Uniqueness of Some Cyclic Projective Planes

Yiwei Huang
Division of Mathematical Sciences
School of Physical \& Mathematical Sciences
Nanyang Technological University
Singapore 637371
Singapore
Bernhard Schmidt
Division of Mathematical Sciences
School of Physical \& Mathematical Sciences
Nanyang Technological University
Singapore 637371
bernhard@ntu.edu.sg

January 15, 2008

Abstract

For $n<41$ and for $n \in\{121,125,128,169,256,1024\}$, every cyclic projective plane of order n is desarguesian. In particular, the cyclic group of order $1,049,601$ contains a unique nontrivial difference set, up to equivalence.

1 Introduction

A finite projective plane $\Pi=(\mathcal{P}, \mathcal{L})$ of order n consists of an $\left(n^{2}+n+1\right)$-set \mathcal{P}, whose elements are called points, and an $\left(n^{2}+n+1\right)$-set \mathcal{L} of $(n+1)$ subsets of \mathcal{P}, whose elements are called lines, such that any two points are contained in exactly one line. A collineation of Π is a bijection $\alpha: \mathcal{P} \rightarrow \mathcal{P}$ such that $\left\{p^{\alpha}: p \in L\right\}$ is a line for every $L \in \mathcal{L}$. Two projective planes $(\mathcal{P}, \mathcal{L})$ and $\left(\mathcal{P}^{\prime}, \mathcal{L}^{\prime}\right)$ are called isomorphic if there is a bijection $\gamma: \mathcal{P} \rightarrow \mathcal{P}^{\prime}$ such that $\left\{p^{\gamma}: p \in L\right\} \in \mathcal{L}^{\prime}$ for all $L \in \mathcal{L}$.

Let $\Pi=(\mathcal{P}, \mathcal{L})$ be a projective plane of order n. If there is a collineation α of Π such that, for all $p, q \in \mathcal{P}$, there is exactly one $i \in\left\{0, \ldots, n^{2}+n\right\}$ with $p^{\alpha^{i}}=q$, then Π is called cyclic projective plane. In this case, α generates a cyclic group of collineations order $n^{2}+n+1$ which is called a Singer cycle of Π.

For every prime power q, a projective plane of order q, denoted by $\mathrm{PG}(2, q)$, can be constructed as follows. The points are the one-dimensional, and the lines are the two-dimensional subspaces of $\mathbb{F}_{q^{3}}$, viewed as an \mathbb{F}_{q}-vector space. Incidence is given by set-theoretic containment. A projective plane isomorphic to $\mathrm{PG}(2, q)$ is called desarguesian. It was discovered by Singer [12] that all desarguesian projective planes are cyclic. This can be seen as follows. Let α be a collineation of $\operatorname{PG}(2, q)$ induced by multiplication with a primitive element of $\mathbb{F}_{q^{3}}$. Then $\langle\alpha\rangle$ is a Singer cycle of $\operatorname{PG}(2, q)$.

Singer [12] introduced the notion of difference sets to describe cyclic projective planes. In today's language, a planar difference of order n is an $(n+1)$-subset D of a group G of order $n^{2}+n+1$ such that every nonidentity element g of G has exactly one representation $g=d_{1} d_{2}^{-1}$ with $d_{1}, d_{2} \in D$. If G is a cyclic group, then D is called a cyclic planar difference set. The following are straightforward to verify.
(a) If D is a cyclic planar difference set of order n in a cyclic group G, then $(G,\{\{d g: d \in D\}: g \in G\})$ is a cyclic projective plane of order n.
(b) If $\Pi=(\mathcal{P}, \mathcal{L})$ is a cyclic projective plane with Singer cycle $\langle\alpha\rangle$, and $p \in \mathcal{P}, L \in \mathcal{L}$ are arbitrary, then $\left\{\alpha^{i}: p^{\alpha^{i}} \in L\right\}$ is a cyclic planar difference set in $\langle\alpha\rangle$.

A difference set arising from the Singer cycle of $\mathrm{PG}(2, q)$ via construction (b) is called a Singer difference set.

Let G and H be cyclic groups of the same order, and let $D \subset G, E \subset H$ be planar difference sets. Then D and E are called equivalent if there are an isomorphism $\alpha: G \rightarrow H$ and $h \in H$ such that $E=\left\{h d^{\alpha}: d \in D\right\}$. In this case, the projective planes arising from D and E by construction (a) are isomorphic. An isomorphism of these planes is given by $G \rightarrow H, x \mapsto h x^{\alpha}$.

Singer [12] stated that "it seems to be true" that any two cyclic planar difference of the same order are equivalent. The prime power conjecture asserts that the order of any finite projective plane must be a prime power. Combining Singer's conjecture with the prime power conjecture gives the following.

Conjecture 1 Every finite cyclic projective plane is desarguesian.

Conjecture 1 is sometimes attributed to Singer, though, as a matter of fact, Singer did not conjecture that the order of a cyclic projective plane must be a prime power. Anyway, Conjecture 1 is equivalent to the combination of the following statements.
(i) Every cyclic finite projective plane has prime power order.
(ii) The cyclic projective planes of prime power order are all isomorphic.

Statement (i) has been verified by Baumert and Gordon $[1,6]$ for all orders up to $2 \cdot 10^{9}$. It also has been verified for several infinite classes of orders [2]. On the other hand, the results on (ii) do not go further than order 81 and date back to the work of Hall [9] and Bruck [3]. Assertion (ii) was proved by Hall [9] for orders $2,3,4,5,7,8,9,11,13,16,25,27$, and 32 with the help of a computer.

In our view, the known evidence for Conjecture 1 is quite flimsy. It seems that Bruck [3] actually was searching for counterexamples. However, he was not successful, but verified Conjecture 1 for orders 49, 64, and 81. The following statement of Bruck [3] inspired our work.
"It appears to the author that the present results could be extended considerably ... to find what might be called 'counter-examples'."

We will show that the first part of Bruck's statement is correct - unfortunately, we had no success with the second part. We will verify (ii) for orders less than 41 and orders $121,125,128,169,256,1024$.

We will show that this, in particular, implies the uniqueness of a nontrivial difference set in the cyclic group of order $1,049,601$, up to equivalence. To our knowledge, this is by far the largest group which contains a difference set, and for which all difference sets in the group have been classified.

Our main theorems partially rely on extensive computer searches. An independent verification of our results is highly desirable. Therefore, we attach great value to describing our algorithms precisely, and to present the results in a form suitable for easy verification. Furthermore, we tried to keep the paper as self-contained as possible.

