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Robust Multi-Agent Reinforcement Learning by
Mutual Information Regularization

Simin Li , Ruixiao Xu , Jingqiao Xiu , Yuwei Zheng, Pu Feng , Yuqing Ma ,
Bo An , Senior Member, IEEE, Yaodong Yang , Member, IEEE, and Xianglong Liu , Senior Member, IEEE

Abstract—In cooperative multi-agent reinforcement learning
(MARL), ensuring robustness against cooperative agents mak-
ing unpredictable or worst-case adversarial actions is crucial
for real-world deployment. In multi-agent settings, each agent
may be perturbed or unperturbed, leading to an exponential
increase in potential threat scenarios as the number of agents
grows. Existing robust MARL methods either enumerate, or
approximate all possible threat scenarios, leading to intense
computation and insufficient robustness. In contrast, humans
develop robust behaviors by maintaining a general level of
caution rather than preparing for every possible threat. Inspired
by human decision making, we frame robust MARL as a control-
as-inference problem, and optimize worst-case robustness across
all threat scenarios implicitly optimized through off-policy evalua-
tion. Specifically, we introduce mutual information regularization
as robust regularization (MIR3), which maximizes a lower bound
on robustness during routine training, serving as a kind of caution
for MARL without adversarial inputs. Further insights show
that MIR3 acts as an information bottleneck, preventing agents
from over-reacting to others and aligning policies with robust
action priors. In the presence of worst-case adversaries, our
MIR3 significantly surpasses baseline methods in robustness and
training efficiency, and maintaining cooperative performance in
StarCraft II, quadrotor swarm control, and robot swarm control.
When deploying the robot swarm control algorithm in the real
world, our method also outperforms the best baseline by 14.29%
in reward. See code and demo videos at https://github.com/DIG-
Beihang/MIR3
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I. INTRODUCTION

COOPERATIVE multi-agent reinforcement learning
(MARL) [1], [2], [3], [4], [5], [6], [7], [8] has shown

significant progress across various challenging scenarios, such
as StarCraft [9]. In real-world applications, however, MARL
algorithms often fall short when the actions of cooperative
agents deviate from their intended policies due to numerous
uncertainties during deployment. In such cases, cooperative
agents may exhibit unpredictable behavior or even perform
worst-case actions if being hacked by adversaries, [10], [11],
[12], [13], [14], [15]. This vulnerability greatly limits the
practical applicability of MARL in real-world scenarios, such
as robot swarm control [16].

Research on robust MARL against action uncertainties
primarily focuses on max-min optimization against worst-case
adversaries [10], [11], [17], [18], [19]. This approach can be
framed as a zero-sum game [17], [20], where defenders with
fixed parameters during deployment aim to maximize perfor-
mance despite unknown proportions of adversaries employing
the worst-case, nonoblivious adversarial policies [12], [14].
However, in multi-agent scenario, each agent can be either
perturbed or unperturbed, leading to an exponential increase
in the number of potential threat scenarios, making max-min
optimization against each threat intractable. To address this
complexity, some methods [10], [11], [21] approximate the
problem by treating all agents as adversaries. However, since
not all agents are perturbed in reality, the learned policy can
be overly pessimistic, making agents not cooperate at all.
Others attempt to enumerate all threat scenarios [18], [19],
[22], but often struggle to explore each threat scenario suf-
ficiently during training, leaving defenders still vulnerable to
worst-case adversaries. Consequently, max-min optimization
provides limited defense capabilities in MARL and incurs high
computational cost [23].

In daily life, humans make robust decisions without
explicitly considering every possible threat, as in max-min
optimization. This ability is explained by the theory of sit-
uational awareness [24], [25], where individuals maintain a
general level of risk awareness and adaptively respond to a
range of unforeseen threats. For example, while driving, people
do not assess every possible scenario involving aggressive
drivers, as max-min optimization would require. Instead, they
maintain a general sense of caution, such as keeping a safe
distance from other vehicles, to mitigate unexpected risks like
sudden braking.
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Fig. 1. Our policies are learned under routine scenarios but are provably
robust against unseen worst-case adversaries through robust regularization,
without experiencing all possible threat scenarios like existing approaches.

