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Multiagent Reinforcement Learning With Graphical
Mutual Information Maximization

Shifei Ding , Wei Du , Ling Ding, Jian Zhang , Lili Guo , and Bo An , Member, IEEE

Abstract— Communication learning is an important research
direction in the multiagent reinforcement learning (MARL)
domain. Graph neural networks (GNNs) can aggregate the infor-
mation of neighbor nodes for representation learning. In recent
years, several MARL methods leverage GNN to model infor-
mation interactions between agents to coordinate actions and
complete cooperative tasks. However, simply aggregating the
information of neighboring agents through GNNs may not extract
enough useful information, and the topological relationship
information is ignored. To tackle this difficulty, we investigate
how to efficiently extract and utilize the rich information of
neighbor agents as much as possible in the graph structure,
so as to obtain high-quality expressive feature representation to
complete the cooperation task. To this end, we present a novel
GNN-based MARL method with graphical mutual information
(MI) maximization to maximize the correlation between input
feature information of neighbor agents and output high-level
hidden feature representations. The proposed method extends
the traditional idea of MI optimization from graph domain to
multiagent system, in which the MI is measured from two aspects:
agent features information and agent topological relationships.
The proposed method is agnostic to specific MARL methods
and can be flexibly integrated with various value function
decomposition methods. Considerable experiments on various
benchmarks demonstrate that the performance of our proposed
method is superior to the existing MARL methods.

Index Terms— Communication learning, graph neural net-
work (GNN), multiagent reinforcement learning (MARL), mutual
information (MI).

I. INTRODUCTION

INFORMATION sharing is the key to promote the action
coordination of agent teams in multiagent systems, which

enables agents to successfully complete the global task through
cooperation. Therefore, communication learning has become
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a hot topic in the MARL domain and achieved great progress
in recent years [1], [2], [3]. Most existing MARL methods
leverage the centralized training with decentralized execu-
tion (CTDE) paradigm for its ability to tackle observabil-
ity constraint and scalability issue. Communication learning
methods [4], [5], [6] leverage communication schemes in the
execution stage for further exploiting the CTDE framework.

Graph neural network (GNN) as a class of graph repre-
sentation method has attracted extensive attention in recent
years. GNN can aggregate the information of neighbor nodes
and relationships for representation learning [7]. Some MARL
methods have leveraged GNN to learn communication among
agents. However, most of these methods simply aggregate the
information of neighboring agents through GNNs; therefore,
the obtained feature representation cannot extract enough
useful information, and the relationship topology information
is ignored. The high-quality expressive representations are
critical for coordinating the actions of agents to complete
cooperative tasks. In this sense, it is very critical to pre-
serve and extract as much information as possible from the
information of neighbor agents to learn high-quality feature
representations.

In this article, to fully inherit the rich information of
neighbor agents, we present a Multi-Agent Reinforcement
learning (MARL) method with Graphical mutual INforma-
tion maximization (MARGIN). The proposed method lever-
ages GNNs to fuse feature information of neighbor agents
and obtain high-level feature representations. Besides, the
proposed method adopts graphical mutual information (MI)
to learn high-quality feature representations. MARGIN uses
a straightforward way to calculate the graphical MI with-
out leveraging any readout function or corruption function.
As shown in Fig. 1, the graphical MI is directly derived
through comparing the subgraph containing the neighbor
agents and the feature representation of each agent. MARGIN
maximizes the MI of both features and relationships between
inputs (subgraph) and outputs (hidden feature representation).

According to the theoretical derivation of [8], the global MI
can be factorized to the weighted sum of the local MIs between
each input feature and the output hidden feature representa-
tion. Therefore, the input agent features can be decomposed
and the calculation of the global MI can be tractable. The
communication learning based on graphical MI maximization
can be easily integrated with the value function decomposition
methods via the proposed framework. Therefore, MARGIN
can maintain the advantages of scalability and stability of
value function decomposition and promotes better action
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Fig. 1. Overview of graphical MI in MARGIN.

coordination of agents by efficiently utilizing information of
neighbors. The primary contributions and novelties of our
method are summarized as follows.

1) The proposed method is the first attempt to generalize
the graphical MI optimization to the MARL domain for
communication learning.

2) The proposed framework integrates the advantage of the
GNN, value decomposition, and graphical MI, which lead to
efficient communication learning and policy learning.

3) Experiments on various MARL benchmark demonstrate
the superiority and feasibility of the proposed method.

