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Abstract

There exist normal (2m, 2, 2m,m) relative difference sets and thus Hadamard

groups of order 4m for all m of the form

m = x2a+t+u+w+δ−ε+16b9c10d22e26f
s∏
i=1

p4aii

t∏
i=1

q2i

u∏
i=1

((ri + 1)/2)rvii )
w∏
i=1

si

under the following conditions: a, b, c, d, e, f, s, t, u, w are nonnegative integers, a1, . . . , ar

and v1, ..., vu are positive integers, p1, . . . , ps are odd primes, q1, . . . , qt and r1, . . . , ru
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are prime powers with qi ≡ 1 (mod 4) and ri ≡ 1 (mod 4) for all i, s1, ..., sw are

integers with 1 ≤ si ≤ 33 or si ∈ {39, 43} for all i, x is a positive integer such that

2x − 1 or 4x − 1 is a prime power. Moreover, δ = 1 if x > 1 and c + s > 0, δ = 0

otherwise, ε = 1 if x = 1, c+ s = 0, and t+ u+ w > 0, ε = 0 otherwise.

We also obtain some necessary conditions for the existence of (2m, 2, 2m,m)

relative difference sets in central products of Z4 with abelian groups, and provide

a table cases for which m ≤ 100 and the existence of such relative difference sets is

open.

2010 Mathematics Subject Classification: 05B10, 15B34

Keywords: Semiregular relative difference sets, Golay sequences, Williamson

matrices, Hadamard Groups

1 Introduction

Let G be a group of order mn, and let N be a subgroup of G of order n. An (m, n, k, λ)

relative difference set R in G relative to N is a k-subset of G such that every

g ∈ G \ N has exactly λ representations g = r1r
−1
2 with r1, r2 ∈ R, and no nonidentity

element of N has such a representation. If N is a normal subgroup of G, we say that R

is a normal relative difference set.

A relative difference set in a group G is equivalent to a divisible design on which G

acts as a Singer group. We refer the reader to [17] for an introduction to this subject;

further background can be found in [3, 22].

An Hadamard matrix is a square matrix with entries ±1 only whose row vectors are

pairwise orthogonal. The Hadamard Conjecture asserts that there exists an Hadamard

matrix of order 4t for every positive integer t.

In this paper, we construct normal relative difference sets with parameters (2m, 2, 2m,m).

These relative difference sets are closely related to Hadamard matrices, as following spe-

cialization of a result of Jungnickel [17, Cor. 7.2] shows.

Result 1.1 Suppose there is a normal (2m, 2, 2m,m) difference set. Then there is an

Hadamard matrix of order 2m. In particular, m is even if m > 1.
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According to Ito [13, 14, 15, 16], a group of order 4m containing a normal (2m, 2, 2m,m)

relative difference set is called an Hadamard group. Ito showed that the dicyclic group

Q8t = 〈a, b|a4t = b4 = 1, a2t = b2, b−1ab = a−1〉

is an Hadamard group for all t such that 2t−1 or 4t−1 is a prime power. He conjectured in

[16] that Q8t is an Hadamard group for every positive integer t. In view of Result 1.1, Ito’s

conjecture is a strengthening of the Hadamard conjecture. In [11], the connection between

Hadamard groups and cocyclic Hadmard matrices was clarified, and Ito’s conjecture was

verified by computer for t ≤ 11. In [19, 20] asymptotic existence results for cocyclic

Hadmard matrices and thus for (2m, 2, 2m,m) relative difference sets were obtained.

The following type of Hadamard matrices H (cf. [2]) is relevant to Ito’s conjecture.

H =


A B C D

−B A −D C

−C D A −B
−D −C B A

 , (1)

where A,B,C,D are circulant matrices. The following result from [23] implies the validity

of Ito’s conjecture for t ≤ 46.

Result 1.2 Let s be a positive integer such that 2s− 1 or 4s− 1 is a prime power or s is

odd and there is an Hadamard matrix of type (1) of order 4s. Then there are (4t, 2, 4t, 2t)

relative difference sets in Q8t for all t of the form

t = 2a10b26cs

with a, b, c ≥ 0.

Williamson matrices provide examples of Hadamard matrices of type (1), which can

be used in Result 1.2. We refer to [2, 8, 24, 25, 26] for constructions of such matrices.

In this paper, we extend Result 1.2 by utilizing real and complex Golay pairs, Williamson

matrices, and building sets to recursively construct (2m, 2, 2m,m) relative difference sets

in central products of Z4 with abelian groups.
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2 Preliminaries

To study relative difference sets, it is convenient to use the group ring notation. We

identify a subset A of a group G with the element
∑

g∈A g of the integral group ring Z[G].

For B =
∑

g∈G bgg in Z[G], we write B(−1) =
∑

g∈G bgg
−1. In the group ring language,

the definition of relative difference sets reads as follows.