Inspired by the robust decision making process of human,
we propose mutual information regularization as robust regu-
larization (MIR3) for robust MARL. As illustrated in Fig. 1,
our approach does not require exposure to all potential
adversarial scenarios; instead, it trains policies in standard
environments while ensuring provable robustness against
unseen worst-case adversaries. Theoretically, we formulate this
objective as a control-as-inference problem [26], a framework
to derive optimal policies via probabilistic inference. Our
objective is to optimize cooperative performance, and addi-
tionally maximize robustness across exponentially many threat
scenarios via off-policy evaluation [27]. Within this frame-
work, we show that, under specific conditions, regularizing
the mutual information between histories and actions maxi-
mize a lower bound of our objective, enhancing robustness
across all threat scenarios. This process serves as a general
safeguard in MARL, akin to human caution in the face of
diverse, unforeseen threats, without needing to model specific
adversaries.

Beyond theoretical insights, MIR3 can be treated as an
information bottleneck [28] or as learning a task-relevant
robust action prior [29]. From the information bottleneck
perspective, our goal is to learn a policy that solves the
task using minimum sufficient information of current history.
Thus, it suppresses false correlations in the policy created
by action uncertainties and minimizes agents’ overreactions
to adversaries, fostering robust agent-wise interactions. From
the view of robust action prior, we limit the policy from
deviating from a prior action distribution which is not only
generally favored by the task, but also maintains intricate
tactics under attack. Experiments in StarCraft II, quadrotor
swarm control, and rendezvous environments show MIR3
demonstrates higher robustness against worst-case adversaries
on MADDPG, QMIX, and MAPPO backbones. When the
magnitude of regularization is properly chosen, we find
suppressing mutual information will not negatively affect
cooperative performance, but even slightly enhance it. Finally,
the superiority of MIR3 remains consistent when deployed
in the real-world robot swarm control scenario, outperforming
the best performing baseline by 14.29% in reward.

Our contributions can be summarized as follows.

1) Inspired by human caution, we propose MIR3 that serves
as caution for MARL against diverse threat scenarios
without adversarial input.

2) We theoretically frame robust MARL as a control-as-
inference problem and optimize robustness via off-policy

evaluation. In this framework, we prove that our MIR3
maximizes a lower bound of robustness reducing spuri-
ous correlations, and learning robust action prior.

3) Experiments on StarCraft, quadrotor swarm control, and
robot swarm control show that our MIR3 surpasses
baselines in robustness, while maintaining cooperative
performance on MADDPG, QMIX and MAPPO back-
bones. This superiority is consistent when deploying the
algorithm in real world.

II. PRELIMINARIES

A. Cooperative MARL as Dec-POMDP

We formulate the problem of cooperative MARL as a
decentralized partially observable Markov decision process
(Dec-POMDP) [30], defined as a tuple

G = 〈N ,S,O,O,A,P ,R, γ〉. (1)

Here, N = {1, . . . ,N} is the set containing N agents, S is
the global state space, O = ×i∈NOi is the observation space,
O is the observation emission function, A = ×i∈NAi is the
joint action space, P : S × A → ∆(S) is the state transition
probability, R : S × A → R is the shared reward function for
cooperative agents, and γ ∈ [0, 1) is the discount factor.

At each timestep, agent i observes oi
t = O(st, i) and add it

to history hi
t = [oi

0, a
i
0, . . . , o

i
t] to alleviate partial observability

issue [2], [30]. Then, it takes action ai
t ∈ Ai using policy

πi(ai
t |h

i
t). The joint actions at leads to the next state st+1

following state transition probability P(st+1|st, at) and shared
global reward rt = R(st, at). The objective for agents is to
learn a joint policy π(at |ht) =

Q
i∈N πi(ai

t |h
i
t) that maximize

the value function Vπ(s) = Es,a
�P∞

t=0 γ
trt |s0 = s, at ∼ π(·|ht)

�
.

Many algorithms are proposed to solve MARL. Conventional
methods includes MADDPG [1], QMIX [2], and MAPPO [3],
while recent works focus on enhancing exploration [31], [32],
interpretability [33], and policy transfer [34].

