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Abstract

Let n be any fixed positive integer. Every circulant weighing ma-
trix of weight n arises from what we call an irreducible orthogonal
family of weight n. We show that the number of irreducible orthogo-
nal families of weight n is finite and thus obtain a finite algorithm for
classifying all circulant weighing matrices of weight n. We also show
that, for every odd prime power q, there are at most finitely many
proper circulant weighing matrices of weight q.
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1 Introduction

A circulant weighing matrix of order v is a square matrix of the form

M =




a1 a2 · · · av

av a1 · · · av−1

· · · · · · · · · · · ·
a2 a3 · · · a1




with ai ∈ {−1, 0, 1} for all i and MMT = nI where n is a positive integer

and I is the identity matrix. The integer n is called the weight of the matrix.

To study of circulant weighing matrices it is very convenient to use the

group ring language. Let Cv denote the cyclic group of order v, and let g be

a generator of Cv. A circulant matrix M as above satisfies MMT = nI if and

only if XX(−1) = n where X is the element of the group ring Z[Cv] defined by

X =
∑v

i=1 aig
i and X(−1) =

∑v
i=1 aig

−i. Thus a circulant weighing matrix of

order v and weight n is equivalent to an element X of Z[Cv] with coefficients

−1, 0, 1 only and XX(−1) = n. This is the formulation we will use in the rest

of our paper. Note that the weight of a circulant weighing matrix must be a

square as |∑ ai|2 = n.

The existence and structure of circulant weighing matrices has been stud-

ied intensively, see [3] for a survey, [18] for many related results, and [14] for

more background on weighing matrices in general. There are only a few in-

finite families [4, 11, 17] and sporadic examples [3, 5] of circulant weighing

matrices known. The spectrum of circulant weighing matrices of fixed weight

n, i.e. the set of positive integers v such that a circulant weighing matrix

of weight n exists, has been determined for n = 4 [12], n = 9 [1, 21], and

n = 16 [5, 6, 13].

In the present paper, we study the problem of classifying all circulant

weighing matrices of fixed weight. A substantial difficulty that arises in this

context is that there is no obvious way to decide when two such matrices

should be viewed as “equivalent”. A usual, but only partially satisfactory,

approach is to restrict the attention to “proper” circulant weighing matrices.

A circulant weighing matrix X ∈ Z[Cv] is called proper if there is no g ∈ Cv

and no proper divisor w of v such that Xg ∈ Z[Cw].
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For some cases this is enough to get nice results: We will show that for

every fixed odd prime power n, there are only finitely many proper circulant

weighing matrices of weight n. However, such a result cannot be true in

general. For instance, let v = 2p where p is an odd prime. Let g respectively

h be elements of Cv of order 2 respectively p. Then X = 1 + g + h − gh

is a proper circulant weighing matrix of weight 4. Thus there are infinitely

many distinct proper circulant weighing matrices of weight 4. But of course

these weighing matrices are “equivalent” in some sense and an attempted

classification of circulant weighing matrices of fixed weight should reflect

this. In fact, all these weighing matrices arise from the same “irreducible

orthogonal family” ({1 + g, 1− g}), a notion we introduce in this paper.

We will show that for every fixed weight n there are only finitely many

irreducible orthogonal families and that can give rise to circulant weighing

matrices of weight n and that every circulant weighing matrix of weight n

can be constructed in this way. This shows that, for any fixed n, there is a

finite algorithm for finding all circulant weighing matrices of weight n. Hence

we provide satisfactory framework for the classification of these matrices.

It should be mentioned that there is a close connection between the “or-

thogonal families” used in the present paper and the notion of “building sets”

introduced in the groundbraking paper of Davis and Jedwab [10]. In fact, if

we extend the notion of orthogonal families used in the present paper from

cyclic to abelian groups, a major result of Davis and Jedwab can be phrased

as an recursive construction of orthogonal families over abelian groups G

whose weight is equal to |G|. Though the result of Davis and Jedwab only

concerns abelian groups of relatively low exponent, the appearance of orthog-

onal families in the classification of circulant weighing matrices shows that

their main idea is relevant even for cyclic groups!

2 Main results

By Cv we denote the cyclic group of order v. For a divisor w of v, we identify

the subgroup of order w of Cv with Cw.
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Definition 2.1 Let v be a positive integer, let w be a divisor of v, and let g

be a generator of Cv. Every X ∈ Z[Cv] can be uniquely written in the form

X =

v/w−1∑
i=0

Xig
i with Xi ∈ Z[Cw].

If XiXj = 0 for all i 6= j, then we say that X is orthogonal over Cw. We

say that a subset S of Z[Cv] is orthogonal over Cw if every element of S is

orthogonal over Cw.