Lemma 2.1 A k-subset R of a group G of order mn is an (m,n, k, λ) relative difference

set in G relative to N if and only if R satisfies

RR(−1) = k + λ(G−N)

in Z[G].

For an abelian group G, we denote the group of complex characters of G by Ĝ. The

trivial character of G is the character sending all elements of G to 1. The following is a

standard result [3, Chapter VI, Lemma 3.5].

Result 2.2 Let G be a finite abelian group and D =
∑

g∈G dgg ∈ C[G]. Then

dg =
1

|G|
∑
χ∈Ĝ

χ(Dg−1)

for all g ∈ G.

We will need the following result of Kronecker. See [4, Section 2.3, Thm. 2] for a

proof.

Result 2.3 An nonzero algebraic integer all of whose conjugates have absolute value at

most 1 is a root of unity.

The following is due to Ma [21].

Result 2.4 Let p be a prime and let G be a finite abelian group with a cyclic Sylow p-

subgroup. If Y ∈ Z[G] satisfies χ(Y ) ≡ 0 mod pa for all nontrivial characters χ of G,

then there exist X1, X2 ∈ Z[G] such that

Y = paX1 + PX2,

where P is the unique subgroup of order p of G.
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The next result follows from a lemma given in [9, p. 53], which is an extension of a

result of Lal, McFarland, and Odoni [18].

Result 2.5 Let p ≡ 3 (mod 4) be a prime, let a, b be positive integers, ζ = exp(2πi/pa).

If |X|2 + |Y |2 ≡ 0 (mod p2b) for X, Y ∈ Z[ζ], then X ≡ 0 (mod pb) and Y ≡ 0 (mod

pb).

3 Golay Transversals and Relative Difference Sets

We first define the groups in which we will construct relative (2m, 2, 2m,m) difference

sets.

Definition 3.1 Let H be an abelian group of order 2m, and let g be an element of order

2 in H. Let K = 〈y〉 be a cyclic group of order 4. We denote the partial semidirect

product (c.f. [10, Chapter 2.5]) of H and K defined by y2 = g and y−1hy = h−1 for all

h ∈ H by Q(H, g).

Remark 3.2 Using the notation above, let G be the semidirect product of H and K

defined by H � G and y−1hy = h−1 for all h ∈ H. Then Q(H, g) is isomorphic to

G/〈y2g〉, see [10, Chapter 2.5]. The group Q(H, g) is denoted by gr(H, g) in [1].

Example 3.3 Let H = 〈x〉 be a cyclic group of order 2m and g = xm. Then Q(H, g) is

the dicyclic group of order 4m:

Q(H, g) = 〈x, y : x2m = y4 = 1, xm = y2, y−1xy = x−1〉 = Dicm.

The existence of a (2m, 2, 2m,m) relative difference set in Q(H, g) is equivalent to the

existence of two elements A,B of the group ring Z[H] satisfying a character condition

closely related to Golay sequences. Thus we introduce the following terminology.

Definition 3.4 Let H be an abelian group of even order, and let g be an element of

order 2 of H. Let g1, ..., gm be a complete system of coset representatives of 〈g〉 in H. Let

A =
∑m

i=1 aigi, B =
∑m

i=1 bigi with ai, bi ∈ {−1, 1}. We call (A,B) a Golay transversal

of H with respect to g if

|χ(A)|2 + |χ(B)|2 = |H|

for all characters χ of H with χ(g) = −1.
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Remark 3.5 The notion of a Golay transversal is equivalent to that of a pair of comple-

mentary relative difference sets used in [1]. The formulation in terms of Golay transver-

sals, however, is more convenient for the recursive constructions of relative difference sets

we will establish.

The following observation is fundamental for the rest of the paper.

Proposition 3.6 Let H be an abelian group of even order 2m, and let g be an element

of order 2 of H. A (2m, 2, 2m,m) difference set in Q(H, g) relative to 〈g〉 exists if and

only if there is a Golay transversal of H with respect to g.

Proof Suppose that (A,B) is a Golay transversal of H with respect to g. Let h1, ..., hm

be a complete system of coset representatives of 〈g〉 in H. Write A =
∑m

i=1(−1)cihi,

B =
∑m

i=1(−1)dihi with ci, di ∈ {0, 1}, X =
∑m

i=1 g
cihi, Y =

∑m
i=1 g

dihi, and R = X+Y y,

where y is the element of Q(H, g) given in Definition 3.1. Then R is a 2m-subset of

Q(H, g). Note that yay−1 = a−1 and thus ya = a−1y for all a ∈ H, and thus yX(−1) = Xy

and similarly y−1Y (−1) = Y y−1. We compute

RR(−1) = XX(−1) + Y Y (−1) +Xy−1Y (−1) + Y yX(−1)

= XX(−1) + Y Y (−1) +XY (y + y−1).