II. RELATED WORK

A. MARL With GNN

To further exploit the CTDE framework, a variety of
MARL methods design communication protocol among
agents. Hu et al. [9] improve the communication efficiency
in multiagent systems by designing an event-triggered com-
munication network that enables agents to communicate only
when necessary. Xie et al. [10] present a novel communication
protocol to efficiently extract local relations and learn commu-
nication among neighbor agents by utilizing the capability of
depthwise convolution. Recently, various methods utilize GNN
to promote communication learning. Jiang et al. [11] adopt
graph convolutional networks (GCNs) to model the multiagent
scenario for communication learning. Iqbal and Sha [12] use
the GNN to develop the centralized critic network and guide
the policy learning of decentralized actor networks by the
soft actor-critic method. Malysheva et al. [13] introduce a
graph generation layer to generate the adjacency matrix of
agents. Wang et al. [14] tackle scenarios consisting of multiple
types of agents. Sheng et al. [15] utilize the hierarchical GNN
to learn effective communication by propagating information
among groups and agents.

More recently, Ryu et al. [16] present a hierarchical atten-
tion mechanism based on GNNs, which effectively models
the relationships among individuals and groups of agents.
Liu et al. [17] leverage a complete graph and the proposed
two-stage attention mechanism to model the relationship
between agents. Niu et al. [18] present an attentional and end-
to-end communication mechanism by graph attention networks

(GATs) to tackle the issue of how to process messages and
when to communicate. Du et al. [19] utilize the heterogeneous
GAT to tackle the heterogeneous scenarios, where agents have
different attributes or subtasks.

The existing “MARL with GNN” methods have successfully
learned communication by modeling the interactions or rela-
tionships among agents. However, these methods generally use
GNN to aggregate the information of neighboring agents with-
out MI optimization; therefore, the feature representation may
not extract enough useful information. The proposed method
adopts graphical MI to learn high-quality feature representa-
tions. Besides, the proposed method can deal with unfixed-size
graphs, which include different numbers of agents.

B. Value Decomposition

In multiagent scenarios, to better coordinate the actions
of the cooperative agents, learning a centralized joint value
function Qtot under CTDE framework appears to be a valuable
solution. Nevertheless, the centralized function is intractable
to learn because the joint action space of agents advances
exponentially with the expansion of the number of agents.
In contrast, learning the decentralized value function Qi

directly for each agent can alleviate scalability problems. How-
ever, the decentralized learning method generally ignores the
interaction among agents, which often leads to coordination
disorder and suboptimal policy. To alleviate this dilemma, the
value decomposition methods [20], [21], [22] represent Qtot as
a combination of decentralized Qi based on local information,
which has shown effectiveness in complicated tasks. These
methods follow the individual-global-max (IGM) principle and
use the joint global value function Qtot(τ, a) and local value
function [Qi (τi , ai )]

n
i=1 to ensure the consistency between the

joint optimal action and the selection of the local optimal
action

arg maxa∈A Qtot(τ, a) =
[
arg maxai ∈A Qi (τi , ai )

]n
i=1. (1)

Value decomposition network (VDN) [23] uses additivity to
decompose the global value function

QVDN
tot (τ, a) =

n∑
i=1

Qi (τi , ai ). (2)

Q mixing network (QMIX) [24] constrains the global value
function through the monotonicity condition

∀i ∈ N ,
∂ QQMIX

tot (τ, a)

∂ Qi (τi , ai )
> 0. (3)

However, the present value decomposition method mainly
focuses on full decomposition, which reduces the complexity
of learning centralized action-value function Qtot by learning
decentralized individual Qi first and places the burden of
coordinating actions of agents on a mixing network. For
large-scale settings with partial observability, no matter how
powerful the representation capability of the mixing network
is, it is not enough to learn coordinated actions. The full
decomposition operation cuts off the dependencies among
decentralized individual value functions; thus, agents tend to
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produce uncertainty about the actions and states of others. This
uncertainty increases over time, leading to severe incoordina-
tion and arbitrary performance degradation in decentralized
execution.

C. MARL With MI

In recent, many existing MARL methods explicitly maxi-
mize the correlation or influence between agents to facilitate
collaboration by maximizing the MI between agent actions.
Mahajan et al. [25] propose to maximize the MI between
future trajectories and the latent variables. The latent variables
are extracted from the initial global state. Nevertheless, one
disadvantage of this method is that the shared latent variables
used in the decentralized execution phase violate the paradigm
of CTDE. This makes the method not suitable for some prac-
tical scenarios, where global communication is not possible.

