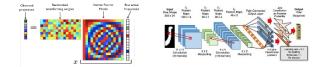
### Machine Learning for CS MRI: From Model-Based Methods to Deep Learning

Bihan Wen

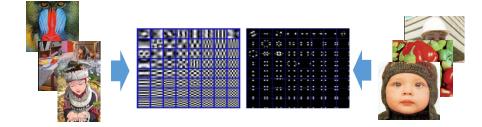
Nanyang Assistant Professor

#### School of Electrical and Electronic Engineering (EEE) Nanyang Technological University (NTU)





• Artificial Intelligence (AI): Data-Driven Models



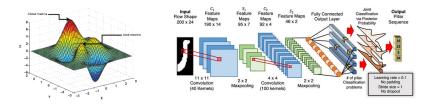
#### Data-Driven Models > Analytical Models

臣

토 🖌 🗶 토 🛌

#### About me

- Artificial Intelligence (AI): Data-Driven Models
- Machine Learning

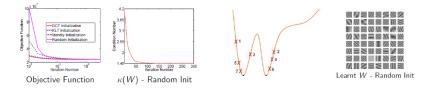


Deep Learning, Optimization, Sparse Coding, etc.

イロト イポト イヨト イヨト 三日

#### About me

- Artificial Intelligence (AI): Data-Driven Models
- Machine Learning
- Solutions with Mathematical Analysis



Mathematical Analysis, Convergence Guarantee, etc.

- Artificial Intelligence (AI): Data-Driven Models
- Machine Learning
- Solutions with Mathematical Analysis
- Applications with State-of-the-art Results



Restoration



Analysis

イロト イヨト イヨト

臣

#### **Computer Vision vs. Image Reconstruction**



Computer Vision

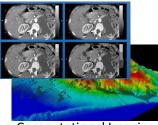
**Image Analysis** 

Video Analysis

#### Image Reconstruction



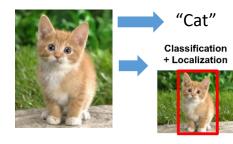
Image Restoration



**Computational Imaging** 

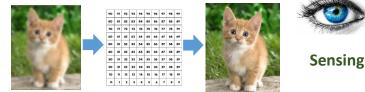
(4日) (4日) (4日)

#### **Computer Vision vs. Image Formation**



#### Computer Vision

#### Image Reconstruction



understanding



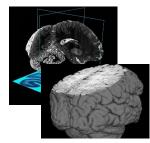
Compressed Sensing MRI

• Why Do We Need Data Models?

• Tutorial on Transform Learning (TL) for MRI

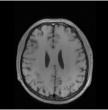
• From Model-Based Method to Deep Learning