Note that y + y−1 = (1 + y2)y = (1 + g)y. Thus, Y is a complete set of coset

representatives of 〈g〉 in H, we have XY (y+ y−1) = mHy. Hence, by Lemma 2.1, R is a

(2m, 2, 2m,m) difference set in Q(H, g) relative to 〈g〉 if and only if

XX(−1) + Y Y (−1) = 2m+m(H − 〈g〉). (2)

By Result 2.2, (2) holds if and only if

|χ(X)|2 + |χ(Y )|2 = 2m+mχ(H − 〈g〉) (3)

for all χ ∈ Ĥ. Let χ0 be the trivial character of H. Then χ0(X) = χ0(Y ) = m,

χ0(H) = 2m, and χ0(〈g〉) = 2. Hence (3) holds for χ = χ0. Now suppose that χ 6= χ0 is

a character of H with χ(g) = 1. Then χ(X) = χ(Y ) = 0, as X and Y are both complete

sets of coset representatives of 〈g〉 in H. Moreover, χ(H) = 0 and χ(〈g〉) = 2. Hence (3)

holds in this case, too.
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Finally, suppose that χ is a character of H with χ(g) = −1. Then χ(H) = χ(〈g〉) = 0

and

|χ(X)|2 + |χ(Y )|2 = |χ(A)|2 + |χ(B)|2 = 2m,

as we assume that (A,B) is a Golay transversal of H with respect to g. Hence (3) holds

in this case, too, and thus for all χ ∈ Ĥ. Thus R is a (2m,m, 2m,m) relative difference

set in Q(H, g) relative to 〈g〉.

We have shown that the existence of a Golay transversal of H with respect to g implies

the existence of a (2m,m, 2m,m) relative difference set in Q(H, g) relative to 〈g〉. The

proof of the converse is similar. 2

Corollary 3.7 Let t be a positive integer such that 2t − 1 or 4t − 1 is a prime power.

Then there is a Golay transversal of Z4t.

Proof This follows from Proposition 3.6, since it is known that there are (4t, 2, 4t, 2t)

relative difference sets in Dic2t in these cases, see [13, 14, 23]. 2

4 Golay Transversals from Williamson Quadruples

and Building Sets

Williamson matrices are a useful tool for the construction of (2m, 2, 2m,m) relative dif-

ference sets. Constructions of such matrices are contained in [8, 24, 25, 26]. The term

“Williamson matrix” has been used with many different meanings in the literature. For

the latest state of the art concerning the search for “original” (in the sense of Williamson)

Williamson matrices, see [12].

As “Williamson matrices” are not uniquely defined in the literature, we need to in-

troduce a new yet another term to avoid confusion.

Definition 4.1 Let G be an abelian group of order v. A v × v matrix A = (ag,h)g,h∈G is

called G-invariant if agk,hk = ag,h for all g, h, k ∈ G.

Definition 4.2 Let G be a finite abelian group, and let A1, ..., A4 ∈ Z[G] with coeffi-

cients ±1 only. If
∑4

i=1AiA
(−1)
i = 4|G| and Ai = A

(−1)
i for all i, we call (A1, ..., A4) a

Williamson quadruple over G.
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The following is well known and straightforward to verify.

Result 4.3 Let G be a finite abelian group. Assume that

H =


A B C D

−B A −D C

−C D A −B
−D −C B A

 (4)

is a Hadamard matrix and A,B,C,D are symmetric and G-invariant. Write A =

(ag,h)g,h∈G, A′ =
∑

g∈G ag,1g etc. Then (A′, ..., D′) is a Williamson quadruple.

Let q be a prime power. We denote the elementary abelian group of order q by EA(q).

The following Williamson quadruples are known.

Result 4.4 Let q ≡ 1 (mod 4) be a prime power, and let r be a nonnegative integer.

There are Williamson quadruples over the following groups.

(a) EA(q2),

(b) Z(q+1)/2 × EA(qr),

(c) Zm for 1 ≤ m ≤ 33 and m ∈ {39, 43}.

Proof This follows from Result 4.3, since matrices of the form (4) are known to exist in

these cases, see [8, 24, 25, 26]. 2

Theorem 4.5 Suppose there exists a Williamson quadruple over an abelian group G,

and there exists a Golay transversal of an abelian group H with respect to h.

(a) If 〈h〉 has a complement in H, i.e., H = K × 〈h〉 for some K ≤ H, then there is a

Golay transversal of G×K × Z4 with respect to h, where Z4 = 〈y〉 and h = y2.

(b) If 〈h〉 has no complement in H, then there is a Golay transversal of G×H ×Z2 with

respect to h.

Proof Let (A1, . . . , A4) be a Williamson quadruple over G and let (A,B) be a Golay

transversal of H with respect to h.
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(a) As above, write H = K × 〈h〉 and let y be an element with y2 = h. Define

f =
1

2

[
A(A1 + A2y + A3 + A4y) +B(−1)(A1 + A2y − A3 − A4y)

]
,

g =
1

2

[
B(A1 + A2y + A3 + A4y) + A(−1)(−A1 − A2y + A3 + A4y)

]
.