Wang et al. [26] present to maximize the MI between com-
munication messages and action selection for coordination,
while minimizing the entropy of communication messages
among agents. Cao et al. [27] introduce the awareness based
on local observation history and maximize the MI between
built awareness and the actual trajectory. Li et al. [28] present
to maximize the MI associated with high-level collaborative
behaviors and minimize the MI with low-level one.

Previous methods generally facilitate collaboration by maxi-
mizing MI about agent behavior. However, these studies ignore
the fact that highly cooperative agents do not necessarily
produce high returns because the actions of agents in sub-
optimal cooperation can also be highly relevant. Unlike the
previous method of establishing MI between actions, our pro-
posed method maximizes the MI between the communication
information and the features of neighbor agents to promote
collaboration.

III. PROPOSED METHOD

In this section, we model the multiagent setting as a graph
and propose an MARL method based on GNN via graph-
ical MI optimization. The proposed method contains three
components: feature process module, communication module,
and value decomposition module. The problem formulation is
first described. Then, the framework and components of the
proposed method are introduced in detail. The algorithm is
presented in the final.

A. Problem Formulation

The MARL issues can be formulated as decentralized
partially observable Markov decision process (Dec-
POMDPs) [29]. Dec-POMDPs can be represented by a
tuple G = < S, A, P, R, O, N , γ >, in which the state
of the partially observable environment is represented as
s ∈ S, and the local observation of agent i is represented as
oi ∈ O . The agent i selects its action ai ∈ A according to
its local observation oi . The joint action is represented as
a = (a1, . . . , an). The state changes based upon the transition
function P : S × A → S. The objective of the agent i is to
maximize its cumulative discounted reward Ri = 6T

t=0γ
tr t

i ,

Fig. 2. Framework of MARGIN that consists of feature process module,
communication learning module, and value decomposition module.

where γ ∈ [0, 1] denotes a discount factor. The goal is to
learn a joint policy π(τ, a) to maximize the global value
Qπ

tot(τ, a) = Es,a[
∑

∞

t=0 γ t R(s, a)|s0 = s, a0 = a], where τ

denotes the observation history.

B. Framework of MARGIN

In this section, the framework of MARGIN is introduced
in detail. MARGIN mainly consists of three module: feature
process module, communication learning module, and value
decomposition module, as shown in Fig. 2. In the proposed
framework, for agent i , we utilize the multilayer perceptron
(MLP) and gated recurrent unit (GRU) layer to process the
feature hi based on local observation oi . MLP uses one
fully connected layer to encoder oi and GRU generates and
combines the historical hidden state to output local observation
history τi , which is considered a feature hi . Then, we fed the
feature hi into the communication learning module. During the
communication learning period, we leverage GNN to generate
feature representation h′

i for agent i , which aggregates the
information of neighbor agents. Besides, the proposed method
adopts graphical MI to learn high-quality feature representa-
tions. The global MI can be factorized to the weighted sum of
local MI between each input feature hi and the output hidden
feature representation h′

i .
Finally, for agent i , its individual local action-value func-

tions Qi (τi , ai , h′

i ) are calculated based on local observation
history τi and feature representation h′

i obtained from the com-
munication learning module. Then, the local Q values obtained
by different agents are input into a mixing network, (e.g., the
network leveraged by QMIX), to obtain an estimation of the
global function value. The mixing network only contains MLP,
but the weights and biases of the mixing network are obtained
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from hypernetwork to satisfy the monotonicity constraints.
MARGIN can be integrated with any value decomposition
method. The framework uses the paradigm of centralized
training and decentralized execution.

C. Communication Learning

The multiagent system can be modeled as graph G = (V, E),
where vi ∈ V denotes the agent i and ei j = (vi , v j ) ∈

E denotes the relationship between agent i and agent j .
The agent features are given by H N×D

= (h1, . . . , hN ),
with assumed empirical probability distribution P=, where N
denotes the number of agent, D denotes the length of feature
vector, and hi denotes the feature for agent i . The features
of neighbor agents of agent i are defined as H (|Bi |+1)×D

i ,
where |Bi | denotes the number of neighbor agents of agent i .
Particularly, H (|Bi |+1)×D

i consists of all k-hop neighbor agents
features of agent i with k ≤ l when the communication
module uses l-layer GNN and the feature of agent i itself. The
corresponding adjacency matrix Ci is constructed for agent i ,
which is added self-loops. The subgraph expanded by Hi and
Ci is defined as a support graph G i for agent i . With the
definition of support graph G i , the feature representation for
each agent i becomes h′

i = f (G i ) = f (Hi , Ci ).
We represent the empirical probability distribution of agent

features Hi as p(Hi ), the probability distribution of h′

i as
p(h′

i ), and the joint distribution by p(h′

i , Hi ). As proved in [8],
if the conditional probability p(h′

i |Hi ) is multiplicative, the
global MI I (h′

i ; Hi ) can be factorized as a weighted sum of
local MIs

I
(
h′

i ; Hi
)

