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Abstract

For n < 41 and for n ∈ {121, 125, 128, 169, 256, 1024}, every cyclic
projective plane of order n is desarguesian. In particular, the cyclic
group of order 1, 049, 601 contains a unique nontrivial difference set,
up to equivalence.

1 Introduction

A finite projective plane Π = (P,L) of order n consists of an (n2 +n+1)-set
P, whose elements are called points, and an (n2 + n + 1)-set L of (n + 1)-
subsets of P, whose elements are called lines, such that any two points are
contained in exactly one line. A collineation of Π is a bijection α : P → P
such that {pα : p ∈ L} is a line for every L ∈ L. Two projective planes
(P,L) and (P ′,L′) are called isomorphic if there is a bijection γ : P → P ′

such that {pγ : p ∈ L} ∈ L′ for all L ∈ L.
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Let Π = (P,L) be a projective plane of order n. If there is a collineation
α of Π such that, for all p, q ∈ P , there is exactly one i ∈ {0, ..., n2 +n} with
pαi

= q, then Π is called cyclic projective plane. In this case, α generates a
cyclic group of collineations order n2 + n + 1 which is called a Singer cycle
of Π.

For every prime power q, a projective plane of order q, denoted by
PG(2, q), can be constructed as follows. The points are the one-dimensional,
and the lines are the two-dimensional subspaces of Fq3 , viewed as an Fq-vector
space. Incidence is given by set-theoretic containment. A projective plane
isomorphic to PG(2, q) is called desarguesian. It was discovered by Singer
[12] that all desarguesian projective planes are cyclic. This can be seen as
follows. Let α be a collineation of PG(2, q) induced by multiplication with a
primitive element of Fq3 . Then 〈α〉 is a Singer cycle of PG(2, q).

Singer [12] introduced the notion of difference sets to describe cyclic pro-
jective planes. In today’s language, a planar difference of order n is an
(n+1)-subset D of a group G of order n2 +n+1 such that every nonidentity
element g of G has exactly one representation g = d1d

−1
2 with d1, d2 ∈ D.

If G is a cyclic group, then D is called a cyclic planar difference set. The
following are straightforward to verify.

(a) If D is a cyclic planar difference set of order n in a cyclic group G, then
(G, {{dg : d ∈ D} : g ∈ G}) is a cyclic projective plane of order n.

(b) If Π = (P,L) is a cyclic projective plane with Singer cycle 〈α〉, and
p ∈ P , L ∈ L are arbitrary, then {αi : pαi ∈ L} is a cyclic planar
difference set in 〈α〉.

A difference set arising from the Singer cycle of PG(2, q) via construction
(b) is called a Singer difference set.

Let G and H be cyclic groups of the same order, and let D ⊂ G, E ⊂ H
be planar difference sets. Then D and E are called equivalent if there are
an isomorphism α : G → H and h ∈ H such that E = {hdα : d ∈ D}. In
this case, the projective planes arising from D and E by construction (a) are
isomorphic. An isomorphism of these planes is given by G → H, x �→ hxα.

Singer [12] stated that “it seems to be true” that any two cyclic planar
difference of the same order are equivalent. The prime power conjecture
asserts that the order of any finite projective plane must be a prime power.
Combining Singer’s conjecture with the prime power conjecture gives the
following.

Conjecture 1 Every finite cyclic projective plane is desarguesian.

2



Conjecture 1 is sometimes attributed to Singer, though, as a matter of
fact, Singer did not conjecture that the order of a cyclic projective plane must
be a prime power. Anyway, Conjecture 1 is equivalent to the combination of
the following statements.

(i) Every cyclic finite projective plane has prime power order.

(ii) The cyclic projective planes of prime power order are all isomorphic.

Statement (i) has been verified by Baumert and Gordon [1, 6] for all
orders up to 2 · 109. It also has been verified for several infinite classes of
orders [2]. On the other hand, the results on (ii) do not go further than order
81 and date back to the work of Hall [9] and Bruck [3]. Assertion (ii) was
proved by Hall [9] for orders 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 25, 27, and 32 with
the help of a computer.

In our view, the known evidence for Conjecture 1 is quite flimsy. It seems
that Bruck [3] actually was searching for counterexamples. However, he was
not successful, but verified Conjecture 1 for orders 49, 64, and 81. The
following statement of Bruck [3] inspired our work.

“It appears to the author that the present results could be extended
considerably ... to find what might be called ‘counter-examples’.”

We will show that the first part of Bruck’s statement is correct – unfortu-
nately, we had no success with the second part. We will verify (ii) for orders
less than 41 and orders 121, 125, 128, 169, 256, 1024.

We will show that this, in particular, implies the uniqueness of a nontrivial
difference set in the cyclic group of order 1, 049, 601, up to equivalence. To
our knowledge, this is by far the largest group which contains a difference
set, and for which all difference sets in the group have been classified.

Our main theorems partially rely on extensive computer searches. An
independent verification of our results is highly desirable. Therefore, we
attach great value to describing our algorithms precisely, and to present the
results in a form suitable for easy verification. Furthermore, we tried to keep
the paper as self-contained as possible.

2 Preliminaries

We will always identify a subset A of a group G with the element
∑

g∈A g of
the integral group ring Z[G]. For α ∈ Z and the identity element 1 of G, we
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simply write α for the group ring element α1. For B =
∑

g∈G bgg ∈ Z[G] and

t ∈ Z, we write B(t) :=
∑

g∈G bgg
t. A group homomorphism G → H is always

assumed to be extended to a homomorphism Z[G] → Z[H] by linearity. For
X ∈ Z[G] and g ∈ G, the group ring element Xg is called a translate of X.
In the group ring language, cyclic planar difference sets can be characterized
as follows.