2 Preliminaries

We will always identify a subset A of a group G with the element $\sum_{g \in A} g$ of the integral group ring $\mathbb{Z}[G]$. For $\alpha \in \mathbb{Z}$ and the identity element 1 of G, we
simply write α for the group ring element $\alpha 1$. For $B=\sum_{g \in G} b_{g} g \in \mathbb{Z}[G]$ and $t \in \mathbb{Z}$, we write $B^{(t)}:=\sum_{g \in G} b_{g} g^{t}$. A group homomorphism $G \rightarrow H$ is always assumed to be extended to a homomorphism $\mathbb{Z}[G] \rightarrow \mathbb{Z}[H]$ by linearity. For $X \in \mathbb{Z}[G]$ and $g \in G$, the group ring element $X g$ is called a translate of X. In the group ring language, cyclic planar difference sets can be characterized as follows.

Result 2 Let G be a cyclic group of order $n^{2}+n+1$. An $(n+1)$-subset D of G is a cyclic planar difference set if and only if

$$
\begin{equation*}
D D^{(-1)}=n+G \tag{1}
\end{equation*}
$$

Homomorphic images of difference sets satisfy a similar group ring equation and thus are extremely useful.

Result 3 Let G be a cyclic group of order $n^{2}+n+1$, and D be planar difference set in G. Let U be a subgroup of G, and let $\rho: G \rightarrow G / U$ denote the natural epimorphism. Then

$$
\begin{equation*}
\rho(D) \rho(D)^{(-1)}=n+|U|(G / U) . \tag{2}
\end{equation*}
$$

By [8] and [11], we have the following.

Result 4 Let n be a power of a prime p. Every cyclic planar difference set of order n is equivalent to a planar difference set D with $D^{(p)}=D$.

If any counterexample for Conjecture 1 exists, then it necessarily corresponds to a cyclic planar difference set which is not equivalent to a Singer difference set of a desarguesian projective plane. On the other hand, in general, the inequivalence of two difference sets does not imply that the corresponding designs are non-isomorphic. However, as the following result shows, this implication does hold if one of difference sets in question is a Singer difference set of a desarguesian plane. It seems that the validity of this result tacitly has been assumed in some papers, but apparently no proof has been published.

Proposition 5 Let q be a prime power, and let D be a cyclic planar difference set of order q which is not equivalent to a Singer difference set. Then the projective plane generated by D is non-desarguesian.

Proof Let $v=q^{2}+q+1$ and let G be a cyclic group of order v containing D. Assume that D generates a desarguesian plane Π. Then G can be considered as a collineation group of Π and hence as a subgroup of $P \Gamma L(2, q)$ acting sharply transitively on the points of Π, see [4]. By a result of Ellers and Karzel [5] (see [4, p. 34]), G actually must be a subgroup of $\operatorname{PGL}(2, q)$, since G is abelian. Let E be a Singer difference set of Π, and let H be the cyclic subgroup of $P G L(2, q)$ containing E. By [10, Cor. 4.7.], the subgroups G and H are conjugate in $P G L(2, q)$, i.e., there is $\sigma \in P G L(2, q)$ with $H=\sigma^{-1} G \sigma$. Let L be an arbitrary line of Π, and let P be an arbitrary point of L. Then P^{σ} is a point on the line L^{σ}. By replacing D, respectively E, by translates, if necessary, we can assume $D=\left\{g \in G: P^{g} \in L\right\}$, respectively, $E=\left\{h \in H: P^{\sigma h} \in L^{\sigma}\right\}$. Hence we get

$$
\begin{aligned}
E & =\left\{h \in H: P^{\sigma h} \in L^{\sigma}\right\} \\
& =\left\{\sigma^{-1} g \sigma: g \in G, P^{\sigma\left(\sigma^{-1} g \sigma\right)} \in L^{\sigma}\right\} \\
& =\left\{\sigma^{-1} g \sigma: g \in G, P^{g} \in L\right\} \\
& =\sigma^{-1} D \sigma .
\end{aligned}
$$

Since conjugation with σ induces an isomorphism $G \rightarrow H$, this shows that D and E are equivalent, a contradiction.

3 Cyclic planes of square order

3.1 The results of Bruck

The following Results 6-10 are contained in [3]. For the convenience of the reader, we include proofs, since our notation differs from [3].

Throughout this section, we use the following notation. Let q be a prime power, and let G be a cyclic group of order $q^{4}+q^{2}+1$. We write $m=q^{3}$, $s=q^{2}-q+1$, and $t=q^{2}+q+1$.

Result 6 Let D be a planar difference set of order q^{2} in G, and assume $D^{(m)}=D$. Let U be the subgroup of G of order t. Then $D \cap U$ is a planar difference set in U.

Proof For $g \in G$ we write $D g=\{d g: d \in D\}$. Let $\mathcal{L}:=\{D g: g \in$ $\left.G,(D g)^{(m)}=D g\right\}$. Note that $U=\left\{g \in G: g^{m}=g\right\}$ and $\mathcal{L}=\{D u: u \in U\}$. For $u \in U$, we write $\mathcal{L}_{u}=\{L \in \mathcal{L}: u \in L\}$. Let $w \in U$ and $M \in \mathcal{L} \backslash \mathcal{L}_{w}$ be arbitrary. It is straightforward to verify that the map $\mathcal{L}_{w} \rightarrow M \cap U$ sending $L \in \mathcal{L}_{w}$ to the unique point in $L \cap M$ is a well defined bijection. Using this
fact repeatedly, we see that there is a positive integer x such that $\left|\mathcal{L}_{u}\right|=x$ for all $u \in U$ and $|L \cap U|=x$ for all $L \in \mathcal{L}$. Now fix some $u \in U$. Since the lines in \mathcal{L}_{u} cover each point in $U \backslash\{u\}$ exactly once, we get $q^{2}+q=x(x-1)$ and thus $x=q+1$. Since $D \in \mathcal{L}$ by assumption, we infer $|D \cap U|=q+1$. Hence $D \cap U$ is a planar difference set in U.

Result 7 Write $G=\langle\sigma\rangle\langle\tau\rangle$ where σ has order s and τ has order t. Let D be a planar difference set in G satisfying $D^{(m)}=D$. Then there is a function $f_{D}:\{1, \ldots, s-1\} \rightarrow\{0, \ldots, t-1\}$ such that

$$
\begin{equation*}
D=\bar{D}+\sum_{x=1}^{s-1} \sigma^{x} \tau^{f_{D}(x)} \tag{3}
\end{equation*}
$$

where $\bar{D}=D \cap\langle\tau\rangle$.
Proof Recall that \bar{D} is a planar difference set in $\langle\tau\rangle$ by Result 6. Since $\bar{D} \bar{D}^{(-1)}$ covers all elements of $\langle\tau\rangle$, the elements of $D \backslash \bar{D}$ must all belong to different cosets $\neq\langle\tau\rangle$ of $\langle\tau\rangle$ in G. Since there are exactly $s-1$ such cosets and $|D \backslash \bar{D}|=s-1$, the elements of $D \backslash \bar{D}$ represent each coset $\neq\langle\tau\rangle$ of $\langle\tau\rangle$ in G exactly once. This implies the assertion.