=

|Bi |∑
j

wi j I
(
h′

i ; h j
)

(4)

where h j denotes the feature of the j th neighbor of agent i ,
|Bi | denotes the number of neighbor agents of agent i , and
the weight wi j satisfies 1/|Bi | ≤ wi j ≤ 1 for each agent j
(see [8] for detailed proof).

Inspired by the decomposition in (4), we intend to build
trainable weights wi j from the topological view of graphs;
therefore, the values of weights wi j can be flexible and capture
the inherent relationship of agents. In this end, we present
the graphical MI for MARL. The graphical MI between the
hidden feature h′

i and its support graph G i = (X i , Ci ) can be
represented as

I
(
h′

i ; G i
)

:=

|Bi |∑
j

[
wi j I

(
h′

i ; h j
)
+ I

(
wi j ; ci j

)]
,

wi j = σ
(
h′

i
T h′

j

)
(5)

where the definition of h j and |Bi | is the same as in (4), ci j

denotes the elements in the adjacency matrix Ci , and σ(·)

denotes the sigmoid function.
Concretely, the weight wi j in the first term wi j I (h′

i ; h j )

of (5) measures the contribution of local MI I (h′

i ; h j ) to global
MI I (h′

i ; G i ). The contribution of I (h′

i ; h j ) is calculated by
the similarity between agent feature representations h′

i and h′

j
[i.e., wi j = σ(h′

i
T h′

j )]. The second term I (wi j ; ci j ) denotes the
MI between wi j and the relationships of agents (edge features

ci j of the input graph). By maximizing I (wi j ; ci j ), the weight
wi j is constrained to conform to topological relationships.
Intuitively, the contribution is consistent with the topological
proximity, which is a generally accepted fact that wi j may be
larger when agent j is “closer” to agent i . This strategy makes
up for the shortcoming that (4) only pays attention to agent
features and makes the local MI have adaptive contribution to
the global MI.

Previous methods attempt to maximize the MI between the
input and output feature of neural networks. However, most
of these methods cannot be easily extended to deep neural
networks because of the difficulty in computing MI among
high-dimensional variables. In recent, MI neural estimation
(MINE) [30] proposes to train the statistical network to be
the classifier, which is designed to distinguish samples from
the joint distribution and the marginal product. Concretely,
MINE leverages the exact KL-based formula of MI instead of
the alternative method of non-KL, Jensen–Shannon divergence
(JSD) [31], which can be used without considering the exact
value of MI.

Next, we can maximize the right side of (5) directly based
on the idea of MINE. As mentioned above, MINE uses the
KL-divergence between the joint distribution and the marginal
product to estimate the lower bound of MI. Since we are more
concerned with maximizing MI than obtaining its concrete
value, other non-KL alternatives can be leveraged to replace
it. Specifically, to improve the effectiveness and efficiency of
estimation, this article adopts JSD estimator. JSD estimator is
more suitable for MARL task because of its insensitivity to
negative sampling strategy and its excellent performance in
many large-scale scenarios. Concretely, we compute I (h′

i ; h j )

of (5) by

I
(
h′

i ; h j
)

= −sp
(
−Dw

(
h′

i ; h j
))

− E P̃
[
sp

(
Dw

(
h′

i ; h̃ j
))]

(6)

where Dw denotes a discriminator leveraged the neural net-
work with parameter w · sp(x) = log(1 + ex ) represents
the soft-plus function. h̃ j denotes a negative sampled from
P̃ = P =. Positive sample h j is corresponding to feature
representation h′

j , and negative sample means that the feature
is randomly selected and does not correspond to h′

j .
The second term I (wi j ; ci j ) can be maximized by comput-

ing its cross-entropy rather than leveraging the JSD estimator
since the graphs constructed in the multiagent environment are
unweighted. Formally, it can be calculated as follows:

I
(
wi j ; ci j

)
= ci j logwi j +

(
1 − ci j

)
log

(
1 − wi j

)
. (7)

By maximizing I (h′

i ; G i ) with the sum of (6) and (7) over
all feature representations, we can obtain the global objective
loss function for MI optimization

LMI =

N∑
i=1

−I
(
h′

i ; G i
)
. (8)

In addition, we can add tradeoff parameters in (5) to balance
(6) and (7) to increase flexibility.

