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ABSTRACT
Security game models have been deployed to allocate lim-
ited security resources for critical infrastructure protection.
Much work on this topic assumes that attackers have perfect
knowledge of the defender’s randomized strategy. Howev-
er, this assumption is not realistic, considering surveillance
cost, since attackers may only have partial knowledge of the
defender’s strategies, and may dynamically decide whether
to attack or conduct more surveillance. Recently, a model
called OPTS (OPtimal sTopping Security games) considered
surveillance cost and formulated the attacker’s optimal de-
cision making problem as a finite state space MDP (Markov
Decision Process). However, the known exact algorithms for
this MDP cannot scale up. In this paper, we extend sever-
al approximation approaches based on the MCTS (Monte-
Carlo Tree Search) method and RTDP (Real-Time Dynamic
Programming) to MDPs of the OPTS model. We also pro-
pose an iterative deepening based approximation algorithm.
Experimental results show that these approaches can solve
much larger security games with surveillance cost.

General Terms
Algorithms, Performance, Experimentation

Keywords
Security games, Markov Decision Process, Approximation
approaches

1. INTRODUCTION
Stackelberg security game models have been successful-

ly deployed for protecting critical infrastructure including
LAX Airport, US Coast Guard, and the Federal Air Mar-
shals Service [2, 4, 6, 10, 16, 19, 20]. Most existing work
on security games, including deployed applications, assumes
that the attacker has perfect knowledge of the defender’s s-
trategy or can learn the defender’s strategy after conducting
a fixed period of surveillance. Although these assumption-
s are a useful approximation, they are obviously simplistic.
In reality, the attacker may have more limited observation
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capabilities, considering the costs of surveillance and delay
of attacks. Attackers may also wish to reduce the number of
observations because of the risk of being detected by securi-
ty forces while conducting surveillance [20]. Therefore, it is
essential to consider the attacker’s dynamic decision making
while conducting limited surveillance.

An et al. [1, 3] propose a natural model of limited surveil-
lance OPTS (OPtimal sTopping Security games) in which
the attacker dynamically determines whether to make more
observations or to attack his best target immediately. The
attacker’s optimal stopping decision after each observation
takes into account both his updated belief based on observed
defender actions and surveillance cost. Such an optimal
stopping model for limited surveillance does not assume the
knowledge about the defender’s strategy or the a priori num-
ber of observations the attacker will make. The attacker’s
decision problem is formulated as a discrete state space MD-
P (Markov Decision Process) and An et al.(2013) provide
an exact algorithm called Backward Induction with Forward
Search (BI-FS) for it.

However, BI-FS cannot scale up to large games for the
following reasons: 1) The size of the state space of MDP
in the OPTS model grows exponentially with the number
of observations made by the attacker; 2) The size of the
defender strategy space also grows exponentially with the
problem size. Hence, solving the MDP in the OPTS model
has the super-exponential computational complexity with
respect to the problem size.

In order to handle the computational complexity, we ex-
tend several approximation approaches based on MCTS (Monte-
Carlo Tree Search) and RTDP (Real-Time Dynamic Pro-
gramming) [5], and improve them to be suitable for the MDP
in the OPTS model. We also propose an iterative deepen-
ing based approximation algorithm called Iterative Deepen-
ing Backward Induction (ID-BI). Experimental evaluation
shows that the improved MC-VOI (Monte-Carlo algorith-
m for computing Value Of Information) algorithm [14] and
ID-BI algorithm, significantly improve the scalability of the
algorithms to solve the MDP in the OPTS model.

2. THE OPTS MODEL
We first review the OPTS model for solving security games

with surveillance cost [1]. A Stackelberg security game has
two players: a defender who uses m identical resources to
protect a set of targets T = {1, 2, ..., n} (m < n), and an
attacker who selects a single target to attack. The defender
has N pure strategies A, each associated with a coverage



vector representing which m targets are covered. Ai = 1 if
target i is covered in strategy A ∈ A, and Ai = 0 otherwise.
Each target i is covered by at least one pure strategy. The
defender can choose a randomized strategy x, with xA ≥ 0
being the probability of playing a pure strategy A. After
the defender commits her randomized strategy, the attacker
chooses a target to attack. If the attacker attacks target
i, there are two cases. If target i is covered, the defender
receives a reward Rdi and the attacker receives a penalty
P ai . Otherwise, the payoffs for the defender and attacker
are P di and Rai , respectively. We assume that Rdi ≥ P di and
Rai ≥ P ai in order to model that the defender would always
prefer the attack to fail, while the attacker would prefer it
to succeed.