Throughout the rest of Section 3, we use the notation introduced in Result 7. For a positive integer r and an integer y, we write

$$
[y]_{r}=\min \{z \in \mathbb{N}: z \equiv y(\bmod r)\} .
$$

Result 8 Assume $D^{(k)}=D$ for some integer k with $(k, s t)=1$. Then

$$
f_{D}\left([k x]_{s}\right) \equiv k f_{D}(x)(\bmod t)
$$

for all $x \in \mathbb{Z}, x \neq 0$. In particular, if $D^{(p)}=D$, then $f_{D}\left([-x]_{s}\right) \equiv$ $f_{D}(x)(\bmod t)$ for all $x \neq 0$.

Proof By (3) we have

$$
\begin{aligned}
\bar{D}^{(k)}+\sum_{x=1}^{s-1} \sigma^{k x} \tau^{k f_{D}(x)} & =\bar{D}+\sum_{x=1}^{s-1} \sigma^{x} \tau^{f_{D}(x)} \\
& =\bar{D}+\sum_{x=1}^{s-1} \sigma^{k x} \tau^{f_{D}\left([k x]_{s}\right)}
\end{aligned}
$$

This implies

$$
\sum_{x=1}^{s-1} \sigma^{k x} \tau^{k f_{D}(x)}=\sum_{x=1}^{s-1} \sigma^{k x} \tau^{f_{D}\left([k x]_{s}\right)}
$$

and thus $f_{D}\left([k x]_{s}\right) \equiv k f_{D}(x)(\bmod t)$ for all $x \neq 0$.
Recall $m=q^{3}$. If $D^{(p)}=D$, then $D^{(m)}=D$, and thus $f_{D}\left([-x]_{s}\right) \equiv$ $f_{D}\left([m x]_{s}\right) \equiv m f_{D}(x) \equiv f_{D}(x)(\bmod t)$.
Result 9 Define $E \subset\{0, \ldots, t-1\}$ by $D \cap\langle\tau\rangle=\sum_{d \in E} \tau^{d}$. The set D given by (3) is a planar difference set if and only if for each $x=1, \ldots, s-1$ the following holds. The t numbers

$$
\begin{align*}
& f_{D}(x)-d, d \in E \\
& d-f_{D}(x), d \in E \tag{4}\\
& f_{D}\left([x+y]_{s}\right)-f_{D}(y), y=1, \ldots, s-1, y \not \equiv-x(\bmod s),
\end{align*}
$$

are pairwise distinct modulo t.

Proof

$$
\begin{aligned}
D D^{(-1)} & =\bar{D} \bar{D}^{(-1)}+\bar{D} \sum_{x=1}^{s-1} \sigma^{-x} \tau^{-f_{D}(x)}+\bar{D}^{(-1)} \sum_{x=1}^{s-1} \sigma^{x} \tau^{f_{D}(x)} \\
& +\sum_{x, y=1}^{s-1} \sigma^{x-y} \tau^{f_{D}(x)-f_{D}(y)} \\
& =q+\langle\tau\rangle+\sum_{x=1}^{s-1} \sum_{d \in E} \sigma^{-x} \tau^{d-f_{D}(x)}+\sum_{x=1}^{s-1} \sum_{d \in E} \sigma^{x} \tau^{f_{D}(x)-d} \\
& +s-1+\sum_{z=1}^{s-1} \sigma^{z} \sum_{\substack{y=1 \\
y \neq-z \bmod s}}^{s-1} \tau^{f_{D}\left([z+y]_{s}\right)-f_{D}(y)} \\
& =q^{2}+\langle\tau\rangle+\sum_{x=1}^{s-1} \sigma^{x}\left(\sum_{d \in E} \tau^{d-f_{D}(x)}+\sum_{d \in E} \tau^{f_{D}(x)-d}+\sum_{\substack{y=1 \\
d \neq-z \bmod s}}^{s-1} \tau^{f_{D}\left([x+y]_{s}\right)-f_{D}(y)}\right)
\end{aligned}
$$

Condition (4) holds if and only if the term in the parenthesis equals $\langle\tau\rangle$ for all $x \neq 0$. This implies the assertion.

Result 10 For $S \subset\langle\tau\rangle$, define

$$
K(S):=\left\{k \in\{0, \ldots, t-1\}: \tau^{2 k} \neq d_{1} d_{2} \text { for all } d_{1}, d_{2} \in S\right\} .
$$

Recall $\bar{D}=D \cap\langle\tau\rangle$. The range of f_{D} is $K(\bar{D})$. Furthermore, $|K(\bar{D})|=$ $(s-1) / 2$, and f_{D} is a two-to-one map.

Proof Let $x \in\{1, \ldots, s-1\}$ be arbitrary. Then

$$
\tau^{f_{D}(x)} d_{1}^{-1} \neq d_{2} \tau^{-f_{D}(x)} \text { for all } d_{1}, d_{2} \in \bar{D}
$$

by Result 9 . Hence the range of f_{D} is a subset of $K(\bar{D})$.
Let $x, y \in\{1, \ldots, s-1\}$ with $x \not \equiv \pm y \bmod s$ be arbitrary. Define $a, b \in$ $\{0, \ldots, s-1\}$ by $x \equiv a+b(\bmod s)$ and $y \equiv a-b(\bmod s)$. Then $a, b \not \equiv$ $0(\bmod s)$ and $a \not \equiv \pm b(\bmod s)$. Note that $f_{D}\left([-b]_{s}\right) \equiv f_{D}(b)(\bmod t)$ by Result 8. Hence

$$
f_{D}\left([a+b]_{s}\right)-f_{D}(b) \not \equiv f_{D}\left([a-b]_{s}\right)-f_{D}(b)(\bmod t)
$$

by Result 9. Since $[a+b]_{s}=x$ and $[a-b]_{s}=y$, this implies $f_{D}(x) \not \equiv$ $f_{D}(y)(\bmod t)$. Since $f_{D}(x) \equiv f_{D}\left([-x]_{s}\right)(\bmod t)$, this shows that f_{D} is a two-to-one mapping. Hence the range of f_{D} has exactly $(s-1) / 2$ elements.

It remains to show $|K(\bar{D})|=(s-1) / 2$. Assume that $d_{1} d_{2}=d_{3} d_{4}$ with $d_{i} \in \bar{D}$ for $i=1,2,3,4$. Then $d_{1} d_{3}^{-1}=d_{4} d_{2}^{-1}$. Since \bar{D} is a planar difference set, this implies $d_{1}=d_{4}$ and $d_{3}=d_{2}$ or $d_{1}=d_{3}$ and $d_{4}=d_{2}$, i.e., $\left\{d_{1}, d_{2}\right\}=$ $\left\{d_{3}, d_{4}\right\}$. Hence $|K(\bar{D})|$ is the t minus the number of unordered pairs of elements from \bar{D}, i.e., $t-(q+1)(q+2) / 2=(s-1) / 2$.