Result 2 Let G be a cyclic group of order n2 + n + 1. An (n + 1)-subset D
of G is a cyclic planar difference set if and only if

DD(−1) = n + G. (1)

Homomorphic images of difference sets satisfy a similar group ring equa-
tion and thus are extremely useful.

Result 3 Let G be a cyclic group of order n2 + n + 1, and D be planar
difference set in G. Let U be a subgroup of G, and let ρ : G → G/U denote
the natural epimorphism. Then

ρ(D)ρ(D)(−1) = n + |U |(G/U). (2)

By [8] and [11], we have the following.

Result 4 Let n be a power of a prime p. Every cyclic planar difference set
of order n is equivalent to a planar difference set D with D(p) = D.

If any counterexample for Conjecture 1 exists, then it necessarily corre-
sponds to a cyclic planar difference set which is not equivalent to a Singer
difference set of a desarguesian projective plane. On the other hand, in
general, the inequivalence of two difference sets does not imply that the
corresponding designs are non-isomorphic. However, as the following result
shows, this implication does hold if one of difference sets in question is a
Singer difference set of a desarguesian plane. It seems that the validity of
this result tacitly has been assumed in some papers, but apparently no proof
has been published.

Proposition 5 Let q be a prime power, and let D be a cyclic planar differ-
ence set of order q which is not equivalent to a Singer difference set. Then
the projective plane generated by D is non-desarguesian.
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Proof Let v = q2 +q+1 and let G be a cyclic group of order v containing D.
Assume that D generates a desarguesian plane Π. Then G can be considered
as a collineation group of Π and hence as a subgroup of PΓL(2, q) acting
sharply transitively on the points of Π, see [4]. By a result of Ellers and
Karzel [5] (see [4, p. 34]), G actually must be a subgroup of PGL(2, q),
since G is abelian. Let E be a Singer difference set of Π, and let H be the
cyclic subgroup of PGL(2, q) containing E. By [10, Cor. 4.7.], the subgroups
G and H are conjugate in PGL(2, q), i.e., there is σ ∈ PGL(2, q) with
H = σ−1Gσ. Let L be an arbitrary line of Π, and let P be an arbitrary point
of L. Then P σ is a point on the line Lσ. By replacing D, respectively E, by
translates, if necessary, we can assume D = {g ∈ G : P g ∈ L}, respectively,
E = {h ∈ H : P σh ∈ Lσ}. Hence we get

E = {h ∈ H : P σh ∈ Lσ}
= {σ−1gσ : g ∈ G,P σ(σ−1gσ) ∈ Lσ}
= {σ−1gσ : g ∈ G,P g ∈ L}
= σ−1Dσ.

Since conjugation with σ induces an isomorphism G → H, this shows that
D and E are equivalent, a contradiction. �

3 Cyclic planes of square order

3.1 The results of Bruck

The following Results 6-10 are contained in [3]. For the convenience of the
reader, we include proofs, since our notation differs from [3].

Throughout this section, we use the following notation. Let q be a prime
power, and let G be a cyclic group of order q4 + q2 + 1. We write m = q3,
s = q2 − q + 1, and t = q2 + q + 1.

Result 6 Let D be a planar difference set of order q2 in G, and assume
D(m) = D. Let U be the subgroup of G of order t. Then D ∩ U is a planar
difference set in U .

Proof For g ∈ G we write Dg = {dg : d ∈ D}. Let L := {Dg : g ∈
G, (Dg)(m) = Dg}. Note that U = {g ∈ G : gm = g} and L = {Du : u ∈ U}.
For u ∈ U , we write Lu = {L ∈ L : u ∈ L}. Let w ∈ U and M ∈ L \ Lw be
arbitrary. It is straightforward to verify that the map Lw → M ∩ U sending
L ∈ Lw to the unique point in L ∩ M is a well defined bijection. Using this
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fact repeatedly, we see that there is a positive integer x such that |Lu| = x
for all u ∈ U and |L ∩ U | = x for all L ∈ L. Now fix some u ∈ U . Since the
lines in Lu cover each point in U \ {u} exactly once, we get q2 + q = x(x− 1)
and thus x = q + 1. Since D ∈ L by assumption, we infer |D ∩ U | = q + 1.
Hence D ∩ U is a planar difference set in U . �

Result 7 Write G = 〈σ〉〈τ〉 where σ has order s and τ has order t. Let D
be a planar difference set in G satisfying D(m) = D. Then there is a function
fD : {1, ..., s − 1} → {0, ..., t − 1} such that

D = D̄ +
s−1∑
x=1

σxτ fD(x) (3)

where D̄ = D ∩ 〈τ〉.

Proof Recall that D̄ is a planar difference set in 〈τ〉 by Result 6. Since
D̄D̄(−1) covers all elements of 〈τ〉, the elements of D \ D̄ must all belong to
different cosets 	= 〈τ〉 of 〈τ〉 in G. Since there are exactly s − 1 such cosets
and |D \ D̄| = s− 1, the elements of D \ D̄ represent each coset 	= 〈τ〉 of 〈τ〉
in G exactly once. This implies the assertion. �

Throughout the rest of Section 3, we use the notation introduced in Result
7. For a positive integer r and an integer y, we write

[y]r = min{z ∈ N : z ≡ y (mod r)}.