In an OPTS model the attacker has a prior belief about
the defender’s strategy, updates this belief upon observing
actual defense realizations, and dynamically decides whether
to stop surveillance after each observation based on this pos-
terior belief. Suppose that the attacker makes a sequence of
observations, such a sequence of observations can be com-
pactly represented by an observation vector o = 〈oA〉 in
which oA is the number of times pure strategy A was ob-
served. Let ∆(o) =

∑
A∈A oA be the length of observation

vector o. Additionally, let o = 〈oA = 0〉 be an “empty”
observation vector corresponding to the initial attacker s-
tate prior to surveillance activity. The attacker starts the
decision problem with a prior belief, which is also known to
the defender. The attacker’s prior belief is represented as a
Dirichlet distribution

f(x) =
Γ
(∑

A∈A αA + |A|
)∏

A∈A Γ (αA + 1)

∏
A∈A

(xA)αA (1)

with a parameter vector α = 〈αA〉 with αA > −1 for all
A ∈ A. Having observed o with an observation length τ ,
the attacker’s posterior belief is

f(x|o) =
Γ
(∑

A∈A αA + |A+ τ |
)∏

A∈A Γ (αA + oA + 1)

∏
A∈A

(xA)αA+oA (2)

and the attacker believes that the probability of choosing a
pure strategy A is

Pr(A|o) =
αA + oA + 1∑

A′∈A αA′ + |A|+ τ
(3)

The marginal coverage of target i according to the posterior
belief is coi =

∑
A∈AAiPr(A|o), denoting the probability

with which the attacker believes that the target i is protected
by some defender resource. If the attacker chooses to attack
target i, his expected utility is Ua(o) = coi (P ai −Rai ) +Rai .

In the OPTS model, the attacker’s decision problem can
be formulated as an MDP in which belief states are the ob-
servation vectors o. An observation vector with observation
length τ is connected to only |A| observation vectors with
length τ+1. If the attacker attacks his best target ψ(o) in a
state1 with observation vector o, he will gain an immediate
utility

W (o) = Ua(o)− λ ·∆(o). (4)

Define a value function V (o) for each observation vector
o, which represents the attacker’s expected utility when his

1For the sake of convenience, we will abuse the terminology
throughout the paper and when we talk about states, we
actually mean belief states.

observation vector is o and he follows the optimal policy
afterwards. In every state, the attacker can either attack the
best target ψ(o) and gain a utility W (o) or make another
observation, reaching state o′ = o ∪ {A} with probability
Pr(A|o). The value function is

V (o) = max{W (o),
∑
A∈A

Pr(A|o)V (o ∪ {A})} (5)

It has been proved [1] that there exists a constant horizon
τmax = M

λ
−
∑
A∈A αA−|A|−1, whereM = maxi∈T R

a
i−P ai ,

such that V (o) = W (o), i.e., attacker attacks immediately,
when ∆(o) > τmax. Thus, the infinite horizon MDP for
the attacker’s decision-making problem is equivalent to an
MDP with a finite state space, and can be solved by an
exact algorithm Backward Induction with Forward Search
(BI-FS). After solving the attacker’s decision problem, the
set of observation vectors can be obtained, for each of which
the attacker will choose to attack its best target. Based on
this set of observation vectors, the OPTS model provides an
exact (but nonconvex) mathematical program DF-OPT for
computing the defender’s optimal strategy x [1].

However, as every observation vector is connected to |A|
observation vectors, the size of the reachable belief space
grows exponentially with τmax. Besides, the number of pure
strategies |A| may also grow nearly exponentially with the
problem size, i.e., the number of targets and resources. Since
the BI-FS algorithm can only scale up to security game
instances with 5 targets, 1 resource and a observation cost of
0.2, we provide several approximation approaches based on
the MCTS and RTDP in order to handle the computational
complexity.