B. Robust MARL
Robust MARL aims to fortify against uncertainties in

actions [10], states [35], [36], and rewards/environment [17],
[37], [38]. Among these factors, action robustness have
become a main focus due to the propensity for multiple
agents to act unpredictably during deployment. Algorithms
such as M3DDPG [10] and ROMAX [11] treat each agent
as an adversary that deviates toward jointly worst-case actions
[12]. However, in real world, since not all other agents are
adversaries, such a policy can likely be overly pessimistic and
make agents not cooperate at all. Later approaches attempt
to directly train policies against these worst-case adversaries
[18], [19], [22], [39]. However, as these methods must explore
numerous distinct adversarial scenarios, each scenario may
left insufficiently examined. As a consequence, attackers can
be less powerful comparing with worst-case adversary, and
defenders trained with such weaker attackers can still be
vulnerable to worst-case adversaries at test time.

C. Robustness Without an Adversary

While it is tempting to directly train MARL policy against
adversaries via max-min optimization, such process can be
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overly pessimistic [10], unbalanced across threat scenarios
[18], [19], and computationally demanding [23]. A parallel
line of research in RL aims to achieve robustness without
relying on adversaries. A2PD [40] shows a certain modifi-
cation of policy distillation can be inherently robust against
state adversaries. Through the use of convex conjugate, [41]
has shown that max-entropy RL can be provably robust
against uncertainty in reward and environment transitions. Der-
man et al. [23] further extended regularization to uncertainties
in reward and transition dynamics under rectangular and ball
constraints. The work most similar to ours is ERNIE [21],
which minimize the Lipshitz constant of value function under
worst-case perturbations in MARL. However, the method
considers all agents as potential adversaries, thus inherits the
drawback of M3DDPG, learning policy that can either be
pessimistic or insufficiently robust.

D. Control-as-Inference Theory
Proposed by Levine [26], control-as-inference theory pro-

vides a principled way to infer the optimal decision policy via
probabilistic inference. In RL, let s ∈ S be the states, a ∈ A
be the actions, p(st+1|st, at) be the environment dynamics,
and rt = r(st, at) be the reward. Then, given a trajectory
τ = [(s1, a1), . . . , (st, at)], the trajectory distribution can be
defined as

p(τ) = p(s1)
TY

t=0

�
P(st+1|st, at)π(at |st)

�
. (2)

Given trajectory distribution, Levine [26] propose a binary
random variable Ot to denote if the policy at current timestep
is optimal, Ot = 1 and Ot = 0 otherwise. The distribution
of over Ot is given by the reward of current timestep, which
ensures better state-action pairs are favored exponentially

p(Ot = 1|st, at) = exp(rt). (3)

Given our objective is to achieve optimal control Ot = 1 at all
timesteps t ∈ {1, . . . ,T }, we can write the probability of the
optimal trajectory p(τ|o1:T ) as

p(τ|o1:T ) ∝ p(τ, o1:T )

= p(s1)
TY

t=1

p(Ot = 1|st, at)p(st+1|st, at)

=

"
p(s1)

TY
t=1

p(st+1|st, at)

#
exp

 
TX

t=1

rt

!
. (4)

Given such formulation, the optimal policy trajectory can
be solved by minimizing the KL divergence between policy
trajectory p(τ) and the optimal trajectory p(τ|o1:T )

− DKL(p(τ)||p(τ|o1:T ))

= Eτ∼p(τ)

"
log p(s1) +

TX
t=1

(log p(st+1|st, at) + rt)

− log p(s1) −
TX

t=1

�
log p(st+1|st, at)

+ log π(at, st)
� #

= Eτ∼p(τ)

"
TX

t=1

rt − log π(at |st)

#
= Eτ∼p(τ)[rt] + Est∼p(st)[H(at |st)] (5)

whereH(at |st) is the entropy of the policy. As such, control-as-
inference theory offers a principled explanation for RL policies
that additionally maximize policy entropy [3] to encourage
exploration. In our setting, we adopt the control-as-inference
theory, but additionally consider adversarial transitions to get
mutual information as a robust regularizer.

E. Mutual Information Estimation

Mutual information quantifies the dependency between two
random variables. Formally, the mutual information between
variables x and y is defined as

I(x; y) = Ep(x,y)

�
log

p(x, y)
p(x)p(y)

�
. (6)

However, when the joint distribution p(x, y), is unknown,
computing the exact value of mutual information becomes
challenging, as it requires accurate estimation or sampling
from the joint distribution. This difficulty is further exacer-
bated when the variables are high-dimensional. Since exact
computation is generally infeasible in practice, a range of tech-
niques have been proposed to approximate mutual information
by estimating its upper and lower bounds. In this article,
we first give a broad overview of the literature of mutual
information estimation, then introduce several commonly used
mutual information estimation methods as practical tools for
approximation.