It is straightforward to verify that f and g have coefficients 0,±1 only and that the

elements of G × K × Z4 with nonzero coefficient in f , respectively g, form a complete

system of coset representatives of 〈h〉 in G×K × Z4. We compute

ff (−1) + gg(−1) =
1

2
(AA(−1) +BB(−1))[(A1 + A2y)(A1 + A2y)(−1)

+(A3 + A4y)(A3 + A4y)(−1)]

=
1

2
(AA(−1) +BB(−1))

((
4∑
i=1

A2
i

)
+ (y + y−1)(A1A2 + A3A4)

)
.

Now let χ be a character of G×K ×Z4 with χ(h) = −1. Then χ(y+ y−1) = χ(y)(χ(1 +

h)) = 0. Moreover, χ (
∑
A2
i ) = 4|G| as (A1, . . . , A4) is a Williamson quadruple over G

and χ(AA(−1) + BB(−1)) = |H| as (A,B) is a Golay transversal of H with respect to h.

Hence |χ(f)|2 + |χ(g)|2 = 2|G||H| = |G × K × Z4|, which shows that (f, g) is a Golay

transversal of G×K × Z4 with respect to h.

(b) As h has no complement in H, there is z ∈ H with z2 = h. Let x be a generator of

Z2 and set y = xz. Note that y2 = h. Now the same construction as in part (a) shows

that there is a Golay transversal of G×H × Z2 with respect to h. 2

In the following result, we obtain Golay transversals from building sets given in [7].

Proposition 4.6 Let p1,...,pk be any odd primes (not necessarily distinct), and let b1, ..., br

be positive integers (k = 0 or r = 0 is allowed here). Furthermore, let t be a positive in-

teger such that 2t− 1 or 4t− 1 is a prime power. Let

G = Z2
3b1 × · · · × Z2

3br × Z4
p1
× · · · × Z4

pk
.

Then there are Golay transversals of Z4 ×G, Z2 × Z2 ×G, and Z2 × Z4t ×G.
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Proof Write |G| = u2. By [7, Thm. 6.6] there are subsets D1, ..., D4 of G with |D1| =

|D2| = |D3| = (u2 − u)/2, |D4| = (u2 + u)/2, such that, for every nontrivial character

χ of G, we have |χ(Di)|2 = u2 for one i and χ(Dj) = 0 for j 6= i. Set Ei = 2Di − G,

i = 1, ..., 4. Then the Ei have coefficients ±1 only and, for every nontrivial character χ

of G, we have |χ(Ei)|2 = 4u2 for one i and χ(Ej) = 0 for j 6= i.

Now let H = Z4 × G or H = Z2 × Z2 × G, let g be an element of order 2 of H, and

let y ∈ H \ {G〈g〉}. Set X = E1 + yE2 and Y = E3 + yE4. Then |χ(X)|2 + |χ(Y )|2 = 4u2

for all nontrivial characters χ of H. Hence (X, Y ) is the required Golay transversal of H.

It remains to show that K = Z2×Z4t×G has a Golay transversal. By Corollary 3.7,

there exists a Golay transversal (A,B) of Z4t. Write Z2 = 〈z〉 and set X = E1 + zE2 and

Y = E3 + zE4 where the Ei’s are as above. Define

f =
1

2

[
A(X + Y ) +B(−1)(X − Y )

]
,

g =
1

2

[
B(X + Y ) + A(−1)(−X + Y )

]
.

It is straightforward to verify that f and g have coefficients 0,±1 only and that the

elements of K with nonzero coefficient in f , respectively g, form a complete system of

coset representatives of 〈h〉 in K, where h is the element of order 2 in Z4t. We compute

ff (−1) + gg(−1) =
1

2
(AA(−1) +BB(−1))(XX(−1) + Y Y (−1))).

Hence

|χ(f)|2 + |χ(g)|2 =
1

2
|Z4t|4u2 = 8tu2 = |K|

for all characters χ of K with χ(h) = −1. 2

5 Golay Transversals from Pairs of Golay Sequences

Let a = (a0, ..., av−1), b = (b0, ..., bv−1) be sequences, and write f =
∑v−1

i=0 aix
i, g =∑v−1

i=0 bix
i. If aj, bj ∈ {±1} and

f(x)f(x−1) + g(x)g(x−1) = 2v,
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then (a, b) is called a Golay pair of length v. Golay pairs of length 2a10b26c are known

to exist [25].

If aj, bj ∈ {±1,±i}, where i =
√
−1, and

f(x)f(x−1) + g(x)g(x−1) = 2v,

then (a, b) is called a complex Golay pair of length v. Complex Golay pairs of length

2a+u3b5c11d13e, where a, b, c, d, e, u ≥ 0, b + c + d + e ≤ a + 2u + 1, u ≤ c + e, are shown

to exist in [5].