3. APPROXIMATION APPROACHES BASED
ON MCTS

MCTS is a popular approach for making near-optimal de-
cisions in many problems such as move planning in combina-
torial games. It combines the generality of random simula-
tion with the precision of tree search. The process of MCTS
can be broken down into 4 basic steps: selection, expan-
sion, simulation and backpropagation [8]. Figure 1 shows an
outline of a basic MCTS approach. The selection procedure
selects an action at a state of the tree according to the statis-
tics stored, in a way that balances between exploitation and
exploration. Once the algorithm reaches a state not found in
the tree, the state is added to the search tree, after which the
simulation procedure gets called where actions are randomly
selected until the game ended, i.e., the attacker chooses to
attack at some state. After reaching the end of the simu-
lated game, each tree state that was traversed during that
game is updated by a backpropagation procedure.

We extend three approximation approaches based on M-
CTS: UCT (UCB applied to Trees) [15], Improved MC-VOI
(Monte-Carlo algorithm for computing Value Of Informa-
tion) [14], and BRUEic [11, 12].

3.1 UCT
UCT (UCB applied to Trees) is an advanced Monte-Carlo

tree search algorithm using the UCB1 action selection algo-
rithm, where UCB stands for“Upper Confidence Bound”[15].
In the UCB1 selection procedure, the action with highest
upper confidence bound at each state o is selected. The
upper confidence bound of action a can be represented by



Figure 1: Outline of a Monte-Carlo Tree Search [9].

U(o, a) = R(o, a)+C
√

2lnN(o)
N(o,a)

, where R(o, a) is the average

long-term reward empirically observed so far by choosing ac-
tion a in state o, N(o) is the number of visits to state o made
by the tree search procedure, N(o, a) is the number of times
that a is selected at state o during this procedure and C is
a tunable parameter. The value of C determines how eager
UCT is to explore under-sampled state-action pairs instead
of exploiting those that currently look promising based on
their empirical long-term reward R(o, a). Since in the OPTS
model, there are only two actions: attacking and observing.
Once the attacking action is selected, the game ended and
an immediate reward W (o) is received.

After a termination criterion, such as a fixed running time,
is satisfied, the final attacking policy is obtained in which the
action with the highest upper confidence bound is selected
at each state. It has been proved that the attacking policy
obtained by the UCT algorithm converges to the optimal
one when the running time is large enough [15].

3.2 Improved MC-VOI
Without selection and simulation procedures, the MC-

VOI mainly consists of two steps: SampleExecutionPath and
Evaluate [14]. The first procedure SampleExecutionPath,
samples an execution path, a sequence of states from the
initial state to a terminal state o with ∆(o) = τmax. S-
ince the value of the terminal state is exactly the same as
the immediate attacking utility, for each execution path, the
second procedure Evaluate updates the value V (o) of each
state on the execution path, according to the recursive value
function in Eq. (5).

It can be regarded as always selecting the ”observing” ac-
tion at each state except the terminal states in the MC-VOI.
By always sampling a sequence of states from the initial s-
tate to a terminal state, the MC-VOI builds a partial search
tree based on the sampled execution paths, and computes
the values of states on this partial search tree, according to
the recursive value function in Eq. (5).

Compared with the original MC-VOI algorithm, we im-
prove the value updating policy in Evaluate procedure and
the state selection policy in SampleExecutionPath proce-
dure. Instead of selecting the child state o′ = o∪{A} based
on probability Pr(A|o) as in the original SampleExecution-
Path procedure, we implement the UCB1 selection method
into the MC-VOI, and represent the upper bound of con-

fidence for child state o′ = o ∪ {A} by V (o′) + C
√

2lnN
N(o′) ,

where N(o′) is the number of times state o′ has been sam-
pled, V (o′) is the value of o′ updated based on sampled
partial search tree and N =

∑
A∈AN(o ∪ {A}). The esti-

mated value of state o in the original MC-VOI algorithm

is updated as follows: V (o) =
∑

A∈A N(o∪{A})V (o∪{A})∑
A∈A N(o∪{A}) . In

Algorithm 1: General RTDP algorithm [7]

Initialize the heuristic function for all states
RTDP(s : state)
repeat

/∗Pick best action and update∗/
a = s.GREEDY ACTION()
s.UPDATE()

/∗Stochastically simulate next state∗/
s = s.PICKNEXTSTATE(a)

until termination condition is satisfied ;

order to improve the value update, we use a partial bell-
man backup policy to update the value of o, i.e., V (o) =∑
A∈A Pr(A|o) · V (o ∪ {A}).

