can be
crawled following the urls in the tweets, see the second column in
Table 3. Because of the large number of check-ins, the POI cover-
age for a given geographical region is broad and is in a fine-grained
scale. These tweets are not used for evaluating the methods.
Collection of Location Profiles (CLP). The CLP is constructed via
crawling short urls in the check-in tweets. From the check-in tweets,
we get 28,134 unique location profiles. As the location profiles in
Foursquare are collected via crowdsourcing, the collected location
profiles are noisy. We filter the location profiles with fewer than
5 visitors and the ones under category "Home (private)". We also
4We use the POS tagger and Brown clusters provided in TwitterNLP, which is available
at https://github.com/aritter/twitter_nlp, to extract POS related features
and Brown clustering features.

Table 4: Summary of the dataset.
#location profiles in CLP 22,414
#keys in location profile mapping dictionary 24,750
#〈key, value〉 mappings in dictionary 63,091
#average mappings for each key in dictionary 2.55
#entries in POI inventory 27,386
#labeled tweets for evaluation 3,611
#candidate location mentions 5,707
#location mentions that are NPOI 4,165
#location mentions that are POI 1,542
#location mentions that are linkable POI 543
#location mentions that are unlinkable POI 999

filter the location profiles that have non-Latin characters in its name
attribute. After cleaning, our CLP contains 22,414 location profiles.
Location Profile Mapping Dictionary. The mapping dictionary is
used to generate candidate location profiles for a location mention
surface form (see Table 1). We construct this dictionary in two steps.
First, the name attribute of each location profile is added toD.key,
which maps to the index of the location profile (i.e., D.value).
Second, recall that a check-in tweet often contains informal POI
names, we extract these POI names from check-in tweets and add
these names toD.key for the corresponding location profiles linked
by the urls in check-in tweets. For example, the POI name "Vivo
City" in the second check-in tweet in Table 3 is added to the surface
form of VivoCity[2515] (note the different spellings).

As the result, we have a location profile mapping dictionary with
24,750 keys and 63,091 〈key, value〉 mappings. Recall that, the
same surface form may link to multiple location profiles and one
location profile may have multiple surface forms. On average, each
surface form has 2.55 mapping location profiles.
POI Inventory. In Twitter, people often mention locations with
abbreviations or partial names. A POI inventory is an augmented
version of the surface forms (i.e., the keys) in the mapping dictio-
nary. It consists of not only the surface forms, but also the partial
names derived from these surface forms. For example, partial name



"Vivo", derived from surface form "Vivo City", is included in the POI
inventory. POI inventory was proposed in [24] and used as a "noisy
version of gazetteer" to pre-label candidate location mentions in
tweets. It has shown to be an important resource in fine-grained
location recognition. Following the method in [24], we derived a
POI inventory with 27,386 entries from the location surface forms.
Labeled Tweets for Evaluation. The tweets with ground truth
annotations for end-to-end location linking evaluation are created as
follows. We randomly sample 100 users from the 53,836 Singapore
Twitter users, who specifies Singapore in the location field of her
Twitter profile. Then, we use the Twitter API to collect at most
2,000 tweets from each sampled user. The following preprocessing
are applied: remove all retweets and tweets with fewer than two
words, remove stop words, mask urls by *LINK*, mask@username
by *USER*, remove # from hashtags (i.e., hashtags are treated as
common words). In total, we have 100,058 processed tweets.

Each tweet is then matched against POI inventory with case-
insensitive leftmost longest match. After the matching process,
there are 24,129 tweets that each contains at least one candidate POI
mention. From these tweets, 4,012 tweets are randomly sampled
for manual annotation to create the ground truth dataset.

For each candidate POI mention in the sampled tweets, human
annotators are asked to assign one of the following 4 labels:

• NPOI . This label denotes the candidate mention is not a true
location mention.
• Index of the mapping location profile in CLP. This implies that

the candidate mention is a true POI .
• NIL. This label denotes that the candidate mention is a true

POI, but has no mapping location profile in our CLP.
• Unknown. This label denotes that the annotator cannot deter-

mine whether the mention is a true POI or not.

To facilitate the annotation process, for each tweet to be labeled,
the previous and the following two tweets posted by the sameuser are
provided. These five tweets and their timestamps together provide
the context for the annotation. The annotators are also encouraged
to utilize a map interface to quickly locate the correct location
profiles, particularly the names that may link to multiple locations.
The following are three example tweets with their assigned labels.