Definition 2.2 Let v be a positive integer, and let B = {A1, ..., Ak} be a

finite set of elements of Z[Cv] with Ai 6= 0 for all i. We call B an orthogonal

family over Cv if AiAj = 0 for all i 6= j. We call B reducible if there is

a proper divisor w of v such that B is orthogonal over Cw and irreducible

otherwise. If
∑k

i=1 AiA
(−1)
i = n where n is an integer, we say that B has

weight n.

Definition 2.3 Let v be a positive integer, let w be divisor of v, and let

B = {A1, ..., Ak} be an orthogonal family over Cw. We say that X ∈ Z[Cv]

is a coset combination of B if X has the form

X =
k∑

i=1

Aigi

where g1, ..., gk are representatives of distinct cosets of Cw in Cv.

The following is the main result of this paper. It shows that, for fixed

n, all circulant weighing matrices of weight n can be determined by a finite

algorithm.

Theorem 2.4 Let n be a positive integer.

(a) Every circulant weighing matrix of weight n is a coset combination of an

irreducible orthogonal family of weight n.

(b) The number of irreducible orthogonal families of weight n is finite, and

they can be enumerated by a finite algorithm.

In the case where the weight is an odd prime power, we can go much

further. To formulate our result in this case we need some more terminology.
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Definition 2.5 Let B = {A1, ..., Ak} be an orthogonal family over Cv (recall

that this requires Ai 6= 0 for all i). We call B nontrivial if k ≥ 2. We say

that B has coefficients −1, 0, 1 if all Ai have coefficients −1, 0, 1 only.

Theorem 2.6 There is no nontrivial orthogonal family with coefficients

−1, 0, 1 of odd prime power weight.

Corollary 2.7 Let n be an odd prime power. Then there are at most finitely

many proper circulant weighing matrices of n.

3 Preliminaries

In this section, we introduce some notation and basic facts we need in the rest

of paper. Let G be a finite abelian group. We write o(g) for the order of an

element g of G. Let R be a ring. We will always identify a subset A of G with

the element
∑

g∈A g of the group ring R[G]. For B =
∑

g∈G bgg ∈ R[G] and

an integer t we write B(t) :=
∑

g∈G bgg
t and |B| :=

∑
g∈G bg. The elements

bg are called the coefficients of B. We call {g ∈ G : bg 6= 0} the support of

B. A group homomorphism G → H is always assumed to be extended to a

homomorphism R[G] → R[H] by linearity.

We denote the group of complex characters of G by G∗. The character

sending all elements of G to 1 is called trivial. For a subgroup W of G, we

write W⊥ for the subgroup of G∗ consisting of all characters which are trivial

on W .

For a positive integer t, we write ζt = exp(2πi/t).

We repeatedly will make use of the following elementary properties of

characters of finite abelian groups. For a proof, see [8, Section VI.3].

Result 3.1 Let G be a finite abelian group.

a) Let D =
∑

g∈G dgg ∈ C[G]. Then

dg =
1

|G|
∑
χ∈G∗

χ(Dg−1)
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for all g ∈ G (Fourier Inversion Formula). In particular, two elements of

C[G] are equal if and only if all their character values are equal.

b) (Orthogonality relations) Let U be a subgroup of G. If χ ∈ G∗ is nontrivial

on U , then χ(U) = 0. If g ∈ G \ U , then
∑

χ∈U⊥ χ(g) = 0.

c) If H is a subgroup of G and A,B ∈ Z[G] with χ(A) = χ(B) for all

χ ∈ G∗ \H⊥, then A = B + XH for some X ∈ Z[G].

Lemma 3.2 Let G be a finite abelian group and D =
∑

agg ∈ Z[G]. For

a subset S of G write D ∩ S :=
∑

g∈S agg. Let U be a subgroup of G and

h ∈ G. Let χ be any character of G. Then

χ(D ∩ Uh) =
χ(h)

|U⊥|
∑

τ∈U⊥

χτ(Dh−1)

(here χτ is the character which sends g ∈ G to χ(g)τ(g)).

Proof Using the orthogonality relations, we compute

∑

τ∈U⊥

χτ(Dh−1) =
∑

τ∈U⊥

∑
g∈G

agχτ(gh−1)

=
∑
g∈G

agχ(gh−1)
∑

τ∈U⊥

τ(gh−1)

= |U⊥|
∑

gh−1∈U

agχ(gh−1)

= χ(h)−1|U⊥|
∑

k∈Uh

akχ(k)

= χ(h)−1|U⊥|χ(D ∩ Uh).