3.3 BRUEic
BRUEic is based on the BRUE algorithm, which is a

recently introduced MCTS algorithm guaranteeing an ex-
ponential rate of simple regret reduction [11, 12]. In the
BRUE algorithm, the sampling path is divided into two part-
s: the exploration part near the initial state and estimation
part near the leaf state. The two parts are connected at
a switch point and for each sampling path, only the state
at the switch point is updated. This locality of update is
required to satisfy the exponential-rate reduction of simple
regret over time. BRUEic improves BRUE’s short term ef-
fectiveness by applying a selective tree expansion policy. For
each sampled state o, it treats it as a forecaster of two type-
s: TOUT and TIN ; For the TOUT forecaster, the value is
estimated by Eπ∼U[Π]V

π(o), which is the expected value of
a policy sampled from Π, the set of possible policies, uni-
formly at random, while for the TIN forecaster, the value is
estimated based on the recursive function in Eq. (5). Unlike
the simulation approach in the UCT algorithm, a leaf state
in BRUEic remains a TOUT forecaster for a while until it sat-
isfies V ar[E[V π(o)|π]] > E[V ar[V π(o)|π]], at which point it
is converted to a TIN forecaster and is no longer treated as
a leaf state.

4. APPROXIMATION APPROACHES BASED
ON RTDP

RTDP is a well known MDP heuristic search algorithm [5].
Algorithm 1 shows a general framework of RTDP algorith-
m. The heuristic function for each state is initialized first,
then an RTDP trial begins at the initial state of the MDP
and explores forward, choosing actions greedily and choos-
ing outcomes stochastically according to their probability.
The values of the states on RTDP trail are updated so that
the heuristic function converges to the optimal value ulti-
mately [5]. We extend three algorithms based on RTDP: L-
RTDP (Labeled RTDP) [7], BRTDP (Bounded RTDP) [17]
and VPI-RTDP (Value of Perfect Information RTDP) [18].

4.1 LRTDP
Our extension of LRTDP, an RTDP variant with con-

vergence detection, keeps an admissible (upper bound) and
monotonic heuristic reward function hu(o) for the observing
action at each state o where hu(o) = Ramax − λ ·∆(o) and



Ramax = maxi∈T R
a
i . During the updating procedure of s-

tate o, the reward function hu(o) and the estimated value
V ′(o) of the state o on the sampling path is updated ac-
cording to hu(o) = −λ +

∑
A∈A Pr(A|o)V ′(o ∪ {A}) and

V ′(o) = max{hu(o),W (o)}.
LRTDP keeps a label SOLVED or NOTSOLVED for each

state o, and the termination condition of the algorithm is
that the initial state of MDP is labelled as SOLVED. There
are three situations where a state o will be labeled as SOLVED:
1) hu(o) < W (o) and the greedy action is attacking. Since
hu(o) is the upper bound of reward for observing action it
decreases monotonically by LRTDP’s properties [7], the op-
timal reward for observing action is also smaller than W (o);
2) ∆(o) = τmax and the estimated value is set as the imme-
diate reward of the attacking action, i.e., V ′(o) = W (o); 3)
All the child states o ∪ {A} of o are labeled as SOLVED.

4.2 BRTDP
Unlike LRTDP, which only keeps an upper bound heuris-

tic reward function hu(o) for observing action, BRTDP al-
gorithm also holds a lower bound hl(o) for the observing
action which is hl(o) = Ramin−λ · (∆(o)+1), where Ramin =
mini∈T R

a
i . With an upper bound and a lower bound for the

reward function of observing action, there is also an upper
bound and a lower bound for the estimated value of state o:
V u(o) = max{hu(o),W (o)} and V l(o) = max{hl(o),W (o)}.
Both the upper bound and lower bound of state’s value are
updated during the updating procedure. The algorithm con-
tinues until a state o with V u(o) − V l(o) < ε, where ε is a
fixed error tolerance, is sampled.