3.2 Cyclic planes of orders 121, 169, 256, and 1024

In this section, we prove some general auxiliary results on cyclic projective planes of square order, and describe the implementation of complete searches for cyclic projective planes of orders $121,169,256$, and 1024. Our searches are based on the results of Section 3.1 and the following result of Hall [8].

Result 11 Every cyclic projective plane of order at most 16 and of order 32 is desarguesian.

Throughout this section, we use the notation introduced in Section 3.1. We write $q=p^{a}$ where p is a prime. Recall that $G=\langle\sigma\rangle\langle\tau\rangle$ denotes a cyclic group of order $q^{4}+q^{2}+1$, and σ, respectively τ, is an element of G or order $s=q^{2}-q+1$, respectively $t=q^{2}+q+1$.

Lemma 12 Let $q=p^{a}$ where p is a prime and $q \leq 16$ or $q=32$. Let D_{q} be an arbitrary planar difference set of order q in $\langle\tau\rangle$ satisfying $D_{q}^{(p)}=D_{q}$. Any cyclic planar difference set of order q^{2} is equivalent to a difference set D satisfying

$$
\begin{equation*}
D^{(p)}=D \text { and } D \cap\langle\tau\rangle=D_{q} . \tag{5}
\end{equation*}
$$

Proof Let F be a cyclic planar difference set of order q^{2}. Result 4 shows that F is equivalent to a difference set F_{1} with $F_{1}^{(p)}=F_{1}$. Proposition 5, Result 6, and Result 11 imply that $F_{1} \cap\langle\tau\rangle$ and D_{q} are equivalent difference sets. Hence there are $g \in\langle\tau\rangle$ and an integer r with $(r, t)=1$ such that $\left(F_{1} \cap\langle\tau\rangle\right)^{(r)} g=D_{q}$. Since $F_{1}^{(p)}=F_{1}$ and $D_{q}^{(p)}=D_{q}$, we have $g=1$. Hence $D=F_{1}^{(r)}$ satisfies (5).

From now on, let D be a cyclic planar difference set of order q^{2} in G satisfying (5), let f_{D} be the corresponding function defined in Result 7, and let $K(\bar{D})$ be defined as in Result 10.

Let r be any positive integer. We define an r-cycle as an orbit of multiplication with $p \bmod r$ on $\{0, \ldots, r-1\}$, i.e., a subset of $\{0, \ldots, r-1\}$ of the form $\left\{\left[x p^{i}\right]_{r}: i \in \mathbb{N}\right\}$ for some $x \in\{0, \ldots, r-1\}$.

Since D satisfies (5), we infer that $K(\bar{D})$ is a union of t-cycles. A t-cycle contained in $K(\bar{D})$ is called a $K(\bar{D})$-cycle.

Lemma 13 Let O be any s-cycle. Then $f_{D}(O)$ is a $K(\bar{D})$-cycle, and

$$
O \rightarrow f_{D}(O), x \mapsto f_{D}(x)
$$

is a two-to-one map. Furthermore, the map F_{D} from the set of s-cycles $\neq\{0\}$ to the set of $K(\bar{D})$-cycles induced by f_{D} is a bijection.

Proof Since $D^{(p)}=D$, Result 8 shows that $f_{D}(O)$ is a $K(\bar{D})$-cycle for every s-cycle O. By Result 10, the map F_{D} is surjective. Let $x, y \in\{0, \ldots, s-1\}$ with $f_{D}(x)=f_{D}(y)$. By the proof of Result 10, this implies $x \equiv-y(\bmod s)$. Since $q^{3} \equiv-1(\bmod s)$, the elements x and y are contained in the same s cycle. This shows that F_{D} is injective. Since f_{D} is a two-to-one map by Result 10, we infer that $O \rightarrow f_{D}(O), x \mapsto f_{D}(x)$ is also a two-to-one map for each s-cycle O.

Lemma 14 If $q \equiv 2(\bmod 3)$, then there is an s-cycle O containing exactly two elements, and we have $f_{D}(x)=0$ for $x \in O$.

Proof Since $q \equiv 2(\bmod 3)$, we have $s \equiv 0(\bmod 3)$, and $O=\{s / 3,2 s / 3\}$ is an s-cycle. Since $O \rightarrow f_{D}(O), x \mapsto f_{D}(x)$ is a two-to-one map, $f_{D}(O)$ is a $K(\bar{D})$-cycle containing only one element. Hence $f_{D}(x)=0$ for $x \in O$.

Let \mathbb{Z}_{s}^{*} denote the multiplicative group of integers $\bmod s$. Note that \mathbb{Z}_{s}^{*} acts by multiplication $\bmod s$ on the set $\{1, \ldots, s-1\}$, and this induces an action of \mathbb{Z}_{s}^{*} on the set of s-cycles.

Lemma 15 Let $M=M_{1} \cup \cdots \cup M_{c}$ be the set of s-cycles, where M_{1}, \ldots, M_{c} are the orbits of the \mathbb{Z}_{s}^{*} action on M. For $i=1, \ldots, c$, let $O_{i} \in M_{i}$ and $x_{i} \in O_{i}$ be arbitrary. Let O be any $K(\bar{D})$-cycle, and let $y \in O$ be arbitrary.

Let E be an arbitrary cyclic planar difference set of order q^{2}. Then there is $j \in\{1, \ldots, c\}$ with $\left|O_{j}\right|=2|O|$ such that E is equivalent to a difference set D satisfying (5) and $f_{D}\left(x_{j}\right)=y$.

Proof Let D be any cyclic planar difference set of order q^{2} satisfying (5). It suffices to show that there are $j \in\{1, \ldots, c\}$ and positive integer r coprime to $s t$ with $f_{D^{(r)}}\left(x_{j}\right)=y$. Since O is contained in $K(\bar{D})$, and $K(\bar{D})$ is the range of f_{D}, there is $x \in\{1, \ldots, s-1\}$ with $f_{D}(x)=y$. Let $s(x)$ denote the s-cycle containing x. Then $s(x) \rightarrow O, z \mapsto f(z)$ is a two-to-one map by Lemma 13. Hence $|s(x)|=2|O|$. Furthermore, by the definition of the x_{i}, there are $j \in\{1, \ldots, c\}$ and an integer r with $(r, s)=1, r \equiv 1(\bmod t)$, and $r x \equiv x_{j}(\bmod s)$. Note $\left|O_{j}\right|=|s(x)|=2|O|$. Moreover,

$$
D^{(r)}=D_{q}+\sum_{z=1}^{s-1} \sigma^{r z} \tau^{f_{D}(z)}=D_{q}+\sum_{z=1}^{s-1} \sigma^{z} \tau^{f_{D}\left(\left[r_{1} z\right]_{s}\right)}
$$

where r_{1} is an integer with $r r_{1} \equiv 1(\bmod s)$. This implies $f_{D^{(r)}}\left(x_{j}\right)=$ $f_{D}\left(\left[r_{1} x_{j}\right]_{s}\right)=f_{D}(x)=y$.