Early MI estimation techniques relied on histogram binning,
k-nearest neighbors, or kernel density estimation [42], [43],
[44], [45]. While theoretically grounded, these methods scale
poorly to high-dimensional data and often suffer from bias-
variance trade-offs that are difficult to control in practice. To
address these limitations, neural MI estimators have gained
popularity. These methods approximate MI through variational
lower or upper bounds, parameterized by neural networks, and
optimized using stochastic gradient descent. The key idea is to
cast MI as a functional of the joint and marginal distributions,
enabling learning-based approximations from samples alone.
MINE [46] propose the first neural estimator for mutual
information via the dual formulation of KL divergence using
Donsker-Varadhan representation

I(x; y) ≥ sup
T∈F
Ep(x,y)T (x, y) − logEp(x)p(y)[exp(T (x, y))] (7)

where T is a function parameterized by a neural network.
While MINE estimate the lower bound of mutual information,
they are unable to estimate the upper bound of mutual infor-
mation. Researchers first estimate the upper bound of mutual
information in information bottleneck theory by defining a
variational upper bound (VUB) [47]

I(x; y) ≤ Ep(x,y)

�
log T (y|x)
N (y|0, I)

�
(8)
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with N (y|0, I) a Gaussian distribution. Subsequent work
replace N (y|0, I) in a leave-one-out manner (L1Out) [48]

I(x; y) ≤ E

"
1
N

NX
i=1

"
T (yi|xi)

1/N − 1
P

j,i T (yi|x j)

##
. (9)

A recent advance made by CLUB [49] provides an tighter
upper bound estimate of mutual information via variational
inference

I(x; y) ≤ Ep(x,y)
�
log T (y|x)

�
− Ep(x)p(y′)

�
log T (y′|x)

�
(10)

with y′ the negative samples. CLUB gains wide attention as a
simple yet effective method for general-purposed information
upper bound estimation.

Since mutual information (MI) captures agent correlations,
many MARL methods use MI regularization to promote
collaboration. Existing approaches can be grouped into three
categories: 1) social influence [50] and EITI [51] maximize
MI between pairs of agents to enhance mutual influence;
2) MAVEN [52], SIC [53], and VM3-ac [54] maximize MI
between each agent and a shared latent variable to improve
coordination; and 3) PMIC [55] maximizes MI between states
and joint actions to promote diverse yet predictable behaviors.
However, these methods do not account for robustness against
action perturbations—higher coordination in such cases may
amplify cascading failures when individual agents falter.

III. METHOD

In this section, drawing inspiration from human cautious
to unseen threats [24], we first formalize robust MARL as
an action adversarial Dec-POMDP, aiming to maximize both
cooperative and robust performance under all threat scenar-
ios. Next, framed as an control-as-inference problem [26],
policies are learned without attacks and adapt to worst-case
scenarios using off-policy evaluation. We find minimizing
mutual information between histories and actions maximizes
lower bound of robustness, serving as cautious for MARL.
Beyond theoretical insights, our method acts as an information
bottleneck, reducing spurious correlations and learning robust
action priors to maintain effective tactics under attack.

A. Problem Formulation

1) Action Adversarial Dec-POMDP: In this article, we
consider action uncertainty as an unknown portion of agents
taking unexpected actions. This can stem from robots losing
control due to software/hardware error, or are compromised by
an adversary [12], [17], [18], [19], [22]. Given a Dec-POMDP
with action uncertainties, we define action uncertainties
in MARL as an action adversarial Dec-POMDP (A2Dec-
POMDP), which is written as

Ĝ = 〈N ,Φ,S,O,O,A,P ,R, γ〉. (11)

Here, Φ = {0, 1}N is a set containing partitions of agents into
defenders and adversaries, with φ ∈ Φ indicates a specific
partition. For each agent i, φi = 1 means the original policy of
πi(·|hi

t) is replaced by a worst-case adversarial policy πi
α(·|hi

t, φ),
while φi = 0 means that the original policy is executed without

change. We use α to denote adversarial policy throughout this
article. In this way, Dec-POMDP is a special case of A2Dec-
POMDP with φ = 0N .