We can use various GNN structure for information aggrega-
tion of neighbor agents. For example, we leverage the standard

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on November 10,2025 at 09:57:06 UTC from IEEE Xplore.  Restrictions apply. 



DING et al.: MARL WITH GRAPHICAL MUTUAL INFORMATION MAXIMIZATION 19519

GCN to aggregate the information of neighbor agents using
the following layerwise propagation rule:

H (l+1)
= σ

(
ÂH (l)W (l)) (9)

with

Â = D−
1
2 ĀD

1
2 (10)

where Di i =
∑

j Āi j and Ā = A + In · H (l+1) and H (l)

denotes the output and input feature matrices of the lth GNN
layer, and W (l) denotes the weight matrix that is layer-specific
and trainable. σ denotes the activation function which we use
is the parametric rectified linear unit (PReLU) function.

For the selection of GNN, we can adopt various GNN struc-
ture, such as standard GCN, GAT [32], and graph sample and
aggregate (GraphSAGE) [33] for comparison. The difference
between these method mainly lies in the way of neighbor
information aggregation. GAT uses the multihead attention
mechanism, which can allocate different weights to differ-
ent neighbor nodes during the information aggregation, thus
enhancing its expression ability and getting rid of the problem
that GCN is completely dependent on the adjacency matrix
with unlearnable coefficients. GraphSAGE proposes to first
sample the neighbor nodes and then aggregate the information.
Through random sampling, it reduces the dependence on the
graph structure and enhances the efficiency compared with
standard GCN.

The discriminator in (6) leverages a simple bilinear function
to score the input–output feature pairs

D
(
h′

i ; h j
)

= σ
(
h′T

i Mh j
)

(11)

here M denotes a scoring matrix that is trainable and the
nonlinear transformation σ is a sigmoid function, which aims
at converting score to the probability that (h′

i ; h j ) is a positive
example.

D. Overall Optimization Objective

We have introduced graphical MI optimization for commu-
nication learning to be efficient. Apart from the MI constraints
on the feature representations in the communication learning
module, all the parameters in other modules (feature process
module and value decomposition module) are updated by
minimizing the TD loss. To calculate the global TD loss,
as shown in Fig. 2, in the value decomposition module,
individual action values are fed into a mixing network, which
output the estimation of global action-value Qtot. The proposed
communication learning module can be easily integrated with
the existing value function decomposition method. In this
article, MARGIN leverages the mixing network presented by
QMIX [24], and it can be flexibly replaced by other value
decomposition methods. Therefore, TD loss and overall opti-
mization objective of MARGIN are presented in (12) and (13),
respectively

LTD =
[
r + γ maxa′ Qtot

(
τ ′, a′

; θ−
)
− Qtot(τ, a; θ)

]2 (12)

where θ− denotes the parameters of target network in DQN,
and θ represents all parameters in the model

L = LTD + λLMI (13)

where λ represents the adjustable hyperparameter to accom-
plish a tradeoff between the TD loss and the sum of MI loss
of all agents.

E. Algorithmic Summary

The pseudocode of the MARGIN is presented in
Algorithm 1. Lines 5–15 illustrate the decentralized execution
phase, with lines 9–11 describing the communication learning
module. During the decentralized execution phase, the agents
can obtain information from neighbor agents through GNN in
communication module and select actions in a decentralized
manner. The trained GNN contains a set of learnable weights
for agents. Due to the messaging nature of GNN updates, they
can be distributed to individual agents during the execution
phase.

Algorithm 1 (Pseudo-Code of MARGIN)
Input: The local observation oi ∈ Oi of agent i , environment
state s, and the action-observation history τi of agent i .
Output: The global action-value function Qtot .
1: Initial the parameters of networks, the frequency of network
updating, the maximum size of replay buffer ℜ, the time step
t , the maximum length of an episode.
2: For each episode do
3: For time step t = 1 to n do
4: For each agent i ∈ N do
5: % During Decentralized execution phase
6: Receive local observation oi

7: Obtain feature hi through MLP and GRU
8: Input feature hi to communication module
9: % During Communication phase
10: Aggregate features of neighbors via GNN
11: Optimize the feature representation h′

i via MI
12: Obtain action-value Qi based on the h′

i and
the action-observation history τi

13: Select action ai = π(Qi )(ε − greed)