Result 8 Assume D(k) = D for some integer k with (k, st) = 1. Then

fD([kx]s) ≡ kfD(x) (mod t)

for all x ∈ Z, x 	= 0. In particular, if D(p) = D, then fD([−x]s) ≡
fD(x) (mod t) for all x 	= 0.

Proof By (3) we have

D̄(k) +
s−1∑
x=1

σkxτ kfD(x) = D̄ +
s−1∑
x=1

σxτ fD(x)

= D̄ +
s−1∑
x=1

σkxτ fD([kx]s).
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This implies
s−1∑
x=1

σkxτ kfD(x) =
s−1∑
x=1

σkxτ fD([kx]s)

and thus fD([kx]s) ≡ kfD(x) (mod t) for all x 	= 0.

Recall m = q3. If D(p) = D, then D(m) = D, and thus fD([−x]s) ≡
fD([mx]s) ≡ mfD(x) ≡ fD(x) (mod t). �

Result 9 Define E ⊂ {0, ..., t − 1} by D ∩ 〈τ〉 =
∑

d∈E τ d. The set D given
by (3) is a planar difference set if and only if for each x = 1, ..., s − 1 the
following holds. The t numbers

fD(x) − d, d ∈ E,
d − fD(x), d ∈ E,
fD([x + y]s) − fD(y), y = 1, ..., s − 1, y 	≡ −x (mod s),

(4)

are pairwise distinct modulo t.

Proof

DD(−1) = D̄D̄(−1) + D̄

s−1∑
x=1

σ−xτ−fD(x) + D̄(−1)

s−1∑
x=1

σxτ fD(x)

+
s−1∑

x,y=1

σx−yτ fD(x)−fD(y)

= q + 〈τ〉 +
s−1∑
x=1

∑
d∈E

σ−xτ d−fD(x) +
s−1∑
x=1

∑
d∈E

σxτ fD(x)−d

+ s − 1 +
s−1∑
z=1

σz

s−1∑
y=1

y �≡−z mod s

τ fD([z+y]s)−fD(y)

= q2 + 〈τ〉 +
s−1∑
x=1

σx

⎛
⎜⎝∑

d∈E

τ d−fD(x) +
∑
d∈E

τ fD(x)−d +
s−1∑
y=1

y �≡−z mod s

τ fD([x+y]s)−fD(y)

⎞
⎟⎠

Condition (4) holds if and only if the term in the parenthesis equals 〈τ〉 for
all x 	= 0. This implies the assertion. �

Result 10 For S ⊂ 〈τ〉, define

K(S) := {k ∈ {0, ..., t − 1} : τ 2k 	= d1d2 for all d1, d2 ∈ S}.
Recall D̄ = D ∩ 〈τ〉. The range of fD is K(D̄). Furthermore, |K(D̄)| =
(s − 1)/2, and fD is a two-to-one map.
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Proof Let x ∈ {1, ..., s − 1} be arbitrary. Then

τ fD(x)d−1
1 	= d2τ

−fD(x) for all d1, d2 ∈ D̄

by Result 9. Hence the range of fD is a subset of K(D̄).

Let x, y ∈ {1, ..., s − 1} with x 	≡ ±y mod s be arbitrary. Define a, b ∈
{0, ..., s − 1} by x ≡ a + b (mod s) and y ≡ a − b (mod s). Then a, b 	≡
0 (mod s) and a 	≡ ±b (mod s). Note that fD([−b]s) ≡ fD(b) (mod t) by
Result 8. Hence

fD([a + b]s) − fD(b) 	≡ fD([a − b]s) − fD(b) (mod t)

by Result 9. Since [a + b]s = x and [a − b]s = y, this implies fD(x) 	≡
fD(y) (mod t). Since fD(x) ≡ fD([−x]s) (mod t), this shows that fD is a
two-to-one mapping. Hence the range of fD has exactly (s − 1)/2 elements.

It remains to show |K(D̄)| = (s − 1)/2. Assume that d1d2 = d3d4 with
di ∈ D̄ for i = 1, 2, 3, 4. Then d1d

−1
3 = d4d

−1
2 . Since D̄ is a planar difference

set, this implies d1 = d4 and d3 = d2 or d1 = d3 and d4 = d2, i.e., {d1, d2} =
{d3, d4}. Hence |K(D̄)| is the t minus the number of unordered pairs of
elements from D̄, i.e., t − (q + 1)(q + 2)/2 = (s − 1)/2. �

3.2 Cyclic planes of orders 121, 169, 256, and 1024

In this section, we prove some general auxiliary results on cyclic projective
planes of square order, and describe the implementation of complete searches
for cyclic projective planes of orders 121, 169, 256, and 1024. Our searches
are based on the results of Section 3.1 and the following result of Hall [8].

Result 11 Every cyclic projective plane of order at most 16 and of order 32
is desarguesian.

Throughout this section, we use the notation introduced in Section 3.1.
We write q = pa where p is a prime. Recall that G = 〈σ〉〈τ〉 denotes a cyclic
group of order q4 + q2 + 1, and σ, respectively τ , is an element of G or order
s = q2 − q + 1, respectively t = q2 + q + 1.

Lemma 12 Let q = pa where p is a prime and q ≤ 16 or q = 32. Let Dq

be an arbitrary planar difference set of order q in 〈τ〉 satisfying D
(p)
q = Dq.