#### Magnetic Resonance Imaging (MRI)

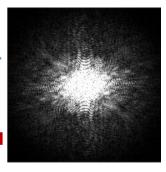


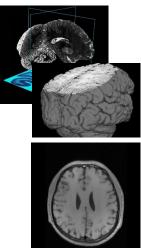


**MR** sampling



MR image reconstruction



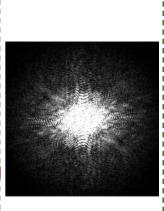


# Image Space



**MR** sampling

# MR image reconstruction



**K-Space** 

#### <ロト 4 目 ト 4 目 ト 4 目 ト 1 日 1 の 4 の</p>

## Why MRI?

Non-invasive



## Why MRI?

Non-invasive

Non-ionizing



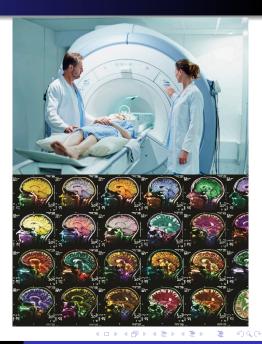


#### Why MRI?

Non-invasive

Non-ionizing

• Variety of Contrast and Visualization



#### Why Compressed Sensing (CS)?

Scan time is too long

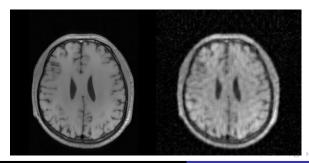


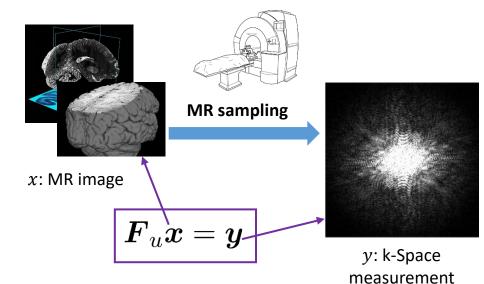
### Why Compressed Sensing (CS)?

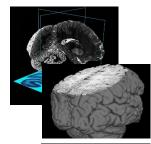
Scan time is too long

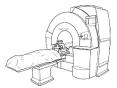


Image Resolution





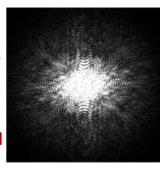


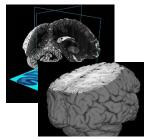


# **MR** sampling



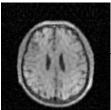
# MR image reconstruction



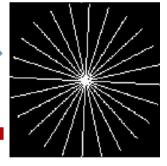




under-sampling

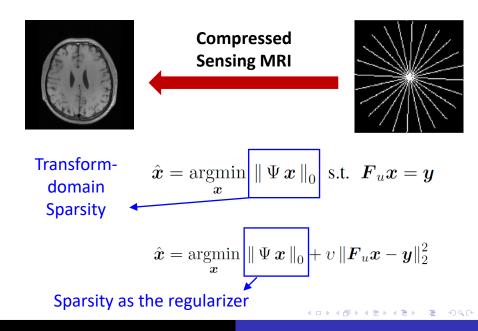


Naïve Reconstruction

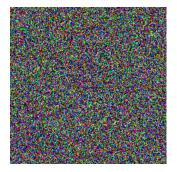


CS: better reconstruction via image modeling





# Why do we need Data Model?





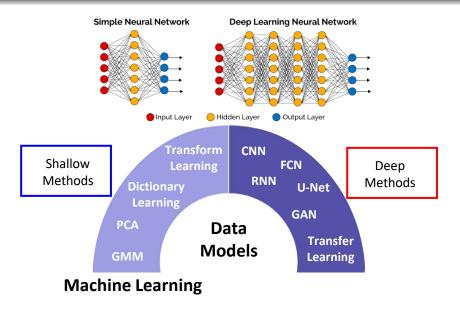
#### What makes images look like images?

#### How to distinguish desired pattern from others?

# Data Models

▲□▶▲□▶▲□▶▲□▶ □ のへで

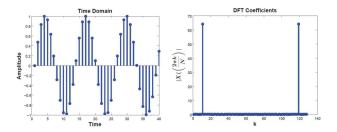
# Why do we need Data Model?



# Sparsity

- A vector  $x \in \mathbb{R}^n$  is sparse  $\Leftrightarrow$  Most of its coefficients are equal to zero.
- **Define:**  $||x||_0 =$  number of non-zero coefficients in x.
- Dense signal may be sparse in certain transform domain.

- **Example:**  $x(n) = \sin(\frac{2\pi 10}{128}n)$ ,
  - Sinusoids are sparse in DFT domain.



() ( 문) ( 문)