For each state o, there is a gap between the upper bound
and lower bound of the estimated value V u(o)−V l(o). Dur-
ing the procedure of picking next state, the child state with
the highest gap is preferred to choose. Similar to LRTDP,
the upper bound V u(o) and lower bound V l(o) for a state o
on horizon τmax are set to be its known value V (o) = W (o).

4.3 VPI-RTDP
VPI-RTDP also keeps an upper bound and a lower bound

similar to BRTDP, however, it prefers to prioritize picking
states whose value update may lead to the largest improve-
ment in policy value. Since performing this value of informa-
tion analysis would be prohibitively expensive if done exact-
ly and non-myopically, VPI-RTDP uses a myopic Bayesian
value of information framework [13] to approximate the ex-
pected improvement in decision quality resulting from a s-
tate’s value update.

VPI-RTDP assumes that the value V (o) of state o is u-
niformly distributed between V l(o) and V u(o), and uses
this distribution in a myopic VPI (Value of Perfect Infor-
mation) [13] framework to approximate the expected im-
provement in decision quality resulting from the update of
a state’s value. During the procedure of picking next state,
the one with the highest VPI value is preferred to select.

5. COMPARISON OF MCTS AND RTDP
BASED APPROACHES

There are at least two important differences between the
MCTS based approaches and RTDP based approaches. First,
the RTDP based approaches hold the heuristic bound(s) of
the state’s value, therefore the advance knowledge of the s-
tate’s value function is required, and the performance relies

 UCT Improved MC-VOI BRUEic 

Selection 

UCB1 action selection. 
Once the “attacking” 
action is selected, the 
sampling path is 
terminated. 

Select the child state 
according to transition 
probability, i.e., always 
select the “observing” 
action at all states except 
the terminal states (with 
𝜏𝑚𝑎𝑥 observations). 

Combination of the 
greedy selection and 
uniform selection in 
one sampling path. 
The selection manner 
changes at the switch 
point. 

Simulation 

Simulation is required to 
update the average long-
term reward �̅�(𝒐, 𝑎) of 
choosing action 𝑎 at each 
state 𝒐 on the sampling 
path. 

Not required, since the 
value of the terminal 
state is already known. 

Simulation is required 
to update only the 
average long-term 
reward of the state 𝒐 
at the switch point. 

Back-
propagation 

Monte-Carlo backup: 
𝑁(𝒐, 𝑎) = 𝑁(𝒐, 𝑎) + 1, 

�̅�(𝒐, 𝑎) = �̅�(𝒐, 𝑎) +
𝑟−�̅�(𝒐,𝑎)

𝑁(𝒐,𝑎)
. 

Partial Bellman backup: 
�̅�(𝒐) = ∑ 𝑃𝑟(𝐴|𝒐)𝐴∈𝒜 �̅�(𝒐 ∪ {𝑨}). 

Monte-Carlo backup. 

 

(a) Comparison of UCT, improved MC-VOI and BRUEic
 LRTDP BRTDP VPI-RTDP 
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ℎ𝑙(𝒐) = 𝑅𝑚𝑖𝑛

𝑎 − 𝜆 ∙ (Δ(𝒐) + 1). 

Upper bound: 
ℎ𝑢(𝒐) = 𝑅𝑚𝑎𝑥

𝑎 − 𝜆 ∙ Δ(𝒐), 

Lower Bound: 
ℎ𝑙(𝒐) = 𝑅𝑚𝑖𝑛

𝑎 − 𝜆 ∙ (Δ(𝒐) + 1). 

Sampling 

Sample the child state 
𝒐 ∪ {𝑨} according to 
the transition 
probability 𝑃𝑟(𝐴|𝒐). 

Prefer to sample the 
child state with the 
highest value 
uncertainty, i.e., the gap 
between upper and 
lower bounds. 

