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Abstract

We obtain an upper bound for the absolute value of cyclotomic
integers which has strong implications on several combinatorial struc-
tures including (relative) difference sets, quasiregular projective planes,
planar functions, and group invariant weighing matrices. Our results
are of broader applicability than all previously known nonexistence
theorems for these combinatorial objects. We will show that the ex-
ponent of an abelian group G containing a (v, k, A, n)-difference set
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cannot exceed ( v where s is the number of odd prime

divisors of v and F'(v,n) is a number theoretic parameter whose order
of magnitude usually is the squarefree part of v. One of the conse-
quences is that for any finite set P of primes there is a constant C'
such that exp(G) < C|G|Y/? for any abelian group G containing a
Hadamard difference set whose order is a product of powers of primes
in P. Furthermore, we are able to verify Ryser’s conjecture for most
parameter series of known difference sets. This includes a striking
progress towards the circulant Hadamard matrix conjecture. A com-
puter search shows that there is no Barker sequence of length [ with
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13 <1< 4-10'2. Finally, we obtain new necessary conditions for the
existence of quasiregular projective planes and group invariant weigh-
ing matrices including asymptotic exponent bounds for cases which
previously had been completely intractable.

1 Introduction

The most powerful method for the study of finite geometries with regular or
quasiregular automorphism groups G is to translate their definition into an
equation over the integral group ring Z|[G] and to investigate this equation
by applying complex representations of GG. For the definitions and the basic
facts, see Section 2. If G is abelian this approach boils down to proving or
disproving the existence of elements of Z[G] with 0-1 coefficients whose char-
acter values are cyclotomic integers of certain prescribed absolute values. Up
to now there have been two general methods to tackle this problem, namely,
Hall’s multiplier concept and Turyn’s self-conjugacy approach. However,
both methods need severe technical assumptions and thus are not applicable
to many classes of problems. Despite many efforts over a period of more than
30 years no general method had been found to overcome these difficulties.
In this paper, we present a new approach to the study of combinatorial
structures via group ring equations which works without any restrictive as-
sumptions.

In order to understand the method of the present paper it will be instructive
to briefly discuss the self-conjugacy concept first. Turyn [51] demonstrated
that the character method for the study of group ring equations works very
nicely under the so-called self-conjugacy condition. An integer n is called
self-conjugate modulo m if all prime ideals above n in the mth cyclotomic
field Q(&,) are invariant under complex conjugation. Under this condition
it is possible to find all cyclotomic integers in Q(&,,) of absolute value nt/?
for any positive integer ¢t. It is the complete knowledge of the cyclotomic
integers of prescribed absolute value which makes the character method work
so well under the self-conjugacy condition. Since Turyn’s fundamental work
[51] there have been dozens of papers extending and refining his approach.
However, all these results are restricted to the case of self-conjugacy, and
that is a very severe restriction indeed. Namely, the “probability” that n
is self-conjugate modulo m decreases exponentially fast in the number of



distinct prime divisors of n and m, see Remark 2.2. This means that the self-
conjugacy method fails in almost all cases. One may ask if it is possible to
extend Turyn’s method in order to get rid of the self-conjugacy assumption.
It turns out that in general this is impossible — at least with present day
methods. The required complete knowledge of the cyclotomic integers of
prescribed absolute value would yield an almost complete determination of
the class group of the underlying cyclotomic field modulo the class group
of its maximal real subfield [48, Prop. 3.1]. However, this is a problem of
algebraic number theory far beyond the scope of our present knowledge.
Thus there is an urgent need for more general results on cyclotomic integers
of prescribed absolute value. However, I am not aware of any substantial
progress in this direction since Turyn’s work in 1965. In this paper, we will
present a new approach to the absolute value problem. We will show that
up to multiplication with a root of unity a cyclotomic integer of prescribed
absolute value n often already can be found in a small subfield of the original
cyclotomic field K. This will be achieved by exploiting the decomposition
groups of the prime ideals above n in K.

The reduction to subfields will enable us to obtain a general bound on the
absolute value of cyclotomic integers with strong implications on virtually
all problems accessible to the character method. In particular, we will ob-
tain strong asymptotic exponent bounds for groups containing difference sets
without any restrictive assumptions. In many cases, previously literally noth-
ing had been known on the existence of these difference sets. Our results are
a major steps towards two longstanding open problems in difference sets,
namely Ryser’s conjecture and the circulant Hadamard matrix conjecture,
see Section 6.

Furthermore, we will derive a general exponent bound on groups contain-
ing relative difference sets. As a consequence, we obtain strong necessary
conditions for the existence of quasiregular projective planes which, in par-
ticular, lead to an asymptotic exponent bound for abelian groups admitting
planar functions. Finally, we will utilize our methods for the study of group
invariant weighing matrices.

It is interesting to compare our method with the multiplier approach to
the study of difference sets which was introduced by Hall [22]. Since Hall’s
fundamental work in 1947 multipliers have played a dominant role in the
investigation of difference sets. The reader is referred to [3, 4, 5, 28, 32, 36, 43|
for many applications and variants of Hall’s multiplier theorem.
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The existence of a multiplier of a difference set D essentially is equivalent
to the property that all character values of a suitable translate of D lie
in a certain proper subfield of the underlying cyclotomic field. This holds —
contrary to the approach of the present paper — not only up to multiplication
with a root of unity. Tiny as it may appear at first sight this difference is
actually dramatic. It turns out that the existence of multipliers can only be
guaranteed under much more restrictive assumptions than we will need to
obtain our exponent bounds: In order to prove the existence of a nontrivial
multiplier of a (v, k, A, n)-difference set in an abelian group one usually at
least needs the existence of a divisor of n relatively prime to v which is greater
than A, see [3, 5, 32, 43]. This is the reason why, for instance, the multiplier
method does not apply to any of the parameter series of known difference
sets with ged(v,n) > 1. Our approach is more general and enables us to
prove exponent bounds even in cases which previously had been completely
intractable, see Section 6.

2 Preliminaries

In this section, we list the definitions and basic facts we need in the rest of
paper. We first fix some notation. We will always identify a subset A of a
group G with the element ) gea 9 of the integral group ring Z|G]. For B =
> gec beg € Z[G] we write B .= > gea beg'. A group homomorphism
G — H is always assumed to be extended to a homomorphism Z[G] — Z[H|
by linearity.

For an abelian group H we denote its character group by H*, and for a
subgroup W of H, we write W+ for the subgroup of all characters which are
trivial on W.

We will also need some notation for cyclotomic fields. By Q(&y,), &m = €27/™,
we denote the mth cyclotomic field over Q. By a fundamental result of
algebraic number theory [45, p. 269, Thm. 4B (3)] the ring of algebraic
integers of Q(&,,) is Z[&,,,]. For the basic properties of Z[E,,], see [25, chapter
12], for instance. For o € Gal(Q(£,,)/Q), we write Fix(o) for the subfield
of Q(&,,) fixed by (o). For relatively prime integers ¢ and s, we denote the
multiplicative order of ¢ modulo s by os(t). Finally, ¢ denotes the Euler
p-function.

All our results rely on the following complete description of the decomposition



groups of prime ideals of cyclotomic fields. This result has been used in many
papers and books, however, none that I am aware of contains an appropriate
reference. For the convenience of the reader, we shall include a short proof.
We recall that the decomposition group of a prime ideal P of Z[€,,] is the set
of all o € Gal(Q(&,,)/Q) with P? = P.