14: Store episode history τi , ai in replay buffer
15: Output individual value function Qi (τi , ai , h′

i )

16: % During Centralized training phase.
17: Input Qi (τi , ai , h′

i ) to mixing network
18: Sample histories from the replay buffer.
19: Minimize loss function based on Eq.(12)
20: Update parameters of networks
21: Output global action-value Qtot

22: End for
23: End for
24: End for

Next, Lines 16–21 illustrate the centralized training phase.
During the centralized training procedure, we assume that the
MARGIN can receive the individual local observation-action
histories from replay buffer. The proposed method can be
easily fused with the existing value function decomposition
method. The value decomposition module is the same as
that of QMIX, which takes the individual action values as
the input to perform monotone mixing and generates the
global action-value Qtot. As shown in Fig. 3, the blue part
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Fig. 3. Framework of QMIX, reproduced from the paper [24].

is the framework of the mixing network, whose weights and
biases are produced by hypernetworks (the red) to satisfy
the monotonicity constraints. Besides, we leverage the loss
function defined in QMIX to train the mixing networks and
update the parameters.

IV. EXPERIMENTS

In this section, the performance of MARGIN is eval-
uated in several environments, including many-agent rein-
forcement learning (MAgent) [34] and starcraft multiagent
challenge (SMAC) [35]. All experiments are conducted on
GPU Nvidia RTX 2080 with Pytorch. We utilize two-layer
GNN and the number of neighbor agents depend on sce-
narios. We employ QMIX [24], graph two-stage attention
network (G2ANET) [17], deep graph convolutional reinforce-
ment learning (DGN) [11], and multiagent graph-attention
communication (MAGIC) [18] as baselines. These methods
leverage the value decomposition or GNN and have the state-
of-the-art performance on MAgent and SMAC. Baselines are
introduced as follows.

1) QMIX [24] designs a mixing network, in which the joint
action value is estimated by the nonlinear combination
of individual action values.

2) G2ANET [17] uses a complete graph and two-stage
attention mechanism to model the relationship between
agents.

3) DGN [11] adopts GNNs to model the multiagent sce-
nario for communication among agents to learn cooper-
ation.

4) MAGIC [18] presents an attentional communication
mechanism by GATs to tackle with the issue of how
to process messages and when to communicate.

A. MAgent

1) Battle: Battle scenario consists of K agents that are
trained to learn how to defeat L more capable enemies. Each
agent is able to take action attack or move, and the objective
of the allied agent is to defeat the enemy and obtain more
rewards. The range of move or attack is four adjacent grids.
Nevertheless, the enemy agent is able to select to attack 1 of
the eight adjacent grids or to move to the 12 most adjacent
grids. It is easy for the environment to lose balance after the
death of an allied agent or enemy, so we add a new agent or
enemy randomly to the environment to keep the balance.

Fig. 4. Illustration of the battle scenario.

Fig. 5. Learning curves of different methods in battle scenario.

Since a single enemy is more capable than a single agent,
thus the agent must formulate strategies to cooperate to fight
with other agents. Besides, due to enemy health being six
(killed by six hits), agents must continuously cooperate to
defeat enemy. As shown in Fig. 4, an agent attacking the
enemy can obtain the positive reward of +5. An agent gets a
negative reward of −2 and −0.01 when it is killed or hit a
blank grid, respectively.

We select the pretrained DQN model built in the MAgent
benchmark to play the role of enemy agents and let the
different MARL methods trained agents battle against DQN
agents. Therefore, in addition to the reward of a given time
step, we can fairly compare the kill-death rates of different
MARL methods. All the MARL methods are trained under
the same setup of K = 40 and L = 24 for 2k episodes.
We evaluate MARGIN and the other baseline methods by
running 20 test games with 200 timesteps each.

The learning curves of different methods are shown in
Fig. 5. For all the methods, the shaded area is surrounded
by the minimum and maximum values of the three training
sessions, and the mean value is represented by the solid line
in the middle. The performance of different methods in the
battle scenario is shown in Table I. As shown in Table I and
Fig. 5, MARGIN outperforms than all other baselines in terms
of average reward, kill-death rates, and attack number among
agents.