Prefer to sample the 
child state with the 
highest VPI, i.e., the 
state whose value 
update may lead to the 
largest improvement in 
policy value. 

Termination 
Criterion 

The initial state is 
labelled as SOLVED. 

The gap between the 
upper and lower 
bounds of initial state’s 
value is smaller than 𝜖. 

The gap between the 
upper and lower 
bounds of initial state’s 
value is smaller than 𝜖. 

 

(b) Comparison of LRTDP, BRTDP and VPI-RTDP

Figure 2: Comparison of approximation approaches.

on the tightness of the heuristic bound(s). While the MCT-
S based approaches need no prior knowledge of the state’s
value and are easier to implement. Second, the RTDP based
approaches guarantee the convergence of the computed pol-
icy and detect the convergence according to the heuristic
bound(s). For example, BRTDP and VPI-RTDP ensure the
convergence when the gap between the upper bound and
lower bound of the state’s value V u(o) − V l(o) is smaller
than ε. However, MCTS based approaches cannot provide
a guarantee of the convergence at any time.

We compare the three MCTS based approaches with re-
spect to the three procedures: selection, simulation and
backpropagation, which is shown in Figure 2a. Figure 2b
shows the comparison of the three RTDP based approach-
es with respect to the heuristic, sampling and termination
criterion.

6. ID-BI ALGORITHM
Besides the above approximation approaches based on M-

CTS and RTDP, we also propose an ID-BI (iterative deepen-
ing Backward Induction) approximation algorithm to com-
pute the approximation attacking policy.

The ID-BI algorithm begins with an initial MDP whose
horizon is 0, and iteratively increases the horizon by a cer-
tain increment, until the optimal value of the initial state
o = 〈oA〉 changes by less than ε. Since with a larger horizon
of MDP, the attacker can obtain more information about
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the defender’s strategy, the optimal value of the initial state
o = 〈oA〉 increases monotonically with the increasing hori-
zon. Thus, we use the convergence of initial state’s value to
compute an approximation to the attacker’s optimal policy.

However, the ID-BI algorithm cannot guarantee the op-
timality of its solution since it may pre-terminate when the
state’s value function is non-concave. A security game in-
stance with 5 targets, 1 security resource and a surveillance
cost 0.06, whose value function is non-concave with the in-
creasing horizon, is shown in Table 1.

Target 1 Target 2 Target 3 Target 4 Target 5

Rai 5 1 9 6 -4
Pai -7 -1 -4 -4 -4
Rdi 2 6 2 2 8
P di -2 -7 -1 -3 -2

Table 1: A security game instance with a non-concave value
function.

For the security game instance shown in Table 1, we use
the backward induction method to compute the optimal val-
ue of the initial state o = 〈oA〉 of MDP with different hori-
zons, and the result is shown in Figure 3. Obviously, the
ID-BI algorithm terminates when the horizon is 1 and gets
an attacking utility of 6.4, while the optimal attacking utility
is near 6.44.

7. EXPERIMENTAL EVALUATION
We compare the approximation abilities of different ap-

proaches according to their runtimes and defender utilities.
We conduct experiments primarily on randomly-generated
instances of security games. Rai and Rdi are drawn indepen-
dently and uniformly from the range [0, 10]. P ai and P di are
drawn from the range [-10, 0]. All experiments are averaged
over 50 sample games. Unless otherwise specified, we use 5
targets, 1 defender resource, λ = 0.2 as the observation cost,
and αA = 0 for every A ∈ A.

7.1 Structure of MDPs
We conduct experiments to study the structure of MDPs

in the OPTS model. In order to do so, we compare the
τmax with the minimum horizon Hmin of horizons where
the optimal action for every state is attacking. The result
is shown in Figure 4, and the data for observation costs 0.1
and 0.04 is obtained using the improved MC-VOI algorithm,
since the exact algorithm BI-FS does not scale to problems
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with such small observation costs. States o with observation
length larger thanHmin are unreachable since there exists no
path from the initial state to o such that the optimal action
for every state on the path is observing. The MDP with
the horizon Hmin is equivalent with the original MDP with
horizon τmax with respect to the optimal attacking policy.
As shown in Figure 4, Hmin is much small compared with
the τmax. For example, when the surveillance cost is 0.2,
τmax = 65.3 on average, while Hmin on average is only 1.24.