This proves the lemma. ¤

This follows from part b of Result 3.1. ¤

For a prime p and a positive integer t let νp(t) be defined by pνp(t)|| t,

i.e. pνp(t) is the highest power of p dividing t. By D(t) we denote the set of

prime divisors of t. The following definition is the basis for the field descent

method [19] which we will use in the next section.
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Definition 3.3 Let m, n be integers greater than 1. For q ∈ D(n) let

mq :=

{ ∏
p∈D(m)\{q} p if m is odd or q = 2,

4
∏

p∈D(m)\{2,q} p otherwise.

Set

b(2,m, n) = max
q∈D(n)\{2}

{
ν2(q

2 − 1) + ν2(ordmq(q))− 1
}

and

b(r,m, n) = max
q∈D(n)\{r}

{
νr(q

r−1 − 1) + νr(ordmq(q))
}

for primes r > 2 with the convention that b(2,m, n) = 2 if D(n) = {2} and

b(r,m, n) = 1 if D(n) = {r}. We define

F (m,n) := gcd(m,
∏

p∈D(m)

pb(p,m,n)).

Note that F (m,n) and m have the same prime divisors since bi is positive

for all i. We note the following important property of F (m,n) which follows

directly from the definition.

Result 3.4 Let n be a positive integer, let P be a finite set of primes, and let

Q be the set of all positive integers which are products of powers of primes in

P . Then there is a efficiently computable constant positive integer C(P, n),

only depending on P and n, such that F (m,n) divides C(P, n) for all m ∈ Q.

The following result was proved in [19].

Result 3.5 Assume XX = n for X ∈ Z[ζm] where n and m are positive

integers. Then

Xξj
m ∈ Z[ξF (m,n)]

for some j.

The following is a special case of [16, Thm. B] (take n = pb).

Result 3.6 Let p be an odd prime, and let r and w be positive integers with

(p, w) = 1. Let G = 〈α〉 ×H where o(α) = pr and H is an abelian group of

order w. Write β = αpr−1
. Let P = 〈β〉 be the subgroup of G of order p. Let
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t be a primitive root modulo p. Suppose D is an element of Z[G] such that

|χ(D)|2 = pb for all χ ∈ G∗ \ P⊥ where b is a positive integer.

Then there are g ∈ H with o(g)|(p − 1), h ∈ G, ε ∈ {0, 1}, X ∈ Z[G],

and E ∈ Z[H] such that

Dh = E

p−1∑
i=1

(εg)iβti + PX.

4 Proof of Theorem 2.4

The following is a slight modification of a special case of [15, Thm. 1]. Since

it can be proved in the same way as [15, Thm. 1] with minimal changes, we

skip the proof.

Result 4.1 Let v and n be coprime positive integers. Let A ∈ Z[Cv] with

AA(−1) = n and let t be a positive integer coprime to v. Let σ ∈ Gal(Q(ζv)/Q)

be defined by ζσ
v = ζt

v. If σ fixes all prime ideals above χ(A)Z[ζv] for all

characters χ of Cv, then there is g ∈ Cv with

(Ag)(t) = Ag.

Theorem 4.2 Let p be a prime, and Let v = paw where a and w are positive

integers with (p, w) = 1. Let A ∈ Z[Cv] with AA(−1) = n where n is a positive

integer. If p > 4n + 1, then there is g ∈ Cv with Ag ∈ Z[Cw].

Proof Let g be an element of Cv of order pa. Write

A =
s∑

i=1

Aig
ai (1)

with Ai ∈ Z[Cw] and the ai are distinct elements of {a1, ..., an}. Since the

sum of the squares of the coefficients of A is n, we can assume s ≤ n.

Claim Let χ be any complex character of Cv. Then there is a root of unity

η such that ηχ(A) ∈ Z[ζw].

Write β = χ(g). Note that β is a primitive pbth root of unity for some

nonnegative integer b. If b = 0, then there is nothing to show, so we assume
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b ≥ 1. By (1), we have

χ(A) =
s∑

i=1

χ(Ai)β
ai . (2)

By removing all terms with χ(Ai) = 0, if necessary, we can assume χ(Ai) 6= 0

for all i. From (2), we get

n = |χ(A)|2 =
s∑

i,j=1

χ(Ai)χ(Aj)β
ai−aj . (3)

Let ρ : Z[ζw][Cpb ] → Z[ζwpb ] be an epimorphism that sends a generator of Cpb

to ζpb . Note that the kernel of ρ is

{XP : X ∈ Z[ζw][Cpb ]}

where P is the subgroup of Cpb of order p. Taking preimages under ρ in (3),

we get

n + XP =
s∑

i,j=1

χ(Ai)χ(Aj)h
ai−aj (4)

where X ∈ Z[ζw][Cpb ] and h is a generator of Cpb . Note that the right hand

side of (4) has at most n2−n+1 nonzero coefficients since s ≤ n. However, if

XP 6= 0, then the left hand side of (4) has at least p− 1 nonzero coefficients.