Proposition 16 Assume that s is a prime, and let D_{q} be an arbitrary planar difference set of order q in $\langle\tau\rangle$ with $D_{q}^{(p)}=D_{q}$. Let $y \in K\left(D_{q}\right)$ be arbitrary. Then every cyclic planar difference set of order q^{2} is equivalent to a difference set D satisfying (5) and $f_{D}(1)=y$. Furthermore, any two distinct difference sets D satisfying (5) and $f_{D}(1)=y$ are inequivalent.

Proof Note that we have $c=1$ in Lemma 15 since s is a prime. Thus, choosing $x_{j}=1$ in Lemma 15 shows that every cyclic planar difference set of order q^{2} is equivalent to a difference set D satisfying (5) and $f_{D}(1)=y$. Now let D and D^{\prime} be any two distinct difference sets satisfying (5) and $f_{D}(1)=f_{D^{\prime}}(1)=y$. Assume that D and D^{\prime} are equivalent. Then there are $g \in G$ and $r \in \mathbb{Z}$ with $(r, s t)=1$ and

$$
\begin{equation*}
D^{\prime}=g D^{(r)} . \tag{6}
\end{equation*}
$$

Since $\langle\tau\rangle$ is the only coset of $\langle\tau\rangle$ which contains more than one element of D, respectively D^{\prime}, this implies $g \in\langle\tau\rangle$. Hence (6) implies $D_{q}=g D_{q}^{(r)}$. By a result of $[7]$, we have $r \equiv p^{j}(\bmod t)$ for some $j \in \mathbb{N}$. Since $D_{q}^{(p)}=D_{q}$,
we get $D_{q}=g D_{q}$ and thus $g=1$. Hence $D^{\prime}=D^{(r)}$. Let $r_{1} \in\{1, \ldots, s-1\}$ with $r r_{1} \equiv 1(\bmod s)$. By (3) and since $D^{\prime}=D^{(r)}$, we have $f_{D^{\prime}}(1) \equiv$ $r f_{D}\left(r_{1}\right) \equiv p^{j} f_{D}\left(r_{1}\right)(\bmod t)$. In view of Result 8 and $f_{D}(1)=f_{D^{\prime}}(1)=$ y, this implies $f_{D}\left(\left[p^{j} r_{1}\right]_{s}\right)=f_{D}(1)$. From Results 8 and 10 , we conclude $\pm p^{j} r_{1} \equiv 1(\bmod s)$ and thus $r \equiv \pm p^{j}(\bmod s)$. Recall $r \equiv p^{j}(\bmod t)$, $q^{3} \equiv-1(\bmod s)$, and $q^{3} \equiv 1(\bmod t)$. We infer $r \equiv p^{e}(\bmod s t)$ for some positive integer e. But this implies $D^{\prime}=D$, a contradiction.

Proposition 16 is very useful since it shows that, in the case where D_{q} is unique up to equivalence and s is a prime, the number of nonisomorphic cyclic projective planes of order q^{2} coincides with the number of functions f satisfying Result 9 with $D \cap\langle\tau\rangle=D_{q}$, Result 8 for $k=p^{j}, j \in \mathbb{N}$, and $f_{D}(1)=y$. Thus, in this case, all cyclic projective planes of order q^{2} are desarguesian if and only if a function f_{D} satisfying these conditions is unique.

The following gives a similar result for the case where $s / 3$ is a prime. The proof is similar to, but more tedious than the proof of Proposition 16 and is skipped.

Proposition 17 Assume that $s=3 r$ where $r>3$ is a prime, and let D_{q} be an arbitrary planar difference set of order q in $\langle\tau\rangle$ with $D_{q}^{(p)}=D_{q}$. Let $A \subset\{1, \ldots, s-1\}$ with $|A|=r-1$ such that

$$
A \cup\left\{[(r+1) a]_{s}: a \in A\right\}=\{x \in\{1, \ldots, s-1\}:(x, s)=1\} .
$$

Let $y \in K\left(D_{q}\right)$ be arbitrary.
Every cyclic planar difference set of order q^{2} is equivalent to a difference set D satisfying (5) and one of the following conditions.
(i) $f_{D}(1)=y$,
(ii) $f_{D}(3)=y$ and $f_{D}(a)=\min \left\{f_{D}(x): x \in\{1, \ldots, s-1\},(x, s)=1\right\}$ for some $a \in A$.

Furthermore, any two distinct difference sets D satisfying (5) and one of the conditions (i) or (ii) are inequivalent.

Before describing our algorithm, we introduce some notation. By D_{q} we denote an arbitrary planar difference set of order q in $\langle\tau\rangle$ with $D_{q}^{(p)}=D_{q}$, and define $E \subset\{0, \ldots, t-1\}$ by $D_{q} \cap\langle\tau\rangle=\sum_{d \in E} \tau^{d}$. We consider the following modification of the condition in Result 9.

Let M be a subset of $\{1, \ldots, s-1\}$, and let $f:\{1, \ldots, s-1\} \rightarrow\{0, \ldots, t-1\}$ be a function. For $x \in\{1, \ldots, s-1\}$ we define a multiset M_{x} by

$$
M_{x}=\left\{\begin{aligned}
\bigcup_{d \in E}\left\{[f(x)-d]_{t},[d-f(x)]_{t}\right\}, & \text { if } x \in M, \\
\emptyset, & \text { if } x \notin M .
\end{aligned}\right.
$$

We say that the condition $C(M)$ is satisfied for f if, for every $x=1, \ldots, s-1$, the multiset

$$
M_{x} \cup\left\{[f(x+y)-f(y)]_{s}: y \in M, x+y \in M\right\}
$$

does not contain any element with multiplicity ≥ 2.
For $y \in K\left(D_{q}\right)$, let $K(y)$ denote the $K\left(D_{q}\right)$-cycle containing y. For $a \in\{1, \ldots, s-1\}$, let $s(a)$ denote the s-cycle containing a.

The correctness of the following algorithm follows from the results of Section 3.1 and Lemma 14.

Algorithm 18

Input: $q=p^{a}$ where p is a prime, a planar difference set D_{q} of order q in $\langle\tau\rangle$ with $D_{q}^{(p)}=D_{q}$, an s-cycle S with $|S|>2$, and a k-cycle K with $|K|=|S| / 2$
Output: A set \mathcal{S} such that every cyclic planar difference set D of order q^{2} with $D \cap\langle\tau\rangle=D_{q}$ and $f_{D}(S)=K$ is equivalent to an element of \mathcal{S}

Initialization:

1. $\mathcal{S}:=\emptyset ; M:=\emptyset$.
2. Let $\left\{S_{1}, \ldots, S_{b}\right\}$ be the set of all s-cycles, and choose the numbering such that $S_{1}=S$ and $S_{b}=\min \left\{\left|S_{i}\right|:=i=1, \ldots, b\right\}$. For $i=1, \ldots, b$, choose $s_{i} \in S_{i}$ arbitrarily.
3. If $q \not \equiv 2(\bmod 3)$, set $c:=b$. If $q \equiv 2(\bmod 3)$, set $c:=b-1, f(x):=0$ for $x \in S_{b}$ and $M:=M \cup S_{b}$.
4. Choose $y \in K$ arbitrarily, set $f\left(\left[p^{i} s_{1}\right]_{s}\right):=\left[p^{i} y\right]_{t}, i=0, \ldots,|S|-1$, and $M:=M \cup S$.
5. Set $R:=K\left(D_{q}\right) \backslash(K \cup\{0\})$, and $L:=2$.