7.2 Improved MC-VOI
As stated in section 3.2, we improve the original MC-VOI

method in two aspects: 1) We update the value for each
state using the partial Bellman backup operator (PBB); 2)
We incorporate the UCB1 selection method into the original
MC-VOI to select child states at each state on the execution
path. Figure 5 shows the performance2 of three approaches
based on MC-VOI: original MC-VOI method [14], MC-VOI
with partial Bellman backup operator (PBB), and MC-VOI
with PBB and UCB1 selection procedure, i.e., the improved
MC-VOI. Improved MC-VOI outperforms the other two ap-
proaches significantly, and MC-VOI with PBB also outper-
forms the original MC-VOI method.

The optimal defender utility computed by the exact al-
gorithm BI-FS3 is 3.005, and takes 54s to calculate. The

2The defender strategy obtained by an approximation ap-
proach is the optimal one to combat the attacker’s near-
optimal policy this approach computed, and its defender
utility is calculated using the real optimal attacker’s policy
to attack the defender strategy it obtained.
3BI-FS can only scale up to security games instances with
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Figure 6: Improved MC-VOI, UCT and BRUEic.

improved MC-VOI, however, takes only 0.05s to compute
the near-optimal defender strategy.

We explain the good performance of the (improved) MC-
VOI intuitively as follows: 1) Hmin can be much smaller
than the theoretical bound τmax, although the MC-VOI can-
not sample all the states, it still samples almost all the s-
tates with length no larger than Hmin; 2) For a state with
more observations, its optimal action is more likely to be
attacking, and the improvement on attacking utility by one
observation is small. In this case, a sample of single execu-
tion path is enough to provide necessary information for the
states on larger horizons.

7.3 Approximations based on MCTS
We compare the four approaches based on MCTS: the o-

riginal MC-VOI method, improved MC-VOI, UCT algorith-
m and BRUEic algorithm. As shown in Figure 6a, compared
with the two advanced approaches based on MCTS: UCT
and BRUEic, MC-VOI and the improved MC-VOI perform
much better.

One reason for the better performance of MC-VOI is that
it selects “observing”action all the time in the SampleExecu-
tionPath procedure. Since the attacking action leads to the
termination of the game immediately and the reward W (o)
of taking attacking action is fixed, the traditional MCTS
approaches waste much time selecting attacking action and
pre-terminating of the sampling path. Our analysis is con-
firmed by Figure 6b, where the search tree size is the number
of sampled sates, UCT and BRUEic spend too much time in

observation cost no smaller than 0.2, 5 targets and 1 defend-
er resource.
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Figure 7: Improved MC-VOI vs. RTDP based approaches.

selecting attacking action. Hence, the search trees of these
two advanced MCTS approaches consist of states on quite
small horizons. MC-VOI, on the other hand, mostly chooses
the observing action and aims at expanding the search tree
as much as possible.

Another reason for the better performance of MC-VOI is
that its value update policy, i.e., partial Bellman backup,
outperforms the traditional value update policy in MCTS.
In the traditional MCTS approach, the value update is done
by receiving a reward of the a simulation process, which
is a random action sequence. In contrast, in MC-VOI, an
execution path is sampled from the initial state o = 〈oA = 0〉
to a state o′ on horizon τmax, whose value W (o′) is fixed and
is easily computed, and the value update is done according
to the recursive value function in Eq. (5), which is more
accurate than the value update based on the reward of a
random simulation process.

7.4 Approximations based on RTDP
We also compare the improved MC-VOI method with

three approaches based on RTDP: LRTDP, BRTDP and
VPI-RTDP, on security game instances with surveillance
cost 0.06. As Figure 7a shows, improved MC-VOI approach
also outperforms RTDP-based approaches a lot. The rea-
son is that although RTDP-based approaches keep a heuris-
tic reward function for observing action at each state and
guarantee convergence to the optimal attacking policy, this
heuristic upper bound or lower bound is too loose, so it takes
a long time for the algorithms to reach convergence. Notice
that although the attacker’s utility of the attacking policy
computed by RTDP based algorithms converges to the opti-
mal utility monotonically as runtime increases, the defender
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Figure 8: Convergence of the lower bound MDP and the
upper bound MDP.

utility of the optimal defender strategy for the computed at-
tacking policy, may exhibit no monotonicity with runtime,
as shown in Figure 7a.