æ



Natural Image

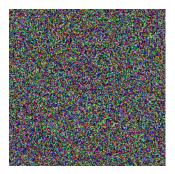


#### 2D Discrete Cosine Transform (2D DCT)



Highly sparse DCT coefficients

590

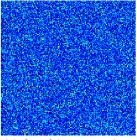


i.i.d. White Gaussian Noise





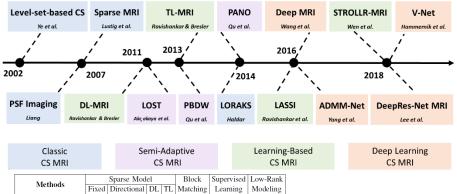
#### 2D Discrete Cosine Transform (2D DCT)



i.i.d. White Gaussian

500

#### Sparsity and Beyond



| Classic |                  |       | Se          | Semi-Adaptive |    |          |        |        | Learning-Based |      |       | De             | ep Lear |     |     |
|---------|------------------|-------|-------------|---------------|----|----------|--------|--------|----------------|------|-------|----------------|---------|-----|-----|
| CS MRI  |                  |       |             | CS MRI        |    |          |        | CS MRI |                |      |       |                | CS MR   | 1   |     |
|         | Methods          |       | Sparse Mod  | parse Model   |    |          | Superv | /ised  | Low-Rank       |      |       |                |         |     |     |
|         |                  | Fixed | Directional | DL            | TL | Matching | Learr  | ning   | Modeling       |      |       |                |         |     |     |
|         | Sparse MRI [5]   | 1     |             |               |    |          |        |        |                |      |       |                |         |     |     |
|         | PBDW [19]        | 1     | 1           |               |    |          |        |        |                |      |       |                |         |     |     |
|         | LORAKS [23]      |       |             |               |    |          |        |        | 1              |      |       |                |         |     |     |
|         | PANO [20]        | 1     |             |               |    | 1        |        |        |                |      |       |                |         |     |     |
|         | DLMRI [6]        |       |             | 1             |    |          |        |        |                |      |       |                |         |     |     |
|         | SOUPDIL-MRI [28] |       |             | 1             |    |          |        |        |                |      |       |                |         |     |     |
|         | LASSI [22]       |       |             | 1             |    |          |        |        | 1              |      |       |                |         |     |     |
|         | STL-MRI [24]     |       |             |               | 1  |          |        |        |                |      |       |                |         |     |     |
|         | FRIST-MRI [27]   |       | 1           |               | 1  |          |        |        |                |      |       |                |         |     |     |
|         | STROLLR-MRI [12] |       |             |               | 1  | 1        |        |        | 1              | [Wen | et al | . <i>,</i> SPM | 2020]   |     |     |
|         | ADMM-Net [8]     |       |             |               |    |          | 1      |        |                | -    |       |                |         |     |     |
|         | BCD-Net [9, 33]  |       |             |               | 1  |          | 1      |        |                |      | ₽ ►   | < ≣ >          | ▲夏★     | - 2 | SAC |
|         |                  |       |             | _             | _  |          | _      |        |                |      |       |                |         | _   |     |

**Transform Learning for Better Sparsity** 

Fixed  
Transform
$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{argmin}} \| \boldsymbol{\Psi} \boldsymbol{x} \|_{0} + \upsilon \| \boldsymbol{F}_{u} \boldsymbol{x} - \boldsymbol{y} \|_{2}^{2}$$

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{argmin}} \| \boldsymbol{F}_{u} \boldsymbol{x} - \boldsymbol{y} \|_{2}^{2} + \Re_{TL}(\boldsymbol{x})$$

Transform-Learning (TL) based regularizer

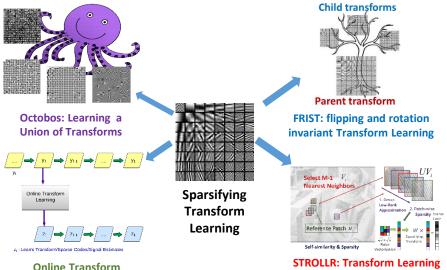


[Wen et al., SPM 2020]

 $\mathfrak{R}_{TL}(\boldsymbol{x})$ 

- 1. Sparsifying Transform Learning (STL)
- 2. Unitary Transform Learning (UT)
- 3. Learning a UNIon of Transforms (UNITE)
- 4. Flipping and Rotation Invariant Sparsifying Transform (FRIST)
- 5. Sparsifying TRansfOrm Learning and Low-Rankness (STROLLR)