The following essentially is [1, Thm. 4.2]. We include a proof for the convenience of

the reader.

Result 5.1 Let H be an abelian group and assume that there is a Golay transversal of H

with respect to h. Let G be an abelian group containing H such that that G/H is cyclic,

and assume that a pair of Golay sequences of length |G/H| exists. Then there is a Golay

transversal of G with respect to h.

Proof Write n = |G/H| and let a ∈ G such that 1, a, ..., an−1 represent all cosets of H in

G. Let f , g be the polynomials corresponding to a complex Golay pair of length n, and

let (A,B) be a Golay transversal of H with respect to h. Define

C =
1

2

[
A(f(a) + g(a)) +B(−1)(f(a)− g(a))

]
,

D =
1

2

[
B(f(a) + g(a)) + A(−1)(−f(a) + g(a))

]
.

Then CC(−1) + DD(−1) = n(AA(−1) + BB(−1)). Hence |χ(C)|2 + |χ(D)|2 = n|H| = |G|
for all characters χ of G with χ(h) = −1.

2

Lemma 5.2 Let H be an abelian group containing a subgroup 〈y〉 ∼= Z4 such that there

is a Golay transversal of H with respect to y2. Let G be an abelian group containing H

such that G/H is cyclic, and that a complex Golay pair of length 1
2
|G/H| exists. Then

there is a Golay transversal of G with respect to y2.
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Proof Write n = 1
2
|G/H| and let a ∈ G such that 1, a, . . . , a2n−1 represent all cosets

of H in G. Let (A,B) be a Golay transversal of H with respect to y2. Let f, g be the

polynomials corresponding to a Golay pair of length n, with each occurrence of imaginary

unit, i, is replaced by y. Define

C = Af(a2)− aB(−1)g(a2),

D = aA(−1)g(a2) +Bf(a2).

Then

CC(−1) +DD(−1) = (AA(−1) +BB(−1))(f(a2)f(a−2) + g(a2)g(a−2)).

Let χ be a character of G with χ(y2) = −1. Then χ(y) = ±i and thus χ(f(a2)f(a−2) +

g(a2)g(a−2)) = |G/H| by the definition of complex Golay pair. Hence |χ(C)|2+|χ(D)|2 =

2n|H| = |G| for all characters χ of G with χ(y2) = −1. 2

6 Main Results

Theorem 6.1 Let r, s, t, u, w be nonnegative integers and let

• a1, . . . , ar and v1, ..., vu be nonnegative integers,

• p1, . . . , ps be odd primes (not necessarily distinct),

• q1 . . . , qt and r1, . . . , ru be prime powers with qi ≡ 1 (mod 4) and ri ≡ 1 (mod 4)

for all i,

• s1, ..., sw be integers with 1 ≤ si ≤ 33 or si ∈ {39, 43} for all i,

• x be a positive integer such that 2x− 1 or 4x− 1 is a prime power,

• δ = 1 if x > 1 and r + s > 0, δ = 0 otherwise,

• ε = 1 if x = 1, r + s = 0, and t+ u+ w > 0, ε = 0 otherwise,

and write

K = Z4x × Zt+u+w+δ−ε2

r∏
i=1

Z2
3ai

s∏
i=1

Z4
pi

t∏
i=1

EA(q2i )
u∏
i=1

(
Z(ri+1)/2 × EA(rvii )

) w∏
i=1

Zsi
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Let a, b, c, d, e be nonnegative integers and let H be any abelian group which contains K

as a subgroup such that

|H| = 2a6b10c22d26e|K|.

Then there is an involution g ∈ H such that Q(H, g) contains an (|H|, 2, |H|, |H|/2)

relative difference set.

Proof Write G =
∏r

i=1 Z2
3ai

∏s
i=1 Z4

pi
. First suppose δ = 1. Then ε = 0 and there is a

Golay transversal of

Z4x × Zδ−ε2 ×G = Z4x × Z2 ×G

by Proposition 4.6. Hence, by repeated application of Theorem 4.5, there is a Golay

transversal of K.

Now suppose ε = 1. Then x = 1, δ = 0, and r + s = 0. Now let α1, α2, α3 ∈ {0, 1}
with α1 +α2 +α3 = 1. As there is a Golay transversal of Z2, there is a Golay transversal

of

Z4 ×
α1∏
i=1

EA(q2i )

α2∏
i=1

(
Z(ri+1)/2 × EA(rvii )

) α3∏
i=1

Zsi

by Theorem 4.5. Thus, by repeated application of Theorem 4.5, there is a Golay transver-

sal of

K = Z4 × Zt+u+w−12

t∏
i=1

EA(q2i )
u∏
i=1

(
Z(ri+1)/2 × EA(rvii )

) w∏
i=1

Zsi .