1. My bag smells like [mac]NPOI
2. *USER* [kfc]1052 at [lot 1]18835 hahahaha
3. At [Teddy &Me cafe]NIL ! It ’s so cute !!! :) *LINK*

After annotation on the sampled 4,012 tweets, 169 tweets are
filtered out for containing words mostly in other language than
English. In the remaining 3,843 tweets, there are 232 tweets within
each the only candidate POImention is labeled asUnknown. Finally,
we obtain 3,611 labeled tweets as the evaluation set. A summary
of this labeled dataset is shown in Table 4. In these 3,611 tweets,
there are 5,707 candidate POImentions which involve 1,516 distinct
candidate POI names. About 27% or 1,542 candidate POI mentions
are true POIs. Among them, 543 are linkable and are labeled with
the indexes of the mapping location profiles. The remaining 999
POI mentions are unlinkable, and are labeled with NIL.

We randomly split the 3,611 labeled tweets into three parts: 211
tweets for development, 2,500 tweets for testing, and the remaining
900 tweets for training. To evaluate the performance with different
sizes of labeled data, we use different number of labeled tweets in
training: 100, 300, 500, 700 and 900. To involve unlabeled data
for multi-view learning, we randomly sample 1,000, 5,000, 10,000,
15,000 tweets from the remaining unlabeled tweets that has at least
one candidate POI mention.

5.2 Parameter Setting and Evaluation Metric
In training and test, we set distMAX = 22km in Equation 3. The

NIL threshold τ = 0.01 is learned with the development set. The
maximum length d̂t of a segment with type t is collected from all the
labeled data, and we set d̂POI = 8 and d̂NPOI = 4. The beam size
k and the trade-off parameter λ are learned with the development
set. Larger beam size leads to marginal increase in performance
but much longer decoding time, similar to the findings in [26]. As
a trade-off, we set the beam size k to be 3 and 5 in fully-supervised
and semi-supervised settings, respectively. The trade-off parameter
λ is set to 0.01 (see Equation 9).

For both location recognition and linking, we adopt three widely
usedmetrics for evaluation: Precision (Pr), Recall (Re) andF1. To
have single number to measure the performance on the development
set, we use harmonic mean of F1 for location recognition and F1

for linking on the development set. Figure 5(a) shows the learning
curves on the development set for JoRLL (joint model learning from
labeled data) and JoRLLU (joint model learning from both labeled
and unlabeled data). This plot is with 500 labeled tweets and 5,000
unlabeled tweets. Both curves converge after 10 iterations. Similar
observations hold for other settings. Therefore, we set the number
of training iterations to be 10 throughout our experiments.

5.3 Experimental Results
In the experiments, we compare the following three methods:

PiRL: This baseline method is based on the pipeline architecture.
We implement the state-of-the-art methods for both location
recognition [24] and location linking [42] (see Section 3.2).

JoRLL: This method is based on the proposed joint framework for
location recognition and linking (JoRL), learning from labeled
data (see Section 4.3). JoRLL uses all features listed in Table 2.

JoRLLU: This method is also based on JoRL. It utilizes multi-view
learning and learns from both labeled and unlabeled data (see
Section 4.4). JoRLLU uses all features in Table 2, in 2 views.

Overall Comparison. Figures 5(b) and 5(c) show the overall results
of the three methods PiRL, JoRLL, and JoRLLU.

First, in terms of F1, JoRLL consistently outperforms PiRL on
both location recognition and linking. Depending on the size of
labeled data, the improvement over PiRL is around 4.1-8.4% and
1.5-5.2% respectively on the two sub-tasks. Second, when involving
unlabeled data, JoRLLU also consistently outperforms PiRL on both
sub-tasks by around 6.2-10.5% and 3.6-10.3%, respectively. Here,
we use 5,000 unlabeled tweets in this comparison, and we will
study the impact of the size of unlabeled data later. Last, JoRLLU
outperforms JoRLL on both sub-tasks and the improvements are
around 2% and 1.1-4.9%, respectively.

In short, both joint models JoRLL and JoRLLU, outperform the
pipelinedmethod PiRL consistently. One reason is that the proposed
joint framework utilizes global features, which not only prevent the
recognition errors, but also improve the linking accuracy. The
learning from unlabeled data, further improves the model accuracy.
Impact of Global Features. Table 5 compares 5 methods with and
without global features, where (l) stands for local features and (l+g)
for local and global features. In this comparison, the number of
labeled and unlabeled tweets are 500 and 5,000, respectively (other
settings show similar results). We make the following observations:

In evaluating location recognition, when the joint model only
uses local features, both JoRLL (l) and JoRLLU (l) achieve betterRe
and F1 but poorer Pr, compared to PiRL. The reason is that the
joint model is based on beam search, which enumerates all possi-
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Figure 5: Learning curve on development set for JoRLL and JoRLLU, and overall comparison of methods PiRL, JoRLL, and JoRLLU.