Theorem 2.1 Let p be a rational prime, let P be a prime ideal above p in
Z[&n), and write m = p®m' with (m',p) = 1. The decomposition group of P
consists of all o € Gal(Q(&,,)/Q) for which there is an integer j such that

o (Em) = €7 (1)

Proof The ideal (1 — &) of Z[E,] is divisible by P since (p) = (1 —
)PP if @ > 0, see [34, (8.24)]. Hence (€..)" = 1 (mod P) for all
i € Z, and all 7 € Gal(Q(&,)/Q). Let A be any element of Z[,], and
write A = Y71 €L fi(&w) with f; € Z[z]. 1f 0 € Gal(Q(6,)/Q) satisfies
(1) then A7 = Y207 1(&h)7 fil€hy) = S0y fil&h) = (X0 fila)) =
>t o fi(m))?' = AP (mod P). Now, A € P implies A” € P and thus
A% € P. Hence P? C P implying P° = P since P’ is a prime ideal and thus
maximal [25, p. 177, Cor. 2|. Thus o fixes P if it satisfies (1). Note that
the number of o € Gal(Q(&,,)/Q) satisfying (1) is ¢(p*)on (p). By the orbit
formula, there cannot be any further Galois automorphism of Q(&,,) fixing
P since Gal(Q(&,,)/Q) acts transitively on the set of prime ideals dividing
p [25, Prop. 12.3.3] and since there are exactly ¢(m’')/on(p) of these ideals
34, Thm. 8.8]. O

Remark 2.2 By Theorem 2.1 a prime ideal P above p in Q(&,,) is invariant
under complex conjugation if and only if there is an integer j with p/ =
—1 mod m'. In this case p is called self-conjugate modulo m, see [29, 43, 51].
A composite integer n is called self-conjugate modulo m if every prime divisor
of n has this property. One can see that a prime p can only be self-conjugate
modulo m if the exact power of 2 dividing o,(p) is the same for all prime
divisors ¢ # p of m. Thus, loosely speaking, the probability that n is self-
conjugate modulo m decreases exponentially fast in the number of distinct
prime divisors of n and in the number of distinct prime divisors of m.




Corollary 2.3 (Turyn [51]) Assume that A € Z[&y,] satisfies
AA =0 mod t*
where b, t are positive integers, and t is self-conjugate modulo m. Then
A =0mod t.

Proof By Theorem 2.1 the prime ideals above ¢ in Z[¢,,] are invariant under
complex conjugation. O

We will need the following result of Kronecker. See [6, Section 2.3, Thm. 2]
for a proof.

Result 2.4 An algebraic integer all of whose conjugates have absolute value
1 is a root of unity.

Note that Result 2.4 implies that any cyclotomic integer of absolute value 1
must be a root of unity since the Galois group of a cyclotomic field is abelian.
Now we are going to prove an ugly as well as necessary lemma on the be-
havior of the coefficients of cyclotomic integers in basis representations. It
generalizes a result of [51].

Lemma 2.5 Let m = H?;:lp?i be the prime power decomposition of a pos-
itive integer m, and let k be any divisor of m, say k = [[;_, p;’i with s <t
and 1 <b; <a; fori=1,..,s. Then

S

t
Bui: = A[[&0w T ghgh o< <pi -1,

=1 1=s+1
0<ki<pi—2 0<[<ph'—1}

is an integral basis of Q(&y,) over Q(&). Furthermore, the following hold.
a) Assume that an element X of Z[&,,] has the form

—

m—

X = b, (2)

J=0



where by, ..., by—1 are integers with 0 < b; < C' for some constant C. Then

k-1
X = Z xzczjgi (3)
0

CCEBm,k j:

where the cg;’s are integers with |c;;| < 277571C if t > s and 0 < ¢z < C if
t=s.

b) If the assumption on the coefficients is replaced by |b;| < C then (3) holds
with |cz| < 287°C in any case.

Proof Using the identities &5 ' = —1 =&, — -+ =& 2 for i = s +1,...,t,
we see that the linear combinations of elements of B,, ; with coefficients from
Z[&] cover Z[E,). This shows that By, is an integral basis of Q(&,,) over
Q(&) since | B k| = ¢(m)/¢o(k) = dim(Q(&n ) : Q(&k))-

For any j with 0 < j < m — 1 we may write

s t
w=a [lgn IT gred 4
i=1 i=s+1

with 0 < u; <k—1,0 <7y <pf %=1, 0 < ky <pi—1, 0<1; <p§ ' —1.
In order to transform X from form (2) into form (3) we have to get rid of all
terms b;&7, in (2) for which &, contains a factor £2:~! in the second product
of representation (4). We do this subsequently for ¢ = s+ 1, ..., ¢ using the
identities &2t = —1 — &, — --- — &P~ %. This takes ¢t — s steps, and in each
step the range of coeflicients at most doubles. O

In Section 6 we will need an estimate for the number 6(z) of distinct prime
divisors of a positive integer z. We do not give the best possible bound here.
Instead we use a version which easily follows from results of analytic number
theory [24, 46] and suffices for the purposes of this paper.

Lemma 2.6 We have
log x
()

< e —
log 2loglog

for every integer x > 3.

Proof Let m(y) denote the number of primes < y, and write J(y) :=
Zp <y logp where the sum ranges over all primes < y. By Corollary 2 and
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Theorem 10 of [46], we have 7(y) < 5y/(4logy) for all y > 114 and ¥(y) >
0.89y for all y > 227. Write o := 0.89. Let = be an integer with logz >
227a. Then §(z) < m(a~'logz) since [[,cq-1105, 2 = exp (J(a ' logz)) >
exp (aa 'logx) = z. Using the estimate for 7(y) from above we get
§(z) < 5a 'logz/(4log(a 'logz))
log z
< (bat/4)—="—
5o/ )]oglogac

log x

log2loglog x

proving the assertion for all x > exp 227«.

Let b; denote the product of the first ¢ primes. We have byy > exp 227a.
Furthermore, 6(x) = 6(bsz)) and x > bs(y) for all integers x > 2. Since
logz/(log2loglogxz) > 3 for all x > 3 and since logz/loglogx is an in-
creasing function for x > 16, it now suffices to verify the assertion for
T = by, bs, ..., byg. This can be done with a computer or with patience. O

Corollary 2.7 For any ¢ € RT we have
26(:5) < 1zt
for all integers © > expexp 1/e.

The next result from [2] on the structure of group ring elements whose char-
acter values are divisible by a fixed prime power will be needed in Section 7
for the study of quasiregular projective planes.

Lemma 2.8 Let p be a prime, and let G be an abelian group with a cyclic
Sylow p-subgroup of order p*. If Y € Z|G] satisfies

x(Y) =0 (mod p?)
for all characters x of G then there are Xy, X1, ..., X, € Z|G| with
Y =p*°Xo+p* P X1+ +p* "PX,

where 1 = min{a, s} and P;, i = 1,...,7, is the subgroup of order p' of G
(viewed as an element of Z[G]).



Now we come to the definitions and basic properties of the combinatorial
structures we will study. A (v, k, A\, n)-difference set in a finite group G of
order v is a k-subset D of GG such that every element g # 1 of G has exactly
A representations g = did, ' with di,dy € D. The positive integer n := k — A
is called the order of the difference set. A difference set in a group G is
equivalent to a symmetric design D admitting G as a regular automorphism
group [5, VI, Thm. 1.6]. Sometimes G is called a Singer group of D. For
detailed treatments of difference sets, see [4, 28, 29, 31, 43]. The following
lemma is essentially contained in [51] and has turned out to be a conditio
sine qua non for the study of difference sets.