Finally, suppose δ = ε = 0. Then x = 1 or r + s = 0. If x = 1, then there is a Golay

transversal of Z4×G by Proposition 4.6 and thus a Golay transversal of K by a repeated

application of Theorem 4.5. If x > 1, then r + s = 0 and there is a Golay transversal of

Z4x by Corollary 3.7. Thus there is a Golay transversal of K by a repeated application

of Theorem 4.5.

In summary, we have shown that there is a Golay transversal of K in all cases. By

a repeated application of Result 5.1 and Lemma 5.2, there is a Golay transversal of H.

Now the assertion follows from Proposition 3.6. 2

Note that the exponent of all groups H covered by Theorem 6.1 is divisible by 4. When

we attempt to construct Golay transversals of groups whose exponent is not divisible by

4, the group structure will be more restricted. The following result deals with this case.
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Theorem 6.2 Let r, s be nonnegative integers, let a1, . . . , ar be positive integers, and let

p1, . . . , ps be odd primes (not necessarily distinct), and write

K = Z2 × Z2 ×
r∏
i=1

Z2
3ai

s∏
i=1

Z4
pi
.

Let a, b, c be nonnegative integers and let H be any abelian group which contains K as a

subgroup such that

|H| = 2a10b26c|K|.

Then there is an involution g ∈ H such that Q(H, g) contains an (|H|, 2, |H|, |H|/2)

relative difference set.

Proof By Proposition 4.6 there is a Golay transversal of K. By a repeated application of

Result 5.1, there is a Golay transversal of H. Hence the assertion follows from Proposition

3.6. 2

Corollary 6.3 There exist normal (2m, 2, 2m,m) relative difference sets for all m of the

form

m = x2a+t+u+w+δ−ε+16b9c10d22e26f
s∏
i=1

p4aii

t∏
i=1

q2i

u∏
i=1

((ri + 1)/2)rvii )
w∏
i=1

si

under the following conditions: a, b, c, d, e, f, s, t, u, w are nonnegative integers, a1, . . . , ar

and v1, ..., vu are positive integers, p1, . . . , ps are odd primes, q1, . . . , qt and r1, . . . , ru are

prime powers with qi ≡ 1 (mod 4) and ri ≡ 1 (mod 4) for all i, s1, ..., sw are integers

with 1 ≤ si ≤ 33 or si ∈ {39, 43} for all i, x is a positive integer such that 2x − 1 or

4x− 1 is a prime power. Moreover, δ = 1 if x > 1 and c+ s > 0, δ = 0 otherwise, ε = 1

if x = 1, c+ s = 0, and t+ u+ w > 0, ε = 0 otherwise.

Proof This follows from Theorem 6.1. 2

7 Necessary Conditions for the Existence of Golay

Transversals

We have seen that it is easy to construct Golay transversal over a large variety of finite

abelian groups. As we will show in this section, however, there are many finite abelian
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groups that do not admit Golay transversals. We remark that some of the results in this

section are similar to results in [1].

Lemma 7.1 Let H be an abelian group of even order. If |H| > 2 and there is a Golay

transversal of H, then |H| ≡ 0 (mod 4).

Proof This follows from Result 1.1 and Proposition 3.6. 2

Lemma 7.2 Let H be an abelian group, and assume there is a Golay transversal of H

with respect to g such that 〈g〉 has a complement in H. Then |H| is a sum of two squares.

Proof Let (A,B) be a Golay transversal of H with respect to g. By assumption there

is a character χ of H of order 2 with χ(g) = −1. Then χ(A) and χ(B) are integers and

|χ(A)|2 + |χ(B)|2 = |H|. 2

Lemma 7.3 Let p ≡ 3 ( mod 4) be a prime, and let U be an elementary abelian 2-group.

Suppose H = U × P where P is an abelian p-group. If exp(P ) >
√
|P |, then there is no

Golay transversal of H.

Proof Suppose there is a Golay transversal (A,B) of H with respect to g. By Lemma 7.2,

|P | is a square, say |P | = p2b some integers b. Write H = G×〈g〉, exp(P ) = pc, and let Q

be a subgroup of P of order p2b−c such that P/Q is cyclic. Let ρ : Z[H]→ Z[G/Q] be the

epimorphism determined by ρ(g) = −1 and ρ(h) = hQ for all h ∈ G. Write C = ρ(A)

and D = ρ(B). Note that all coefficients of C and D are bounded by |Q| = p2b−c in

absolute value. By the definition of a Golay transversal, we have

|χ(C)|2 + |χ(D)|2 = |H| ≡ 0 (mod p2b)

for all characters χ of G/Q. Write ζ = exp(2πi/pc). Since χ(C), χ(D) ∈ Z[ζ], we conclude

χ(C) ≡ 0 (mod pb) and χ(D) ≡ 0 (mod pb) for all characters χ of G/Q by Result 2.5.