Any cyclic planar difference set of order q2 is equivalent to a difference set
D satisfying

D(p) = D and D ∩ 〈τ〉 = Dq. (5)
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Proof Let F be a cyclic planar difference set of order q2. Result 4 shows
that F is equivalent to a difference set F1 with F

(p)
1 = F1. Proposition 5,

Result 6, and Result 11 imply that F1 ∩ 〈τ〉 and Dq are equivalent difference
sets. Hence there are g ∈ 〈τ〉 and an integer r with (r, t) = 1 such that

(F1 ∩ 〈τ〉)(r)g = Dq. Since F
(p)
1 = F1 and D

(p)
q = Dq, we have g = 1. Hence

D = F
(r)
1 satisfies (5). �

From now on, let D be a cyclic planar difference set of order q2 in G
satisfying (5), let fD be the corresponding function defined in Result 7, and
let K(D̄) be defined as in Result 10.

Let r be any positive integer. We define an r-cycle as an orbit of multi-
plication with p mod r on {0, ..., r − 1}, i.e., a subset of {0, ..., r − 1} of the
form {[xpi]r : i ∈ N} for some x ∈ {0, ..., r − 1}.

Since D satisfies (5), we infer that K(D̄) is a union of t-cycles. A t-cycle
contained in K(D̄) is called a K(D̄)-cycle.

Lemma 13 Let O be any s-cycle. Then fD(O) is a K(D̄)-cycle, and

O → fD(O), x �→ fD(x)

is a two-to-one map. Furthermore, the map FD from the set of s-cycles 	= {0}
to the set of K(D̄)-cycles induced by fD is a bijection.

Proof Since D(p) = D, Result 8 shows that fD(O) is a K(D̄)-cycle for every
s-cycle O. By Result 10, the map FD is surjective. Let x, y ∈ {0, ..., s − 1}
with fD(x) = fD(y). By the proof of Result 10, this implies x ≡ −y ( mod s).
Since q3 ≡ −1 (mod s), the elements x and y are contained in the same s-
cycle. This shows that FD is injective. Since fD is a two-to-one map by
Result 10, we infer that O → fD(O), x �→ fD(x) is also a two-to-one map for
each s-cycle O. �

Lemma 14 If q ≡ 2 (mod 3), then there is an s-cycle O containing exactly
two elements, and we have fD(x) = 0 for x ∈ O.

Proof Since q ≡ 2 (mod 3), we have s ≡ 0 (mod 3), and O = {s/3, 2s/3}
is an s-cycle. Since O → fD(O), x �→ fD(x) is a two-to-one map, fD(O) is a
K(D̄)-cycle containing only one element. Hence fD(x) = 0 for x ∈ O. �

Let Z
∗
s denote the multiplicative group of integers mod s. Note that Z

∗
s

acts by multiplication mod s on the set {1, ..., s − 1}, and this induces an
action of Z

∗
s on the set of s-cycles.

9



Lemma 15 Let M = M1 ∪ · · · ∪ Mc be the set of s-cycles, where M1,...,Mc

are the orbits of the Z
∗
s action on M . For i = 1, ..., c, let Oi ∈ Mi and xi ∈ Oi

be arbitrary. Let O be any K(D̄)-cycle, and let y ∈ O be arbitrary.

Let E be an arbitrary cyclic planar difference set of order q2. Then there
is j ∈ {1, ..., c} with |Oj| = 2|O| such that E is equivalent to a difference set
D satisfying (5) and fD(xj) = y.

Proof Let D be any cyclic planar difference set of order q2 satisfying (5). It
suffices to show that there are j ∈ {1, ..., c} and positive integer r coprime
to st with fD(r)(xj) = y. Since O is contained in K(D̄), and K(D̄) is the
range of fD, there is x ∈ {1, ..., s − 1} with fD(x) = y. Let s(x) denote
the s-cycle containing x. Then s(x) → O, z �→ f(z) is a two-to-one map by
Lemma 13. Hence |s(x)| = 2|O|. Furthermore, by the definition of the xi,
there are j ∈ {1, ..., c} and an integer r with (r, s) = 1, r ≡ 1 (mod t), and
rx ≡ xj (mod s). Note |Oj| = |s(x)| = 2|O|. Moreover,

D(r) = Dq +
s−1∑
z=1

σrzτ fD(z) = Dq +
s−1∑
z=1

σzτ fD([r1z]s)

where r1 is an integer with rr1 ≡ 1 (mod s). This implies fD(r)(xj) =
fD([r1xj]s) = fD(x) = y. �

Proposition 16 Assume that s is a prime, and let Dq be an arbitrary planar

difference set of order q in 〈τ〉 with D
(p)
q = Dq. Let y ∈ K(Dq) be arbitrary.

Then every cyclic planar difference set of order q2 is equivalent to a difference
set D satisfying (5) and fD(1) = y. Furthermore, any two distinct difference
sets D satisfying (5) and fD(1) = y are inequivalent.

