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Abstract

Let p be an odd prime, let a be a positive integer, let m be an odd positive

integer, and suppose that a generalized bent function from Zm2pa to Z2pa exists. We

show that this implies m 6= 1, p ≤ 22m + 2m + 1, and ordp(2) ≤ 2m−1. We obtain

further necessary conditions and prove that p = 7 if m = 3 and p ∈ {7, 23, 31, 73, 89}
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if m = 5. Our results are based on new tools for the investigation of cyclotomic

integers of prescribed complex modulus, including “minimal aliases” invariant under

automorphisms, and bounds on the `2-norms of their coefficient vectors. These

methods have further applications, for instance, to relative difference sets, circulant

Butson matrices, and other kinds of bent functions.

1 Introduction

The term “bent function” has been used with various different meanings in the literature

(an account of which can be found in [25]). So we first need to clarify in what setting we

are exactly interested in.

Let q and m be positive integers and let ζq be a primitive complex qth root of unity.

A function f : Zmq → Zq is called a generalized bent function (GBF) if∣∣∣∣∣∣
∑
x∈Zm

q

ζf(x)−v·xq

∣∣∣∣∣∣
2

= qm for all v ∈ Zmq . (1)

Here x · v denotes the usual dot product.

Research on GBFs started with the work of Rothaus [19, 20] and Dillon [6], initially

focussing on the case q = 2. Significant further results on GBFs can be found in [7, 9,

11, 18], for instance. A survey of GBFs and related objects is given in [25].

Bent functions are a highly active research field due to their numerous applications

in information theory, cryptography and coding theory. In fact, the defining condition

(1) ensures that bent functions are “maximally nonlinear”, which is desirable property

for cryptographic purposes. The importance of nonlinear functions in cryptography is

emphasized in the recent survey [3]. The relevance of bent functions in coding theoretic

applications is apparent from work such as [23, 24].

The main existence result for GBFs was obtained by Kumar, Scholtz, and Welch [11].

They proved that GBFs from Zmq to Zq exist whenever m is even or q 6≡ 2 (mod 4). On

the other hand, not a single GBF from Zmq to Zq with m odd and q ≡ 2 (mod 4) is
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known. In fact, several nonexistence results for GBFs from Zmq to Zq with m odd and

q ≡ 2 (mod 4) have been obtained in the literature, cf. [7, 9, 11, 18]. The aim of this

paper is to strengthen these nonexistence results. More precisely, we study the case where

m is odd and q = 2pa for an odd prime p and positive integer a.

Since the structure of this paper is quite complicated, we give an overview of our

strategy here. Let pa be an odd prime power, let m be an odd positive integer, and

suppose that a GBF from Zm2pa to Z2pa exists. This implies (see Corollary 37) that there

is a cyclotomic integer X ∈ Z[ζpa ] with

|X|2 = 2m. (2)

Now there are two important observations concerning equation (2):

(a) 2m is relatively small compared to p in most cases we are interested in.

(b) 2m is a nonsquare.

A highly useful consequence of (a) is that the length of X (the smallest positive integer

`(X) such that X is an integer linear combination of `(X) roots of unity) also is relatively

small (Theorem 22). We quantify this correspondence between the modulus of X and its

length in Section 4. These results heavily make use of ideas we describe in Section 3: On

the one hand, Cassels’ M-function [5] gives us a basic connection between the modulus

and length of X. On the other hand, we introduce the new notion of minimal aliases,

that enables us to use Galois automorphisms to significantly improve the results based on

theM-function. In fact, the crucial Proposition 19 shows that there are minimal aliases

that are invariant under maps induced by suitable Galois automorphisms.

Curiously, (b) (2m is a nonsquare) allows us to considerably strengthen the necessary

conditions for the existence of solutions of (2). This is the subject of Section 5. The

main idea of this work is to switch from |X|2 = n (n nonsquare) to a group ring equation

Y Y (−1) = n + K, where K is a “kernel contribution” that arises from this switching. If

n is small compared to p, we can show that K vanishes and thus get a contradiction by

applying the trivial character Y Y (−1) = n. At the end of Section 5, we will indicate how
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this idea can be used to study other structures such as relative difference sets, circulant

Butson matrices, and other kinds of bent functions.

In Section 6, we strengthen the results of Section 5 in the case n = 2m. The strategy

is to use the Galois automorphisms that leave the prime ideals containing 2 invariant to

obtain lower and upper bounds on the `2 norm of coefficient vector of X. This, in turn,

provides additional information on what happens when we switch from (2) to a group

ring equation (see Lemma 30). This group ring equation is the basis for the results in

Section 6 following Lemma 30.

Finally, in Section 7, we apply our results on equation (2) to GBFs. Of course, if

(2) has no solution, then there does not exist any GBF from Zm2pa to Z2pa . This is the

straightforward consequence of the results of the previous sections. In turns out, however,

that there is a more powerful way to make use of our results on equation (2): Even if there

are solutions, we can prove nonexistence of corresponding GBFs as long as these solutions

satisfy a certain intriguing parity condition (see (35)). This enables us to further improve

our nonexistence results by providing sufficient conditions for (35) to be satisfied.

2 Group Rings and Characters

It turns out that group rings and characters of abelian groups provide a convenient setting

for the study of GBFs. Let G be a finite (multiplicatively written) group of order v, let

R be a ring, and let R[G] denote group ring of G over R. Every X ∈ R[G] can be written

as X =
∑

g∈G agg with ag ∈ R. The ag’s are called the coefficients of X. We identify a

subset S of G with the group ring element
∑

g∈S g. Let 1G denote the identity element

of G and let r be an integer. To simplify notation, we write r for the group ring element

r1G. The support of X =
∑

g∈G agg is defined as

supp(X) = {g ∈ G : ag 6= 0}.

Some additional notation for the case R = Z[ζq] is needed. Let t be an integer coprime

to q. For X =
∑

g∈G agg ∈ Z[ζq][G], we write X(t) =
∑
aσgg

t where σ is the automorphism

of Q(ζq) determined by ζσq = ζtq.
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The group of complex characters of G is denoted by Ĝ. The trivial character of

G is the character χ0 with χ0(g) = 1 for all g ∈ G. It is well known that Ĝ is a group

isomorphic to G, with multiplication in Ĝ defined by χτ(g) = χ(g)τ(g) for χτ ∈ Ĝ,

g ∈ G. For X =
∑

g∈G agg ∈ C[G] and χ ∈ Ĝ, we write χ(X) =
∑

g∈G agχ(g). For a

subgroup U of G, we write U⊥ = {χ ∈ Ĝ : χ(g) = 1 for all g ∈ U}. If χ ∈ U⊥, we say

that χ is trivial on U . We have |U⊥| = |G|/|U |. The following is a standard result, see

[2, Chapter VI, Lemma 3.5], for instance.

Result 1 (Fourier inversion formula). Let G be a finite abelian group and X =
∑

g∈G agg ∈
C[G]. Then

ag =
1

|G|
∑
χ∈Ĝ

χ(Xg−1) for all g ∈ G.

We now describe how bent functions can be characterized in terms of group ring

equations. Let G = Zmq and let f : G → Zq be any function. Then f corresponds to an

element Df of the group ring Z[ζq][G] via

Df =
∑
x∈G

ζf(x)q x.

Moreover, every v ∈ G determines a character χv of G by

χv(x) = ζ−v·xq for all x ∈ G.

It well known and straightforward to verify that every complex character of G is equal

to some χv, v ∈ G. Note that

χv(Df ) =
∑
x∈G

ζf(x)q χv(x) =
∑
x∈G

ζf(x)−v·xq = F (v) for all v ∈ G, (3)

where F (v) is defined as in Result 3. From (1) and (3), we see that f is a GBF if and

only if

|χ(Df )|2 = qm for all χ ∈ Ĝ. (4)

Thus we get the following.
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Proposition 2. Let m and q be positive integers, let f : Zmq → Zq be a function, and set

Df =
∑

x∈Zm
q
ζ
f(x)
q x. Then f is a GBF if and only if

DfD
(−1)
f = qm. (5)

Proof. We have shown that f is a GBF if and only if (4) holds. Note that |χ(Df )|2 =

χ(DfD
(−1)
f ) for all characters χ of Zmq . Using Result 1, we conclude that (4) holds if and

only if (5) is satisfied.

The following is well known, cf. [9, p. 376], and straightforward to verify.

Result 3. Suppose f is a GBF from Zmq to Zq. Write F (v) =
∑

x∈Zm
q
ζ
f(x)−x·v
q for v ∈ Zmq .

We have ∑
v∈Zm

q

F (v)F (v + w) = 0 for all w ∈ Zmq \ {0}.

In view of (3), Result 3 can be reformulated as follows.

Proposition 4. Let m and q be positive integers, G = Zmq , let f : G → Zq be a bent

function, and set Df =
∑

x∈G ζ
f(x)
q x. Then∑

τ∈Ĝ

τ(Df )τχ(Df ) = 0 for all χ ∈ Ĝ \ {χ0}.

3 Number Theoretic Preliminaries

To study group ring equations, a powerful technique we often use is number theory.

We first record some well known results that we will use later. As before, write ζn =

exp(2πi/n). Elements of the ring Z[ζn] are called cyclotomic integers.

Notation 5. Throughout the rest of this paper, we assume that p is odd prime, that a

is a positive integer, and we write ζ = ζpa . Moreover, “¯” denotes complex conjugation.

See [4, Section 2.3, Thm. 2] for a proof of the following result of Kronecker.

Result 6. Any nonzero algebraic integer all of whose conjugates have absolute value at

most 1 is a root of unity.
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Part (a) of the next result is proved in [16, p. 76] and part (b) in [10, pp. 196–197].

Result 7. Write R = Z[ζ].

(a) The ideal pR factors as pR = ((1− ζ)R)(p−1)p
a−1

and (1− ζ)R is a prime ideal of R.

Moreover, (1− ζ)R = (1− ζ)R.

(b) Let q be a prime different from p. The ideal qR factors as qR = p1 · · · ps where

s = (p− 1)/ordp(q) and the pi’s are distinct prime ideals. Moreover, pi = pi if and only

if ordp(q) is even.

Corollary 8. Write Θ =
∑p−1

x=1

(
x
p

)
ζxp where

(
x
p

)
is the Legendre symbol. Suppose that

X ∈ Z[ζ] satisfies |X|2 = pbm where b and m are positive integers. Then X = ΘbA for

some A ∈ R with |A|2 = m.