2) Perturbed Policy: The perturbed joint policy is defined
as π̂(ât |ht, φ) =

Q
i∈N [πi

α(·|hi
t, φ) · φ + πi(·|hi

t) · (1 − φ)],
with perturbed joint actions ât used for environment tran-
sition P(st+1|st, ât), and reward rt = R(st, ât). For each
φ ∈ Φ, the value function is Vπ,πα (s, φ) = Vπ̂(s, φ) =

Es,â
�P∞

t=0 γ
trt |s0 = s, ât ∼ π̂(·|ht, φ)

�
.

3) Attacker’s Objective: We assume the attack happens at
test time, with parameters in defender’s policy π fixed during
deployment. Following the setting of [19], we assume the
attacker has the same partial observation and same action
space as defender. For a partition φ that indicates defend-
ers and adversaries, the objective of a worst-case, zero-sum
adversary aims to learn a joint adversarial policy πα(·|ht, φ) =Q

i∈{φi=1} π
i
α(·|hi

t, φ) ∈ ×i∈φi=1{Ai} that minimize cumulative
reward [12]

π∗α ∈ arg min
πα

Vπ,πα (s, φ). (12)

Following [12], an optimal worst-case adversarial policy π∗α
always exists for all possible partitions φ ∈ Φ and fixed π.
Since the defender’s policy π is held fixed during attack, we
can view it as a part of environment transition, reducing the
problem to a POMDP for one adversary or a Dec-POMDP for
multiple adversaries. The existence of an optimal π∗α is then
a corollary of the existence of an optimal policy in POMDP
[56] and Dec-POMDP [30]. In our experiments, the attacker
always employs an optimal worst-case adversarial policy. This
is achieved by first fixing the defender’s policy and then
training the adversary specifically to exploit it.

4) Defender’s Objective: The objective of defenders is to
learn a policy that maximize both normal performance and
robust performance under attack, without knowing who is the
adversary

π∗ ∈ arg max
π

�
Vπ(s) + Eφ∼p(Φα)

�
min
πα

Vπ,πα (s, φ)
��

. (13)

We use p(Φα) to denote the distribution of the partitions
the defenders are facing. While existing max-min approaches
requires explicitly training π with distribution φ ∼ p(Φα), our
method trains π with partition φ = 0N only, but still capable
of solving the max-min objective in (13). This is done by
deriving a lower bound for objective minπα Eφ∼p(Φα)[Vπ,πα (s, φ)]
as a regularization term.

B. Theoretical Insights on Robustness of MIR3

We adopt a control-as-inference approach [26] to infer the
defender’s policy π. We first derive objectives for purely
cooperative scenarios, then show objectives under attack by
importance sampling. Let τ0 = [(s1, a1), (s2, a2), . . . , (st, at)]
denote the optimal trajectory of purely cooperative scenario
generated on t consecutive stages, with superscript in τ0

denotes φ = 0N . Following [26], the probability of τ being
generated is:

p(τ0) =

"
p(s1)

TY
t=0

P(st+1|st, at)

#
exp

 
TX

t=1

rt

!
(14)
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with exp
�PT

t=1 rt

�
encourage trajectories with higher rewards

to have exponentially higher probability [26]. The goal is
to find the best approximation of joint policies π(at |ht) =Q

i∈N πi(ai
t |h

i
t), such that its induced trajectories p̂(τ0) match

the optimal probability of p(τ0)

p̂(τ0) = p(s1)

"
TY

t=0

P(st+1|st, at)π(at |ht)

#
. (15)

Assume the dynamics is fixed, such that agents cannot influ-
ence the environment transition probability [57], the objective
for purely cooperative scenario is derived as maximizing the
negative of KL divergence between sampled trajectory p̂(τ0)
and optimal trajectory p(τ0)

J0(π) = −DKL(p̂(τ0)||p(τ0))

=
PT

t=1Eτ0∼p̂(τ0)[rt +H(at |ht)] (16)

where H(·) is the entropy estimator.
As for scenarios with attack, for partition φ ∼ p(Φα), let

τφ = [(s1, â1), (s2, â2), . . . , (st, ât)] denote the trajectories under
attack. To evaluate the performance of π with partition φ,
we can leverage importance sampling to derive an unbiased
estimator Jφ(π) using τ0, with ρt = (π̂(at |ht, φ)/π(at |ht)) the
per-step importance sampling ratio