# Transform Learning



with Low-Rank Regularization

Learning [IJCV 15', IP 17', JSTSP 15', TIP 20'] 1. Sparsifying Transform Learning (STL)

$$\hat{\boldsymbol{x}} = \operatorname*{argmin}_{\boldsymbol{x}} \| \boldsymbol{F}_{u} \boldsymbol{x} - \boldsymbol{y} \|_{2}^{2} + \mathfrak{R}_{TL}(\boldsymbol{x})$$

$$\mathfrak{R}_{STL}(\boldsymbol{x}) \triangleq \operatorname{argmin}_{\boldsymbol{W}, \{\boldsymbol{b}_i\}} \sum_{i=1}^{N} \{ \|\boldsymbol{W}\mathbf{P}_i\boldsymbol{x} - \boldsymbol{b}_i\|_2^2 + \tau^2 \|\boldsymbol{b}_i\|_0 \} + \frac{\lambda}{2} \|\boldsymbol{W}\|_F^2 - \lambda \log(\det \boldsymbol{W})$$

## Well-conditioning Regularizer for W

5 nan

- 1. Coefficient  $\lambda$  controls the condition number
- 2. Prevents trivial solution, i.e., W = 0

2. Unitary Transform Learning (UT)

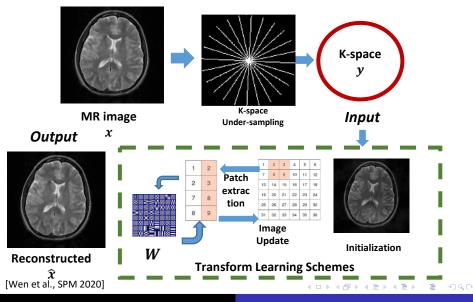
$$\hat{\boldsymbol{x}} = \operatorname*{argmin}_{\boldsymbol{x}} \| \boldsymbol{F}_u \boldsymbol{x} - \boldsymbol{y} \|_2^2 + \mathfrak{R}_{TL}(\boldsymbol{x})$$

$$\mathfrak{R}_{UT}(\boldsymbol{x}) \triangleq \operatorname{argmin}_{\boldsymbol{W}, \{\boldsymbol{b}_i\}} \sum_{i=1}^{N} \{ \|\boldsymbol{W} \mathbf{P}_i \boldsymbol{x} - \boldsymbol{b}_i\|_2^2 + \tau^2 \|\boldsymbol{b}_i\|_0 \} \quad \text{s.t.} \quad \boldsymbol{W}^H \boldsymbol{W} = \boldsymbol{I}_n$$

- 1. When  $\lambda \to \infty$ , it is equivalent to unitary condition.
- 2. Wavelets, DCT, Discrete Fourier Transforms are all unitary.
- 3. Closed-form solution

#### **TL-based MRI**

#### Sensing and Reconstruction



3. Learning a UNIon of Transforms (UNITE)

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{argmin}} \|\boldsymbol{F}_{u}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \Re_{TL}(\boldsymbol{x})$$
$$\Re_{UNITE}(\boldsymbol{x}) \triangleq \underset{\{\boldsymbol{b}_{i}\},\{\boldsymbol{W}_{k},C_{k}\}}{\operatorname{argmin}} \sum_{k=1}^{K} \sum_{i \in C_{k}} \{\|\boldsymbol{W}_{k}\mathbf{P}_{i}\boldsymbol{x} - \boldsymbol{b}_{i}\|_{2}^{2} + \tau^{2} \|\boldsymbol{b}_{i}\|_{0}\}$$
s.t.  $\boldsymbol{W}_{k}^{H}\boldsymbol{W}_{k} = \boldsymbol{I}_{n}, \ \{C_{k}\} \in G \quad \forall k.$ 