This is a contradiction, since, by assumption, p−1 > 4n > n2−n+1. Hence

XP = 0 and thus

n =
s∑

i,j=1

χ(Ai)χ(Aj)h
ai−aj . (5)

Now assume s ≥ 2. By [9, Thm. 1, p. 13] there is a positive integer t < p

and integers bi with
tai

p
= bi + εi (6)

with |εi| ≤ (p − 1)−1/s. Since s ≤ n and p > 4n + 1, we conclude |εi| < 1/4

for all i. Write ci = tai and ei = εip Note |ei| < p/4 and that (6) implies

that ei is an integer for all i. From (6) we obtain

ci ≡ ei mod p. (7)

Let ex the largest and ey the smallest ei. Since |ei| < p/4 for all i, we conclude

cx − cy 6≡ ci − cj mod p (8)

9



for all pairs (i, j) 6= (x, y). Applying the isomorphism of Z[ζw][Cpb ] defined

by h 7→ ht and ζw 7→ ζw to (5) we get

n =
s∑

i,j=1

χ(Ai)χ(Aj)h
ci−cj . (9)

Since χ(Ai) 6= 0 for all i, and the difference cx − cy occurs only once mod

p, the coefficient of hcx−cy on the right hand side of (9) is nonzero. But this

contradicts (9). Hence s = 1, and this proves the Claim in view of (2).

Now let t be an integer such that t ≡ 1 mod w and the order of t mod

pb is (p − 1)pb−1. Let σ ∈ Gal(Q(ζwpb)/Q) be defined by ζσ
wpb = ζt

wpb . Note

that σ fixed Q(ζw). Hence Claim 1 implies that σ fixes the ideal χ(A)Z[ζv]

for every character χ of Cv. Thus Result 4.1 shows that, replacing A by Ag

for some g ∈ Cv, if necessary, we have

A(t) = A. (10)

Now write A =
∑pa−1

i=0 Xig
i with Xi ∈ Z[Cw] where at most n of the Xi a

nonzero. Note that X
(t)
i = Xi for all i and thus

pa−1∑
i=0

Xig
it =

pa−1∑
i=0

Xig
i. (11)

This implies that Xi = Xj if i and j are in the same orbit of x 7→ tx mod pa.

Note that all such orbits different from {0} have size at least p − 1. Hence,

if Xi 6= 0 for some i > 0, then at least p − 1 of the Xi are nonzero. Hence

p− 1 < n, a contradiction. Thus A = X0 ∈ Z[Cw]. ¤

Lemma 4.3 Let v = wpa where p is a prime and a ≥ 2, w ≥ 1 are integers.

Let b be an integer with 1 ≤ b < a, and let X =
∑pa−b−1

i=0 Xiζ
i
pa where

Xi ∈ Z[ζwpb ]. If more than one Xi is nonzero, then there is no root of unity

η such that Xη ∈ Z[ζwpb ].

Proof This follows from the well known fact that {1, ζpa , ..., ζpa−b−1
pa } is inde-

pendent over Q(ζwpb). ¤
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Lemma 4.4 Let v = wpa where p is a prime and a, w are positive integers.

Let X ∈ Z[Cv] with

|χ(X)|2 ≤ n

for all characters χ of Cv for some constant n. Assume that for all characters

τ of Cv there is a root of unity η(τ) such that η(τ)τ(X) ∈ Z[ζwpb ] where b is

an integer with 1 ≤ b < a. Furthermore, assume pa−b > n.

Let c < a be any positive integer with pc−b+1 > n. Then X is orthogonal

over Cpcw.

Proof Write

X =

pa−c−1∑
i=0

Xih
i (12)

where Xi ∈ Z[Cpcw] and h is an element of Cv of order pa. We have to show

XiXj = 0 for all i 6= j. Let χ be a character of Cv with χ(h) = ξ where ξ is

a primitive pa−c+f th root of unity for some f with b ≤ f ≤ c. Then

χ(X) =

pa−c−1∑
i=0

χ(Xi)ξ
i (13)

with χ(Xi) ∈ Z[ζwpf ]. Recall that a − c ≥ 1 by assumption. Now assume

that χ(Xi) 6= 0 for at least two values of i. Then, by (13) and Lemma 4.3,

we conclude that there is no root of unity η with ηχ(X) ∈ Z[ζwpf ]. But since

f ≥ b, this contradicts the assumptions.

Let τ be any character of Cv. Note that τ(h) is a primitive pa−c+f th root

of unity for some f with b ≤ f ≤ c if and only if the restriction of τ to Z[Cpcw]

has order divisible by pb. Hence, in summary, we have shown that for every

character ψ of Cpcw whose order is divisible by pb, we have ψ(Xi) 6= 0 for at

most one i.

