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Revisiting RecSys: A 5-Year Journey
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RecSys: The Online and the Offline
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Online service

Online evaluation
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RecSys:  The Problem Setting  

{User}
{Item}
{User – Item interaction} 
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Image source: https://d2l.ai/chapter_recommender-systems/recsys-intro.html 
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RecSys: The Current Status 
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TORS 2024
Dataset

Model 

“the same few (and relatively old) datasets 
(i.e., MovieLens, Amazon review dataset) are 
used extensively”
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RecSys: Evaluation
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Lack of baselines? 

Even if baselines are 
compared 

Shall we reference large-scale evaluations? 
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Large-scale Evaluations 
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NeurIPS 2022
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RecSys: The Current Status, but Why?
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Dataset

MovieLens has been used by 
≈70% of RecSys papers. Is 

MovieLens a representative 
dataset?

Model

There are so many models 
available. Is there a shared 

understanding on which 
models shall be used as 

baselines? 

Evaluation

Why item-KNN remains a 
strong performer?
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Shall We Re-look at the Dataset? 
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The 
MovieLens 
dataset 
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𝑅1 
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𝑀1 

𝑅1 𝑅0 𝑅2 

𝑀2 RecommenderRec
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MovieLens: One of the Two Kinds of Interactions 

• User-Movie Interaction 
• There is a decision process to 

decide which movie to watch next 

• User-MovieLens Interaction 
• MovieLens guides users to recall 

what movies he/she has watched
• More than half users complete all 

ratings in ONE day
• Cold-start dataset for “static 

preference”
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Movies User MovieLens
website 
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RecSys: The Current Status, but Why?
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Model

Is there a shared understanding 
on which models shall be used 

as baselines? 

Evaluation

Why item-KNN remains a strong 
performer?

Data defines task
The problem 

The data 

Formulate problem

Develop model 

Evaluate model 
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Training data → RecSys model → Test data 
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No. papers Percentage Train/test split

30 34% Random split

22 25% Leave-one-out

17 19.5% Single time point

15 17% Simulation-based online 

4 4.5% Sliding window

Data defines the task

SIGIR 2023

88 papers in RecSys conferences (2020 – 2022) 
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Training data → RecSys model → Test data 
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Training Test

Sliding

Time
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Time

A sampled timestamp

Time

𝑢2
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Training Test

Training Test

Leave-one-out

Random split 

1
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4
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Per. Train/test split

34% Random split

25% Leave-one-out
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Popularity in RecSys Research:  Defined by the Training Set  

• Partition the data into train and test 
• Item popularity: number of 

interactions in training set
• Popularity following time? 

• At time 𝑡𝑥1for user 𝑢1

• At time 𝑡𝑥2for user 𝑢2

• At time 𝑡𝑥3for user 𝑢3
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SIGIR 2020

𝑡𝑐

𝑢1

𝑢2

𝑢3Training (    )

Test (    )

Time
𝑡𝑥1 𝑡𝑥2 𝑡𝑥3

Leave-last-one-out: Train / Test 

Is “Popularity” method meaningful?
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Can be Observed on Datasets? 

• Blue vs Brown 
points 
• No. of items new to 

each week
• No. of users’ last 

interaction

• Popularity seems 
not reasonable. 

• How about other 
models?
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Data Leakage in RecSys

• A model is trained with future data 
with respect to the timepoint of test 
instance
• At time 𝑡𝑥1for user 𝑢1

• At time 𝑡𝑥2for user 𝑢2

• At time 𝑡𝑥3for user 𝑢3

• Can we prove this? 
• What are the impacts to our 

results?
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𝑡𝑐

𝑢1

𝑢2

𝑢3Training (    )

Test (    )

Time
𝑡𝑥1 𝑡𝑥2 𝑡𝑥3

Applicable to all ML/DL- based models

ACM TOIS 2023
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Experiment: to simulate different severity of data leakage

• Test set: test instances that happened in Year 5 (example test year)
• Training set:  (Instances before Y5) + (training instances in Y5) +  

(𝑥 year of future instances), 𝑥 ∈ [0,5]
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Y1 Y2 Y3 Y4 Y5 Training Y6 Y7 Y8 Y9 Y10

Y5 Test

Model

Time

Historical records as 
training data 

Future records as additional 
training data 
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Impact of Data Leakage on Recommendation List

• Future items: the items 
are exclusively available 
only after the specific 
time point of a given test 
instance. 