As can be observed from experiments shown in Fig. 6(left),
other baselines learn suboptimal strategies at the beginning
of training, such as gathering in the corner to avoid being
attacked, as such strategies generate relatively high rewards.
Nevertheless, due to the uneven distribution of rewards, agents
outside the group are vulnerable to be attacked, and other
baselines drew on the “low-reward experience” generated by
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TABLE I
PERFORMANCE OF DIFFERENT METHODS IN BATTLE SCENARIO

Fig. 6. Illustration of representative behaviors of MARGIN (right) and other
baselines (left) in battle scenario.

Fig. 7. Illustration of the jungle scenario.

suboptimal strategies to converge to more passive strategies,
resulting in much lower rewards.

As shown in Fig. 6(right), MARGIN trained agents can
learn a variety of tactical skills, including encircling and
enveloping one side. For an individual enemy agent, MARGIN
agents can successfully learn to cooperate to surround it
and defeat it. For a group of enemies, MARGIN agents
successfully learn to attack one flank of the enemy.

2) Jungle: Jungle scenario consists of K agents and F
foods (stationary). There is a moral dilemma in the environ-
ment, where an agent can get a positive reward for catching
food, but a larger reward for attacking other agents. Each agent
is able to attack or move to one of the four adjacent grids at
each time step. Agents that attack blank grids receive a small
negative reward of −0.01 to discourage excessive attacks.
As shown in Fig. 7, in the jungle scenario, an agent attacking
the food can receive the positive reward +2. An agent obtains
negative reward of −4 for being attacked. The experiment
is designed to test whether agents could learn to cooperate
to share resources rather than attack each other. We trained
MARGIN and other baselines for 2k episodes with K = 20
and F = 12.

The learning curves of different methods are shown in
Fig. 8. For all the methods, the shaded area is surrounded
by the minimum and maximum values of the three training
sessions, and the mean value is represented by the solid line
in the middle. As shown in Fig. 8, MARGIN outperforms than

Fig. 8. Learning curves of different methods in jungle scenario.

Fig. 9. Illustration of representative behaviors of MARGIN (right) and other
baselines (left) in jungle scenario.

TABLE II
PERFORMANCE OF METHODS IN JUNGLE SCENARIO WITH

DIFFERENT NUMBERS OF AGENTS

all the baselines. As shown in Fig. 9(right), MARGIN trained
agents can allocate the food rationally and choose the food
close correctly. Meanwhile, MARGIN trained agents learn to
seldom hurt other agents.

Fig. 9 shows the representative behaviors of agents trained
by diverse MARL methods. As shown in Fig. 9(left), other
baselines trained agents sometimes occur conflicts between
agents and sometimes become wary of others and hesitate
when they approach the same food. MARGIN agents can learn
to share food appropriately and seldom hurt each other. This
may due to that the proposed method adopts graphical MI to
learn high-quality feature representations, which promote the
action coordination and policy learning of agents.

In addition, we compared MARGIN and baselines with the
different numbers of agents (from 20 to 60). All settings
are the same except that the number of agents and food
increases proportionally. As shown in Table II, MARGIN can
always perform best as the number of agents increases. The
results demonstrate that MARGIN can be applied to large-
scale multiagent setting.
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TABLE III
SCENARIOS OF SMAC

TABLE IV
ABLATIONS STUDIES ON GNN TYPE ON BATTLE SCENARIO

B. SMAC

1) Setting: We evaluate the proposed method MARGIN
and baselines on the SMAC benchmark to demonstrate the
superiority of communication learning with graphical MI
maximization. In particular, we make it more difficult to
coordinate actions among agents. On the one hand, we narrow
the field of vision of the agent from 9 to 5. On the other
hand, we select the challenging scenarios. Table III shows the
details of scenarios, and it is worth noting that all scenarios are
super hard level. First, the setting of the SMAC environment
is introduced in detail. In four challenging scenarios, ally units
are all controlled by the MARL agents and enemy units are
mastered by the built-in AI. Enemy units and ally units can
be asymmetrical, and their initial positions are random.

The action space of the agent is of dimension four, which
includes actions move, noop, attack, and stop. Under the
control of these actions, agents attack and move in these maps
of continuous space. At each time step, the agent receives a
reward that is equivalent to the cumulative damage done to
the enemy units. The agent can obtain an additional bonus of
+10 for each enemy unit it kills and +200 for each battle it
wins. We evaluate the proposed method on four challenging
scenarios.

2) Performance: Our implementation is based on the
PyMARL framework [35] and leverages its default struc-
ture of network and hyperparameter settings of the value
decomposition module. The hyperparameter settings of other
module (feature process module and communication module)
are shown in Table IV. In the scenarios of SMAC, the training
time of 2 million timesteps is approximately 15–24 h, which
is ranged according to the agent number and scenario features
of each map.