Figure 7b shows the comparison of the improved MC-VOI
and LRTDP for security games instances with surveillance
cost 0.2. It takes quite a long time for LRTDP’s heuristic
upper reward function for observing action to converge to
the optimal one. While improved MC-VOI has computed
the optimal attacking policy within 1s, the attacking policy
computed by LRTDP is still far away from optimality at 5s.

7.5 ID-BI Algorithm

Table 2: Attacking policy of the ID-BI algorithm.

Algorithm λ Runtime(s) Accuracy Rate

BI-FS 0.2 69.64 100%
ID-BI 0.2 0.0007 100%
BI-FS 0.06 58.9 100%
ID-BI 0.06 2.51 96%

As shown in Figure 4, τmax is much larger than Hmin. In
order to shorten the horizon of MDP, BI-FS algorithm solves
two MDPs, an upper bound MDP and a lower bound MDP.
In the upper bound MDP, for a leaf state, the value isRamax−
λ·∆(o) where Ramax = maxi∈T R

a
i ; In the lower bound MDP,

the value is W (o) for a leaf state, and for all other states, the
values are defined according to the recursive value function
in Eq. (5). It has been proved [1] that the attacking utility of
the upper bound MDP with any horizon is an upper bound
of the optimal attacking utility, and attacking utility of the
lower bound MDP with any horizon is a lower bound of the

optimal attacking utility. Besides, the attacking utilities of
two MDPs converge to the optimal attacking utility as the
horizon increases. BI-FS algorithm uses the convergence of
the attacking utilities of the upper bound and lower bound
MDPs to each other to check when an optimal solution has
been reached.

However, these two MDPs do not converge to the optimal
attacking utility at the same horizon. Figure 8 shows the
convergence of attacking utilities of the upper bound and
lower bound MDPs with the increasing horizons, and we
can see that the attacking utility of the lower bound MDP
converges to the optimal attacking utility faster than that of
the upper bound MDP. That is the intuitive idea of the ID-
BI algorithm, where we use the convergence of the attacking
utility of the lower bound MDP to compute an approxima-
tion to the optimal attacker’s policy. However, the attacking
utility of the lower bound MDP may not be concave, which
implies that when the attacking utility of the lower bound
MDP converges, it may not be the optimal attacking utility.
Figure 3 shows an example of the non-concave attacking u-
tility of lower bound MDP. Thus, the ID-BI algorithm is not
an exact algorithm, but it can obtain a good approximation
for most cases, as shown in the following experiment.

We compare the performance of the ID-BI algorithm with
the BI-FS algorithm, the exact algorithm for solving secu-
rity games with surveillance cost [1], based on the attacking
policy they obtained. The experiment is averaged over 100
security games instances. The accuracy rate is defined as
the percentage of instances on which ID-BI computes the
same attacker’s policy as BI-FS4. As shown in Table 2, the
ID-BI algorithm takes a small amount of time to compute
a very accurate attacking policy.

8. CONCLUSION
In this paper, we implement several approximation ap-

proaches based on the MCTS and RTDP to improve the
state of the art in the scalability of the MDP in the OPTS
model. For the MC-VOI algorithm based on MCTS, we im-
prove it by incorporating the partial Bellman backup policy
to update value and UCB1 algorithm to select child states.
We also propose an ID-BI approximation algorithm. Ac-
cording to our experimental evaluation, the improved MC-
VOI not only outperforms the exact algorithm BI-FS in
scalability for solving security games with surveillance cost,
but also outperforms other approximation approaches based
on MCTS and RTDP both in scalability and optimality. The
ID-BI algorithm also outperforms the BI-FS algorithm for
solving security games with surveillance cost in terms of s-
calability, and computes near-optimal solutions.
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