Hence Result 2.4 implies

C = pbX + SY

with X, Y ∈ Z[G/Q] where S is the subgroup of order p of G/Q. Note that pc =

exp(P ) >
√
|P | = pb by assumption and thus c > b. If X was not a multiple of S, then

there would be two coefficients of C whose difference is at least pb. This is impossible
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since the coefficients of C are bounded by p2b−c ≤ pb−1 in absolute value. Hence X and

thus C is a multiple of S. By the same argument, D is a multiple of S. But this implies

|χ(A)|2 + |χ(B)|2 = 0 for all characters χ of H with χ(g) = −1 which are trivial on Q

and have order 2pc, a contradiction. 2

Let u be a positive integer, and let G be an abelian group of order 4u2. A subset D of

G with |D| = 2u2− u and DD(−1) = u2 + (u2− u)G is called an Hadamard difference

set. It is well known [3, Lem. 3.12] that a subset D of G with |D| = 2u2 − u is an

Hadamard difference set in G if and only if |χ(D)|2 = u2 for all nontrivial characters χ

of G.

Lemma 7.4 Let p ≡ 3 (mod 4) be a prime. Suppose that there is a Golay transversal

of H = Z2 ×Z2 ×K where K is an abelian p-group. Then |H| is a square and there is a

Hadamard difference set in H and in Z4 ×K.

Proof Suppose there is a Golay transversal (A,B) of H with respect to g. By Lemma

7.2, |H| is a square, say |H| = 4p2d. Write H = G× 〈g〉 and let ρ : Z[H]→ Z[G] be the

epimorphism determined by ρ(g) = −1 and ρ(h) = h for all h ∈ G. Write C = ρ(A) and

D = ρ(B). Note that C and D have coefficients ±1 only. By the definition of a Golay

transversal, we have

|χ(C)|2 + |χ(D)|2 = 4p2d. (5)

for all characters χ of G. If χ has order 1 or 2, then (5) implies χ(C) = 0 or χ(D) = 0

since 4p2d = (±2pd)2 are the only representations of 4p2d as a sum of two squares.

Now let χ be character of G of order divisible by p. Since C and D have coefficients

±1 only, χ(C) and χ(D) are divisible by 2. Write X = χ(C)/2 and Y = χ(D)/2. Then

|X|2 + |Y |2 = p2d. (6)

Write exp(H) = 2pe and ζ = exp(2πi/pe). Note X, Y ∈ Z[ζ]. By Result 2.5, we have

X ≡ 0 (mod pd) and Y ≡ 0 (mod pd). Write X = pdx, Y = pdy. Then x, y ∈ Z[ζ]

and |x|2 + |y|2 = 1. Thus all conjugates of x and y have absolute value at most 1. This

implies that one of x, y is a root of unity and the other is 0. This shows that χ(C) = 0

or χ(D) = 0 for all characters χ of order divisible by p.
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In summary, we have shown

χ(C) = 0 or χ(D) = 0 (7)

for all characters χ of G. Now let M be an abelian group of order 4p2d containing G as

a subgroup and let y ∈M \G. Set E = C +Dy. Then |ψ(E)|2 = 4p2d for all characters

ψ of K by (5) and (7). Hence F = (E +M)/2 is a Hadamard difference set in M . 2

Corollary 7.5 Let p ≡ 3 (mod 4) be a prime, let H be an abelian p-group and suppose

that there is a Golay transversal of Z2×Z2×H. Then |H| is a square and exp(H) ≤
√
|H|.

Furthermore, if H = Zpa ×K with |K| = pa for some a, then p = 3 and K is cyclic.

Proof This follows from Lemma 7.4 and known results on Hadamard difference sets [6,

Thms. 2.11, 2.12]. 2

Acknowledgement We thank the referees for the careful reading of the manuscript.
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A Appendix

The following table presents all abelian groups of order divisible by 4, up to 400, which do

not admit Golay transversals or for which the existence of such transversals is open. In

the case of nonexistence, a reference to the proof is provided. Groups that admit Golay

transverals by Theorems 6.1 and 6.2 are not listed.
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Order Group Exist?

12 (2)(2)(3) Lem 7.3

24 (2)(2)(2)(3) Lem 7.3

28 (2)(2)(7) Lem 7.3

36 (2)(2)(9) Lem 7.3

44 (2)(2)(11) Lem 7.3

48 (2)(2)(2)(2)(3) Lem 7.3

56 (2)(2)(2)(7) Lem 7.3

60 (2)(2)(3)(5) Lem 7.2

68 (2)(2)(17) ?

72 (2)(2)(2)(9) Lem 7.3

76 (2)(2)(19) Lem 7.3

84 (2)(2)(3)(7) Lem 7.2

88 (2)(2)(2)(11) Lem 7.3

92 (2)(2)(23) Lem 7.3

96 (2)(2)(2)(2)(2)(3) Lem 7.3

100 (2)(2)(25) ?

100 (2)(2)(5)(5) ?

108 (2)(2)(27) Lem 7.3

108 (3)(4)(9) ?