Lemma 2.9 Let D be a (v, k, \,n)-difference set in a group G, let U be a
normal subgroup of G such that G/U is abelian, and let p : G — G /U be the
canonical epimorphism. Then

p(D)p(D)™) =+ AU|(G/U)

in Z|G /U] and hence
x(p(D))x(p(D)) = n

for every nontrivial character x of G/U.

Proof The first part follows from DD = n+\G which is just a translation
of the definition of a difference set into Z|G|. To get the second part from the
first, we only have to note that x(G/U) = 0 by the orthogonality relations
for characters of abelian groups, see [35, Lemma 7.2], for instance. O

We will need the following consequence of [51, Thm. 6] in Section 6. This
result is known as Turyn’s exponent bound.

Result 2.10 Assume the existence of a (v, k, A\, n)-difference set in an abelian
group G. Let p be a prime divisor of v, and denote the Sylow p-subgroup of
G by Sp. Let U be any subgroup of G with U N S, = {1}, and assume that
p?® divides n for some a > 1. If p is self-conjugate modulo e := exp(G/U)
then

U
exp(S,) < %wp\.



Let G be a group of order nm, and let N be a subgroup of G of order n.
A subset R of G is called an (m,n, k, \)-difference set in G relative to N if
every g € G\ N has exactly A representations g = rir, " with ry,75 € R,
and no nonidentity element of N has such a representation. We have the
following analogue to Lemma 2.9.

Lemma 2.11 A k-subset R of a group G of order mn is a relative (m,n, k, \)-
difference set in G relative to a subgroup N of order n if and only if

RR™Y =k + A\(G — N)

in Z|G]. Let U be a normal subgroup of G, and let p : G — G /U be the
canonical epimorphism. Then p(N) = |[N NU|Ny in Z|G/U]| where Ny =
{Uh : h € N}, and hence

p(R)p(R)™Y =k + \U|(G/U) = AIN N U|Ny
in Z|GJU]. Thus, if G/U is abelian,

k it x € (G/U)*\ Ng
k—An if x € Ni

x(p(R))x(p(R)) =

for every nontrivial character x of G/U.

Let H and N be groups of order n. A mapping f : H — N is called a
planar function of degree n if A+ f(gh)f(h)™! is a bijection between H

and N for every g € H \ {1}. The standard example for a planar function
is the mapping f : (F,,+) — (F,, +),z — z* where (F,,+) is the additive
group of the finite field with ¢ elements and q is odd. Here z? := z - x where
“” is the multiplication in F,. It is straightforward to check the following.

Lemma 2.12 A mapping f : H — N is a planar function if and only if
R :={(h,f(h)): h € H} is an (n,n,n, 1)-difference set in H x N relative to
N.

In Section 7 we will prove an asymptotic exponent bound on abelian groups
admitting planar functions.

A weighing matrix W(m,n) is an m x m matrix H with entries —1,0, 1 such
that HH' = nl where I is the identity matrix. The integer n is called the

10



weight of H. Weighing matrices have been studied intensively, see [20] for a
survey, [15, 40, 41, 49] for some older and [11, 10, 21, 30, 32, 42| for some
more recent results. Let GG be a group of order m. We say that a matrix
H = (hfy)fgec is G-invariant if kg g = hyy for all £ € G. We identify a
G-invariant weighing matrix H with the element ) . 149 of Z[G] and get
the following useful result.

Lemma 2.13 Assume that a weighing matric H = W(m,n) is G-invariant.
Let U be a subgroup of G such that G/U is abelian. Let p : G — G /U denote
the canonical eptmorphism. Then

x(p(H))x(p(H)) = n

for all nontrivial characters x of G/U when H is viewed as an element of
VALELR

Proof The equation HH® = nl is equivalent to

Z hi,ghj,g = Z h’l,i’lghl,jflg — 5”7’1,

geG geG

for all 7, j € G where d;; is the Kronecker symbol.

Thus HHCD = 5o highisgh™ = Sieo (Sgearghiisy) L = n in
Z[G], and the assertion follows by applying x o p to this equation. O

Let s; be the number of times the entry 1 occurs in each row of a G-invariant
weighing matrix H = W(m,n), and let s be the sum of the entries of the
first row (and thus of any row) of H. Then nG = HH-VG = H(HEVG) =
H(sG) = s’G in Z|G] and thus n = s and s = s; — (s — 51), i.e. 85 =
s(s+1)/2. So we have the following,.

Lemma 2.14 If a G-invariant weighing matric H = W (m,n) exists then
n = s2 for some integer s, and the number of entries 1 in each row of H is
s(s+1)/2.

Note that we may assume that s is positive by replacing H by —H if neces-
sary.
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3 Character Values in Small Subfields

All that can be said a priori about the character sums x(X) corresponding
to combinatorial structures such as difference sets, planar functions or group
invariant weighing matrices is that x(X) is an algebraic integer of a pre-
scribed absolute value in the eth cyclotomic fields Q(&,) over the rationals
where e is the order of y.

The basic fact behind almost all our results is that in most cases one can say
much more, namely that x (D) times a root of unity lies in a small cyclotomic
subfield of Q(&.). The exact formulation of this basic result will be given
in Theorem 3.5. Reductions to non-cyclotomic fields are also possible, but
usually not that useful.

It will turn out that the integer F(m,n) defined below describes a subring
Z[Ep(mm)) of Z[&y) that already contains all solutions X € Z[&,] of XX =n
up to multiplication with a root of unity.

The prime 2 will need special attention in our considerations as the multi-
plicative group modulo 2¢ is noncyclic for a > 3.

Definition 3.1 Let m, n be positive integers, and let m = Hlepici be the
prime power decomposition of m. For each prime divisor q of n let

Hp,;éqpi if m is odd,
my = i e
e 41],40,pi if mis even.

Let D(n) be the set of prime divisors of n. We define F(m,n) = szlpibi
to be the minimum multiple of the squarefree part of m such that for every
pair (i,q), 1 € {1,...,t}, ¢ € D(n), at least one of the following conditions is
satisfied.

(0,) q =p; and (piabi) # (2a 1)7

(b) bz = G,

(¢) ¢ # p; and ¢°=a'D % 1 (mod pit!).

Remark 3.2 For the sake of clarity, we also provide an explicit formula for
the numbers b;. First note that, for fixed i, the set of positive integers x
satisfying

gD £ 1 (mod pi+t)

1
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for all ¢ € D(n) \ {pi} is a ray [e;, 00) with e; > 1. We have

2 if pp=2, ¢;>2ande; =1,
b; = : .
min(c;, e;) otherwise.

The reason why b; = 2 if p; = 2, ¢; = 1 and ¢; > 2 is the following. Note that
n must be a power of 2 if p; = 2 and e; = 1 (if n has an odd prime divisor g,
then ¢°»«(9 = 1 (mod 4) by the definition of m, since m is even if p; = 2).
If p; = 2 and n is a power of 2, then (a) or (b) must hold for p; = ¢ = 2, and
the condition (p;,b;) # (2,1) in (a) makes sure that b; = 2 if ¢; > 2. Also
note that we have b; > 2 if p; = 2 and m # 2 (mod 4).

It is worth to note the following important property of F'(m,n).

Proposition 3.3 Let P be a finite set of primes, and let () be the set of all
positive integers which are products of powers of primes in P. Then there is
a computable constant C(P) such that

F(m,n) < C(P)
for allm,n € Q.

We will need a well known elementary lemma on multiplicative orders for
which, however, I do not know a reference. The proof only requires standard
arguments concerning the structure of the multiplicative groups modulo p*
(see [26, pp. 274-276], for instance) and will be skipped.