Fig. 10. Learning curves of different methods on SMAC scenarios.

The learning curves of different methods are shown in
Fig. 10. For all the methods, the shaded area is surrounded
by the minimum and maximum values of the five training
sessions, and the mean value is represented by the solid line
in the middle. As shown in Fig. 10, MARGIN outperforms
other baselines in four super hard scenarios. For example,
in the MMM3 scenario, MARGIN-trained agent successfully
learned the strategy: the Medivacs first approach the enemy,
absorb fire, and then withdraw to heal the appropriate allied
agent.

3) Ablations: In this section, our ablation experiments are
designed to answer the following questions: 1) whether each
component of MARGIN is effective? 2) Does the superior-
ity of MARGIN come from the increase in the number of
parameters? 3) How does MARGIN perform with different
GNN models? and 4) Can MARGIN fuse with various value
decomposition methods?

To further evaluate the effectiveness of each module in
MARGIN, we design the ablation studies on average test
win rates on scenarios 15_versus_17 m and 6 h versus 8 z.
We design two variants of MARGIN: 1) MARGIN-I is MAR-
GIN without graphical MI maximization and 2) MARGIN-V
is MARGIN without value decomposition module. By com-
paring MARGIN and MARGIN-I, we can see that the
removal of the graphical MI maximization causes a drop
in performance. Moreover, when comparing MARGIN and
MARGIN-V, we can see that the removal of the value
decomposition module results in a slight performance decline.
These experimental results show that communication learning
can indeed strengthen cooperation among the agents, that MI
optimization can improve the quality of communication, and
that value decomposition can further enhance the collaboration
among agents.

We also design QMIX-LARGE with similar number of
parameters as MARGIN to study whether the fact that MAR-
GIN outperforms QMIX lies in the increase of the number
of parameters. As shown in Fig. 11, the results show that
QMIX with a larger network does not fundamentally enhance
performance. The two variants show performance degradation
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Fig. 11. Ablations studies on average test win rates on SMAC scenarios.

TABLE V
ABLATIONS STUDIES ON VALUE DECOMPOSITION

METHOD TYPE ON SMAC SCENARIOS

TABLE VI
NOTATIONS AND EXPLANATIONS

compared to MARGIN, illustrating the effectiveness of each
module.

In addition, we use different GNN structures in the MAR-
GIN on the battle scenario to evaluate its performance.
As shown in Table VI, we used three variants of Graph-
SAGE, of which GraphSAGE-LSTM has the best perfor-
mance. Among all GNN models, GAT achieves the best
effect. The possible reason is that by introducing the attention
mechanism, GAT enables the agent to better assign weight
to the information of the neighbor agents, and at the same
time, it can handle different numbers of neighbor agents.
Meanwhile, the graphical MI preserves the topology structure
of the graph well.

MARGIN can be fused with any value decomposi-
tion methods. For example, we integrate it with popular
value decomposition methods VDN, QMIX, and QPLEX.
The fused methods, called MARGIN (VDN), MARGIN
(QMIX), and MARGIN (QPLEX), respectively, are tested
on various scenarios of SMAC. As shown in Table V,
all fused methods perform better than the original value
decomposition methods, which indicates that the commu-
nication learning module of MARGIN can significantly

TABLE VII
FIXED HYPER-PARAMETERS OF MARGIN FOR ALL EXPERIMENTS

TABLE VIII
HYPERPARAMETERS OF MARGIN FOR MAGENT AND SMAC

enhance the policy learning and action coordination of
agents.

C. Notations and Hyperparameters

The notations and explanations that we leverage throughout
the method are summarized in Table VI.

Table VII describes the fixed parameters in all experiments.
Table VIII gives the parameters of different benchmarks.

V. CONCLUSION

In this article, we introduce the graphical MI optimization
concept for MARL. The propose method realizes efficient
communication learning through maximizing the graphical MI
between the input and output of the constructed graph in
terms of agent features and agent relationships. Besides, the
method can be flexibly fused with diverse MARL methods.
Experimental results on various environments illustrate that the
proposed method outperforms the existing MARL methods.

To the best of our knowledge, our work is the first attempt
at learning communication via GNNs and graphical MI opti-
mization in MARL domain. We believe that communication
learning via GNN and MI optimization is a promising way in
building efficient and versatile large-scale multiagent systems.
Future work will focus on applying ideas from this work to
heterogeneous multiagent environments.
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