Main Step:

(i) If $L=c+1$, then add $D_{q} \cup \bigcup_{i=1}^{s-1} \sigma^{x} \tau^{f(x)}$ to \mathcal{S}, set $L:=L-1$, $R:=R \cup K\left(f\left(s_{L}\right)\right), M:=M \backslash^{i=1} S_{L}$.
(ii) Repeat until $L=1$ or $f\left(s_{L}\right)<\max (R)$: Set $f\left(s_{L}\right):=-1, L:=L-1, R:=R \cup K\left(f\left(s_{L}\right)\right), M:=M \backslash S_{L}$.
(iii) If $L=1$, then terminate and output \mathcal{S}.
(iv) Set $y:=\min \left\{r \in R: r>f\left(s_{L}\right)\right\}$ and $f\left(\left[p^{i} s_{L}\right]_{s}\right):=\left[p^{i} y\right]_{t}$ for $i=$ $0, \ldots,\left|S_{L}\right|-1$.
(v) Set $M^{\prime}:=M \cup S_{L}$. If $C\left(M^{\prime}\right)$ holds for f, then set $M:=M^{\prime}, R:=$ $R \backslash K(y), L:=L+1$.
(vi) Go to step (i).

We now describe the application of Algorithm 18 to the cases $q=11,13$, 16, and 32. The difference set $D_{q} \subset\langle\tau\rangle$ will be specified by giving the set $E \subset\{0, \ldots, t-1\}$ with $D_{q}=\sum_{d \in E} \tau^{d}$. The functions $f:\{1, \ldots, s-1\} \rightarrow$ $K\left(D_{q}\right)$ computed by Algorithm 18 are given in the form $f(1) \cdots f(s-1)$ (values separated by spaces).

1. $q=11$. We choose $E=\{1,11,16,40,41,43,52,60,74,78,121,128\}$. Since $s=3 \cdot 37$, we can apply Proposition 17. We take $y=4$ and choose A such that $4 \in A$ and thus $41=[4(1+s / 3)]_{s} \notin A$. The application of Algorithm 18 shows that there is no cyclic planar difference set D of order 11^{2} satisfying (5) and $f_{D}(1)=y$. Moreover, there is a unique D satisfying (5), $f_{D}(3)=4$, and $f_{D}(4)=\min \left\{f_{D}(x): x \in\{1, \ldots, s-1\},(x, s)=1\right\}$. According to Proposition 17 , this shows that there is exactly one cyclic planar difference set of order 11^{2}, up to equivalence. The following are the values of the unique function f_{D} for which (5) holds, and which satisfies $f_{D}(3)=4$, and $f_{D}(4)=\min \left\{f_{D}(x): x \in\{1, \ldots, s-1\},(x, s)=1\right\}$.

13174571105322530110106411577291288120836239549 1233611912910078599684486378903551731523495591132112 4812279708130531161165313087079122481121329155492315 73513508937864468998571001291193612395439628312088 122977115641011030253210571541713
2. $q=13$. Let $E=\{0,2,3,10,26,39,43,61,109,121,130,136,141,155\}$. Since $s=157$ is a prime, we can apply Proposition 16. We take $y=8$. The application of Algorithm 18 shows that there is exactly one cyclic planar difference set D of order 13^{2} satisfying (5) and $f_{D}(1)=y$. According to Proposition 16, this shows that there is exactly one cyclic planar difference set of order 13^{2}, up to equivalence. The following are the values of the unique function f_{D} for which (5) holds, and which satisfies $f_{D}(1)=8$.

884158319352553381157711049134879655424620154137 10511717714317248102581291496063156299512128771072767 171361201191740331641404930139160103145100173867515064 14218022168241445916881104516689891664511088165914424 168221801426415075861731001451031601393049140164334017 1191203617167271077712812952915663601491295810248172 143177117105137154204642559687134910471571138532535 198315848
3. $q=16$. Let
$E=\{39,78,156,91,182,17,34,68,136,272,271,269,265,257,241,209,145\}$. Since $s=241$ is a prime, we can apply Proposition 16. We take $y=3$. The application of Algorithm 18 shows that there is exactly one cyclic planar difference set D of order 16^{2} satisfying (5) and $f_{D}(1)=y$. According to Proposition 16, this shows that there is exactly one cyclic planar difference set of order 16^{2}, up to equivalence. The following are the values of the unique function f_{D} for which (5) holds, and which satisfies $f_{D}(1)=3$.

36501219810018524238123202001579722248187203188246 163401671276341421949817126296551017113311610322219231 53158802426124525419712629821618410911524419618669149 251519247110147202861421762662122321832061054411416557 1892281068843210160139211931221912171512352591217925211 58172164131492116822021894230111215101192299925138138 259922911910215111230942182201682149131164172581125279 12125923515121719112293211139160210438810622818957165 114441052061832322122661761428620214711047192525114969 186196244115109841618229126197254245612428015853231219 221031161337110155962621719819442416312716740163246188 20318748222971572002012323824185100198125063
3. $q=32$. Let
$E=\{1,2,4,8,16,32,55,64,110,128,139,220,256,278,299,339,349,440,453$, $512,529,556,598,678,698,703,755,793,880,906,925,991,1024\}$. Since $s=$
$3 \cdot 331$, we can apply Proposition 17. We take $y=297$ and choose A such that $113 \in A$ and thus $775=[113(1+s / 3)]_{s} \notin A$. The application of Algorithm 18 shows that there is no cyclic planar difference set D of order 32^{2} satisfying (5) and $f_{D}(1)=y$. Moreover, there is a unique D satisfying (5), $f_{D}(3)=297$, and $f_{D}(113)=\min \left\{f_{D}(x): x \in\{1, \ldots, s-1\},(x, s)=1\right\}$. According to Proposition 17, this shows that there is exactly one cyclic planar difference set of order 32^{2}, up to equivalence. The following are representatives of the values of the unique function f_{D} for which (5) holds, and which satisfies $f_{D}(3)=297$, and $f_{D}(113)=\min \left\{f_{D}(x): x \in\{1, \ldots, s-1\},(x, s)=1\right\}$. The remaining values of f_{D} can be determined by Result 8 .

x	1	3	5	7	9	11	13	15	17	19	21	23
$f(x)$	168	297	594	1012	161	251	675	832	1030	823	659	984
x	25	27	29	37	41	43	45	49	51	53	55	57
$f(x)$	432	1020	871	370	497	318	597	601	843	50	67	966
x	67	69	71	73	75	83	87	103	149	331		
$f(x)$	746	369	587	820	869	499	540	408	493	0		

These results lead to the following.
Theorem 19 Let q be a prime power such that $q \leq 16$ or $q=32$. Then every cyclic projective plane of order q^{2} is desarguesian.