Note that the number of characters ψ of Cpcw of order divisible by pb is

w(pc − pb−1). By what we have shown, we have

ψ(XiXj) = 0 for all i 6= j (14)

for all these characters ψ. Since |χ(X)| = √
n for all characters χ of Cv, we

have

|ψ(Xi)| ≤
√

n (15)
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for all i by Lemma 3.2. Now assume that XiXj 6= 0 for some i 6= j. Let

k ∈ Cpcw have coefficient x 6= 0 in XiXj. Then by (14), (15) and the inversion

formula,

1 ≤ |x| ≤ 1

wpc

(
(wpc − w(pc − pb−1))n

)
= npb−c−1.

But this contradicts the assumption pc−b+1 > n. Hence XiXj = 0 for all

i 6= j. ¤

Definition 4.5 Let n be a positive integer, let {p1, ..., pr} be the set of all

primes ≤ 4n + 1, and let P =
∏r

i=1 pi. Let the constant C(P, n) as defined

in Result 3.4 and write C(P, n) =
∏r

i=1 pbi
i . For each i, let ci be smallest

positive integer with pci−bi+1 > n. We define

T (n) =
r∏

i=1

pci
i .

Theorem 4.6 Let n and v be a positive integers, and let X ∈ Z[Cv] such

that |χ(X)|2 ∈ {0, n} for all characters χ of G. Then X is orthogonal over

Cd where d = gcd(T (n), v).

Proof Let {p1, ..., pr} be the set of all primes ≤ 4n + 1. By Theorem 4.2

there is a divisor w of v of the form

w =
r∏

i=1

pai
i , ai ≥ 0,

such that Xg ∈ Z[Cw] for some g ∈ Cv. Hence we can assume X ∈ Z[Cw].

Write T (n) =
∏r

i=1 pci
i . Let k be an integer with 1 ≤ k ≤ r and let

wk =

(
k−1∏
i=1

p
min(ai,ci)
i

)(
r∏

i=k

pai
i

)
.

Note that wr+1 = gcd(T (n), w) is a divisor of gcd(T (n), v) = d. Hence it

suffices to show that X is orthogonal over Cwr+1 .

Claim X is orthogonal over Cwk
for k = 1, ..., r + 1.
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We proof the Claim by induction on k. Since w1 = w and X ∈ Z[Cw] it

trivially holds for k = 1. Let g be a generator of Cw. Assume that the Claim

is true for some value of k. Thus

X =

w/wk−1∑
i=0

Xig
i (16)

with Xi ∈ Z[Cwk
] and XiXj = 0 for all i 6= j. Write

Xi =

wk/wk+1−1∑
j=0

Yijh
j (17)

for i = 0, ..., w/wk − 1 with Yij ∈ Z[Cwk+1
] where h is a generator of Cwk

. To

verify the Claim for k + 1, we need to show

YijYst = 0 whenever (i, j) 6= (s, t). (18)

If ck ≥ ak, then wk+1 = wk and there is nothing to show. Hence we can

assume ck < ak.

Now fix any i ∈ {0, ..., w/wk−1}. Since |χ(X)|2 ∈ {0, n} for all characters

χ of Cw, we have |τ(Xi)|2 ∈ {0, n} for all i and all characters τ of Cw. Let

C(P, n) =
∏r

i=1 pbi
i as in Definition 4.5. Let τ be any character of Cwk

. Note

that pck
k is the highest power of pk dividing wk+1 since we assume ck < ak.

Since |τ(Xi)|2 ∈ {0, n}, by Result 3.5, there is a root of unity η(τ) such that

τ(Xi)η(τ) ∈ Z[ζ
p

bk−ck
k wk+1

]. Note that pbk
k is the highest power of pk dividing

pbk−ck
k wk+1 and that pck−bk+1

k > n by the definition of T (n). Hence, using

Lemma 4.4, we conclude that Xi is orthogonal over Cwk+1
. This implies

YijYit = 0 for all j 6= t and all i. (19)

Let ψ be any character of Cwk
and i ∈ {0, ..., w/wk − 1}. From (19) we

conclude that ψ(Yij) 6= 0 for at most one j. Now let i′ ∈ {0, ..., w/wk − 1},
i′ 6= i. Then, by the same argument, ψ(Yi′j) 6= 0 for at most one j. Assume

that there are j, j′ such that ψ(Yij) 6= 0 and ψ(Yi′j′) 6= 0. Then ψ(Xi) 6= 0

and ψ(Xi′) 6= 0 by (17). But this contradicts the orthogonality of X over

Cwk
.
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In summary, we have shown that ψ(YijYst) = 0 for every character ψ of