Lemma 3.4 Let p be a prime, and let b be a positive integer.

a) Assume (p,b) # (2,1). If s is an integer satisfying s = 1 (mod p°) and
s # 1 (mod p**!) then ope(s) = p“° for all ¢ > b.

b) Let s and t be integers such that o, (s) = o(t) is a power of p. Further-
more, assume s =t = 1 (mod 4) if p = 2. Then s and t generate the same
subgroup of the multiplicative group Z;,,.

Note that the assumption (p,b) # (2,1) in Lemma 3.4 a) is necessary since,
for instance, 0g(3) = 2 # 23!, The assumption s = ¢ = 1 (mod 4) in part
b) also is essential. For instance, 0g(3) = 0g(5) = 2, but 3 and 5 generate
different subgroups of Zj. Now we are ready to prove the main result of this
section.
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Theorem 3.5 Assume XX =n for X € Z[£,] where n and m are positive
integers. Then

X&), € LlErmm)

for some j.

Proof Since Z[(y| = Z[ém)e) for m = 2 (mod 4), we may assume m #
2 (mod 4). Write m = [['_; p; and F(m,n) = [[._, p:" as in Definition
3.1. Recall that b; > 1 for all 7 since the squarefree part of m divides
F(m,n). Furthermore, b; > 2 if p; = 2, see Remark 3.2. For each i =
1,...,t, let s; be an integer satisfying s; = 1 (mod p%), s; Z 1 (mod p™™)
and s; = 1 (mod [];;p;). Then Opei (i) = pf % by Lemma 3.4 a). We
define o; € Gal(Q(&,)/Q) by 0i(&,) = &5i. Then f;,;’i = f;;;i = §p$i since

s; = 1 (mod pl). Thus Fix(o;) = Q(&x,) where F; = m/pS~" since o; fixes
all elements of Q(¢r,) and Q(&F,) has the dimension it is supposed to have
by the Galois correspondence [26, p. 239].
Claim 1: For every i = 1,...,t and every prime divisor ¢ of n, the automor-
phism o; fixes all prime ideals dividing ¢ in Z[&,,].
We fix a prime divisor ¢ of n and an i € {1, ...,t}. By Theorem 2.1, Claim 1 is
proven if we can find an integer /; such that o;(&a,) = &y, = %j;q where M, =
Hpﬁéquj. If p; = ¢ then we can take l; = 0 since s; = 1 (mod [[, pgj).
Thus we may assume p; # ¢. Write Q := ¢°¢(?. Note that 0,° (Q) is a power
J
of p; for any p; # ¢ since Q = 1 (mod p;) by the definition of m,. We first
show that o, (Q) is divisible by pfi_bi. This is trivial if ¢; = b;. Otherwise
condition (c) of Definition 3.1 is satisfied and thus @ # 1 (mod p*'). Then
Lemma 3.4 a) shows that o, ((Q) indeed is divisible by p&i~b. Note that we
need b; > 1 for all ¢ and b; > 2 for p; = 2 here in order to apply Lemma 3.4
a).
Since the orders of () modulo p;j , J =1,..,1, pj # q, are relatively prime,
there is an integer k; such that o, (Q¥) = 0, (Q) and Q* = 1 (mod p;’)
for all j # i with p; # q. As o (QF) = 0,2 (Q) is divisible by pii~% and as
0,¢i(si) = p%~ %, there is an integer r; with Q%" = s; (mod p*) by Lemma
3.4 b). Note that we need @@ = 1 (mod 4) here if p; = 2 in order to apply
Lemma 3.4 b). However, Q = 1 (mod 4) follows from the definition of m,
in this case. We conclude Q%" = s; (mod M,) since Q" = s; (mod pf')
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and Q%" = 1 = s; (mod p;j) for all j # i with p; # ¢. Thus we can take
li = 0m, (q)k;r;. This proves Claim 1.

Claim 2: For every i = 1, ..., ¢ there is an integer j; with XCiji € Z[¢p,] where
C’i = gpf’

Since Claim 2 is vacuous if ¢; = b;, we may assume ¢; > b; for the proof. From
the assumption XX = n and Claim 1 we know that X and X% generate the
same ideals in Z[&,]. Hence X% = Xe for some unit € in Z[&,]. Since o;
commutes with complex conjugation, we have |X%|? = (X X)% =n% =n =
|X|? and thus |¢| = 1. Hence Result 2.4 shows that ¢ is a root of unity in
Z[&y]. All roots of unity in Q(&,,) have the form +¢&/, for some j (if there
was a further root of unity in Q(&,,) then Q(&,,) D Q(&;) for some multiple
t > m of m where t > 2m if m is odd, contradicting dim(Q(&,) : Q) = ¢(r)
for all r € Z" |25, Section 13.2, Cor. 1 to Thm. 1]). Thus we may write & =
(51_[;-:1 C]ej with § = &1 and § = 1 if m is even. Writing y; := o(0;) = p&i™"
and applying o; repeatedly y; — 1 times to the equation X = Xe yields

5%'(:’ s;—1 chil_liej - 1.
J#i
elsiyi—l
This implies 6 = 1, C;j =1forj#iand ¢, * ' =1 since the orders of the
Cey k=1, ..., t, are relatively prime and § = 1 if m is even. Thus ¢ = ({*. By
definition, pl is the exact power of p; dividing s; — 1. Since Opci (8;) = p&ihi =

y; and opgi+1(si) = p%~%*! by Lemma 3.4 a), the exact power of p; dividing
‘ s;¥i—1

s — 1 is p%. Thus (:l *' = 1 implies e; = 0 (mod p¥). Hence there is
a solution j; of the congruence (s; — 1)j; +e; = 0 (mod p;*). This implies
(X7 = Xed® = Xt = X¢F. Hence X¢F € Fix(o;) = Q(&x,)
proving Claim 2. . . .

Finally, let £ := [[;_; ¢/'. Then X¢ = (X¢7)[1,..¢* € Z[ér] for every i
because X} € Z[¢p] by Claim 2 and [],; (* € Z[¢r] by the definition of
F;. Hence X¢ € i, ZI¢r) = Z[€rpmmn)- O

Remark 3.6 Note that the best we can hope for in Theorem 3.3 is F'(m,n) =
mgy where my is the squarefree part of m. The worst that can happen is
F(m,n) = m. As the integers b; from the definition of F(m,n) have to
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satisfy quite a lot of conditions of the form

@ 1 (mod i)

2

it may seem that F'(m,n) is usually much bigger than mg. In order to under-
stand the significance of Theorem 3.3 it is important to note that exactly the
opposite is the case. Therefore, we consider the following heuristic argument.
We assume n < m and mgy & /m which is the case for many applications
we have in mind (“a” is not used in a strict sense here). Our claim is that
F(m,n) &~ my in almost all cases.

To see this we estimate the “probability” that one of the conditions

q"mq(q) Z 1 (mod pf) (%)

is violated for a “large” prime divisor p; of m. Note that ¢°=(9 =1 (mod p;)
by the definition of m,. Furthermore, the probability that p; divides op, (q)
is very low if p; is large. So ¢°"¢(@ should take each of the p; values 1, p; +
1,..., (pi—1)pi+1 modulo p? roughly with the same probability. In particular,
the probability that (x) is violated should be around 1/p;.

Except for a set of density zero all positive integers x have approximately
log log x prime divisors [23, Thm. 436]. Note loglogn < loglogm = log log m3
= log 2 + loglog mgy =~ loglogmgy. Thus we usually do not have more than
around (loglogn)(loglogmy) ~ (loglogmg)? of the conditions (x).