Proof Note that we have c = 1 in Lemma 15 since s is a prime. Thus,
choosing xj = 1 in Lemma 15 shows that every cyclic planar difference set
of order q2 is equivalent to a difference set D satisfying (5) and fD(1) = y.
Now let D and D′ be any two distinct difference sets satisfying (5) and
fD(1) = fD′(1) = y. Assume that D and D′ are equivalent. Then there are
g ∈ G and r ∈ Z with (r, st) = 1 and

D′ = gD(r). (6)

Since 〈τ〉 is the only coset of 〈τ〉 which contains more than one element of

D, respectively D′, this implies g ∈ 〈τ〉. Hence (6) implies Dq = gD
(r)
q . By

a result of [7], we have r ≡ pj (mod t) for some j ∈ N. Since D
(p)
q = Dq,
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we get Dq = gDq and thus g = 1. Hence D′ = D(r). Let r1 ∈ {1, ..., s − 1}
with rr1 ≡ 1 (mod s). By (3) and since D′ = D(r), we have fD′(1) ≡
rfD(r1) ≡ pjfD(r1) (mod t). In view of Result 8 and fD(1) = fD′(1) =
y, this implies fD([pjr1]s) = fD(1). From Results 8 and 10 , we conclude
±pjr1 ≡ 1 (mod s) and thus r ≡ ±pj (mod s). Recall r ≡ pj (mod t),
q3 ≡ −1 (mod s), and q3 ≡ 1 (mod t). We infer r ≡ pe (mod st) for some
positive integer e. But this implies D′ = D, a contradiction. �

Proposition 16 is very useful since it shows that, in the case where Dq

is unique up to equivalence and s is a prime, the number of nonisomorphic
cyclic projective planes of order q2 coincides with the number of functions
f satisfying Result 9 with D ∩ 〈τ〉 = Dq, Result 8 for k = pj, j ∈ N,
and fD(1) = y. Thus, in this case, all cyclic projective planes of order q2

are desarguesian if and only if a function fD satisfying these conditions is
unique.

The following gives a similar result for the case where s/3 is a prime. The
proof is similar to, but more tedious than the proof of Proposition 16 and is
skipped.

Proposition 17 Assume that s = 3r where r > 3 is a prime, and let Dq

be an arbitrary planar difference set of order q in 〈τ〉 with D
(p)
q = Dq. Let

A ⊂ {1, ..., s − 1} with |A| = r − 1 such that

A ∪ {[(r + 1)a]s : a ∈ A} = {x ∈ {1, ..., s − 1} : (x, s) = 1}.

Let y ∈ K(Dq) be arbitrary.

Every cyclic planar difference set of order q2 is equivalent to a difference
set D satisfying (5) and one of the following conditions.

(i) fD(1) = y,

(ii) fD(3) = y and fD(a) = min{fD(x) : x ∈ {1, ..., s − 1}, (x, s) = 1} for
some a ∈ A.

Furthermore, any two distinct difference sets D satisfying (5) and one of
the conditions (i) or (ii) are inequivalent.

Before describing our algorithm, we introduce some notation. By Dq we

denote an arbitrary planar difference set of order q in 〈τ〉 with D
(p)
q = Dq, and

define E ⊂ {0, ..., t − 1} by Dq ∩ 〈τ〉 =
∑

d∈E τ d. We consider the following
modification of the condition in Result 9.
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Let M be a subset of {1, ..., s−1}, and let f : {1, ..., s−1} → {0, ..., t−1}
be a function. For x ∈ {1, ..., s − 1} we define a multiset Mx by

Mx =

{ ⋃
d∈E{[f(x) − d]t, [d − f(x)]t}, if x ∈ M,

∅, if x 	∈ M.

We say that the condition C(M) is satisfied for f if, for every x = 1, ..., s−1,
the multiset

Mx ∪ {[f(x + y) − f(y)]s : y ∈ M, x + y ∈ M}

does not contain any element with multiplicity ≥ 2.

For y ∈ K(Dq), let K(y) denote the K(Dq)-cycle containing y. For
a ∈ {1, ..., s − 1}, let s(a) denote the s-cycle containing a.

The correctness of the following algorithm follows from the results of
Section 3.1 and Lemma 14.

Algorithm 18

Input: q = pa where p is a prime, a planar difference set Dq of order q in 〈τ〉
with D

(p)
q = Dq, an s-cycle S with |S| > 2, and a k-cycle K with |K| = |S|/2

Output: A set S such that every cyclic planar difference set D of order q2

with D ∩ 〈τ〉 = Dq and fD(S) = K is equivalent to an element of S
Initialization:

1. S := ∅; M := ∅.
2. Let {S1, ..., Sb} be the set of all s-cycles, and choose the numbering

such that S1 = S and Sb = min{|Si| := i = 1, ..., b}. For i = 1, ..., b,
choose si ∈ Si arbitrarily.

3. If q 	≡ 2 ( mod 3), set c := b. If q ≡ 2 ( mod 3), set c := b−1, f(x) := 0
for x ∈ Sb and M := M ∪ Sb.

4. Choose y ∈ K arbitrarily, set f([pis1]s) := [piy]t, i = 0, ..., |S| − 1, and
M := M ∪ S.

5. Set R := K(Dq) \ (K ∪ {0}), and L := 2.
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Main Step:

(i) If L = c + 1, then add Dq ∪
s−1⋃
i=1

σxτ f(x) to S, set L := L − 1,

R := R ∪ K(f(sL)), M := M \ SL.

(ii) Repeat until L = 1 or f(sL) < max(R):
Set f(sL) := −1, L := L − 1, R := R ∪ K(f(sL)), M := M \ SL.

(iii) If L = 1, then terminate and output S.

(iv) Set y := min{r ∈ R : r > f(sL)} and f([pisL]s) := [piy]t for i =
0, ..., |SL| − 1.