Table 5: Impact of Global Features.
Method Location Recognition Location Linking

Pr Re F1 Pr Re F1

PiRL 0.8498 0.5973 0.7015 0.6905 0.5194 0.5928
JoRLL (l) 0.8473 0.6087 0.7084 0.7763 0.5075 0.6137
JoRLL (l+g) 0.8561 0.6097 0.7122 0.7880 0.5104 0.6196
JoRLLU (l) 0.7975 0.6646 0.7250 0.7291 0.5463 0.6246
JoRLLU (l+g) 0.8190 0.6605 0.7312 0.7500 0.5463 0.6321

Table 6: Performance on NIL/NPOI Prediction.
Methods NPOI Prediction NIL Prediction

Pr Re F1 Pr Re F1

PiRL 0.9075 0.9769 0.9409 0.7752 0.5246 0.6257
JoRLL 0.9084 0.9836 0.9445 0.7346 0.5483 0.6279
JoRLLU 0.9306 0.9601 0.9451 0.7047 0.5975 0.6467

ble segments during the decoding in the joint search space. Thus
more locations are recognized but with poorer precision. When
we introduce global features, both JoRLL (l+g) and JoRLLU (l+g)
outperform PiRL on all the three metrics Pr, Re and F1. In addi-
tion, both methods achieve betterF1 than their counterparts without
using global features. This demonstrates the effectiveness of global
features in fixing the recognition errors.

For location linking, global features bring improvements on all
three metrics to both methods JoRLL and JoRLLU. Both methods
outperform PiRL and the best F1 is achieved by JoRLLU (l+g). This
set of results indicates that the global features are also very helpful
to improve the linking accuracy.
Impact of Unlabeled Data Size. Figure 6 illustrates the impact of
involving different size of unlabeled data. Observe that the joint
model with multi-view learning outperforms the fully-supervised
counterpart. This observation indicates that involving unlabeled
data leads to more accurate models. The performance reaches its
best when 5,000 unlabeled tweets are involved. Toomany unlabeled
tweets do not necessarily lead to better results.
Performance onNPOI/NIL Prediction. We now report the results
on NPOI and NIL prediction, listed in Table 6. For NPOI
prediction, all methods achieve excellent F1 scores, above 0.94.
The joint models outperform the pipelined approach by a small
margin. For NIL prediction, the joint models outperform the
pipelined approach in terms of Re and F1, but deliver poorer Pr.

5.4 Error Analysis
Although the proposed joint model achieves better performance

than state-of-the-art methods, there are still some errors that cannot
be well addressed by the current model. As a case study, we show
three examples in Table 7. We discuss the possible reasons for
errors and aim to address these issues in our future work.

The first example shows an error propagation issue. The current
model fails to recognize the right mention of "St . Ignatius Church";
subsequently it is impossible to link. The location profile-related
features do not come to a rescue because the name of location profile
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Figure 6: Impact of Unlabeled Data Size.

Table 7: Three kinds of failed examples with current model.
# Failed example with ground truth annotation (next line)

1
a fundraising for Philippines OSLP at [St]NIL . Ignatius [Church]NPOI
a fundraising for Philippines OSLP at [St . Ignatius Church]17519

2
*USER* [kfc]1052 at [lot 1]NIL hahahaha
*USER* [kfc]1052 at [lot 1]18835 hahahaha

3
It has been a long time since I had one for one at [starbucks]2102 ( :
It has been a long time since I had one for one at [starbucks]2071 ( :

[17519] is "Church Of St. Ignatius". The difference in word order
causes the failure in location mention recognition.

In the second example, "kfc" is correctly recognized and linked.
Our model recognizes "lot 1" but fails to link it. The linking fails
because of the significant difference between "lot 1" and "Lot One
Shoppers’ Mall", the name of the correct location profile [18835].
Interestingly, the phrase lot 1 appears both in the tweet and the
address attribute of the location profile [1052], which helps to decide
the correct linking of "kfc". This is possible due to the third feature
in location profile-related features in Table 2.

The last example has correct recognition, but incorrect linking.
This error occurs due to the lack of context for correct linking. The
system then chooses the one with highest popularity, which is dif-
ferent from the ground truth label. However, the human annotators
are provided with four more contextual tweets for the right linking.

6. CONCLUSION
In this paper, we propose a novel joint model to recognize infor-

mal location mentions from tweet content and link the recognized
locations to well-defined location profiles. The main advantage of
the proposed model is that the joint model allows global features
to alleviate the error propagation problem occurred in the tradi-
tional pipelined architecture. Based on the concept of multi-view
learning, we further propose a semi-supervised learning algorithm
to alleviate the dearth of labeled data. Experiments conducted on
a labeled tweet collection and location profiles from Foursquare
demonstrate the effectiveness of our proposed JoRL model.
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