Now fix any large p;, say p; ~ my '®'5™ or larger. By the argument

above, the probability that () is violated for p; and some fixed ¢ should
be around 1/p; < 1/m¢/'*5'%™  Hence the probability that any of the
~ (loglogmg)? conditions (x) is violated for any large p; should be less than
(loglogmyg)?/ m(l)/ log logmo
for large myg, the condition (x) should hold for all large p; and all ¢ with very
high probability. By Definition 3.1 this amounts to F'(m,n) & my.

= y? exp(—iexp y) where y := loglogmg. Thus,

4 An Upper Bound for the Absolute Value of
Cyclotomic Integers

In this section, we will obtain an upper bound on the absolute value of cy-
clotomic integers which will be basic for our further results. By 6(7) (6p4a(7))
we denote the number of distinct (odd) prime divisors of .
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Theorem 4.1 Let X € Z[¢,,| be of the form
m—1 '
X = Z @i, (5)
i=0

where ag, ..., @p_1 are integers with 0 < a; < C for some constant C. Fur-
thermore, assume that XX is an integer and that X € Z[&;] for some divisor
f of m. Then

XX < 22(5(m) o(f 2C2f

if 0(f) < d(m) and
XX < 2eaalm)=1C2 f

if 6(f) = 6(m).
If the assumption on the coefficients a; is replaced by |a;| < C then in any

case
XX < 2%8m)=) 2.

Proof Case 1: We first consider the case 0 < a; < C and 6(f) < 6(m). By
Lemma 2.5 a) we may write (5) in the form

f-1
PP (6)

TE€Bp,f  j=0

with [by;| < 200W=0D-1C. As X € Z[¢], all terms Y17 by;6} with @ # 1
vanish. So we get

f—1
X = byé (7)
§=0

with |by;| < 20m=9()=1C. Thus

XX = Z biibi; €} (8)

,JO

= Z i} 9)
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with |c| < 220(m)=20(H)=2C2 f,
Using part b) of Lemma 2.5 now, we get

XX = Y don (10)

T€By,1

with |dy| < 220m)-5()-2 02 f.

Recall that By, is an integral basis of Q(£;) over Q. Since we assumed that
XX be an integer, (10) implies d; = XX and d, = 0 for 2 # 1. Thus
XX =d, <2%m-N=202 f proving the assertion in Case 1.

Case 2: Now we consider the case 0 < a; < C and 6(f) = 6(m). By Lemma
2.5 a) we have 0 < b,; < C'in (6) and thus 0 < by; < C'in (7), 0 < ¢, < C*f
in (9) and |d,| < 2°(™=1C2f in (10). This proves the assertion in Case 2 if
m is odd.

Now assume that m is even. Since we assumed §(f) = §(m) for Case 2, f is
also even, say f = 2% with a > 1 where r is odd. Since fngl = —1 we may

write (7) in the form
20-1-1r-1

X =3 ) b&ae

1=0 k=0

with |b,| < C. Then, again using 27 = —1, we get

20=1_1 p—1

Y 1ot i ek—l
XX = E E :bikbjzfza &
4,j=0 k,I=0
20-11 r—1

= 2 &
i=0 §=0

with |¢;;| < C?2471r. Using Lemma 2.5 b) we get

20—1_1

XX =) & ) din
=0

-TUEBT,I

with |dip| < 20002271, Since XX is an integer and since {&haz : 0 < i <
2¢=1 1, x € B,,} is independent over Q, we get X X = dy; < 200022071y =
2%ad(M) 102 f concluding the proof for Case 2.
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Case 3: Now assume |a;| < C. Then we have |b,;| < 20mM=9NC in (7) by
Lemma 2.5 b) and thus |¢;| < 220(m)=20A)C2?f in (9) and |d,| < 229N C2f
in (10) concluding the proof. O

Combining Theorem 3.5 and Theorem 4.1 we obtain the following.

Theorem 4.2 Let X € Z[¢,,| be of the form
m—1
X =) at, (11)
i=0

where ag, ..., a1 are integers with 0 < a; < C for some constant C'. Fur-
thermore, assume that X X = n s an integer. Then

n < 2°7'C?*F(m,n)

where s is the number of distinct odd prime divisors of m.
If the assumption on the coefficients a; is replaced by |a;| < C then

n < 2'C*F(m,n)

where t is the number of distinct prime divisors of m.

5 A General Exponent Bound for Difference
Sets

In this section, we derive a strong exponent bound for abelian groups con-
taining difference sets. Our result does not rely on any restrictive assumption
such as self-conjugacy and therefore is more general than all previously known
nonexistence results on difference sets.

For a (v, k, A\, n)-difference set D in an abelian group G define

f(D) :=min{t : x(D)&X ¢ Z[¢] for some j(x) for all x € G*}.

In other words, f(D) is the the smallest positive integer such that up to
multiplication with a root of unity all character values of D lie in the f(D)th
cyclotomic field. The results of this section will show that the parameter
f(D) is of fundamental importance for the study of difference sets. It is a
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striking fact that f(D) = 1 for all known difference sets with ged(v,n) > 1 in
abelian groups. However, I am not aware of any previous general results on
f(D) besides the self-conjugacy condition which guarantees f(D) = 1, but
does not apply in most cases.

We first state the most general version of our exponent bound. The main
aim of this section being the study of difference sets in abelian groups, we
also obtain a very strong nonexistence result on difference sets in nonabelian
groups as a by-product.

Theorem 5.1 Let G be a (possibly nonabelian) group with a normal subgroup
U such that G/U is cyclic of order e. Let p: G — G /U denote the canonical
epimorphism. Assume that G contains a (v, k, A\, n)-difference set and that

X(p(D))&] € Zg]

for some character x of G/U of order e, some integer j and some divisor f

of e. Then
920(e)-0(f)~2+< f 3
e < ( ) v
n

where e = 0 if e is even or §(f) < d(e) and € = 1 otherwise.

Proof By replacing D by a translate if necessary, we may assume x(p(D)) €
Z[&;). Since D is a subset of G, we have p(D) = /i, dgg for some integers
dy with 0 < dy < |U|. As the kernel of x on G/U has order v/(|Ule), we can
write

e—1
X(p(D)) =) aic (12)
i=0
with 0 < a; < v/e. Combining Lemma 2.9 and Theorem 4.1 gives

n = X(p(D)XD)) < 2408022

for 6(f) < d(e) and

f

e2

2
Soda(e)—1Y_
n < 2%dd le

for 6(f) = d(e). To complete the proof, we only have to note d,q4(€) = d(e)—1
if e is even and d,44(€) = d(e) if e is odd. O
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Combining Theorem 4.1 and Theorem 5.1 we arrive at the main result of this
section.

Theorem 5.2 Assume the existence of a (v,k, A, n)-difference set D in a
group G. If U is a normal subgroup of G such that G /U is cyclic of order e

then )
25-1F 2
o< (w) .
n

where s is the number of distinct odd prime divisors of e.

Proof By Lemma 2.9 and Theorem 3.5 the assumptions of Theorem 5.1 are
satisfied for f = F(e,n). This proves Theorem 5.2 since 6(F(e,n)) = d(e)
by Definition 3.1 and d(e) —2+¢e =s—1if 6(e) = §(f). O

It is worth to state the abelian case separately.

Theorem 5.3 Assume the existence of a (v, k, X, n)-difference set in an abelian
group G. Then
1
251F 2
ey,
n

exp(G) < (
where s is the number of distinct odd prime divisors of v.