Proof For $q \leq 9$, this was shown by Bruck [3]. The cases $q=11,13,16,32$ have been dealt with above.

Remark 20 Using Algorithm 18, we have independently verified all results of Bruck [3].

Corollary 21 The cyclic group of order $v=1,049,601$ contains a unique nontrivial difference set, up to equivalence.

Proof It is straightforward the check that, up to taking complements, we have $k \in\{1025,460800,461825\}$ if a (v, k, λ) difference set exists (see [2] for the definitions). Note that $v=q^{2}+q+1$ where $q=1024$. Theorem 19 and Proposition 5 imply that there is a unique (v, k, λ) difference with $k=1025$ cyclic group of order v. The Mann Test (see [2]) shows that there is no (v, k, λ) difference with $k \in\{460800,461825\}$ in this group.

4 Cyclic planes of nonsquare order

In this section, we use a depth first search algorithm together with homomorphic images to search for cyclic planes of order less than 41 and of orders 125 and 128. We first introduce some notation.

Let D be a subset of a cyclic group. We say that the condition $\Gamma(D)$ holds if $d_{1} d_{2}^{-1} \neq d_{3} d_{4}^{-1}$ for all $d_{1}, \ldots, d_{4} \in D$ with $d_{1} \neq d_{2}$.

Algorithm 22 (Depth first search for cyclic planes)

Input: $q=p^{a}$ where p is prime.
Output: A set \mathcal{S} such that every cyclic planar difference set of order q is equivalent to an element of \mathcal{S}

Initialization:

1. Let G be a cyclic group of order $q^{2}+q+1$, and let O_{1}, \ldots, O_{t} be the orbits of $x \mapsto x^{p}$ on G.
2. Set $\mathcal{S}:=\emptyset, D:=\emptyset, L:=1$, and $f(x):=0, x=1, \ldots, t$.

Main Step:

(i) If $|D|=q+1$, then set $\mathcal{S}:=\mathcal{S} \cup\{D\}, L:=L-1, D:=D \backslash O_{f(L)}$.
(ii) Repeat until $L=0$ or $f(L)<t$: $f(L):=0, L:=L-1$. If $L>0$, then set $D:=D \backslash O_{f(L)}$.
(iii) If $L=0$, then output \mathcal{S} and terminate the execution of the algorithm.
(iv) Set $y:=f(L)+1$. If $f(L)>0$, then set $E:=\left(D \backslash O_{f(L)}\right) \cup O_{y}$. If $f(L)=0$, then set $E:=D \cup O_{y}$.
(v) Set $f(L):=f(L)+1$.
(vi) If $\Gamma(E)$ holds, then set $D:=E, L:=L+1$.
(vii) Go to step (i).

The correctness of Algorithm 22 can be proved using the definition of a planar difference set and Result 4. For $q \leq 19$ and $q=128$, a straightforward implementation of Algorithm 22 on a PC is sufficient to find all planar difference sets of order q up to equivalence. All difference sets found are equivalent to Singer difference sets. Thus all cyclic projective planes of order at most 19 and of order 128 are desarguesian.

For $q=23,29,31,37,125$, we can use the results below to speed up Algorithm 22.

We first introduce some notation. Let $q=p^{a}$ where p is a prime, $v=$ $q^{2}+q+1$, and let $G=\langle g\rangle$ be a cyclic group of order v. Let u be a divisor of v and $x \in\{0, \ldots, u-1\}$. We set

$$
\mathcal{O}(x, q, u)=\left\{\left\{g^{y p^{t}}: t \in \mathbb{N}\right\}: y \in \mathbb{Z}, y \equiv x(\bmod u)\right\}
$$

The elements of $\mathcal{O}(x, q, u)$ will be called orbits since they are orbits of the map $z \mapsto z^{p}$ on G.

Lemma 23 Let $q=23, v=q^{2}+q+1$, and let $G=\langle g\rangle$ be a cyclic group of order v. Every planar difference set of order q in G is equivalent to a difference set D with $D=D^{(q)}$ which contains $\left\{g, g^{23}, g^{489}\right\}$, two further orbits in $\mathcal{O}(1,23,7)$ and five orbits in $\mathcal{O}(3,23,7)$.

Proof By Result 4 we can assume $D=D^{(23)}$. Let U be the subgroup of G of order 79. Let $\rho: G \rightarrow G / U$ be the natural epimorphism, and write $\rho(D)=\sum_{i=0}^{6} a_{i} h^{i}$ where $a_{i} \in \mathbb{Z}$ and h is a generator of G / U. As $D^{(23)}=D$, we have $\rho(D)^{(2)}=\rho(D)$, and thus $a_{1}=a_{2}=a_{4}$ and $a_{3}=a_{6}=a_{5}$. Since $|D|=24$, we have $\sum a_{i}=24$. Comparing the coefficient of the identity element in (2), we get $\sum a_{i}^{2}=23+79=102$. The only solutions to these conditions are $a_{0}=0, a_{1}=a_{2}=a_{4}=3, a_{3}=a_{6}=a_{5}=5$ and $a_{0}=0$, $a_{1}=a_{2}=a_{4}=5, a_{3}=a_{6}=a_{5}=3$. Replacing D by $D^{(3)}$, if necessary, we can assume $a_{0}=0, a_{1}=a_{2}=a_{4}=3$, and $a_{3}=a_{6}=a_{5}=5$. Note that every orbit in $\mathcal{O}(1,23,7)$ contained in D contributes exactly 1 to a_{1}, a_{2}, and a_{4}. Similarly, every orbit in $\mathcal{O}(3,23,7)$ contained in D contributes exactly 1 to a_{3}, a_{6}, and a_{5}. Thus D consists of three orbit in $\mathcal{O}(1,23,7)$ and five orbit in $\mathcal{O}(3,23,7)$. At least one element of $\mathcal{O}(1,23,7)$ contained in D, say O, contains a group element g^{x} with $(x, 533)=1$. Thus there is an integer y with $y \equiv 1(\bmod 7)$ and $(y, 533)=1$ such that $g^{y} \in O$. Let t be an integer with $t \equiv 1(\bmod 7)$ and $t y \equiv 1(\bmod 79)$. Replacing D by $D^{(t)}$, if necessary, we can assume $g^{t y}=g \in D$. Since $D=D^{(23)}$, this implies $\left\{g, g^{23}, g^{489}\right\} \subset D$.