1. A union of transforms  $\{W_k\}$  with the membership  $\{C_k\}$ .

2. Patches with similar textures will be grouped together.

4. Flipping and Rotation Invariant Sparsifying Transform (FRIST)

$$\hat{\boldsymbol{x}} = \operatorname*{argmin}_{\boldsymbol{x}} \| \boldsymbol{F}_u \boldsymbol{x} - \boldsymbol{y} \|_2^2 + \mathfrak{R}_{TL}(\boldsymbol{x})$$

$$\mathfrak{R}_{FRIST}(\boldsymbol{x}) \triangleq \underset{\boldsymbol{W}, \{\boldsymbol{b}_i\}, \{C_k\}}{\operatorname{argmin}} \sum_{k=1}^{K} \sum_{i \in C_k} \{ \| \boldsymbol{W} \boldsymbol{\Phi}_k \, \mathbf{P}_i \, \boldsymbol{x} - \boldsymbol{b}_i \|_2^2 + \tau^2 \, \| \, \boldsymbol{b}_i \, \|_0 \}$$
  
s.t.  $\boldsymbol{W}^H \boldsymbol{W} = \boldsymbol{I}_n \, , \, \{C_k\} \in G \quad \forall k,$ 

- 1. Pre-defined operators  $\{\Phi_k\}$ ; One parent transform W.
- 2. Prevent overfitting; handles rotation and flipping.

#### **TL-based MRI**

5. Sparsifying TRansfOrm Learning and Low-Rankness (STROLLR)

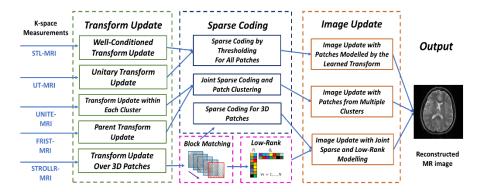
$$\hat{oldsymbol{x}} = \operatorname*{argmin}_{oldsymbol{x}} \|oldsymbol{F}_u oldsymbol{x} - oldsymbol{y}\|_2^2 + \mathfrak{R}_{TL}(oldsymbol{x})$$

$$\mathfrak{R}_{TL}(\boldsymbol{x}) = \mathfrak{R}_{STROLLR}(\boldsymbol{x}) \triangleq \gamma^{LR} \mathfrak{R}_{LR}(\boldsymbol{x}) + \gamma^{S} \mathfrak{R}_{S}(\boldsymbol{x})$$

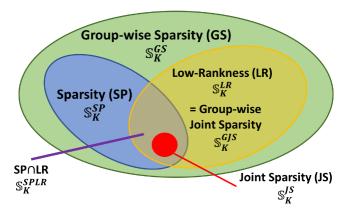
$$\mathfrak{R}_{S}(\boldsymbol{x}) = \min_{\{\tilde{\boldsymbol{b}}_{i}\},\boldsymbol{W}} \sum_{i=1}^{N} \left\{ \left\| \boldsymbol{W} \mathbf{C}_{i} \boldsymbol{x} - \tilde{\boldsymbol{b}}_{i} \right\|_{2}^{2} + \tau^{2} \left\| \tilde{\boldsymbol{b}} \right\|_{0} \right\} \text{ s.t. } \boldsymbol{W}^{H} \boldsymbol{W} = \boldsymbol{I}_{nl} \quad \begin{array}{c} \text{Transform} \\ \text{Learning} \end{array}$$

$$\mathfrak{R}_{LR}(\boldsymbol{x}) = \min_{\{\boldsymbol{D}_i\}} \sum_{i=1}^{N} \left\{ \| \mathbf{V}_i \, \boldsymbol{x} - \boldsymbol{D}_i \|_F^2 + \theta^2 \operatorname{rank}(\boldsymbol{D}_i) \right\} \qquad \text{Low-Rank Modelling}$$

#### A unified framework for TL-based MRI



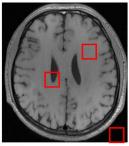
Can you combine any priors, and always gain?