Remark 5.4 In order to understand the strength of Theorem 5.3 we once
more resort to an intuitive argument. For many parameters of putative differ-
ence sets and all parameter series of known difference sets with ged(v,n) > 1
we have n ~ v and the squarefree part vy of v is approximately /v or less.
(again, “~” is not used in a strict sense here). For our reasoning we assume
the worst, i.e. vy ~ y/v. By Remark 3.6, we should have F(v,n) ~ v

in almost all cases. Since 2°7! ~ 2\°¢l8% < Jogy, and n ~ v, we get
25—1F(v,n)

- ~ v~2. We conclude that, loosely speaking, Theorem 5.3 shows

exp(@) < |G\3/4

in almost all cases with vy &~ /v and n =~ v.
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6 Difference sets with ged(v,n) > 1

The most interesting test cases for our exponent bound are the parameter
series corresponding to known families of difference sets. In this section, we
apply Theorem 5.3 to all parameter series corresponding to known difference
sets with ged(v,n) > 1. The following is a complete list of these series, see
28, 29].

(i) Hadamard parameters:
(v, k, \,n) = (4u?, 2u? — u, u® — u, u?)

where u is any positive integer.

(ii) McFarland parameters:

d+1__ d+1__ d__
(v, k, A n) = (¢ [T + 1, ¢ ¢ )

where ¢ = p/ # 2 and p is a prime.

(iii) Spence parameters:
— (qd+13%1—1 od3%*141 9d3?+1 q2d
(v, k, A\, n) = (341 35=, 34512 3992 329

where d is any positive integer.

(iv) Chen/Davis/Jedwab parameters:

2t _ _ 2t _ - 2t—1 -
(v, A1) = (464, @ 4 1,08 Mg = D), 6

where ¢ = p/, p is a prime, and ¢ any positive integer.

We do not allow ¢ = 2 for the McFarland parameters since then (v, k, A, n) =
(22412 92d+1_9d 92d _9d 92d) and these are Hadamard parameters with u =
2¢. Hadamard difference sets are known to exist for every u of the form v =
243%r% where a,b € {0,1} and r is any positive integer, see [29]. Here we will
consider arbitrary u. McFarland and Spence difference sets are known for any
prime power ¢ and any positive integer d, see [29]. Difference sets of type (iv)
are known to exist only if f is even or p < 3, see [9, 12, 29]. However, in this
section we will consider arbitrary f and p. We will first deal with Hadamard
difference sets. A lot of work has been devoted to finding necessary conditions
for the existence of Hadamard difference sets, see [1, 8, 7, 13, 37, 38, 39, 44,
51]. However, all these results rely either on the self-conjugacy condition or
on very restrictive assumptions on the parameter u. In particular, almost
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nothing had been known on the existence of Hadamard difference sets for
which v has many prime divisors. The following consequence of our exponent
bound 5.3 changes this situation dramatically.

Theorem 6.1 For any finite set P of primes there is a computable constant
C(P) such that
exp(G) < C(P)|G|'/?

for any abelian group G containing a Hadamard difference set whose order

u? is a product of powers of primes in P.

Proof By Proposition 3.3 there is a constant Cy(P) such that F(4u? u?) <
Co(P) for all u which are products of powers of primes in P. Thus by
Theorem 5.3

exp(G) < 2WPIED200(P)V2 - 4y = C(P)|G|'V?
where C(P) = 20PHD2Cy(P)Y2. O

Theorem 6.2 Let G be an abelian group containing a difference set whose
parameters (v, k, \,n) are of type (ii), (iii) or (iv) of the the above list. Then
for any fixed € > 0 the following hold if v is large enough.

_(1—-e)fd-1

a) exp(G) <p > |G| for McFarland parameters,

(1—e)d

b) exp(G) < 372 |G| for Spence parameters,
c) exp(GQ) < p~It=st=VI+1/2|Q| for Chen/Davis/Jedwab parameters.

Proof a) Assume the existence of a difference set with McFarland param-
eters in an abelian group. We only deal with the case where p is odd. The
case p = 2 is similar. If we take p; = p in Definition 3.1, we see that F'(v,n)

qd+1_1
q—1

divides p( + 1) since b; = 1. This implies

F(v,n) < 2pg*. (13)

Let s be the number of odd prime divisors of v. Then

R qsd
2

251 < 20+ < (14)
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if v is large enough by Corollary 2.7 (generate the factor 1/2 on the right hand
side of (14) by the right interpretation of “large enough”). From Theorem
5.3 and (13), (14) we obtain part a) of Theorem 6.3. The proofs for parts b)
and c) are similar. O

Ryser’s conjecture [47, p. 139] asserts that there is no (v, k, A, n)-difference
set with ged(w,n) > 1 in any cyclic group. The next application of Theorem
5.3 shows that Ryser’s conjecture is true for most of the parameters of known
difference sets.

Theorem 6.3

a) If there is a Hadamard difference set in a cyclic group of order 4u? then
F(4u? u?) > 275" u? where s is the number of distinct odd prime divisors of
u.

b) If there z's a difference set with McFarland parameters in a cyclic group of
order qd+1[ _1 +1],g=1p/, thend = f = 1.

¢) There are no difference sets with Spence or Chen/Davis/Jedwab parame-
ters in any cyclic groups.

Proof a) This is immediate from Theorem 5.3.

b) Assume the existence of a difference set with McFarland parameters in a
cyclic group G of order v = qd+1[ d+1_1 + 1] where ¢ = p/, and p is a prime.
Claim 1: fd < 2.

Proof: If we take p; = p in Definition 3.1 then bp=1ifp 1s Odd and b; = 2
if p = 2. In both cases F'(v,n) divides p( L 1 1) since q L 1 1is even
for p = 2. Thus

F(v,n) < 2pg*. (15)

We denote the number of all divisors of a positive integer r by D(r). Since
the divisors of r occur in pairs (z,r/x), x < \/r, we have D(r) < 2,/r for
any 7. Since 2°00 < D(r), we get

N < VT (16)

for any positive integer r. Let s be the number of distinct odd prime divisors
d 1
of v. Note s <1+ (%, - — +1). Thus

2571 < 24/2¢4 (17)
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by (16) and since % +1 < 2¢%. Using(15), (17) and exp(G) = v together
with Theorem 5.3 we get

4 2p > ¢¥? = pli2. (18)

Thus one of the following cases must occur

(1) fd <2,

(2) fd =3 and p < 31,

(3) fd=4 and p < 5,

(4) fd=5and p < 3,

(5) fd=6and p = 2.

However, all triples (p, f,d) occurring in the cases (2)-(5) can be ruled out
by a direct application of Theorem 5.3. Thus we have established Claim 1.
Claim 2: If fd = 2 then p < 441.

Proof: Assume fd = 2 and p > 441. Then a := qd;il1—1 +1>p? > 4422 =
195,364. Thus a > exp(exp(1/¢)) where ¢ = 2/5. By Corollary 2.7 we get
29(@) < ¢2/5. Also note a < 2¢%. Thus

25—1 — 260dd(v)—1 S 2(5(0,) < a2/5 < \/5qu/5' (19)

Since we assumed exp(G) = v, we get n = ¢?¢ < 2° 'F(v,n) from Theorem
5.3. Using (15), (19) and ¢¢ = p/? = p? we conclude p'/> < 2v/2 contradicting
p > 441. This proves Claim 2.