Cwk
whenever (i, j) 6= (s, t). This implies (18) and concludes the proof of the

Claim. Taking k = r + 1 in the Claim, we infer that X is orthogonal over

Cwr+1 and this proves the theorem. ¤

Proof of Theorem 2.4 Let v and n be positive integers and let X ∈ Z[Cv]

be a circulant weighing matrix of weight n. Let d be the smallest divisor

of v such that X is orthogonal over Cd. Then X =
∑v/d−1

i=0 Xig
i where

Xi ∈ Cd, and g is a generator of Cv and XiXj = 0 for all i 6= j. Let t be the

number of nonzero Xi, i = 0, ..., v/d − 1. There are integers a1, ..., at such

that X =
∑t

i=1 Xai
gai . Furthermore, for every proper divisor w of d, there

is at least one Xai
, i ∈ {1, ..., t}, which is not orthogonal over Cw (otherwise

X would be orthogonal over Cw in contradiction to the minimality of d).

Hence B = {Xa1 , ..., Xat} is an irreducible orthogonal family and X is a

coset combination of B. This proves part (a) of Theorem 2.4.

For the proof of part (b), let B = {X1, ..., Xt}, Xi ∈ Z[Cv], be an irre-

ducible orthogonal family of weight n. If v does not divide T (n), then all

Xi are orthogonal over Cd for some proper divisor d of v by Theorem 4.6, a

contradiction to the irreducibility of B. Hence v divides T (n).

Recall that
∑t

i=1 XiX
(−1)
i = n by the definition of a orthogonal family

of weight n. Since the coefficient of 1 in XiX
(−1)
i is at least 1, this implies

t ≤ n. Furthermore, the coefficients of all Xi cannot exceed
√

n in absolute

value.

For every divisor v of T (n), there are only finitely many t-subsets of Z[Cv]

with t ≤ n and all coefficients bounded in absolute value by
√

n. Since T (n)

has only finitely many divisors, this implies that there are only finitely many

irreducible orthogonal families of weight n, and they can be enumerated in

finitely many steps by brute force. This concludes the proof of Theorem 2.4.

¤
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5 Some necessary conditions on orthogonal

families

Lemma 5.1 Let v and n be positive integers. If an orthogonal family over

Cv of weight n exists, then n is a square.

Proof Let {A1, ..., Ak} be an orthogonal family over Cv of weight n. Let χ0

be the trivial character of Cv. Then there is j with |χ0(Aj)|2 = n and χ0(Aj)

is an integer. ¤

Lemma 5.2 Let Γ be a cyclic p-group, and let Mi denote the set of elements

of Γ of order pi. Suppose that M is a union of some Mi and does not contain

the identity element of Γ. Let j be the smallest positive integer such that Mj

is contained in M . Then |M | is not divisible by pj.

Proof Note that |Mi| = pi−pi−1 for i ≥ 1. Hence |M | = pj−pj−1 +R where

R is divisible by pj. Thus |M | is not divisible by pj. ¤

Definition 5.3 Let v be a positive integer, and let B = {A1, ..., Ak} be an

orthogonal family over Cv. Let C∗
v denote the group of complex characters

of Cv. We define

Ai = {χ ∈ C∗
v : χ(Xi) 6= 0}

for i = 1, . . . , k.

Remark 5.4 If χ ∈ Ai, then χt ∈ Ai for any t relatively prime to v.

Lemma 5.5 Let B = {A1, ..., Ak} be an orthogonal family over Cv of weight

n and let Ai be defined as above. Then each Ai is a union of C⊥
(v,n)-cosets.

Proof Let p be a prime divisor of v and write v = prw with (p, w) = 1. Let

χ, τ ∈ C∗
v such that (p, ◦(χ)) = 1 and ◦(τ) is a p-power that divides v/(n, v).

Claim If χ ∈ Ai then χτ ∈ Ai.

Assume the contrary, i.e., χ ∈ Ai and χτ 6∈ Ai. Write Cv = 〈g〉 × 〈h〉
where g has order pr and h has order w. Let ρ : Z[Cv] → Z[ζw][Cpr ] be the

homomorphism defined by ρ(g) = g and ρ(h) = χ(h). Note that

γχ = γ ◦ ρ (20)
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for every character γ of Cpr . Write Bi = ρ(Ai) for all i. Let γ be any

character of Cpr . Since the Ai are an orthogonal family, we have |γ(Bi)|2 for

one i and γ(Bj) = 0 for j 6= i. Let χ0 denote the trivial character of Cpr .

Since χ ∈ Ai and χτ 6∈ Ai, we have |χ0(Bi)|2 and τ(Bi) = 0. Hence there is

a j such that χ0(Bj) = 0 and |τ(Bj)|2 = n. Let T be the set of characters γ

of Cpr with |γ(Bj)|2 = n. Note that, by Remark 5.4, T is a union of some Mk

where Mk is the set of elements of C∗
pr of order pk. By the inversion formula,

the coefficient of 1 in BjB
(−1)
j is

1

pr

∑

γ∈C∗pr

|γ(Bj)|2 =
1

pr
|T |n. (21)

Since χ0 6∈ T and τ ∈ T , Lemma 5.2 implies that |T | is not divisible by o(τ).