(v) Set M ′ := M ∪ SL. If C(M ′) holds for f , then set M := M ′, R :=
R \ K(y), L := L + 1.

(vi) Go to step (i).

We now describe the application of Algorithm 18 to the cases q = 11, 13,
16, and 32. The difference set Dq ⊂ 〈τ〉 will be specified by giving the set
E ⊂ {0, ..., t − 1} with Dq =

∑
d∈E τ d. The functions f : {1, ..., s − 1} →

K(Dq) computed by Algorithm 18 are given in the form f(1) · · · f(s − 1)
(values separated by spaces).

1. q = 11. We choose E = {1, 11, 16, 40, 41, 43, 52, 60, 74, 78, 121, 128}. Since
s = 3 · 37, we can apply Proposition 17. We take y = 4 and choose A such
that 4 ∈ A and thus 41 = [4(1+s/3)]s 	∈ A. The application of Algorithm 18
shows that there is no cyclic planar difference set D of order 112 satisfying
(5) and fD(1) = y. Moreover, there is a unique D satisfying (5), fD(3) = 4,
and fD(4) = min{fD(x) : x ∈ {1, ..., s − 1}, (x, s) = 1}. According to
Proposition 17, this shows that there is exactly one cyclic planar difference
set of order 112, up to equivalence. The following are the values of the
unique function fD for which (5) holds, and which satisfies fD(3) = 4, and
fD(4) = min{fD(x) : x ∈ {1, ..., s − 1}, (x, s) = 1}.

13 17 4 5 71 105 32 25 30 110 10 64 115 77 29 12 88 120 83 62 39 54 9
123 36 119 129 100 7 85 99 68 44 86 37 89 0 35 51 73 15 23 49 55 91 132 112
48 122 79 70 8 130 53 116 116 53 130 8 70 79 122 48 112 132 91 55 49 23 15
73 51 35 0 89 37 86 44 68 99 85 7 100 129 119 36 123 9 54 39 62 83 120 88
12 29 77 115 64 10 110 30 25 32 105 71 5 4 17 13
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2. q = 13. Let E = {0, 2, 3, 10, 26, 39, 43, 61, 109, 121, 130, 136, 141, 155}.
Since s = 157 is a prime, we can apply Proposition 16. We take y = 8. The
application of Algorithm 18 shows that there is exactly one cyclic planar
difference set D of order 132 satisfying (5) and fD(1) = y. According to
Proposition 16, this shows that there is exactly one cyclic planar difference
set of order 132, up to equivalence. The following are the values of the unique
function fD for which (5) holds, and which satisfies fD(1) = 8.

8 84 15 83 19 35 25 53 38 11 57 71 104 9 134 87 96 55 42 46 20 154 137
105 117 177 143 172 48 102 58 129 149 60 63 156 29 95 12 128 77 107 27 67
171 36 120 119 17 40 33 164 140 49 30 139 160 103 145 100 173 86 75 150 64
142 180 22 168 24 144 59 16 88 110 45 166 89 89 166 45 110 88 16 59 144 24
168 22 180 142 64 150 75 86 173 100 145 103 160 139 30 49 140 164 33 40 17
119 120 36 171 67 27 107 77 128 12 95 29 156 63 60 149 129 58 102 48 172
143 177 117 105 137 154 20 46 42 55 96 87 134 9 104 71 57 11 38 53 25 35
19 83 15 84 8

3. q = 16. Let
E = {39, 78, 156, 91, 182, 17, 34, 68, 136, 272, 271, 269, 265, 257, 241, 209, 145}.
Since s = 241 is a prime, we can apply Proposition 16. We take y = 3. The
application of Algorithm 18 shows that there is exactly one cyclic planar
difference set D of order 162 satisfying (5) and fD(1) = y. According to
Proposition 16, this shows that there is exactly one cyclic planar difference
set of order 162, up to equivalence. The following are the values of the unique
function fD for which (5) holds, and which satisfies fD(1) = 3.

3 6 50 12 198 100 185 24 238 123 20 200 157 97 222 48 187 203 188 246
163 40 167 127 63 41 42 194 98 171 262 96 55 101 71 133 116 103 22 219 231
53 158 80 242 61 245 254 197 126 29 82 161 84 109 115 244 196 186 69 149
251 5 192 47 110 147 202 86 142 176 266 212 232 183 206 105 44 114 165 57
189 228 106 88 43 210 160 139 211 93 122 191 217 151 235 259 121 79 252 11
58 172 164 131 49 21 168 220 218 94 230 111 215 10 119 229 99 25 138 138
25 99 229 119 10 215 111 230 94 218 220 168 21 49 131 164 172 58 11 252 79
121 259 235 151 217 191 122 93 211 139 160 210 43 88 106 228 189 57 165
114 44 105 206 183 232 212 266 176 142 86 202 147 110 47 192 5 251 149 69
186 196 244 115 109 84 161 82 29 126 197 254 245 61 242 80 158 53 231 219
22 103 116 133 71 101 55 96 262 171 98 194 42 41 63 127 167 40 163 246 188
203 187 48 222 97 157 200 20 123 238 24 185 100 198 12 50 6 3