Proof. Write R = Z[ζ] and p = (1−ζ)R. Then p is a prime ideal of R and pR = p(p−1)p
a−1

by Result 7. Moreover, p = p by Result 7 (a). As |X|2 = pbm, we have XXR =

pb(p−1)p
a−1

(mR). Since p = p, this implies X ∈ pb(p−1)p
a−1/2. We have ΘΘ = p (see [10,

Prop. 8.2.2]) and thus ΘR = p(p−1)p
a−1/2. As X ∈ pb(p−1)p

a−1/2 = ΘbR, we conclude that

X = ΘbA for some A ∈ R. Note that |A|2 = |X|2/|Θ|2b = pbm/pb = m.

The next result is a special case of [14, Thm. 4.7].

Result 9. Suppose that X ∈ Z[ζ] satisfies |X|2 = 22n for some positive integer n. If

ordp(2) ≥ 2n+1, then X is trivial, that is, X = 2nη for some root of unity η.

The following is a consequence of [21, Thm. 3.5].

Result 10. Suppose that X ∈ Z[ζ] satisfies |X|2 = qb, where q 6= p is a prime and b is a

positive integer. If qordp(q) 6≡ 1 (mod p2), then Xζj ∈ Z[ζp] for some integer j.

Note that Result 10 indeed follows from [21, Thm. 3.5], as qordp(q) 6≡ 1 (mod p2)

implies F (pa, qb) = p, where the function F is defined in [21].

Cassels [5] introduced the following useful notion.
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Definition 11 (M-function). For X ∈ Z[ζn], let

M(X) =
1

ϕ(n)

∑
σ∈Gal(Q(ζn)/Q)

(XX)σ,

where ϕ denotes the Euler totient function.

Note that M(X) ≥ 1 for all nonzero X ∈ Z[ζn] by the inequality of geometric and

arithmetic means, since
∏

σ∈Gal(Q(ζn)/Q) (XX)σ ≥ 1. The following is a consequence of [5,

(3.4), (3.16)].

Result 12. Let X ∈ Z[ζn], let q be a prime divisor of n, and write n = qbn′ with

(q, n′) = 1. If b = 1, then X =
∑q−1

i=0 Xiζ
i
q with Xi ∈ Z[ζn′ ] and

M(X) =
1

q − 1

q−1∑
1≤i<j≤q

M(Xi −Xj). (6)

On the other hand, if b > 1, then X =
∑qb−1−1

i=0 Xiζ
i
n with Xi ∈ Z[ζqn′ ] and

M(X) =

qb−1−1∑
i=0

M(Xi). (7)

Proposition 13. Let U = {ζjp : j = 0, . . . , p− 1} be the subgroup of order p of 〈ζ〉.

(a) Let N be a set of integers with |N | = pa−1 such that the elements of N are pairwise

incongruent modulo pa−1. Then B = {ζ i : i ∈ N} is an integral basis of Q(ζ) over Q(ζp).

(b) A subset T of {1, ζ, . . . , ζpa−1} is linearly independent over Q if and only if T does

not contain a coset of U .

Proof.

(a) Note that |B| = pa−1. As the degree of Q(ζ) over Q(ζp), is ϕ(pa)/ϕ(p) = pa−1 = |B|, it

suffices to show span(B) = Z[ζ], where span(B) denotes the set of all linear combinations

of elements of B with coefficients from Z[ζp]. Let j ∈ Z be arbitrary. By the definition

of N , there is i ∈ N with i ≡ j (mod pa−1), that is, j = i + kpa−1 for some k ∈ Z.

Thus ζj = ζ iζkp ∈ span(B). Hence we have {1, ζ, . . . , ζpa−1} ⊂ span(B). This implies

span(B) = Z[ζ].

8



(b) If T contains a coset of U , then T is linearly dependent, as
∑p−1

j=0 ζ
j
p = 0. Write

T = {ζj : j ∈ A} with A ⊂ {0, . . . , pa − 1}. If T is linearly dependent, then there are

integers ai, not all zero, such that
∑

j∈A ajζ
j = 0. As the minimal polynomial of ζ over

Q is 1 + xp
a−1

+ · · ·+ x(p−1)p
a−1

, this implies∑
j∈A

ajx
j = g(x)(1 + xp

a−1

+ · · ·+ x(p−1)p
a−1

) (8)

for some nonzero polynomial g(x) ∈ Z[x] of degree less than pa−1. Let k = min{j ∈
A : aj 6= 0}. Then A contains {k, kpa−1, . . . , k(p − 1)pa−1} by (8) and thus T contains

Uζk.

Definition 14. Let n be a positive integer, let G be a cyclic group of order n, and let g

be a fixed generator of G. For Z =
∑n−1

i=0 aig
i ∈ Z[G], write Z(ζn) =

∑n−1
i=0 aiζ

i
n. We say

that Z is minimal if

|supp(Z)| = min {| supp(Y )| : Y ∈ Z[G], Y (ζn) = Z(ζn)} .

If X ∈ Z[ζn] and Z(ζn) = X, then Z is called an alias of X. The length of X is

|supp(Z)|, where Z is a minimal alias of X. We denote the length of X by `(X).

Remark 15. If H is a subgroup of G = 〈g〉 of order m, we consider the group ring

Z[H] as imbedded in Z[G]. In particular, every A ∈ Z[H] can be written in the form

A =
∑m−1

i=0 aig
in/m with ai ∈ Z and we have A(ζn) =

∑m−1
i=0 aiζ

in/m
n ∈ Z[ζm].

Lemma 16. Let G be a cyclic group of order pa and let P be its subgroup of order p.

(a) The map Z[G] → Z[ζ], Y 7→ Y (ζ) is a ring homomorphism with kernel {PY : Y ∈
Z[G]}.

(b) Let S be subset of G \ {1} and let c, d be integers. If Y = c+ dS ∈ Z[G] is minimal,

then |S ∩ Ph| ≤ (p− 1)/2 for all h ∈ G.

Proof.

(a) This follows from that fact that the minimal polynomial of ζ over Q is 1 + xp
a−1

+
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· · ·+ x(p−1)p
a−1

.

(b) Suppose |S ∩ Ph| ≥ (p + 1)/2. Set Z = c + d(S − Ph). Then Z(ζ) = Y (ζ), as

P (ζ) = 0. However, | supp(Z)| < | supp(Y )|, contradicting the minimality of Y .

Lemma 17. Let t be a positive integer with gcd(t, p) = 1 and let G be a cyclic group

of order p. Let σ be the automorphism of Q(ζp) determined by ζσp = ζt. If Xσ = X for

X ∈ Z[ζp], then Z(t) = Z for every alias Z ∈ Z[G] of X.

Proof. Let g be a generator of G and suppose that Z =
∑p−1

i=0 aig
i is an alias of X. Then

Z(ζp) = X and thus Z(t)(ζp) = Z(ζp)
σ = Z(ζp), since Xσ = X by assumption. Using

Lemma 16, we conclude Z(t) = Z +αG with α ∈ Z. As the sum of the coefficients of Z(t)

is the same as the sum of the coefficients of Z, we have α = 0 and thus Z(t) = Z.

Lemma 18. Let G = 〈g〉 be a cyclic group of order pa, and let P = 〈gpa−1〉 be the subgroup

of order p of G. Let N be a set of integers with |N | = pa−1 such that the elements of N

are pairwise incongruent modulo pa−1.

(a) Every Z ∈ Z[G] can be written in the form Z =
∑

j∈N Zjg
j with Zj ∈ Z[P ], and Z is

minimal if and only if each Zj is minimal.

(b) Every X ∈ Z[ζ] can be written in the form X =
∑

j∈N Xjζ
j with Xj ∈ Z[ζp], and we

have `(X) =
∑

j∈N `(Xi).

Proof. (a) Since the elements gj, j ∈ N , represent every coset of P in G, we see that

Z indeed can be written as Z =
∑

j∈N Zjg
j with Zj ∈ Z[P ]. If Z is minimal, then

each Zj must be minimal by the definition of minimality. Suppose that all Zj’s are

minimal and that Z is not minimal. Then there exists Y ∈ Z[G] with Y (ζ) = Z(ζ) and

|supp(Y )| < |supp(Z)|. Write Y =
∑

j∈N Yjg
j with Yj ∈ Z[P ]. We have∑

j∈N

Zj(ζ)ζj = Z(ζ) = Y (ζ) =
∑
j∈N

Yj(ζ)ζj. (9)

By Proposition 13 (a), the set {ζj : j ∈ N} is linearly independent over Q(ζp). Moreover,

Zj(ζ), Yj(ζ) ∈ Z[ζp]. Thus Zj(ζ) = Yj(ζ) for all j by (9). As |supp(Y )| < |supp(Z)|,
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we have |supp(Yj)| < |supp(Zj)| for some j, contradicting the minimality of Zj. This

completes the proof of part (a).

(b) Let X ∈ Z[ζ]. We indeed have X =
∑

j∈N Xjζ
j with Xj ∈ Z[ζp], as {ζj : j ∈ N} is

an integral basis of Q(ζ) over Q(ζp) by Proposition 13 (a). Let Z be a minimal alias of

X and write Z =
∑

j∈N Zjg
j with Zj ∈ Z[P ]. Then each Zj is minimal by part (a) and∑

j∈N Xjζ
j = X = Z(ζ) =

∑
j∈N Zj(ζ)ζj. Thus Zj(ζ) = Xj, which implies that Zj is a

minimal alias of Xj and `(Xj) = |supp(Zj)| for all j. Hence

`(X) = |supp(Z)| =
∑
j∈N

|supp(Zj)| =
∑
j∈N

`(Xj).

Proposition 19. Let t be an integer with gcd(t, p) = 1 and let G be a cyclic group of

order pa. Write ordpa(t) = f and suppose that f divides p−1. Let σ be the automorphism

of Q(ζ) determined by ζσ = ζt. If Xσ = X for X ∈ Z[ζ], then there is a minimal alias

Z ∈ Z[G] of X with

Z(t) = Z.

Proof. For x ∈ Z let r(x) be the integer such that r(x) ≡ x (mod pa−1) and 0 ≤
r(x) < pa−1. Note that the map x 7→ r(xt) is a permutation of {0, . . . , pa−1 − 1}, since

gcd(t, p) = 1. Note that all orbits of x 7→ r(xt) on {1, . . . , pa−1 − 1} have length f , since

f |(p− 1) by assumption. Let O0, . . . ,O` be the orbits of x 7→ r(xt) on {0, . . . , pa−1 − 1}
where ` = (pa−1− 1)/f , O0 = {0}, and |Oi| = f for all i > 0. For each i, let xi be a fixed

element of Oi, and set

N = {0} ∪ {xits : 1 ≤ i ≤ `, 0 ≤ s ≤ f − 1}.