As o(τ) divides pr/(n, pr), we conclude that |T | is not divisible by pr/(n, pr).

Thus n|T | is not divisible by pr, contradicting (21). This proves the claim.

Now write v/(v, n) =
∏t

i=1 pai
i where the pi are distinct primes. Applying

the Claim with the trivial character of Cv for χ and a τ of order pa1
1 , we

conclude that Ai is a union of cosets of the subgroup of order pa1
1 of C∗

v .

Repeating this arguments, we see that Ai is a union of cosets of the subgroup

of order v/(v, n) of C∗
v . This proves Lemma 5.5. ¤

Corollary 5.6 Let v and n be coprime positive integers. Then there is no

nontrivial orthogonal family of weight n over Cv.

Proof Suppose that B = {A1, ..., Ak} is an orthogonal family over Cv with

k ≥ 2. As A1 6= 0, there is χ ∈ C∗
v with χ(A1) 6= 0. Thus τ(A1) 6= 0 for

all τ ∈ C∗
v by Lemma 5.5. Since A1A2 = 0, this implies τ(A2) = 0 for all

τ ∈ C∗
v . Hence A2 = 0 by Result 3.1, part a, a contradiction. ¤

6 Building block families of odd prime power

weight

In this section, we prove Theorem 2.6 and Corollary 2.7. We need the fol-

lowing lemma which is a generalization of [7, Lem. 3.4].
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Lemma 6.1 Let p be an odd prime, and let r and w be positive integers with

(p, w) = 1. Let G = 〈α〉 ×H where o(α) = pr and H is an abelian group of

order w. Let P be the subgroup of G of order p. Let c be any positive integer.

There is no A ∈ Z[G] with coefficients −1, 0, 1 only satisfying

AA(−1) = p2c − p2c−1P. (22)

Proof From (22) we infer

|χ(A)|2 = p2c if χ ∈ G∗ \ P⊥,

χ(A) = 0 if χ ∈ P⊥.
(23)

Let t be a primitive element mod p. In view of (23), Result 3.6 implies

Ah = E

p−1∑
i=1

(εg)iαtipr−1

+ PX (24)

with h ∈ G, E ∈ Z[H], ε = ±1, g ∈ H, o(g)|(p− 1), and X ∈ Z[G].

We first show ε = 1. Suppose ε = −1 and let χ be character of G of

order pr. Then χ ∈ H⊥ \P⊥ and thus x := χ(E) is an integer χ(g) = 1, and

χ(P ) = 0. Hence χ(Ah) = x
∑p−1

i=1 (−1)iζti by (24) where ζ = χ(αpr−1
) is a

primitive pth root of unity. Note that
∑p−1

i=1 (−1)iχ(h)ti is a quadratic Gauss

sum of absolute value
√

p [22, Lemma 6.1]. Hence |χ(A)|2 = |χ(Ah)|2 = px2.

But from (23) we have |χ(A)|2 = p2c, a contradiction. This proves ε = 1.

Let χ ∈ P⊥ \ 〈g〉⊥. Then χ(A) = 0 by (23) and

χ(

p−1∑
i=1

giαtipr−1

) =
p− 1

o(g)
χ(〈g〉) = 0

by Result 3.1, part b. Thus χ(PX) = 0 by (24). Hence we have τ(PX) = 0

for all τ ∈ G∗ \ (P 〈g〉)⊥. By Result 3.1, part c, we can write PX = P 〈g〉Y
for some Y ∈ Z[G]. Replacing A by Ah−1 and using ε = 1, we get

A = E

p−1∑
i=1

giαtipr−1

+ P 〈g〉Y (25)

from (24).

17



W.l.o.g. we assume that the elements in the support of Y are all from

distinct cosets of P 〈g〉. We will show that Y has coefficients −1, 0, 1 only. If

k ∈ G has coefficient z 6∈ {−1, 0, 1} in Y , then every l ∈ Pk has coefficient

z in P 〈g〉Y . But since E
∑

giαtipr−1
does not contain any full coset of P ,

this implies that A has at least one coefficient equal to z. This contradicts

the assumption that A has coefficients −1, 0, 1 only. Hence Y has coefficients

−1, 0, 1 only.

Now let ρ : G 7→ G/P be the natural epimorphism and write ḡ = ρ(g).