3. q = 32. Let
E = {1, 2, 4, 8, 16, 32, 55, 64, 110, 128, 139, 220, 256, 278, 299, 339, 349, 440, 453,
512, 529, 556, 598, 678, 698, 703, 755, 793, 880, 906, 925, 991, 1024}. Since s =
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3·331, we can apply Proposition 17. We take y = 297 and choose A such that
113 ∈ A and thus 775 = [113(1+s/3)]s 	∈ A. The application of Algorithm 18
shows that there is no cyclic planar difference set D of order 322 satisfying (5)
and fD(1) = y. Moreover, there is a unique D satisfying (5), fD(3) = 297,
and fD(113) = min{fD(x) : x ∈ {1, ..., s − 1}, (x, s) = 1}. According to
Proposition 17, this shows that there is exactly one cyclic planar difference
set of order 322, up to equivalence. The following are representatives of the
values of the unique function fD for which (5) holds, and which satisfies
fD(3) = 297, and fD(113) = min{fD(x) : x ∈ {1, ..., s − 1}, (x, s) = 1}. The
remaining values of fD can be determined by Result 8.

x 1 3 5 7 9 11 13 15 17 19 21 23
f(x) 168 297 594 1012 161 251 675 832 1030 823 659 984

x 25 27 29 37 41 43 45 49 51 53 55 57
f(x) 432 1020 871 370 497 318 597 601 843 50 67 966

x 67 69 71 73 75 83 87 103 149 331
f(x) 746 369 587 820 869 499 540 408 493 0

These results lead to the following.

Theorem 19 Let q be a prime power such that q ≤ 16 or q = 32. Then
every cyclic projective plane of order q2 is desarguesian.

Proof For q ≤ 9, this was shown by Bruck [3]. The cases q = 11, 13, 16, 32
have been dealt with above. �

Remark 20 Using Algorithm 18, we have independently verified all results
of Bruck [3].

Corollary 21 The cyclic group of order v = 1, 049, 601 contains a unique
nontrivial difference set, up to equivalence.

Proof It is straightforward the check that, up to taking complements, we
have k ∈ {1025, 460800, 461825} if a (v, k, λ) difference set exists (see [2] for
the definitions). Note that v = q2 + q + 1 where q = 1024. Theorem 19 and
Proposition 5 imply that there is a unique (v, k, λ) difference with k = 1025
cyclic group of order v. The Mann Test (see [2]) shows that there is no
(v, k, λ) difference with k ∈ {460800, 461825} in this group. �
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4 Cyclic planes of nonsquare order

In this section, we use a depth first search algorithm together with homo-
morphic images to search for cyclic planes of order less than 41 and of orders
125 and 128. We first introduce some notation.

Let D be a subset of a cyclic group. We say that the condition Γ(D)
holds if d1d

−1
2 	= d3d

−1
4 for all d1, ..., d4 ∈ D with d1 	= d2.

Algorithm 22 (Depth first search for cyclic planes)

Input: q = pa where p is prime.

Output: A set S such that every cyclic planar difference set of order q is
equivalent to an element of S
Initialization:

1. Let G be a cyclic group of order q2 + q + 1, and let O1,...,Ot be the
orbits of x �→ xp on G.

2. Set S := ∅, D := ∅, L := 1, and f(x) := 0, x = 1, ..., t.

Main Step:

(i) If |D| = q + 1, then set S := S ∪ {D}, L := L − 1, D := D \ Of(L).

(ii) Repeat until L = 0 or f(L) < t:
f(L) := 0, L := L − 1. If L > 0, then set D := D \ Of(L).

(iii) If L = 0, then output S and terminate the execution of the algorithm.

(iv) Set y := f(L) + 1. If f(L) > 0, then set E := (D \ Of(L)) ∪ Oy. If
f(L) = 0, then set E := D ∪ Oy.

(v) Set f(L) := f(L) + 1.

(vi) If Γ(E) holds, then set D := E, L := L + 1.

(vii) Go to step (i).

The correctness of Algorithm 22 can be proved using the definition of a
planar difference set and Result 4. For q ≤ 19 and q = 128, a straightforward
implementation of Algorithm 22 on a PC is sufficient to find all planar differ-
ence sets of order q up to equivalence. All difference sets found are equivalent
to Singer difference sets. Thus all cyclic projective planes of order at most
19 and of order 128 are desarguesian.

16



For q = 23, 29, 31, 37, 125, we can use the results below to speed up Al-
gorithm 22.

We first introduce some notation. Let q = pa where p is a prime, v =
q2 + q + 1, and let G = 〈g〉 be a cyclic group of order v. Let u be a divisor
of v and x ∈ {0, ..., u − 1}. We set

O(x, q, u) = {{gypt

: t ∈ N} : y ∈ Z, y ≡ x (mod u)}.

The elements of O(x, q, u) will be called orbits since they are orbits of the
map z �→ zp on G.

Lemma 23 Let q = 23, v = q2 + q + 1, and let G = 〈g〉 be a cyclic group
of order v. Every planar difference set of order q in G is equivalent to a
difference set D with D = D(q) which contains {g, g23, g489}, two further
orbits in O(1, 23, 7) and five orbits in O(3, 23, 7).