108 (2)(2)(3)(9) Lem 7.3
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Order Group Exist?

108 (3)(3)(3)(4) ?

108 (2)(2)(3)(3)(3) Lem 7.2

112 (2)(2)(2)(2)(7) Lem 7.3

116 (2)(2)(29) ?

120 (2)(2)(2)(3)(5) Lem 7.2

124 (2)(2)(31) Lem 7.3

132 (2)(2)(3)(11) Lem 7.2

136 (2)(2)(2)(17) ?

140 (2)(2)(5)(7) Lem 7.2

144 (2)(2)(2)(2)(9) Lem 7.3

148 (2)(2)(37) ?

152 (2)(2)(2)(19) Lem 7.3

156 (2)(2)(3)(13) Lem 7.2

164 (2)(2)(41) ?

168 (2)(2)(2)(3)(7) Lem 7.2

172 (2)(2)(43) Lem 7.3

176 (2)(2)(2)(2)(11) Lem 7.3

180 (2)(2)(5)(9) ?

180 (2)(2)(3)(3)(5) ?

184 (2)(2)(2)(23) Lem 7.3

188 (4)(47) ?

188 (2)(2)(47) Lem 7.3

192 (2)(2)(2)(2)(2)(2)(3) Lem 7.3

196 (2)(2)(49) Cor 7.5

196 (4)(7)(7) ?
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Order Group Exist?

196 (2)(2)(7)(7) Cor 7.5

204 (2)(2)(3)(17) Lem 7.2

212 (2)(2)(53) ?

216 (2)(2)(2)(27) Lem 7.3

216 (2)(2)(2)(3)(9) Lem 7.3

216 (2)(2)(2)(3)(3)(3) Lem 7.2

220 (2)(2)(5)(11) Lem 7.2

224 (2)(2)(2)(2)(2)(7) Lem 7.3

228 (2)(2)(3)(19) Lem 7.2

232 (2)(2)(2)(29) ?

236 (4)(59) ?

236 (2)(2)(59) Lem 7.3

240 (2)(2)(2)(2)(3)(5) Lem 7.2

244 (2)(2)(61) ?

248 (2)(2)(2)(31) Lem 7.3

252 (2)(2)(7)(9) Lem 7.2

252 (3)(3)(4)(7) ?

252 (2)(2)(3)(3)(7) Lem 7.2

260 (4)(5)(13) ?

260 (2)(2)(5)(13) ?

264 (2)(2)(2)(3)(11) Lem 7.2

268 (4)(67) ?

268 (2)(2)(67) Lem 7.3

272 (2)(2)(2)(2)(17) ?

276 (2)(2)(3)(23) Lem 7.2
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Order Group Exist?

280 (2)(2)(2)(5)(7) Lem 7.2

284 (2)(2)(71) Lem 7.3

288 (2)(2)(2)(2)(2)(9) Lem 7.3

292 (4)(73) ?

292 (2)(2)(73) ?

296 (2)(2)(2)(37) ?

300 (2)(2)(3)(25) Lem 7.2

300 (2)(2)(3)(5)(5) Lem 7.2

304 (2)(2)(2)(2)(19) Lem 7.3

308 (2)(2)(7)(11) Lem 7.2

312 (2)(2)(2)(3)(13) Lem 7.2

316 (2)(2)(79) Lem 7.3

324 (4)(81) ?

324 (2)(2)(81) Lem 7.3

324 (3)(4)(27) ?

324 (2)(2)(3)(27) Lem 7.3

324 (3)(3)(4)(9) ?

324 (2)(2)(3)(3)(9) Cor 7.5

328 (2)(2)(2)(41) ?

332 (2)(2)(83) Lem 7.3

336 (2)(2)(2)(2)(3)(7) Lem 7.2

340 (2)(2)(5)(17) ?

344 (2)(2)(2)(43) Lem 7.3

348 (2)(2)(3)(29) Lem 7.2

352 (2)(2)(2)(2)(2)(11) Lem 7.3
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Order Group Exist?

356 (4)(89) ?

356 (2)(2)(89) ?

360 (2)(2)(2)(5)(9) ?

364 (2)(2)(7)(13) Lem 7.2

368 (2)(2)(2)(2)(23) Lem 7.3

372 (3)(4)(31) ?

372 (2)(2)(3)(31) Lem 7.2

376 (8)(47) ?

376 (2)(4)(47) ?

376 (2)(2)(2)(47) Lem 7.3

380 (2)(2)(5)(19) Lem 7.2

384 (2)(2)(2)(2)(2)(2)(2)(3) Lem 7.3

388 (2)(2)(97) ?

392 (2)(2)(2)(49) Lem 7.3

392 (7)(7)(8) ?

392 (2)(2)(2)(7)(7) ?

396 (2)(2)(9)(11) Lem 7.2

396 (3)(3)(4)(11) ?

396 (2)(2)(3)(3)(11) Lem 7.2
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