Then |N | = 1 + `f = pa−1 and the elements of N are pairwise incongruent modulo pa−1.

Moreover, {ζtj : j ∈ N} = {ζj : j ∈ N}, since tf ≡ 1 (mod pa). Note that {ζj : j ∈ N}
is an integral basis of Q(ζ) over Q(ζp) by Proposition 13 (a). Hence there are unique

Xj ∈ Z[ζp] with X =
∑

j∈N Xjζ
j. As Xσ = X by assumption and Nσ = N , we have∑

j∈N

Xjtζ
jt =

∑
j∈N

Xjζ
j = X = Xσ =

∑
j∈N

Xσ
j ζ

jt,
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where the index jt in Xjt is taken modulo pa. This implies Xσ
j = Xjt for all j and thus

(Xxi)
σs

= Xxits for all i, s. We conclude

X =
∑
j∈N

Xjζ
j = X0 +

∑̀
i=1

f−1∑
s=0

Xxitsζ
xit

s

= X0 +
∑̀
i=1

f−1∑
s=0

(Xxiζ
xi)σ

s

. (10)

Let g be a generator of G and let P = 〈gpa−1〉 be the subgroup of G of order p. Let

Z0 ∈ Z[P ] be a minimal alias of X0 and, for i = 1, . . . , `, let Zi ∈ Z[P ] be a minimal alias

of Xxi . Define

Z = Z0 +
∑̀
i=1

f−1∑
s=0

Z
(ts)
i gxit

s

.

We claim that Z is a minimal alias of X. Note that Z
(ts)
i is minimal for all i and s, since

Zi is minimal. Furthermore, the elements of {0} ∪ {xits : 1 ≤ i ≤ `, 0 ≤ s ≤ f − 1} are

pairwise incongruent modulo pa−1. Hence Z is minimal by Lemma 18 (a). Moreover, we

have

Z(ζ) = Z0(ζ) +
∑̀
i=1

f−1∑
s=0

Zi(ζ)(t
s)ζxit

s

= X0 +
∑̀
i=1

f−1∑
s=0

(Xxiζ
xi)σ

s

= X

by (10), where we have used that Z0 is an alias of X0 and Zi is an alias of Xxi for

i = 1, . . . , `. Hence Z is an alias of X.

It remains to show Z(t) = Z. Note that Xσ
0 = X0, as Xσ

j = Xjt for all j. As Z0 is an

alias of X0, we have Z
(t)
0 = Z0 by Lemma 17. Hence

Z(t) = Z
(t)
0 +

∑̀
i=1

f∑
s=1

Z
(ts)
i gxit

s

= Z0 +
∑̀
i=1

f−1∑
s=0

Z
(ts)
i gxit

s

= Z,

since Z
(tf )
i = Z

(t0)
i and gxit

f
= gxit

0
for all i.

4 M-Function and Length of Cyclotomic Integers

We now prove a basic result relating the length of cyclotomic integers to theM-function.
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Lemma 20. Let 〈g〉 be a cyclic group of order p and suppose that
∑p−1

i=0 aig
i is a minimal

alias of X ∈ Z[ζp]. Then

M(X) ≥ 1

p− 1

(
(p− `(X))

p−1∑
i=0

a2i + `(X) max{0, `(X)− p/2}

)
. (11)

In particular,

M(X) ≥ max

{
p`(X)

2(p− 1)
,
`(X)(p− `(X))

p− 1

}
. (12)

Proof. Write k = `(X) and K = {i : ai 6= 0}. Since
∑p−1

i=0 aig
i is a minimal alias of X,

we have |K| = k. Moreover, we claim that

|{i : ai = aj}| ≤ min{k, p− k} for all j ∈ K. (13)

Note that |{i : ai = aj}| ≤ k for j ∈ K, as 0 = ai 6= aj for i 6∈ K. Moreover, if

|{i : ai = aj}| > p− k, then |{i : ai − aj 6= 0}| < k and X would have length less than k,

as
∑p−1

i=0 (ai − aj)gi is an alias of X. This contradicts k = `(X) and proves (13).

Using (6), we get

(p− 1)M(X) =
∑
i<j

M(ai − aj) =
1

2

∑
i∈K

∑
j∈K

M(ai − aj) +
∑
i∈K

∑
j 6∈K

M(ai − aj). (14)

Since aj = 0 for j 6∈ K and M(ai) = a2i for all i, we conclude

∑
i∈K

∑
j 6∈K

M(ai − aj) = (p− k)
∑
i∈K

a2i = (p− k)

p−1∑
i=0

a2i (15)

Note that M(ai − aj) ≥ 1 if ai 6= aj. Hence, in view of (13), we get∑
i∈K

M(ai − aj) ≥ k −min{k, p− k} = max{0, 2k − p}.

and thus ∑
i,j∈K

M(ai − aj) ≥ kmax{0, 2k − p}. (16)

Combining (14-16) proves (11).
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It remains to prove (12). Note thatM(X) ≥ k(p−k)/(p−1) by (11), since
∑
a2i ≥ k.

Hence it suffices to show M(X) ≥ p k/(2(p− 1)). Using (11) and
∑
a2i ≥ k, we obtain

M(X) ≥ 1

p− 1

(
(p− k)

p−1∑
i=0

a2i + kmax{0, k − p/2}

)

≥ 2k(p− k) + k(2k − p)
2(p− 1)

=
pk

2(p− 1)
.

Corollary 21. Let 〈g〉 be a cyclic group of order pa and suppose that Z =
∑pa−1

i=0 aig
i is

a minimal alias of X ∈ Z[ζ]. Then

M(X) ≥ 1

p− 1

(
(p− `(X))

pa−1∑
i=0

a2i + `(X) max{0, `(X)− p

2
}

)
. (17)

In particular,

M(X) ≥ max

{
p`(X)

2(p− 1)
,
`(X)(p− `(X))

p− 1

}
. (18)

Proof. Write X =
∑pa−1−1

j=0 Xjζ
j with Xj ∈ Z[ζp]. By Lemma 18 (b), we have `(X) =∑pa−1−1

j=0 `(Xj). Furthermore, M(X) =
∑pa−1−1

j=0 M(Xj) by (7).

For j = 0, . . . , pa−1−1, write Zj =
∑p−1

k=0 apa−1k+jg
pa−1k. Note that Z =

∑pa−1−1
j=0 Zjg

j.

and thus Zj is a minimal alias of Xj for all j by Lemma 18. Hence `(Xj) = | supp(Zj)|
for all j. Moreover, | supp(Zj)| ≤

∑p−1
k=0 a

2
pa−1k+j and thus we get

pa−1−1∑
j=0

(p− `(Xj))

p−1∑
k=0

a2pa−1k+j =

pa−1−1∑
j=0

[(p− `(X)) + (`(X)− `(Xj))]

p−1∑
k=0

a2pa−1k+j

= (p− `(X))

pa−1∑
i=0

a2i +

pa−1−1∑
j=0

(`(X)− `(Xj))

p−1∑
k=0

a2pa−1k+j

≥ (p− `(X))

pa−1∑
i=0

a2i +

pa−1−1∑
j=0

(`(X)− `(Xj))`(Xj).

(19)
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As M(X) =
∑pa−1−1

j=0 M(Xj), we have

(p− 1)M(X) ≥
pa−1−1∑
j=0

(
(p− `(Xj))

p−1∑
k=0

a2pa−1k+j + `(Xj) max{0, `(Xj)−
p

2
}

)

by (12). Together with (19), this implies

(p− 1)M(X) ≥ (p− `(X))

pa−1∑
i=0

a2i +

pa−1−1∑
j=0

(`(X)− `(Xj))`(Xj)

+

pa−1−1∑
j=0

`(Xj) max{0, `(Xj)−
p

2
}

= (p− `(X))

pa−1∑
i=0

a2i +

pa−1−1∑
j=0

`(Xj)
(
`(X)− `(Xj) + max{0, `(Xj)−

p

2
}
)

≥ (p− `(X))

pa−1∑
i=0

a2i + `(X) max{0, `(X)− p

2
},

where the last inequality holds due to
∑pa−1−1

j=0 `(Xj) = `(X) and this proves (17). Now

(18) follows from (17) in the same way as (12) follows from (11).

5 Elements of Z[ζ] for which |X|2 is a Nonsquare

The key to our results on GBFs from Zm2pa to Z2pa is to study solutions of |X|2 = n where

n is a nonsquare integer and X ∈ Z[ζ].

Theorem 22. Let G = 〈g〉 be a cyclic group of order pa. Let n be nonsquare in-

teger not divisible by p and let q1, . . . , qs be the distinct prime divisors of n. Write

f = gcd{ordp(q1), . . . , ordp(qs)} and let t be an integer with ordpa(t) = f . Let σ be

the automorphism of Q(ζ) determined by ζσ = ζt. Suppose X ∈ Z[ζ] satisfies |X|2 = n.

Then we have the following.

(a) f is odd.

(b) We have `(X) < 2n and there is a positive integer u such that `(X) ∈ {uf, uf + 1}
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(c) f ≤ n or p ≤ f2−n
f−n .

(d) There is an integer i such that (Xζ i)σ = Xζ i.

(e) There is a minimal alias Z of Xζ i with Z(t) = Z and we can write Z = c0 +∑u
j=1 cjΓj, where c0, . . . , cu ∈ Z, cj 6= 0 for j > 0, and the Γj’s are distinct orbits

of g 7→ gt on G \ {1}. Moreover, |Γj| = f for all j.

Proof. Let K be the subfield of Q(ζ) fixed by σ. By [14, Lemma 4.6], we have Xζ i ∈ K for

some integer i (note that [13, Lemma 4.6] is stated for the case that |X|2 is a square, but

its proof shows that the statement is also true if |X|2 is a nonsquare). Hence (Xζ i)σ = Xζ i

and this proves part (d). Replacing X by Xζ i, if necessary, we can assume Xσ = X, that

is, X ∈ K.

If f is even, thenK is real and thusX2 = |X|2 = n. Since n is a nonsquare, this implies

that Q(X) = Q(
√
n) is a quadratic subfield of Q(ζ). But the unique quadratic subfield

of Q(ζ) is Q(
√

(−1)(p−1)/2p) and it is straightforward to show
√
n 6∈ Q(

√
(−1)(p−1)/2p),

as gcd(p, n) = 1 and n is a nonsquare. Hence f is odd.

By Proposition 19, there is a minimal alias Z ∈ Z[G] of X such that Z(t) = Z.