Proof By Result 4 we can assume D = D(23). Let U be the subgroup of
G of order 79. Let ρ : G → G/U be the natural epimorphism, and write
ρ(D) =

∑6
i=0 aih

i where ai ∈ Z and h is a generator of G/U . As D(23) = D,
we have ρ(D)(2) = ρ(D), and thus a1 = a2 = a4 and a3 = a6 = a5. Since
|D| = 24, we have

∑
ai = 24. Comparing the coefficient of the identity

element in (2), we get
∑

a2
i = 23 + 79 = 102. The only solutions to these

conditions are a0 = 0, a1 = a2 = a4 = 3, a3 = a6 = a5 = 5 and a0 = 0,
a1 = a2 = a4 = 5, a3 = a6 = a5 = 3. Replacing D by D(3), if necessary, we
can assume a0 = 0, a1 = a2 = a4 = 3, and a3 = a6 = a5 = 5. Note that
every orbit in O(1, 23, 7) contained in D contributes exactly 1 to a1, a2, and
a4. Similarly, every orbit in O(3, 23, 7) contained in D contributes exactly
1 to a3, a6, and a5. Thus D consists of three orbit in O(1, 23, 7) and five
orbit in O(3, 23, 7). At least one element of O(1, 23, 7) contained in D, say
O, contains a group element gx with (x, 533) = 1. Thus there is an integer y
with y ≡ 1 (mod 7) and (y, 533) = 1 such that gy ∈ O. Let t be an integer
with t ≡ 1 ( mod 7) and ty ≡ 1 ( mod 79). Replacing D by D(t), if necessary,
we can assume gty = g ∈ D. Since D = D(23), this implies {g, g23, g489} ⊂ D.
�

Lemma 24 Let q = 29, v = q2 + q + 1, and let G = 〈g〉 be a cyclic group
of order v. Every planar difference set of order q in G is equivalent to a
difference set D with D = D(q) which contains {g2, g58, g811}, one further
orbit in O(2, 29, 13), three orbits in O(0, 29, 13), three orbits in O(4, 29, 13),
and four orbits in O(7, 29, 13).
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Proof By Result 4 we can assume D = D(29). Let U be the subgroup of
G of order 67. Let ρ : G → G/U be the natural epimorphism, and write
ρ(D) =

∑12
i=0 aih

i where ai ∈ Z and h is a generator of G/U . As D(29) = D,
we have ρ(D)(3) = ρ(D), and thus a1 = a3 = a9, a2 = a6 = a5, a4 = a12 = a10,
and a7 = a8 = a11. Since |D| = 30, we have

∑
ai = 30. Comparing the

coefficient of the identity element in (2), we get
∑

a2
i = 29 + 67 = 96. There

are exactly 30 solutions (a0, ..., a12) to these conditions, and the only solutions
which satisfy (2) are given in the following table (the values of the other ai’s
can be deduced from the equations above).

a0 a1 a2 a4 a7

3 0 2 3 4
3 4 0 2 3
3 3 4 0 2
3 2 3 4 0

Replacing D by D(2), D(4), or D(8), if necessary, we can assume a0 = 3,
a1 = 0, a2 = 2, a4 = 3, and a7 = 4. Note that, for x ∈ {0, 1, 2, 4, 7} every
orbit in O(x, 29, 13) contained in D contributes exactly 1 to ax. This implies
that D contains three orbits in O(0, 29, 13), two orbits in O(2, 29, 13), three
orbits in O(4, 29, 13), and four orbits in O(7, 29, 13).

At least one orbit in O(2, 29, 13) contained in D, say O, contains an
element gx with (x, 871) = 1. Thus there is an integer y with y ≡ 2 ( mod 13)
and (y, 871) = 1 such that gy ∈ O. Let t be an integer with t ≡ 1 (mod 13)
and ty ≡ 2 (mod 67). Replacing D by D(t), if necessary, we can assume
gty = g2 ∈ D. Since D = D(29), this implies {g2, g58, g811} ⊂ D. �

The following three lemmas can be proved by similar arguments, and we
skip their proof.

Lemma 25 Let q = 31, v = q2 + q + 1, and let G = 〈g〉 be a cyclic group
of order v. Every planar difference set of order q in G is equivalent to a
difference set D with D = D(q) which contains {g331, g662}, four orbits in
O(0, 31, 3) different from {1}, four orbits in O(1, 31, 3) different from {g331},
and two orbits in O(2, 31, 3) different from {g662}.

Lemma 26 Let q = 37, v = q2 + q + 1, and let G = 〈g〉 be a cyclic group
of order v. Every planar difference set of order q in G is equivalent to a
difference set D with D = D(q) which contains {g469, g938} and satisfies one
of the following conditions.
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(i) For x ∈ {4, 6, 17, 18, 25, 27, 30, 41}, the difference set D contains N(x)
orbits in O(x, 37, 67) where N(x) is given in the following table.

x 4 6 15 17 18 25 27 30 41
f(x) 2 1 2 2 1 1 1 1 1

(ii) The difference set D contains one orbit in O(0, 37, 67) different from
{0}, {g469}, and {g938} and exactly one orbit from O(x, 37, 67) for each
x ∈ {2, 3, 5, 8, 12, 18, 27, 30, 32, 34, 41}.

Lemma 27 Let q = 125, v = q2 + q + 1, and let G = 〈g〉 be a cyclic
group of order v. Every planar difference set of order q in G is equivalent
to a difference set D with D = D(5) which contains exactly two orbits from
O(1, 125, 829).

Using Lemmas 23-27 to reduce the number of choices for the orbits in
Algorithm 22 dramatically narrows the search space. For instance, a complete
search for cyclic projective planes of order 37 using Lemma 26 takes less than
three seconds on a PC. Straightforward implementations show that all cyclic
planar difference sets of orders 23, 29, 31, 37, and 125 are equivalent to
Singer difference sets. Summarizing the results of this section, we have the
following.

Theorem 28 Every cyclic projective plane of order at most 37 and of order
125 or 128 is desarguesian.
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