In order to complete the proof of part b) of Theorem 6.3 it remains to show
that fd = 2 and p < 439 is impossible. A straightforward direct application
of Theorem 5.3 rules out all these cases with the single exception of (p, f,d) =
(3,1,2), i.e. (v,k,\,n)=(2-3%-7,3%-13,3%-4,3"). However, in this case, 3
is self-conjugate modulo v. Thus no difference set with these parameters can
exist in the cyclic group by Result 2.10. This concludes the proof of part b).
c) In the case of Spence parameters we have F(v,n) < 3(3%*! —1)/2 and
s < d in Theorem 5.3 and thus exp(G) < (2/3)¢ 2v. This leaves only the
case d = 1 where we have (v,k, A\,n)) = (36,15,6,9). But 3 is self-conjugate
modulo 36, and thus no difference set with these parameters can exist in the
cyclic group by Result 2.10.

In order to prove the nonexistence of difference sets with Chen/Davis/Jedwab
parameters in cyclic groups G' we apply Result 2.10. First assume that p is
odd. Denote the Sylow p-subgroup of G by S,,. Note that S, is cyclic of order
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g*. Let U be the subgroup of G of order 2’5;:11. Then p is self-conjugate

modulo e := exp(G/U) since e is 2 times a power of p. Thus Result 2.10
implies

q2t 1

-1

" =exp(S,) < |U||S,pl/¢* ' =2q

Thus 1 < 2¢/(¢? — 1) contradicting q > 3.
Finally, for p = 2 we take |U| = %, and apply the same argument. O

A circulant Hadamard matrix of order m is a weighing matrix W (m, m) that
is invariant under the cyclic group Z,,. Examples for such matrices are
known only for m = 1,4 (take (1) respectively (1,1,1,—1) as the first row).
It is well known that the order of a Hadamard matrix must be 1, 2 or a
multiple of 4 [47, p. 106]. Moreover, we know from Lemma 2.14 that the
order of a circulant Hadamard matrix must be a square. Thus m = 4u? for
some u € Z" if a circulant Hadamard matrix of order m > 1 exists. Using
Lemmas 2.9 and 2.13, it can be checked that a circulant Hadamard matrix
M of order 4u? exists if and only if there is an Hadamard difference set D in
Zig,2. For instance, if H is the group ring element corresponding to M then
D := (G + H)/2 is the desired Hadamard difference set.

The circulant Hadamard matrix conjecture asserts that there is no circulant
Hadamard matrix of order greater than 4. This conjecture was first men-
tioned in Ryser’s book [47, p. 134], but goes back further to obscure sources.
Turyn [51, 52] proved that u must be odd if a circulant Hadamard matrix of
order 4u? exists and that the circulant Hadamard matrix conjecture is true
for u < 55. However, since Turyn’s work in the 60s there has not been any
progress on this conjecture because of the lack of methods to overcome the
failure of the self-conjugacy approach.

Using the equivalence to Hadamard difference sets in cyclic groups, we can
apply Theorem 6.3 a) to the circulant Hadamard matrix conjecture. Remark
3.5 strongly suggests that part a) of Theorem 6.3 should rule out the existence
of circulant Hadamard matrices for almost all u. We confirm this by the
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following result of a computer search.

Range of u # of cases not ruled
(u odd) out by Theorem 6.3 a)
3 <u<10t 26
10° < wu < 10° + 10* 2
106 < < 108 + 10 1
10" < u <107 +10* 1
10° < u < 10% +10* 0

By [51, Theorem 6], one can rule out 12 of the 26 cases with v < 10,000 not
covered by Theorem 6.3 a). The remaining open cases with u < 10,000 are
u = 165, 231, 1155, 2145, 2805, 3255, 3905, 5115, 5187, 6699, 7161, 8151,
8645, 9867.

A Barker sequence of length [ is a sequence (a;)'_; with a; = 41 such that

|3 * qiai,k| < 1for 1 < k < 1—1. It is known that the existence of a Barker
sequence of length [ > 13 implies the existence of a circulant Hadamard
matrix of size [, see [51, 52]. Thus | = 4u? where u is odd. Furthermore, it
is shown in [17] that [ cannot have a prime divisor p = 3 mod 4 if [ > 13 is
the length of a Barker sequence. Combining these two results with Theorem
6.3 a) we get the following bound by a computer search. It improves the
previously known bound [16, p. 363] by a factor greater than 10%. We do not
need Turyn’s inequality [51, Thm. 6] to obtain this result.

Theorem 6.4 There is no Barker sequence of length | with

13<1<4-10%.

7 Relative Difference Sets, Quasiregular Pro-
jective Planes and Planar Functions

In this section, we utilize our results on cyclotomic integers to obtain a nonex-
istence theorem on relative difference sets. No results of comparable general-
ity had previously been known. A treatment of most of the previously known
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results can be found in [43, Chapters 4,5]|. In particular, we will obtain new
necessary conditions for the existence of relative (n,n,n,1)-difference sets
which are equivalent to quasiregular projective planes of type b) of the Dem-
bowski/Piper classification [14], see Proposition 7.2 below. We will combine
this result with a further new nonexistence theorem on relative (n,n,n,1)-
difference sets to derive a strong asymptotic exponent bound on abelian
groups admitting planar functions.

If the prime power conjecture for projective planes is true, then, in particular,
n must be a prime power if a relative (n,n,n, 1)-difference set exists. It is
known that n must be a power of 2 if a relative (n,n, n, 1)-difference set with
even n exists in an abelian group, see [18] or [27]. In an important paper, Ma
[33] proved that there is no relative (n,n,n,1)-difference set in an abelian
group if n is a product of two primes. However, aside from Ma’s result and a
simple exponent bound [43, Thm. 4.1.1] very little had been known about the
existence of relative (n,n,n, 1)-difference sets in general — especially if n has
many prime divisors, see [43, Section 5.4]. As for the Hadamard difference
sets, our results are the first to tackle these cases.

Theorem 7.1 Assume the existence of an (m,n,k, \)-difference R set in a
group G relative to N. Let U be any subgroup of G' not containing N such
that G /U s cyclic of order e. Then

251 (e, k)\ '/
—% ) Ul

where s is the number of distinct odd prime divisors of e.

\Umv|s(

Proof Let p : G — G/U be the canonical epimorphism, and let x be a
character of G/U of order e. Note that x is nontrivial on Ny := NU/U since
U does not contain N. Since any coset of N contains at most one element
of R and since x has a trivial kernel, we have x(p(R)) = ¢, a;&l with

0 < a; < C where C = |U|/|U N N|. Since x is nontrivial on Ny we get
k= x(p(R))x(p(R)) < 2°7'F(e, k)|U*/|UN N|?
from Lemma 2.11 and Theorem 4.2 proving the theorem. O

Now we are going to study relative (n,n,n, 1)-difference sets corresponding
to quasiregular projective planes of type b) of the Dembowski/Piper clas-
sification [14]. These projective planes (of order n) admit a quasiregular
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collineation group of order n? with exactly three point orbits whose sizes are
1,n,n%. Here a collineation group G is called quasiregular if it induces a
regular operation on all its point orbits, i.e. if all points in any fixed orbit of
G have the same stabilizer. Since the conjugates of a point stabilizer coincide
with the stabilizers of the points in the same orbit, a collineation group G
is quasiregular if and only if all its point stabilizers are normal subgroups of
G. In particular, any abelian collineation group is quasiregular. Next, we
describe the connection between quasiregular projective planes and relative
(n,n,n,1)-difference sets. For the convenience of the reader, we sketch the
proof.

Proposition 7.2 There is a projective plane of order n with a quasiregular
collineation group G of order n? and point orbits of size 1,n,n? if and only
if there is an (n,n,n, 1)-difference set R in G relative to a normal subgroup
N.