Moreover, Z(t) = Z implies that Z can be written in the form c0 +
∑u

i=1 ciΓi for some

nonnegative integer u, where c0, . . . , cu ∈ Z, ci 6= 0 for i > 0, and the Γi’s are distinct

orbits of g 7→ gt on G \ {1}. If u = 0, then n = |X|2 = |Z(ζ)|2 = c20. This is impossible,

as n is a nonsquare by assumption. As ordpa(t) = f = ordp(t), we have |Γi| = f for all i.

This proves part (e).

Note that `(X) = | supp(Z)| ∈ {uf, uf + 1} by part (e). If u = 0, then X = c0 ∈ Z
and n = |X|2 is a square, contradicting our assumptions. Therefore, u ≥ 1. By Corollary

21, we have n =M(X) > `(X)
2

and thus `(X) < 2n. This completes the proof of part (b)

of Theorem 22.

To prove part (c), suppose f > n. Then u = 1, since uf + 1 ≤ 2n. Thus `(X) ∈
{f, f + 1}. Note that f < p/2, as f is an odd divisor of p− 1. As the function x(p−x) is

increasing for x < p/2 and `(X) ∈ {f, f + 1}, we have `(X)(p− `(X)) ≥ f(p− f). Using
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Corollary 21, we conclude

n =M(X) ≥ `(X)(p− `(X))

p− 1
≥ f(p− f)

p− 1
.

This implies p ≥ (f 2 − n)/(f − n), which completes the proof of part (c).

Theorem 23. Let n be a nonsquare integer. Let G = 〈g〉 be a cyclic group of order pa

and let P be the subgroup of G of order p. Assume there is X ∈ Z[ζ] with |X|2 = n.

Then, for every alias Z ∈ Z[G] of X, there is Y ∈ Z[G] such that

ZZ(−1) = n+ PY. (20)

Moreover, we have `(X) < 2n and

p ≤ n2 + n+ 1. (21)

Proof. Let Z ∈ Z[G] be an alias of X. Then Z(ζ)Z(ζ) = XX = n. Using Lemma 16, we

conclude that ZZ(−1) = n+ PY for some Y ∈ Z[G], which proves (20).

Now suppose p > n2 + n + 1. Note that n ≥ 2, as n is a nonsquare. If n = 2, then

p > 22+2+1 = 7 and hence p ≥ 11 > 4n. If n ≥ 3, then p > n2+n+1 ≥ 3n+n+1 = 4n+1.

Hence we have p > 4n in any case.

Recall that XX = |X|2 = n by assumption and thus (XX)σ = n for all σ ∈
Gal(Q(ζ)/Q). Since |Gal(Q(ζ)/Q)| = ϕ(pa), we conclude

M(X) =
1

ϕ(pa)

∑
σ∈Gal(Q(ζ)/Q)

(XX)σ =
|Gal(Q(ζ)/Q)|n

ϕ(pa)
= n.

We have M(X) = |X|2 = n by assumption and `(X) < 2n by Theorem 22 (b). Write

s = `(X). Note that s < 2n < p/2, as p > 4n. Write f(x) = x(p− x) and note that

f(n+ 1) = (n+ 1)(p− n− 1) = n(p− 1) + p− n2 − n− 1 > n(p− 1), (22)

as we assume p > n2 + n + 1. On the other hand, n = M(X) ≥ s(p − s)/(p − 1) by

Corollary 21 and thus f(s) = s(p− s) ≤ n(p− 1). As f(n+ 1) > n(p− 1) by (22) and f

is increasing for x < p/2, we conclude s ≤ n.
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Finally, let Z be a minimal alias of X and let Y be the element of Z[G] satisfying (20).

If PY = 0, then ZZ(−1) = n and thus |Z|2 = n, contradicting the assumption that n is

nonsquare. Hence PY 6= 0 and consequently | supp(n+PY )| ≥ p−1. On the other hand,

we have | supp(Z)| = `(X) = s ≤ n, as Z is minimal. This implies | supp(ZZ(−1))| ≤ n2.

Using (20), we conclude n2 ≥ | supp(ZZ(−1))| = | supp(n+PY )| ≥ p−1, which contradicts

the assumption p > n2 + n+ 1. This proves (21).

As promised in the introduction, we will now explain how our methods can be used to

study other combinatorial structures. For instance, suppose p and q are distinct primes

and p is odd. Assume that a relative (pq, p, pq, q) difference set exists in an abelian group

(see [2] for the necessary background on relative difference sets). It can be shown that

that this implies that there is X ∈ Z[ζp] with |X|2 = q. Hence Theorems 22 and 23

immediately provide necessary conditions for the existence of such relative difference set.

In particular, we have p ≤ q2 + q + 1 by Theorem 23. Similarly, if a circulant Butson

matrix BH(pq, p) exists (see [12] for information on Butson matrices), then there also is

X ∈ Z[ζp] with |X|2 = q and we get the same conclusions. Finally, our results can be

applied to other types of bent functions and, for example, immediately give new necessary

conditions for the existence of the functions studied in [15].

6 Elements of Z[ζ] with |X|2 = 2m and Odd m

In this section, we study the structure of elements X ∈ Z[ζ] which satisfy |X|2 = 2m. We

first summarize the results that can be deduced from the theorems in Section 5.

Corollary 24. Suppose there exists X ∈ Z[ζ] with |X|2 = 2m, where m is odd. Write

f = ordp(2). We have the following.

(a) p ≤ 22m + 2m + 1 and f is odd.

(b) f < 2m or p ≤ f2−2m
f−2m .

(c) If p > 22(m−2) + 2m−2 + 1, then X 6≡ 0 (mod 2).

(d) f < 2m+1.
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(e) `(X) ∈ {uf, uf + 1} for some positive integer u and `(X) < 2m+1.

(f) p ≡ 7 (mod 8) or p ≡ 1, 9, 17, 25, 33, 41, 49, 57 (mod 64).

Proof. Parts (a), (b), and (e) follow directly from Theorems 22 and 23. For part (c),

suppose X ≡ 0 (mod 2). The 2m = |X2| ≡ 0 (mod 4) and thus m ≥ 3, as m is odd.

Furthermore, Y = X/2 ∈ Z[ζ] and |Y |2 = 2m−2. Hence p ≤ 22m−2 +2m−1 +1 by Theorem

23. This proves part (c). By Theorem 22 (b), we have f ≤ `(X) < 2m+1, which proves

part (d). To prove part (f), note that f = ordp(2) is odd by part (a). Hence 2 is a square

mod p and thus p ≡ ±1 (mod 8). Suppose p ≡ 1 (mod 8). As f is odd, 2 is biquadratic

residue mod p and thus p is square mod 64 by a result of Gauß[8]. This completes the

proof.

Using conditions (a), (b), and (d) in Corollary 24, it is straightforward to deduce the

following.

Corollary 25. Suppose there exists X ∈ Z[ζ] with |X|2 = 2m.

(a) If m = 1, then p = 7.

(b) If m = 3, then p ∈ {7, 23, 31, 73}.

(c) If m = 5, then p ∈ {7, 23, 31, 47, 71, 73, 79, 89, 103, 127, 151, 223, 233, 337, 601}.

(d) If m = 7, then

p ∈ {7, 23, 31, 47, 71, 73, 79, 89, 103, 127, 151, 167, 191, 199, 223, 233, 239, 263, 271,

311, 337, 359, 367, 383, 431, 439, 463, 479, 487, 503, 601, 631, 727, 881, 911,

919, 937, 1103, 1801, 2089, 2143, 2351, 2593, 2687, 3191, 3391, 4177, 4513, 6361,

6553, 8191, 9719, 11119, 11447, 13367, 14951}.

We get the following directly from Result 10.

Corollary 26. Let m be a positive integer and suppose that X ∈ Z[ζ] is a solution of

|X|2 = 2m. If 2ordp(2) 6≡ 1 (mod p2), then Xζ i ∈ Z[ζp] for some integer i.
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Throughout this section, we fix the following notation. Suppose that X ∈ Z[ζ] satisfies

|X|2 = 2m, where m is odd. By Theorem 22 (e), replacing X by Xζ i for some integer i,

if necessary, we can assume that there is a minimal alias

Z = c0 +
u∑
i=1

ciΓi (23)

of X, where u > 0, c0, . . . , cu ∈ Z, ci 6= 0 for i > 0, the Γi’s are distinct orbits of g 7→ g2

on G \ {1} and |Γi| = f for all i. Here we use the same notation as before. In particular,

G = 〈g〉 is cyclic group of order pa and P is the subgroup of G of order p. Note that

Z(2) = Z. Moreover,

ZZ(−1) = 2m + PY (24)

for some Y ∈ Z[G] by Theorem 23. In the following list, we summarize the most important

notation required for the rest of this section.

(1) f = ordp(2).

(2) X ∈ Z[ζ] with |X|2 = 2m, where m ≥ 3 is odd.

(3) Z is a minimal alias of X satisfying (23), (24), and Z(2) = Z.

(4) S = c20 + f
∑u

i=1 c
2
i . Note that S is the coefficient of the identity in ZZ(−1).

To get a deeper understanding of the situation, we first find a bound on the `2-norm

of the coefficient vector of Z, that is, on S = c20 + f
∑u

i=1 c
2
i .

Lemma 27. If p > 2m+1, then S ≤ 2m+1.

Proof. Write s = `(X). Note that s < 2m+1 by Corollary 24 (e). First, we assume

s ≤ (p− 1)/2. As Z = c0 +
∑u

i=1 ciΓi is minimal, it follows from Corollary 21 that

2m =M(X) ≥ S(p− s)
p− 1

≥ S

2
.

Therefore, S ≤ 2m+1.
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Next, we assume s ≥ (p+ 1)/2. By Corollary 21, we have

2m =M(X) ≥ s(2s− p) + 2S(p− s)
2(p− 1)

.

Therefore,

2S ≤ 2m+1(p− 1)− s(2s− p)
p− s

. (25)

We aim to find an upper bound for the right hand side subject to (p+ 1)/2 ≤ s ≤ 2m+1.

Write f(s) = [2m+1(p− 1)− s(2s− p)]/(p− s). Then

f ′(s) =
2m(p− 1) + p2 + 2s2 − 4ps

(p− s)2
.

Note that g(s) = 2m(p− 1) + p2 + 2s2 − 4ps is a quadratic function of s with minimum

at s = p and that g((p + 1)/2) = 2m(p − 1) − (p2 + 2p − 1)/2 < 0, as p > 2m+1 by

assumption. This implies g(s) < 0 and thus f ′(s) < 0 for (p + 1)/2 ≤ s < p. Since

(p+ 1)/2 ≤ s < 2m+1 < p, we conclude

f(s) ≤ f

(
p+ 1

2

)
=

2m+1(p− 1)− (p+ 1)/2

(p− 1)/2
= 2m+2 − p+ 1

p− 1
< 2m+2. (26)

Combining (25) and (26), we get S ≤ 2m+1.