Combine only the complementary priors / image models

### Why Compressed Sensing (CS)?

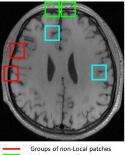
#### STL-MRI or UTL-MRI



Local sparsifiable / smooth patches

(a)

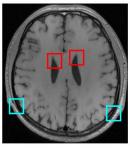
UNITE-MRI or STROLLR-MRI



which contain similar structures

(b)

FRIST-MRI

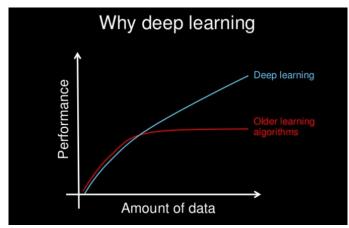


Similar patches subject to flipping Similar patches subject to rotation

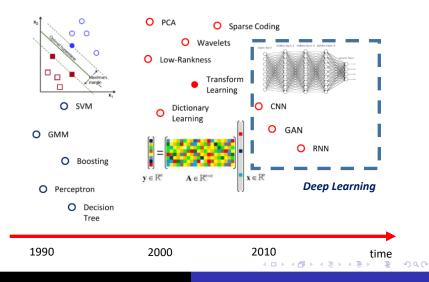
(c)

### Combine only the complimentary priors / image models

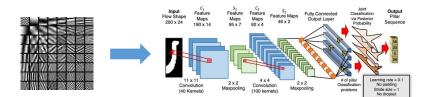
### Deep Learning



### Deep Learning



## **Connection to Unrolled Neural Networks**

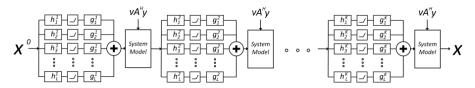


- 1. Improved Performance
- 2. Robust to Corruptions

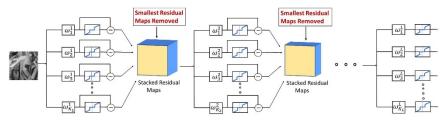
-

### Unrolled Transform Learning for MRI

Unrolled TL-MRI

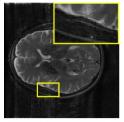


Multi-Layer Transform Residual Learning

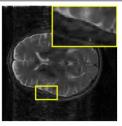


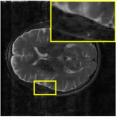
[Ravishankar et al., ISBI 2018]

#### Some Results



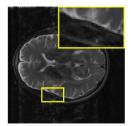
Ground Truth Example A



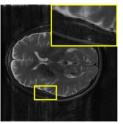


Sparse MRI (39.07 dB)







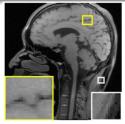


 $[\mbox{Wen et al., SPM 2020}] \qquad \begin{array}{c} \mbox{DL-MRI} \\ (41.73\mbox{ dB}) \end{array}$ 

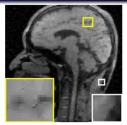
STL-MRI (41.95 dB)

STROLLR-MRI (43.27 dB)

#### Some Results



Ground Truth Example *B* 

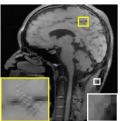


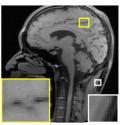




PANO (30.03 dB)







DL-MRI [Wen et al., SPM 2020] (29.74 dB)

ADMM-Net (30.67 dB)

STROLLR-MRI (32.46 dB)

#### Conventional

- Shallow Model
  - Equivalently one free layer

#### Deep Learning

- Deep Model
  - Multiple free layers





### Conventional

- Shallow Model
  - One free layer
- Unsupervised
  - No training corpus needed
  - Data efficient

#### **Deep Learning**

Deep Model



- Multiple free layers
- Supervised
  - Training corpus needed
  - Data inefficient





### Conventional

- Shallow Model
  - One free layer
- Unsupervised
  - No training corpus needed
  - Data efficient
- Prior-based
  - Assumption & Understanding
     of the Data
  - Regularizer & structures of the Model

#### **Deep Learning**

Deep Model



- Multiple free layers
- Supervised
  - Training corpus needed
  - Data inefficient
- Generic
  - Little assumption
  - Almost free model

?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q ()

# Thank you! Questions??



Bihan Wen

Homepage: www.bihanwen.com



500

(日)