Proof Assume that there is a projective plane of order n with a collineation
group G as described in the assertion. By [14, Thm. 4] the orbits of size
1,n form an incident point-line pair (pg, Lg). Since G acts regularly on the
point orbit O of size n?, we may identify G with O. Let p # po be a point
incident with Lo, and let L # Ly be a line through p. Then N := G, is a
normal subgroup of G of order n, and a straightforward verification shows
that L\ {p} is an (n,n,n, 1)-difference set in G relative to N. The converse
is proven by reversing this construction. O

The next Theorem will be needed for the proof of our asymptotic exponent
bound for groups admitting planar functions. It is the only result of this
paper which does not rely on the methods developed in Sections 3 and 4.

Theorem 7.3 Let G be an abelian group containing an (n,n,n, 1)-difference
set R relative to N. Let p be a prime divisor of n, and let S be the Sylow
p-subgroup of N. If p® is the exact power of p dividing n then

exp(9) < ple/?!
where [x| denotes the smallest integer > .

Proof Let o(g) denote the order of an element g of G. Assume e := exp(S) >
pl®/21t1 and let S = (a1) x - -- x {a;), o(a;) = e, be a decomposition of S into
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a direct product of cyclic groups. Let G = (by) X - - - X {bs) be a decomposition
of GG into cyclic groups of prime power order and write a; = szl b;j where
w.lo.g. o(bl') = e.

Define x € G* by x(b1) = &p,) and x(b;) = 1 for j > 1 and write K :=
Ker x. Then G/K is a cyclic p-group whose order is at least pl%/21*! since
o(by) > o(bl) = e > pl¥/21+1 Furthermore, |S N K| = |Ker x|s| = p*/e.

Let p : G — G/ K be the canonical automorphism. We have x(p(R))x(p(R)) €
{0,n} by Lemma 2.11 implying x(p(R))x(p(R)) = 0 (mod p®) for every non-
trivial x € (G/K)*. Since p is self-conjugate modulo any power of p and
thus modulo exp(G/K), we get x(p(R)) = 0 (mod pl*/2!) for every nontriv-
ial x € (G/K)* from Corollary 2.3. This congruence also holds for the trivial
character xo of G/K since xo(p(R)) = |R| = n. Thus we can apply Lemma
2.8 and get (using the notation of Lemma 2.8)

p(R) = pl" Xo + pl/2I PLX -+ X 42 Plaja)-
Thus pl*/2l divides p(R)p(R)(~Y. From Lemma 2.11 we get
p(R)p(R)™Y =n — |SNK|N + |K|G.

Thus pl®/? divides |S N K| = p®/e contradicting e > pl*/?1+!, O

It is known that a planar function from Z,, to Z, cannot exist if n is even,
not squarefree or the product of two primes or if there are two prime divisors
p, q of n such that p is self-conjugate modulo ¢, see [33, Thm. 1.1, Cor. 4.4].
However, very little has been known about planar functions f : H — N for
which H and N are noncyclic abelian groups. Our next result provides an
asymptotic exponent bound on H and N.

Theorem 7.4 For any finite set P of primes there is a computable constant
C(P) such that
exp(H), exp(N) < C(P)y/n

for any abelian groups H, N admitting a planar function f : H — N whose
degree n 1s a product of powers of primes in P.

Proof Assume that there is a planar function f : H — K where H and K
are abelian groups of order n, and n is product of powers of primes in P. By
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Lemma 2.12 there is an (n,n, n, 1)-difference set in G := H x N relative to
N. From Theorem 7.3 we get

exp(N) < vn [ [ v (20)

peP

Let x be a character of G of order e := exp(H) with |ker x N N| = n/p where
p is some prime divisor of n. Write U := ker x and note |U| = n?/e. Then
G/U is cylic of order e and thus

2\P|71F 1/2
UAN|=n/p< (#) nJe

by Theorem 7.1. Thus
e=exp(H) < C'vn (21)

where C' = p (2|P‘_1C7(P))1/2 and C'(P) is the constant from Proposition 3.3.

Now the assertion follows from (20) and (21). O

8 Group Invariant Weighing Matrices

In this final section, we apply Theorem 4.2 to group invariant weighing ma-
trices and give an example of a strong asymptotic exponent bound that can
be derived in this way. Very little has been known on the existence of group
invariant weighing matrices. The case which has attracted the most atten-
tion is that of circulant weighing matrices, i.e. matrices W (m,n) which are
invariant under the cyclic group Z,,, see [15, 40, 41, 49]. It is known that
circulant weighing matrices W(q¢? + q + 1,¢?) exist for all prime powers g
[49]. On the nonexistence side, it has been shown that there are no circulant
weighing matrices W (m, m — 1) for m > 2 [41] and that a circulant weighing
matrix W (m, n) with odd m can only exist if (m—n)?—(m—n) > n—1[19].
Further nonexistence results can be obtained using multiplier theorems or
Turyn’s self-conjugacy approach. However, these methods only work under
severe restrictions on the parameters m and n and, as usual, fail in most cases
when m or n have many prime divisors. As a consequence of Theorem 4.2
we obtain the following result which is of much broader applicability. Recall
that by Lemma 2.14 a group invariant weighing matrix W (m,n) can only
exist if n is a square.
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Theorem 8.1 Assume the existence of a G-invariant weighing matric H =
W (m, s*) where s is a positive integer. Let U be a subgroup of G such that
G/U is cyclic of order e. Then

s < (2'F(e, s))1/2 \U|

where t is the number of distinct prime divisors of e.
In particular, the existence of a circulant weighing matriz W (m, s*) implies

s2 < 2"F(m, s)
where r is the number of distinct prime divisors of m.

Proof Let p : G — G/U be the canonical epimorphism, and let x be a
character of G/U of order e. If we view H as an element of Z[G] (see the
paragraph preceding Lemma 2.13) then p(H) =} 5/ agg with |ay| < [U|
for all g since H as coefficients —1,0,1 only. As y has a trivial kernel, we
get x(p(H)) = 352, b€l with [b;| < |U| for all i. Now we apply Lemma 2.13
and Theorem 4.2 and get

s = x(p(H))x(p(H))) < 2'[U*F (e, 5)
(note F'(e,s) = F(e, s?)) proving the assertion. O

Note that Theorem 8.1 is weaker than Theorem 6.3 a) in the case of circulant
Hadamard matrices since we had to deal coefficients —1,0, 1 instead of just
—1,1. As an example illustrating the power of Theorem 8.1 we give an
application to the family of group invariant weighing matrices W (2s?, s%)
where s is a positive integer. This is a rich and interesting family since
examples for such matrices are known for any square s: There are Hadamard
difference sets of order n = s? in suitable abelian groups G for any square s [9].
If D is such a Hadamard difference set (viewed as a group ring element) and
p: G — G/U is a projection onto a subgroup U of G of order 2 then p(D) —
(G/U) € Z|G/U] describes a G/U-invariant weighing matrix W (2s?, s?). It
is straightforward to verify this using Lemma 2.9.

Corollary 8.2 Let P be any finite set of primes, and let (Q be the set of
all products of powers of primes in P. Then there is a computable constant
C(P) such that

exp(G) < C(P)s
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for any s € Q and any abelian group G of order 2s* for which a G-invariant
weighing matriz W (2s?, s?) eists.

In particular, a circulant weighing matriz W (2s%, s%) can only exist for finitely
many s € Q.

Proof This is immediate from Proposition 3.3 and Theorem 8.1. O
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