Recall that ZZ(−1) = 2m + PY by (24). As ZZ(−1) = (ZZ(−1))(−1), this implies

(PY )(−1) = PY . Similarly, Z(2) = Z and (24) imply (PY )(2) = PY . For convenience,

we write PY = λP + PY ′ with λ ∈ Z and Y ′ ∈ Z[G] such that P and supp(PY ′) are

disjoint. We thus have

ZZ(−1) = 2m + PY = 2m + λP + PY ′. (27)

Observe that (PY ′)(2) = PY ′ and (PY ′)(−1) = PY ′, as (PY )(2) = PY and (PY )(−1) =

PY .

Corollary 28. We have S = 2m + λ. Moreover, if p > 2m+1, then λ ≤ 2m.

Proof. Comparing the coefficient of identity on both sides of (27), we find S = 2m + λ.

The second statement thus follows from Lemma 27.
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Lemma 29. We have

S2 ≥ |2m + λ|+ |λ|(p− 1) + |supp(PY ′)| . (28)

Proof. Write Z =
∑

g∈G agg and ZZ(−1) =
∑

g∈G bgg with ag, bg ∈ Z. Note that S =∑
g∈G a

2
g. As ZZ(−1) =

∑
g,h∈G agahgh

−1, we conclude

∑
g∈G

|bg| ≤
∑
g,h∈G

|agah| =

(∑
g∈G

|ag|

)2

≤

(∑
g∈G

a2g

)2

= S2. (29)

On the other hand, as ZZ(−1) = 2m + λP + PY ′, we have∑
g∈G

|bg| ≥ |2m + λ|+ |λ|(p− 1) + |supp(PY ′)| . (30)

Combining (29) and (30), we get (28).

Lemma 30. Suppose that 2f 6≡ 1 (mod p2) or p > 22m−4. Then

ZZ(−1) = 2m + λP (31)

for some integer λ. In particular, 2m + λp is a perfect square. Moreover, if p > 2m, then

λ > 0.

Proof. If a = 1, then (31) immediately follows from (24). Hence we can assume a > 1.

First suppose 2f 6≡ 1 (mod p2). Then Xζj ∈ Z[ζp] for some integer j by Corollary

26. Recall that Z(ζ) = X, as Z is an alias of X. Hence Zgj(ζ) = Xζj ∈ Z[ζp].

Note that Zgj is minimal, since Z is minimal. Let N be defined as in Lemma 18 and

write Zgj =
∑

i∈N Zig
i. Since Zgj(ζ) =

∑
i∈N Zi(ζ)ζ i ∈ Z[ζp] and {ζ i : i ∈ N} is linearly

independent over Z[ζp], we conclude that Zi(ζ) = 0 for all i with i 6≡ 0 ( mod pa−1). Since

Zgj is minimal, each Zi is minimal by Lemma 18 (a). As Zi(ζ) = 0 for i 6≡ 0 ( mod pa−1),

this implies Zi = 0 for all i 6≡ 0 (mod pa−1). We conclude that Zgj =
∑

i∈N Zig
i ∈ Z[P ].

Thus 2m + PY = ZZ(−1) = (Zgj)(Zgj)(−1) ∈ Z[P ], where Y is defined as in (24). This

implies Y ∈ Z[P ] and thus PY = |Y |P . Hence (31) holds (with λ = |Y |). This completes

the proof of (31) in the case 2f 6≡ 1 (mod p2).
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Using Corollary 25, it is straightforward to check that 2f 6≡ 1 (mod p2) whenever

m ≤ 5. Hence we can assume m ≥ 7.

Now suppose p > 22m−4. Then p > 2m+3, as m ≥ 7. Moreover, λ ≤ 2m by Corollary

28. In view of (27), to prove (31), we need to show Y ′ = 0. Suppose Y ′ 6= 0. Then,

as PY ′ ∩ P = ∅, there is g ∈ G \ P with gP ⊂ supp(PY ′). Recall that f = ordp(2) is

odd. Thus ordp(−2) = 2f . Since (PY ′)(2) = PY ′ and (PY ′)(−1) = PY ′, we conclude

g(−2)
j
P ⊂ supp(PY ′) for j = 0, . . . , 2f − 1.

Next, we show that the cosets g(−2)
j
P , j = 0, . . . , 2f − 1, are pairwise disjoint. Note

that ordpa−1(−2) is divisible by 2f , since ordp(−2) = 2f and a > 1. Assume g(−2)
j
P ∩

g(−2)
j′
P 6= ∅ for some j, j′ with 0 ≤ j, j′ ≤ 2f − 1, j 6= j′. Then there are r, s ∈

{0, . . . , p− 1} with g(−2)
j+rpa−1

= g(−2)
j′+spa−1

. This implies (−2)j ≡ (−2)j
′

(mod pa−1),

which contradicts the fact that ordpa−1(−2) is divisible by 2f . Hence the cosets g(−2)
j
P ,

j = 0, . . . , 2f − 1, are indeed pairwise disjoint.

As g(−2)
j
P ⊂ supp(PY ′) for j = 0, . . . , 2f−1, we conclude | supp(PY ′)| ≥ 2fp. Using

Lemma 29, we find

(2m + λ)2 = S2 ≥ |2m + λ|+ |λ|(p− 1) + 2fp.

Recall that p > 2m+3 and λ ≤ 2m. Since

2m+1λ+ λ2 ≤ |λ|(2m+1 + λ) ≤ |λ|2m+2 ≤ |λ|(p− 1) ≤ |λ|(p− 1) + (2m + λ),

it follows that 22m > 2pf . As p > 22m−4 and f is odd, we conclude f ≤ 7. On the other

hand, we have p > 22m−4 ≥ 210, as we assume m ≥ 7. This implies f = ordp(2) > 10, a

contradiction. Therefore, Y ′ = 0. This completes the proof (31).

Note that 2m + λp = |Z|2 is a perfect square by (31). It remains to show that λ > 0

if p > 2m. If λ = 0, then |Z|2 = 2m, which is impossible, as m is odd. Thus λ 6= 0. If

λ < 0, then 0 ≤ |Z|2 = 2m + λp ≤ 2m− p and thus p ≤ 2m. Hence p > 2m indeed implies

λ > 0.

Our next goal is to determine all possible values of λ. For a prime r and an integer

n, let νr(n) be the r-adic valuation of n, i.e., rνr(n) is the largest power of r dividing n.
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Lemma 31. Suppose that ZZ(−1) = 2m + λP with λ ∈ Z. Then the following hold.

(a) If q is an odd prime divisor of λ, then q ≡ ±1 (mod 8).

(b) Either ν2(λ) is even or ν2(λ) = m.

(c) If 1 ≤ λ ≤ 29, then λ ∈ {1, 4, 7, 16, 17} unless m = 3 and λ = 8.

(d) If λ is odd, then λ ≡ p (mod 8).

(e) c20 + f

u∑
i=1

c2i = 2m + λ and

(
c0 + f

u∑
i=1

ci

)2

= 2m + λp.

Proof. Let q be an odd prime divisor of λ. By applying the trivial character of G to

ZZ(−1) = 2m+λP , we obtain |Z|2 = 2m+λp. As m is odd, this implies that 2 is a square

modulo q. Using the second supplement to quadratic reciprocity, we get part (a).

Write λ = 2tµ where µ is odd. Note that t = ν2(λ). If t > m, then ν2(2
m + λp) = 2m,

which contradicts |Z|2 = 2m + λp, as m is odd. Hence t ≤ m. If t < m, then t =

ν2(2
m + λp) = ν2(|Z|2) and thus t is even. This proves part (b).

Part (c) follows from part (a) and (b). Finally, as m ≥ 3, we have |Z|2 ≡ λp ( mod 8),

and this implies (d), since x2 ≡ 1 (mod 8) for all odd integers x.

Finally, recall that Z = c0 +
∑u

i=1 ciΓi and |Γi| = f for all i. Hence part (e) follows

by comparing the coefficient identity on both sides of ZZ(−1) = 2m + λP and applying

the trivial character to this equation.

Lemma 32. If m ≥ 7 and p ≥ 22m−4 + 2m−2 + 1, then λ ∈ {1, 4, 7, 16}.

Proof. Suppose that m ≥ 7 and p ≥ 22m−4 + 2m−2 + 1. Then p > 2m+3 and thus λ > 0

by Lemma 30. By Lemma 27 and Corollary 28, we have S = 2m + λ ≤ 2m+1 and hence

λ ≤ 2m. Moreover, (2m + λ)2 ≥ 2m + λp by Lemma 29. We thus have g(λ) ≥ 0 where

g(t) := t2 + (2m+1 − p)t+ 22m − 2m.
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Note that g(t) is decreasing for t ≤ (p− 2m+1)/2 and that λ ≤ 2m < (2m+3 − 2m+1)/2 <

(p− 2m+1)/2. Hence, if we have g(t) < 0 for some t ∈ R, then t > λ. For m ≥ 9, we have

g(17) = 172 + 17(2m+1 − p) + 22m − 2m

< 172 + (16 + 1)(2m+1 − 22m−4 − 2m−2) + 22m − 2m

= 172 + 2m+5 − 22m − 2m+2 + 2m+1 − 22m−4 − 2m−2 + 22m − 2m

< 172 + 2m+1 − 2m+2 = 172 − 2m+1 < 0.

On the other hand, if m = 7, then

g(23) = 232 + 23(28 − p) + 214 − 27 < 232 + 23(28 − 210) + 214 − 27 < 0.

Therefore, λ < 17 if m ≥ 9 and λ < 23 if m = 7. In view of Lemma 31 (c), it only remains

to prove (m,λ) 6= (7, 17). Thus suppose m = 7 and λ = 17. As (2m + λ)2 ≥ 2m + λp, we

have

p ≤ (27 + 17)2 − 27

17
< 1230.

Hence 210 + 25 + 1 ≤ p ≤ 1229. Recall |Z|2 = 2m + λp. It can be checked that, for p in

the above range, 27 + 17p is a perfect square only when p = 1129. However, if p = 1129,

then f = 564, which contradicts Corollary 24 (a).