• All models recommend 
“future items” → invalid 
recommendation
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Impact of Data Leakage on RecSys Accuracy

• Strictly speaking: 
• The impact on 

recommendation accuracy 
is not predictable.

• The relative performance 
ordering of the evaluated 
models does not exhibit 
consistent patterns.

• Less strictly?
• The relative performance 

ordering largely remains
• Is there a reason behind?  

29 May 2024 20NTU Singapore



RecSys: The Current Status, but Why?
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Model

Is there a shared understanding 
on which models shall be used 

as baselines? 

Evaluation

Why item-KNN remains a strong 
performer?

Research Problem 
Simplification 

The problem 

The data 

Formulate problem

Develop model 

Evaluate model 
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“Training → RecSys model → Test” Reflect RecSys?  

• RecSys aims to make 
recommendations for a 
decision-making process

• The decision-making is 
dynamic with two types of 
preferences 
• General preference 
• Current contextual factors

 →item-kNN
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Current Context is Task-Specific and Dynamic 

• The abstraction: {User} {Item} {User-item} 
→ loss of the context
• Movie recommendation? 
• E-commerce recommendation?
• Hotel, POI recommendation? 

• Example: Food delivery recommendation mobile apps 
• User input: User ID, delivery address 
• Task-specific factors: 

• Breakfast, lunch, dinner?
• Repeat vs Exploration? → Significant different in item search space 
• Current context, user mood (make a good guess)
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The Understanding of Current Practice 
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Dataset

An offline dataset usually 
does not capture dynamic 
changing context factors

Model

The model is trained based on 
decision outcomes, not the 

decision making 

Hence only user general 
preference is learned over 

time

Evaluation

The evaluation is on the ability 
of RecSys models in capturing 

user general preference
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RecSys is a Search Problem: CF Generates Part of the Query   

• Query in implicit form 
• General preference 
• Current context 

• Item collection 
• Dynamically updated 

• Ranking 
• Aiming for positive 

decision making 
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U × 𝐼: user-item matrix of all users and all items 
𝐼𝑢: 𝑢1 historical interactions 
𝐼𝑐: 𝑢1 interactions in the current session
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The Mismatch 
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𝑈 × 𝐼
General 

Preference 

Dynamic 
Contextual  

Factors 

Mismatch

Decision 
making

Task SpecificityDecision 
outcome
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Understanding of RecSys

• User interaction/decision is influenced by multiple factors.
• Long-term general preferences + Short-term dynamic contextual factors.
• The relative importance of these factors varies across applications.

• CF is good at modeling user general preferences; Offline 
evaluation methods tend to focus on capturing general 
preferences 
• General preference is less time-dependent, change relatively slowly over time
• Data leakage is less likely to significantly impact offline model results; 
• Hence, time dimension is often ignored in RecSys research/evaluation.

• When deployed online, models deemed good based on offline 
evaluation may exhibit unpredictable performance. 
• Depending on the significance of dynamic factors in that specific 

application. 
• If general preferences are predominant, then the model is more likely to 

perform well.
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The problem 

The data 

Formulate problem

Develop model 

Evaluate model 
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What’s next?

• Extremely challenging to find a perfect offline 
evaluation scheme 
• Every model can be a winner remains 
• It is hard to find one model fitting all RecSys scenarios  

• Models shall be designed and evaluated for a pre-
defined type of application

• Item-kNN remains a strong baseline; The 
definition of “nearest” is feature engineering
• Task dependent, and can be applied in a dynamic 

manner 
• There exist a diverse form of neighbours
• Can be modelled by a sequential model if applied in a 

session-based manner
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News

E-commerce

POI

Short-video

𝑈 × 𝐼

{User, Item}
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Thank you!
https://personal.ntu.edu.sg/axsun/
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