Lemma 24 Let $q=29, v=q^{2}+q+1$, and let $G=\langle g\rangle$ be a cyclic group of order v. Every planar difference set of order q in G is equivalent to a difference set D with $D=D^{(q)}$ which contains $\left\{g^{2}, g^{58}, g^{811}\right\}$, one further orbit in $\mathcal{O}(2,29,13)$, three orbits in $\mathcal{O}(0,29,13)$, three orbits in $\mathcal{O}(4,29,13)$, and four orbits in $\mathcal{O}(7,29,13)$.

Proof By Result 4 we can assume $D=D^{(29)}$. Let U be the subgroup of G of order 67. Let $\rho: G \rightarrow G / U$ be the natural epimorphism, and write $\rho(D)=\sum_{i=0}^{12} a_{i} h^{i}$ where $a_{i} \in \mathbb{Z}$ and h is a generator of G / U. As $D^{(29)}=D$, we have $\rho(D)^{(3)}=\rho(D)$, and thus $a_{1}=a_{3}=a_{9}, a_{2}=a_{6}=a_{5}, a_{4}=a_{12}=a_{10}$, and $a_{7}=a_{8}=a_{11}$. Since $|D|=30$, we have $\sum a_{i}=30$. Comparing the coefficient of the identity element in (2), we get $\sum a_{i}^{2}=29+67=96$. There are exactly 30 solutions (a_{0}, \ldots, a_{12}) to these conditions, and the only solutions which satisfy (2) are given in the following table (the values of the other a_{i} 's can be deduced from the equations above).

a_{0}	a_{1}	a_{2}	a_{4}	a_{7}
3	0	2	3	4
3	4	0	2	3
3	3	4	0	2
3	2	3	4	0

Replacing D by $D^{(2)}$, $D^{(4)}$, or $D^{(8)}$, if necessary, we can assume $a_{0}=3$, $a_{1}=0, a_{2}=2, a_{4}=3$, and $a_{7}=4$. Note that, for $x \in\{0,1,2,4,7\}$ every orbit in $\mathcal{O}(x, 29,13)$ contained in D contributes exactly 1 to a_{x}. This implies that D contains three orbits in $\mathcal{O}(0,29,13)$, two orbits in $\mathcal{O}(2,29,13)$, three orbits in $\mathcal{O}(4,29,13)$, and four orbits in $\mathcal{O}(7,29,13)$.

At least one orbit in $\mathcal{O}(2,29,13)$ contained in D, say O, contains an element g^{x} with $(x, 871)=1$. Thus there is an integer y with $y \equiv 2(\bmod 13)$ and $(y, 871)=1$ such that $g^{y} \in O$. Let t be an integer with $t \equiv 1(\bmod 13)$ and $t y \equiv 2(\bmod 67)$. Replacing D by $D^{(t)}$, if necessary, we can assume $g^{t y}=g^{2} \in D$. Since $D=D^{(29)}$, this implies $\left\{g^{2}, g^{58}, g^{811}\right\} \subset D$.

The following three lemmas can be proved by similar arguments, and we skip their proof.

Lemma 25 Let $q=31, v=q^{2}+q+1$, and let $G=\langle g\rangle$ be a cyclic group of order v. Every planar difference set of order q in G is equivalent to a difference set D with $D=D^{(q)}$ which contains $\left\{g^{331}, g^{662}\right\}$, four orbits in $\mathcal{O}(0,31,3)$ different from $\{1\}$, four orbits in $\mathcal{O}(1,31,3)$ different from $\left\{g^{331}\right\}$, and two orbits in $\mathcal{O}(2,31,3)$ different from $\left\{g^{662}\right\}$.

Lemma 26 Let $q=37, v=q^{2}+q+1$, and let $G=\langle g\rangle$ be a cyclic group of order v. Every planar difference set of order q in G is equivalent to a difference set D with $D=D^{(q)}$ which contains $\left\{g^{469}, g^{938}\right\}$ and satisfies one of the following conditions.
(i) For $x \in\{4,6,17,18,25,27,30,41\}$, the difference set D contains $N(x)$ orbits in $\mathcal{O}(x, 37,67)$ where $N(x)$ is given in the following table.

x	4	6	15	17	18	25	27	30	41
$f(x)$	2	1	2	2	1	1	1	1	1

(ii) The difference set D contains one orbit in $\mathcal{O}(0,37,67)$ different from $\{0\},\left\{g^{469}\right\}$, and $\left\{g^{938}\right\}$ and exactly one orbit from $\mathcal{O}(x, 37,67)$ for each $x \in\{2,3,5,8,12,18,27,30,32,34,41\}$.

Lemma 27 Let $q=125, v=q^{2}+q+1$, and let $G=\langle g\rangle$ be a cyclic group of order v. Every planar difference set of order q in G is equivalent to a difference set D with $D=D^{(5)}$ which contains exactly two orbits from $\mathcal{O}(1,125,829)$.

Using Lemmas 23-27 to reduce the number of choices for the orbits in Algorithm 22 dramatically narrows the search space. For instance, a complete search for cyclic projective planes of order 37 using Lemma 26 takes less than three seconds on a PC. Straightforward implementations show that all cyclic planar difference sets of orders $23,29,31,37$, and 125 are equivalent to Singer difference sets. Summarizing the results of this section, we have the following.

Theorem 28 Every cyclic projective plane of order at most 37 and of order 125 or 128 is desarguesian.

References

[1] L.D. Baumert, D.M. Gordon: On the existence of cyclic difference sets with small parameters. In: High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams, Fields Inst. Commun. 41 (2004), 61-68.
[2] T. Beth, D. Jungnickel, H. Lenz: Design Theory (2nd edition), Cambridge University Press 1999.
[3] R.H. Bruck: Quadratic Extensions of Cyclic Planes. Proc. Sympos. appl. Math. 10 (1960), 15-44.
[4] P. Dembowski: Finite geometries. Repr. of the 1968 ed. Springer (1997).
[5] E. Ellers, H. Karzel: Endliche Inzidenzgruppen. Abh. Math. Semin. Univ. Hamb. 27 (1964), 250-264.
[6] D.M. Gordon: The prime power conjecture is true for $n<2,000,000 . J$. Comb. 1 (1994), 101-107.
[7] B. Gordon, W.H. Mills, L.R. Welch: Some new difference sets. Canad. J. Math. 141962 614-625.
[8] M. Hall: Cyclic projective planes. Duke Math. J. 14 (1947), 1079-1090.
[9] M. Hall: A survey of difference sets. Proc. Am. Math. Soc. 7 (1957), 975-986.
[10] J.W.P. Hirschfeld: Projective geometries over finite fields. 2nd ed. Oxford Mathematical Monographs. Clarendon Press 1998.
[11] R.L. McFarland, B.F. Rice: Translates and multipliers of abelian difference sets. Proc.Amer. Math. Soc. 68 (1978), 375-379.
[12] J. Singer: A theorem in finite projective geometry and some applications to number theory. Trans. Amer. Math. Soc. 43 (1938), 377-385.