For m = 3 and 5, it is possible to use our results to find all possible solutions of

XX̄ = 2m in Z[ζ] (recall that we write ζ = ζpa). We will only treat those cases which

are needed for application in Section 7. As the necessary computations are tedious and

straightforward, we give the details only for one case. We say that A,B ∈ Z[ζ] are

equivalent if B = ±ζ iAτ for some integer i and some τ ∈ Gal(Q(ζ)/Q).

Corollary 33. If m = 1, then p = 7 and X is equivalent to ζ7 + ζ27 + ζ47 . If m = 3, then

p ∈ {7, 23, 31, 73} and X is equivalent to one of the following.

2

(
2∑
i=0

ζ2
i

7

)
, −2 +

2∑
i=0

ζ2
i

7 , 2 +
10∑
i=0

ζ2
i

23,
15∑
i=1

ζ i
2

31, 1 +
4∑
i=0

(
ζ5·2

i

31 + ζ7·2
i

31 + ζ11·2
i

31

)
,

8∑
i=0

ζ2
i

73.

Proof. By Corollary 25, we have p = 7 if m = 1 and p ∈ {7, 23, 31, 73} if m = 3. Suppose

m = 3 and p = 23. Note that f = ord23(2) = 11 and 2f 6≡ 1 (mod 232). Hence we
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can assume X ∈ Z[ζ23] by Proposition 26. Recall that Z is a minimal alias of X. As

in the proof of Lemma 30, we see that Z ∈ Z[P ] where P is a group of order 23. By

Corollary 28 and Lemma 30, we have 1 ≤ λ ≤ 8 and 8 + 23λ = |Z|2. This implies

λ ∈ {4, 7} and |Z|2 ∈ {100, 169}. Replacing Z by −Z, if necessary, we can assume

(λ, |Z|) ∈ {(4, 10), (7, 13)}. Note that S = c20 + 11
∑u

i=1 c
2
i = 2m + λ = 8 + λ. Hence, if

λ = 4, then u = 1, c0 = −1, and c1 = 1. Moreover, if λ = 7, then u = 1 and c0 = 2

and c21 = 1. As Z = c0 + c1Γ1 where Γ1 is an orbit of size 11 of g 7→ g2 on P , it is

straightforward to check that in both cases X = Z(ζ23) is equivalent to 2+
∑10

i=1 ζ
i2

23. The

proofs for the other cases are similar.

The proof of the following result is analogous to that of Corollary 33 and is skipped.

Corollary 34. Suppose m = 5. If p = 151, then X is equivalent to

3 +
14∑
i=0

ζ23·2
i

151 +
14∑
i=0

ζ35·2
i

151 .

If p = 127, then X is equivalent to
∑9

i=1

∑6
j=0 ζ

2jαi
127 where {α1, . . . , α9} is one of the

following sets.

{1, 3, 9, 27, 28, 71, 94, 116, 121}, {1, 3, 9, 27, 28, 73, 81, 94, 121}, {1, 3, 9, 27, 66, 71, 73, 109, 116},
{1, 3, 22, 27, 66, 73, 84, 116, 125}, {1, 3, 27, 28, 66, 73, 92, 94, 125}, {1, 9, 22, 71, 73, 81, 84, 94, 121}.

Remark 35. The six inequivalent solutions X ∈ Z[ζ127] of |X|2 = 32 are in one-two-one

correspondence to the six equivalence classes of (127, 63, 31) difference sets, cf. [1, pp.

154–155].

7 Applications to Generalized Bent Functions

Throughout this section, we fix the following notation. Let m be an odd positive integer.

Write H = U ×K with U = Zmpa and K = Zm2 and note that H ∼= Zm2pa . Recall that we

write ζ = ζpa . We assume that a GBF f : Zm2pa → Z2pa exists. By (5), this implies that

there is D ∈ Z[ζ][H] with

DD(−1) = 2mpam. (32)
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(note that Z[ζ2pa ] = Z[ζ], since −ζ ∈ Z[ζ] and −ζ is a primitive (2pa)th root of unity).

Let χ : U → C∗ be any character of U . We extend χ to a ring homomorphism Z[ζ][H]→
Z[ζ][K] by linearity and setting χ(g) = g for all g ∈ K. Write Dχ = χ(D). Then

DχD
(−1)
χ = 2mpam. (33)

by (32). Write Dχ =
∑

h∈K xhh with xh ∈ Z[ζ] and Θ =
∑p−1

x=1

(
x
p

)
ζxp . By (33), for

any character τ on K, we have |τ(Dχ)|2 = 2mpam and thus τ(Dχ) ≡ 0 (mod Θam) by

Corollary 8. Using Result 1, we conclude

xh|K| =
∑
τ∈K̂

τ(Dχ)τ(h)−1 ≡ 0 mod (Θam)

for all h ∈ K. Note that |K| = 2m and Θ are relatively prime in Z[ζ], since |Θ|2 = p and

p is odd. Hence it follows that xh ≡ 0 (mod Θam) for all h ∈ K. Thus Eχ := Dχ/Θ
am is

an element of Z[ζ][K]. Moreover, note that EχE
(−1)
χ = 2m, as |Θ|2 = p. Let us summarize

what we found so far.

Proposition 36. Suppose that D ∈ Z[ζ][H] satisfies (32), let χ be a character of U , and

write Eχ = χ(D)/Θam. Then Eχ ∈ Z[ζ][K] and

EχE
(−1)
χ = 2m. (34)

The application of our results in Section 6 to equation (34) immediately gives the

following.

Corollary 37. Suppose that a GBF from Zm2pa to Z2pa exists. Then p ≤ 22m+ 2m+ 1 and

p ≡ 7 (mod 8) or p ≡ 1, 9, 17, 25, 33, 41, 49, 57 (mod 64). Moreover, the following hold.

(a) If m = 1, then p = 7.

(b) If m = 3, then p ∈ {7, 23, 31, 73}.

(c) If m = 5, then p ∈ {7, 23, 31, 47, 71, 73, 79, 89, 103, 127, 151, 223, 233, 337, 601}.

Proof. Let χ be any character of U , let τ0 be the trivial character of K, and set X =

τ0(Eχ). Then X ∈ Z[ζ] and |X|2 = 2m by (34). Hence the assertions follows from

Corollaries 24 and 25.
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Our next objective is to eliminate more primes from the lists above.

Lemma 38. Let W = {w ∈ Z[ζ] : ww̄ = 2m}. Suppose

v + w 6≡ 0 (mod 2) for all v, w ∈ W with w 6= ±v. (35)

Then for any character χ of U , there exist w ∈ W and g ∈ K such that Eχ = wg.

Proof. If v ≡ 0 ( mod 2) for v ∈ W , then w := ζv ∈ W , v+w ≡ 0 ( mod 2), and w 6= ±v.

This contradicts (35) and thus we have v 6≡ 0 (mod 2) for all v ∈ W .

Let τ0 be the trivial character of K and write v = τ0(Eχ). We claim that

τ(Eχ) = ±v for all τ ∈ K̂. (36)

Let τ be a nontrivial character of K and write w = τ(Eχ). To prove (36), it suffices to

show w = ±v. By (34), we have v, w ∈ W . Let T = {g ∈ K : τ(g) = 1} and write

Eχ =
∑

g∈K xgg where xg ∈ Z[ζ]. Note that τ(g) = −1 for all g ∈ K \T , as all nontrivial

characters of K have order 2. Note that

v + w =
∑
g∈K

xg +

∑
g∈T

xg −
∑
g∈K\T

xg

 = 2
∑
g∈T

xg ≡ 0 (mod 2).

Hence w = ±v by (35). This proves (36).

Let A = {τ ∈ K̂ : τ(Eχ) = v} and B = K̂ \ A. By Result 1 and (36), we get

xg =
1

|K|
∑
τ∈K̂

τ(Eχ)τ(g) =
v

2m

(∑
τ∈A

τ(g)−
∑
τ∈B

τ(g)

)
. (37)

As v 6≡ 0 ( mod 2), there is a prime ideal p of Z[ζ] such that 2 ∈ p and v 6∈ p. For y ∈ Z[ζ],

let νp(y) denote the largest nonnegative integer k such that y ∈ pk (with the convention

νp(y) = 0 if y 6∈ p). Note that νp(v) = 0, as v 6∈ p. Write T =
∑

τ∈A τ(g) −
∑

τ∈B τ(g).

We have

0 ≤ νp(xg) = νp(v) + νp(T )− νp(2m) = νp(T )−m

by (37) and thus νp(T ) ≥ m. As T is a rational integer, this implies T ≡ 0 (mod 2m).

Using (37), we conclude xg ≡ 0 (mod v) for all g ∈ K and thus Eχ ≡ 0 (mod v).
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Hence F := Eχ/v ∈ Z[ζ][K] and FF (−1) = 1 by (34), as vv̄ = 2m by assumption.

Write F =
∑

g∈K ygg with yg ∈ Z[ζ]. As FF (−1) = 1, we have
∑

g∈K |yg|2 = 1. This

implies
∣∣y`g∣∣ ≤ 1 for all g ∈ K and all ` ∈ Gal(Q(ζ)/Q). Hence, by Result 6, there is

g ∈ G such that yg is a root of unity and yh = 0 for all h 6= g. We conclude F = ygg and

thus Eχ = Fv = (ygv)g, which completes the proof, as ygv ∈ W .

Theorem 39. If condition (35) holds, then there is no GBF from Zm2pa to Z2pa.

Proof. Suppose that condition (35) holds and suppose that a GBF f : Zm2pa → Z2pa exists.

Write H = U ×K with U = Zmpa and K = Zm2 and note that H ∼= Zm2pa . Recall that we

write ζ = ζpa . By (5), there is D ∈ Z[ζ][H] with DD(−1) = 2mpam. Moreover,∑
τ∈Ĥ

τ(D)τχ(D) = 0 (38)

for every nontrivial character χ of H by Result 3.

Note that every τ ∈ Ĥ uniquely can be written as τ = τK ◦ τU where τK is a character

of K and τU is a character of U , extended to Z[ζ][H] by τU(h) = h for all h ∈ K and

linearity. Note that τU(D) = ΘamEτU . As we are assuming that (35) holds, Lemma 38

gives

τ(D) = τK ◦ τU(D) = τK (ΘamEτU ) = Θamw(τ)τK(g(τ)) (39)

for all τ ∈ Ĥ, where w(τ) ∈ W and g(τ) ∈ K. Note that w(τ) and g(τ) only depend on

τU , that is, w(τχ) = w(τ) and g(τχ) = g(τ) for all χ ∈ U⊥. Moreover, |τK(g(τ))|2 = 1

for all τ ∈ Ĥ, as τK(g(τ)) is a root of unity.