Note that ρ(A) = 0 by (23) and Result 3.1, part a. Hence we get

0 = ρ(A) =
p− 1

o(g)
ρ(E)〈ḡ〉+ p〈ḡ〉ρ(Y ) (26)

from (25). Since the elements in the support of Y are all from distinct cosets

of P 〈g〉 and Y has coefficients −1, 0, 1 only, 〈ḡ〉ρ(Y ) also has coefficients

−1, 0, 1 only. Thus (26) implies ρ(Y ) = 0, i.e. Y = 0, or o(g) = p − 1. In

both cases (25) shows that both x1 and x2 are divisible by p − 1 where x1

respectively x2 is the number of coefficients of A equal to 1 respectively −1.

By (22) we have x1 − x2 = |A| = 0. Comparing the coefficient of 1 on both

sides of (22) we get x1 + x2 = p2c − p2c−1. Hence x1 = p2c−1(p− 1)/2 is not

divisible by p− 1, a contradiction. ¤

Proof of Theorem 2.6 Let p be an odd prime and suppose that a

nontrivial orthogonal family {A1, ..., Ak} of weight n = pd over Cv exists

where d is a positive integer. By Lemma 5.1, we have n = p2c for some

positive integer c. Write v = prw with (p, w) = 1. By Corollary 5.6, we have

r ≥ 1.

By Lemma 5.5, we can assume |χ(A1)|2 = n for all χ ∈ C∗
v \ C⊥

p . Fur-

thermore, by Result 3.6, we have

A1 = T + CpX (27)

with T ∈ Z[Cpw] and X ∈ Z[Cv]. Since {A1, ..., Ak} is a nontrivial orthogonal

family there is τ ∈ C⊥
p with τ(A1) = 0. Thus τ(T ) ≡ 0 mod p by (27). Since

T ∈ Z[Cpw] we have ψ(T ) = τ(T ) for all ψ ∈ C⊥
p . This shows

ψ(T ) ≡ 0 mod p (28)
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for all characters ψ ∈ C⊥
p . Let ρ : Cv → Cv/Cp be the natural epimorphism.

By (28) we have κ(ρ(T )) ≡ 0 mod p for all characters κ of Cv/Cp. Since

ρ(T ) ∈ Z[Cpw/Cp] and p does not divide |Cpw/Cp|, this implies ρ(T ) ≡
0 mod p by Result 3.1, part a. Hence, in view of (27), we have

ρ(A1) ≡ 0 mod p. (29)

Now assume ρ(A1) = 0. Then χ(A1) = 0 for all χ ∈ C⊥
p and |χ(A1)|2 =

n = p2c for χ ∈ Cv ∗ \C⊥
p . Hence A1A

(−1)
1 = p2c− p2c−1Cp by Result 3.1, part

a. But this is impossible by Lemma 6.1. Hence ρ(A1) 6= 0.

Now let i > 1. Since χ(A1) 6= 0 for all χ ∈ C∗
v \ C⊥

p , we have χ(Ai) = 0

for all these characters. This means that φ(Ai) = 0 where φ : Z[Cv] →
Z[ζpr ][Cw] is the homomorphism which sends a generator of Cpr to ζpr and

whose restriction to Cw is the identity map. Note that the kernel of φ is

{XCp : X ∈ Z[Cv]}. Hence we have Ai = XiCp with Xi ∈ Z[Cv]. This

implies

ρ(Ai) ≡ 0 mod p for i = 2, ..., k. (30)

Since Ai 6= 0 and χ(Ai) = 0 for all χ ∈ C∗
v \ C⊥

p , there is τi ∈ C⊥
p with

τi(Ai) 6= 0. This shows ρ(Ai) 6= 0 for i = 2, ..., k.

In summary, we have shown ρ(Ai) ≡ 0 mod p and ρ(Ai) 6= 0 for i =

1, ..., k. Note that ρ(Ai)/p, i = 1, ..., k, are elements of Z[Cv/Cp] with co-

efficients −1, 0, 1 only since the Ai have coefficients −1, 0, 1 only. Hence

{ρ(Ai)/p : i = 1, ..., k} is an orthogonal family of weight p2c−2 over Z[Cv/Cp].

Repeating this argument, we finally obtain an orthogonal family over a

cyclic group whose order is coprime to the weight of the orthogonal family.

But this is impossible by Corollary 5.6. ¤

Proof of Corollary 2.7 Suppose X ∈ Z[Cv] is a proper circulant weighing

matrix with XX(−1) = n where n is an odd prime power. By Theorem 2.4, X

is a coset combination of an irreducible orthogonal family B over Cw for some

divisor w of v. By Theorem 2.6, B has only one element, i.e., B = {A1} with

A1 ∈ Z[Cw] and X = A1g for some g ∈ Cv. Since X is proper, we conclude

w = v. Hence {X} is also an irreducible orthogonal family of weight n. Since

there at most finitely many such families by Theorem 2.4, there are also at

most finitely many proper circulant weighing matrices of weight n. ¤
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