Now let χ be any character of H which is trivial on U and nontrivial on K. Note that

τK(g)(τχ)K(g) = χ(g) for all g ∈ H, as τK has order 1 or 2 and χK(g) = χ(g). Using
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(38) and (39), we get

0 =
∑
τ∈Ĥ

τ(D)τχ(D)

=
∑
τ∈Ĥ

Θamw(τ)τK(g(τ))Θamw(τχ)(τχ)K(g(τχ))

=|Θ|2am
∑
τ∈Ĥ

w(τ)τK(g(τ))w(τ)(τχ)K(g(τ))

=2mpam
∑
τ∈Ĥ

τK(g(τ))(τχ)K(g(τ)).

=2mpam
∑
τ∈Ĥ

χ(g(τ)).

Let Ĥ =
⋃pa

i=1 |U |⊥τi, τi ∈ Ĥ, be the decomposition of Ĥ into cosets of U⊥. Since

g(τχ) = g(τ) for all χ ∈ U⊥ and |U⊥| = 2m, we get

0 =
∑
τ∈Ĥ

χ(g(τ)) = 2m
pa∑
i=1

χ(g(τi)).

and thus
∑pa

i=1 χ(g(τi)) = 0. This is impossible, since p is odd and χ(g(τi)) = ±1.

Next, we find some conditions to ensure (35) is satisfied.

Lemma 40. If f > 2m−1, then condition (35) holds.

Proof. If f is even, then W = ∅ by Corollary 24 (a). Hence we can assume that f is odd.

Suppose that v ≡ 0 (mod 2) for v ∈ W . Then X = v/2 satisfies |X|2 = 2m−2 and thus

f < 2m−1 by Corollary 24 (d), which contradicts our assumption. Hence v 6≡ 0 (mod 2)

for all v ∈ W .

Now suppose that v + w ≡ 0 (mod 2) for v, w ∈ W , that is,

v ≡ w (mod 2). (40)

Write R = Z[ζ]. Recall that f is odd. Thus, by Result 7 (b), the prime ideals of R

containing 2 are not invariant under complex conjugation. That is, these prime ideals
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occur in complex conjugate pairs in the prime ideal factorization of 2R. Hence 2R =∏k
i=1(pipi) by Result 7 (b), where the pi’s are distinct prime ideals of R and k = (p −

1)/(2f). As |v|2 = |w|2 = 2m, we conclude

vR =
k∏
i=1

(paii (pi)
m−ai) and wR =

k∏
i=1

(pbii (pi)
m−bi).

with ai, bi ∈ Z and 0 ≤ ai, bi ≤ m. Note that (40) implies that a prime ideal divides vR

if and only if divides wR. Hence for each i, we either have (a) 1 ≤ ai, bi ≤ m − 1, (b)

ai = 0 and bi = 0, or (c) ai = m and bi = m. Note that, in each case,

vw̄R =
k∏
i=1

(pm+ai−bi
i (pi)

m−ai+bi)

is divisible by p2i pi
2. This implies vw̄ ≡ 0 (mod 4).

Set Y = vw̄/4. Then |Y |2 = 22m−4. If Y is nontrivial, then f < 2m−1 by Result 9,

contradicting our assumption. Hence Y is trivial, that is, Y = κ2m−2 for some root of

unity κ. This implies

vw̄R = 4Y R = 4κ2m−2R = 2mR =
k∏
i=1

(pipi)
m.

Comparing this with the factorization of vw̄R we previously obtained, we conclude ai = bi

for all i, that is, vR = wR. Hence w = εv for some unit ε of Z[ζ]. As w and v have

the same absolute value, we have |ε| = 1. Using Result 6, we infer w = ±ζ iv for some

integer i and thus v + w = (1 ± ζ i)v. Recall that v 6≡ 0 (mod 2). If i 6≡ 0 (mod pa),

then the ideal (1± ζ i)R is coprime to 2R and thus v+w = (1± ζ i)v 6≡ 0 (mod 2), which

contradicts our assumptions. Hence i ≡ 0 (mod pa) and thus w = ±v, as required.

For m = 5 and m = 7, the following lists those primes that survive Corollary 24 and

are excluded by Theorem 39 and Lemma 40.

Corollary 41. Assume the existence of a GBF from Zm2pa to Z2pa. Then we have the

following.

If m = 5, then p 6∈ {47, 71, 79, 103, 223, 233, 337, 601}.
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If m = 7, then p 6∈ {167, 191, 199, 239, 263, 271, 311, 359, 367, 383, 439, 463, 479, 487, 503,

727, 911, 919, 937, 2593, 2687, 3391, 4177, 6553, 11447, 14951}.

Let G be a cyclic group of order pa. Using the notation of Lemma 38, suppose that

w ∈ W . It follows from Theorem 22 (e) that there is a minimal alias of w of the form

h

(
c0 +

u∑
i=1

ciΓi

)
,

where h ∈ G, ci ∈ Z and the Γi’s are distinct orbits of x 7→ x2 on G \ {1}. It turns out

that condition (35) is satisfied if we always have c1 = · · · = cu and c1 is odd.

Lemma 42. We use the notation of Lemma 38. Let G be a cyclic group of order pa and

suppose that every w ∈ W has a minimal alias of the form

h(c± S) (41)

where h ∈ G, c ∈ Z, and S is a subset of G \ {1} with S(2) = S (note that h, c, and S

may depend on w). Then condition (35) is satisfied.

Proof. Let v ∈ W and let g be a fixed generator of G. By assumption, v has a minimal

alias of the form (41). Replacing v by an equivalent number, if necessary, we can assume

that v has a minimal alias of the form Z = c + S, where c ∈ Z and S is a subset of G

with S(2) = S. Note that S 6= ∅, as |v|2 = 2m is a nonsquare. Let P be the subgroup of

G of order p. By Lemma 16 (b), we have

|S ∩ Ph| ≤ (p− 1)/2 (42)

for all h ∈ G. Write S =
∑

j∈A g
j with A ⊂ {1, . . . , pa − 1}. Note that v = Z(ζ) =

c+
∑

j∈A ζ
j, as Z is an alias of v. Moreover, {1}∪{ζj : j ∈ A} does not contain any coset

of 〈ζp〉 by (42). Hence {1} ∪ {ζj : j ∈ A} is linearly independent over Q by Proposition

13 (b). As S 6= ∅, this implies v = c+
∑

j∈A ζ
j 6≡ 0 (mod 2). Hence we have shown

v 6≡ 0 (mod 2) for all v ∈ W. (43)
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Suppose that v, w ∈ W satisfy

v + w ≡ 0 (mod 2). (44)

To prove that condition (35) holds, we need to show w = ±v. As before, we can assume

that v has a minimal alias of the form Z = c+S, where c ∈ Z and S is a subset of G with

S(2) = S. By assumption, w has a minimal alias of the form gs(d±T ), where s, d ∈ Z and

T is a subset of G with T (2) = T . Note that (44) holds if and only if v−w ≡ 0 (mod 2).

Hence, replacing w by −w, if necessary, we can assume that w has a minimal alias of the

form Y = gs(d+ T ). Note that w = ζs(d+ T (ζ)) by the definition of an alias.

Let σ be the automorphism of Q(ζ) determined by ζσ = ζ2. Note that vσ = Z(ζ)σ =

Z(ζ) = v, as S(2) = S. Moreover,

wσ = Y (ζ)σ = (ζs)σ(d+ T (ζ)σ) = ζ2s(d+ T (ζ)) = ζsw,

since T (2) = T . Using (44), we conclude 0 ≡ (v + w)σ ≡ v + ζsw (mod 2) and thus

(1− ζs)w ≡ 0 (mod 2). (45)

On the other hand, we have w 6≡ 0 (mod 2) by (43). If ζs 6= 1, then 1 − ζs is coprime

to 2 and thus (1− ζs)w 6≡ 0 (mod 2), contradicting (45). We conclude ζs = 1 and hence

Y = d+ T .

Recall S =
∑

j∈A g
j and write T =

∑
j∈B g

j with B ⊂ {1, . . . , pa − 1}. By (42), we

have

c+ d+

(∑
j∈A

ζj +
∑
j∈B

ζj

)
≡ Z(ζ) + Y (ζ) = v + w ≡ 0 (mod 2). (46)

Write A = A1 ∪ A2 with A1 = A ∩ {ipa−1 : i = 1, . . . , p− 1} and A2 = A \ A1. Similarly,

write B = B1∪B2. For the convenience, of the reader we summarize some of the notation
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we have introduced. We have

Z = c+ S = c+
∑
j∈A

gj,

Y = d+ T = d+
∑
j∈B

gj,

v = Z(ζ) = c+
∑
j∈A1

ζj +
∑
j∈A2

ζj,

w = Y (ζ) = d+
∑
j∈B1

ζj +
∑
j∈B2

ζj.

Note that {ζj : j ∈ A1} ∪ {ζj : j ∈ B1} ⊂ Z[ζp]. As {ζ i : 0 ≤ i ≤ pa−1 − 1} is linearly

independent over Q(ζp), we infer from (46) that

c+ d+

(∑
j∈A1

ζj +
∑
j∈B1

ζj

)
≡ 0 (mod 2) and (47)

∑
j∈A2

ζj +
∑
j∈B2

ζj ≡ 0 (mod 2). (48)

By (42), every coset of 〈ζp〉 contains at most (p − 1)/2 elements of {ζj : j ∈ A} and at

most (p−1)/2 elements of {ζj : j ∈ B}. Thus A2∪B2 does not contain any coset of 〈ζp〉.
By Proposition 13 (b), this shows that {ζj : j ∈ A2 ∪B2} is linearly independent over Q.

Hence (48) implies A2 = B2. Note that |A1| ≤ (p− 1)/2 and |B1| ≤ (p− 1)/2 by (42), as

{gj : j ∈ A1} ⊂ P and {gj : j ∈ B1} ⊂ P .

First suppose that A1∪B1 is a proper subset of {pa−1, . . . , (p−1)pa−1}. Then {1}∪{ζj :

j ∈ A1 ∪ B1} is linearly independent and (47) implies c + d ≡ 0 (mod 2) and A1 = B1.

As we also have A2 = B2, we conclude v = c + U and w = d + U where U =
∑

j∈A ζ
j.

Hence

c2 + c(U + Ū) + |U |2 = |v|2 = |w|2 = d2 + d(U + Ū) + |U |2.

This implies c = d or c + d = −U − Ū . If c = d, then v = w and we are done. Suppose

c+ d = −U − Ū , that is,∑
j∈A1

(ζj + ζ−j) +
∑
j∈A2

(ζj + ζ−j) = −c− d. (49)
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Note that the first sum in (49) is in Q(ζp) and every root of unity occurring in the second

sum has the form ζ i+kp
a−1

with 1 ≤ i ≤ pa−1 − 1 and k ∈ Z. As {ζ i : 0 ≤ i ≤ pa−1 − 1}
is linearly independent over Q(ζp), we infer from (49) that

∑
j∈A1

(ζj + ζ−j) = −c − d

(and the second sum in (49) vanishes). Hence M = {1} ∪ {ζj : j ∈ A1} ∪ {ζ−j : j ∈
A1} is linearly dependent. Thus M contains a coset of 〈ζp〉 by Proposition 13 (b). As

|A1| ≤ (p − 1)/2, this implies {ζj : j ∈ A1} ∪ {ζ−j : j ∈ A1} = {ζp, . . . , ζp−1p } and thus

−c− d =
∑p−1

i=1 ζp = −1. This contradicts the fact that c+ d is even.

Now suppose A1 ∪ B1 = {pa−1, . . . , (p − 1)pa−1}. Then |A1| = |B1| = (p − 1)/2 and∑
j∈A1

ζj +
∑

j∈B1
ζj = −1. Recall that A2 = B2. We conclude v = c + V + W and

w = d − 1 − V + W , where V =
∑

j∈A1
ζj and W =

∑
j∈A2

ζj. Note that if we write

c + V =
∑p−1

i=0 riζ
i
p with ri ∈ Z, then ri = 1 for |A1| = (p − 1)/2 indices i and ri = 0 for

(p− 1)/2 indices i, as well as r0 = c. Thus, using (6), we find

M(c+ V ) =
1

p− 1

(
p− 1

2
(c− 0)2 +

p− 1

2
(c− 1)2 +

(
p− 1

2

)2

(1− 0)2

)

=
1

2

(
c2 + (c− 1)2 +

p− 1

2

)
.

Combining this with (7), we get

(p− 1)M(v) = (p− 1)(M(c+ V ) +M(W ))

=
p− 1

2

(
c2 + (c− 1)2 +

p− 1

2

)
+ (p− 1)M(W ).

(50)

Similarly,

(p− 1)M(w) =
p− 1

2

(
d2 + (d− 1)2 +

p− 1

2

)
+ (p− 1)M(W ). (51)

As M(v) = M(w) = 2m, we infer c2 + (c − 1)2 = d2 + (d − 1)2 from (50) and (51).

This implies c = d or d = −c + 1. If c = d, then v + w = (c + V + W ) + (d − 1 −
V + W ) = 2c − 1 + 2W 6≡ 0 (mod 2), which contradicts (44). Hence d = −c + 1 and

thus w = d − 1 − V + W = −c − V + W . Set X = c + V . Note that X 6= 0, since

|A1| = (p− 1)/2. Moreover, v = X +W and w = −X +W . We have

|X|2 + |W |2 +XW̄ + X̄W = |v|2 = |w|2 = |X|2 + |W |2 −XW̄ − X̄W.
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This implies XW̄ + X̄W = 0 and thus W̄ = −(X̄/X)W . We conclude

2m = |v|2 = XX̄ +WW̄ = XX̄ − X̄

X
W 2. (52)

Note that X ∈ Q(ζp). Hence (52) shows that the degree of the extension Q(ζp)(W )/Q(ζp)

divides 2. But the degree of Q(ζ)/Q(ζp) is pa−1 and p is odd. As W ∈ Q(ζ), we conclude

W ∈ Q(ζp). As W only involves roots of unity of the form ζ i with i 6≡ 0 (mod pa−1), the

usual linear independence argument shows that W = 0. Hence w = −X + W = −X =

−X −W = −v and this completes the proof.

For m ≤ 5, the following provides lists of those primes that survive Corollaries 24 and

41, but are excluded by Corollary 33, Theorem 39 and Lemma 42.

Corollary 43. Assume the existence of a GBF from Zm2pa to Z2pa. Then we have the

following.

(a) If m = 1, then p 6= 7,

(b) If m = 3, then p 6∈ {23, 31, 73},

(c) If m = 5, then p 6∈ {127, 151}.

Proof. Suppose m = 1 and p = 7. Let v ∈ W . Then v is equivalent to X := ζ7 + ζ27 + ζ47

by Corollary 33. Hence v = ±ζ i7Xτ for some integer i and τ ∈ Gal(Q(ζ7)/Q). Let t be an

integer with ζτ7 = ζt7 and let 〈g〉 be a cyclic group of order 7. We have v = ±ζ i7(ζt7+ζ2t7 +ζ4t7 )

and thus Z = ±gi(gt + g2t + g4t) is an alias of v. It is straightforward to check that Z is

minimal and has the form (41). Hence, by Lemma 42, condition (35) is satisfied. Thus

there is no GBF from Z2·7a to Z2·7a by Theorem 39. The proofs for the other cases are

similar.

Lemma 44. If m ≥ 7, p > 22m/9, and f > (2m + 3)/5, then condition (35) is satisfied.

Proof. Let G be a cyclic group of order pa and let w ∈ W . We will show that w has a

minimal alias of the form (41). By Theorem 22 (e), multiplying w with a root of unity,

if necessary, we can assume that there is a minimal alias Z of w with Z(2) = Z such
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that Z = c0 +
∑u

i=1 ciΓi for some nonnegative integer u, where c0, . . . , cu ∈ Z, ci 6= 0

for i > 0, and the Γi’s are distinct orbits of g 7→ g2 on G \ {1}. Replacing w by −w, if

necessary, we can assume c0 ≥ 0. Moreover, |Γi| = f for all i. By Lemma 30, we have

ZZ(−1) = 2m + λP with λ ∈ Z, where P is the subgroup of G of order p. Moreover,

we have λ ∈ {1, 4, 7, 16} by Lemma 32. Recall that S = 2m + λ by Corollary 28 and

S2 ≥ 2m + λp for λ > 0 by Lemma 29. Hence, if λ = 16, then

p ≤ 2−4(S2 − 2m) = 22m−4 + 2m+1 + 16− 2m−4 < 22m/9,

as m ≥ 7. This contradicts our assumptions. Thus λ ∈ {1, 4, 7}. Recall that

c20 + f
u∑
i=1

c2i = 2m + λ and

(
c0 + f

u∑
i=1

ci

)2

= 2m + λp (53)

by Lemma 31 (e) and that f is odd.

We now show that

ci = 1 for i = 1, . . . , u or ci = −1 for i = 1, . . . , u. (54)

Suppose that (54) does not hold. Write α =
∑u

i=1 c
2
i and β =

∑u
i=1 ci. The assumption

that (54) does not hold implies α ≥ 2 and that there is an i with |ci| ≥ 2 or there are

i, j with cicj < 0. Thus, in any case, we have α ≥ β + 2. Recall that 5f > 2m + 3 by

assumption. As 5f is odd and divisible by 5, this implies 5f ≥ 2m + 7. Together with

(53) we get

2m + 7 ≤ 5f =
5(2m + λ− c20)

α
. (55)

Note that

2m + λp ≤ (2m + λ)2 (56)

by (28). We have
u∑
i=1

c2i ≤
2m + λ

f
<

5(2m + 7)

2m + 3
, (57)

as f > (2m + 3)/5 by assumption. This implies
∑u

i=1 c
2
i ≤ 5.
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Case 1. α = 5. Then λ = 7, 5f = 2m + 7, and c0 = 0 by (55). Using (53) and β ≤ α− 2,

we get

2m + 7p = (fβ)2 ≤ (2m + 7)2(α− 2)2

25
=

9(2m + 7)2

25
.

Therefore,

p <
9

25

(
22m

7
+ 2m+1 + 7

)
<

22m

9
.

This contradicts our assumptions.

Case 2. α = 4. Then c20 + 4f = 2m + λ (53) and thus λ ≡ c20 + 4 (mod 8), as f is odd.

This implies λ 6= 1, 7 and thus λ = 4 and c0 is even. Note that β ≤ α− 2 ≤ 2 and recall

that c0 ≥ 0. Moreover, c0 ≤ c20/2, as c0 is even. Using a similar calculation as in Case 1,

we get

2m + 4p = (c0 + βf)2 ≤ (c0 + 2f)2 ≤
(
c20 + 4f

2

)2

=
(2m + 4)2

4

and thus p < 22m/9, contradicting our assumptions.

Case 3. α = 3. Then c20 + 3f = 2m + λ. As λ ∈ {1, 4, 7} and m is odd, this implies

c0 ≡ 0 (mod 3) and thus c0 ≤ c20/3. Using β ≤ α− 2 = 1, we conclude

2m + λp = (c0 + βf)2 ≤ (c0 + f)2 ≤
(
c20 + 3f

3

)2

=
(2m + λ)2

9
.

As λ ≥ 1, we conclude

p ≤ 1

9λ

(
22m + 2m+1λ+ λ2 − 9 · 2m

)
<

22m

9
,

contradicting our assumptions.

Case 4. α = 2. In this case, β = 0. Using (53), we get 2m+λp = (c0 +β)2 = c20 ≤ 2m+λ.

This is impossible.

We have thus shown that (54) holds. Hence Z = c0 + γ
∑u

i=1 Γi with γ = ±1. This

shows that w indeed has a minimal alias for the form (41). Moreover, p > 22m/9 > 2m+2

by assumption. Hence condition (35) is satisfied by Lemma 42.

The following provides lists primes that survive all previous necessary conditions, but

are ruled out by Theorem 39 and Lemma 44.
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Corollary 45. Assume the existence of a GBF from Zm2pa to Z2pa. If m = 7, then

p 6∈ {2089, 2143, 2351, 3191, 4513, 6361, 8191, 9719, 11119, 13367}.

Finally, we summarize or results on GBFs from Zm2pa to Z2pa .

Theorem 46. Let p be an odd prime, let a,m be positive integers, and suppose that m

is odd. If a GBF from Zm2pa to Z2pa exists, then the following hold.

• m ≥ 3.

• p ≤ 22m + 2m + 1.

• ordp(2) is even and ordp(2) ≤ 2m−1.

• If m ≥ 7, then p ≤ 22m/9 or ordp(2) ≤ (2m + 3)/5.

• If m = 3, then p = 7.

• If m = 5, then p ∈ {7, 23, 31, 73, 89}.

• If m = 7, then

p ∈ {7, 23, 31, 47, 71, 73, 79, 89, 103, 223, 233, 337, 431, 601, 631, 881, 1103, 1801}.

Proof. This follows from Lemmas 38, 40, 44, Theorem 39, and Corollaries 25, 37, 43, 41,

and 45.
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