Jφ(π) =
PT

t=0Eτ0∼ p̂(τ0)
�
ρt · (rt +H(at |ht))

�
=
PT

t=0Eτφ∼ p̂(τφ) [rt +H(at |ht)] . (17)

By (13), the overall objective J(π) for inference is

J(π) = J0(π) + Eφ∼p(Φα)

�
min
πα

Jφ(π)
�

=
PT

t=0Eτ0∼ p̂(τ0)[rt +H(at |ht)] + Eφ∼p(Φα)

×
�

min
πα

PT
t=0Eτφ∼p̂(τφ) [rt +H(at |ht)]

�
. (18)

Thus, our objective maximize cumulative reward in both coop-
erative task and across the distribution of defender-adversary
partitions (i.e., threat scenarios) via off-policy evaluation. To
do this, we assume the trajectories p(τ) under p(Φα) follows
the uniform coverage assumption [58], [59], [60], as com-
monly adopted by offline RL. Below are our main theoretical
insights:

Proposition 1: J(π) ≥
PT

t=1 Eτ0∼p̂(τ0)[rt − λI(ht; at)], where
I(ht; at) is the mutual information between joint histories and
actions, and λ is a nonnegative hyperparameter to control the
trade-off between cooperation and robustness.

Proof: [Proof sketch] The proof is constructed in three steps.
First, since the defenders and adversary forms a zero-sum
game, we show the log probability of optimal robust policy
and optimal adversary differs by a constant. This allows us
to transform attacker’s policy to benign policy. Second, we
derive a lower bound for all attack trajectories and partitions
under the uniform coverage assumption. Third, we find the
lower bound satisfy the definition of mutual information. �

Proof: Step 1: The first step we take from (18) is to
transform the policy in adversarial trajectories π(at |ht)
into π̂(ât |ht, φ), such that the policy meets the trajectory

probability with adversary. Recall in probabilistic
reinforcement learning [26], the optimal policy is defined via
soft Bellman backup

π(at |st) =
1
Z

exp(Q(st, at) − V(st)) (19)

where Z is a normalizing constant. This is extended to MARL
by marginalizing the actions of other agents [57]. In our case,
we further add current partition φ to the objective, which is
written as

π
�
ai

t |h
i
t

�
=

1
Z

exp
�
Q
�
st, ai

t, a
−i
t , φ

�
− Q

�
st, a−i

t , φ
��

=
1
Z

exp
�

Q
�
st, ai

t, a
−i
t , φ

�
− log

Z
ai

t

exp
�
Q
�
st, ai

t, a
−i
t , φ

��
dai

t

�
.

(20)

Since the adversary is zero-sum, its objective is opposite to
the objective of the defenders, which can be written as
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.

(21)

Next, we expand our objective in terms of history-action
pairs, where history are added to meet the conditions of Dec-
POMDP (i.e., policy always condition on current histories)

J(π) =

TX
t=0

Eht ,at∼p(τ0)[rt − log π(at |ht)]

+ Eφ∼p(Φα)

"
min
πα

TX
t=0

Eht ,ât∼p(τφ)
�
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�#
.

=

TX
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"
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TX
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−

NX
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log πi(ai
t |h

i
t)

##
. (22)

Here, we cannot directly process the objective containing
adversary since the trajectory is sampled using π̂(ât |ht). How-
ever, since the objective of attacker is to minimize Q value,
and the objective of defender is to maximize Q value, from the
optimal policy defined in (20), we can compute the logarithm
of the optimal robust policy π(ai

t |h
i
t) and optimal adversarial

policy πα(ai
t,α|h

i
t) as

log π
�
ai

t |h
i
t
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for defenders and

log πα
�
ai

t,α|h
i
t

�
= − log Z′ − Q

�
st, ai

t,α, a
−i
t , φ

�
+ log

Z
ai

t,α

exp
�
Q
�
st, ai

t,α, a
−i
t , φ

��
dai

t,α (24)

for adversaries.
Thus, we have

log πα
�
ai

t,α|h
i
t

�
= − log π

�
ai

t |h
i
t

�
+ c (25)

where c = − log Z + log Z′ is a constant. We ignore this in our
subsequent derivations.

Plugging this into our objective, we get

J(π) =

TX
t=0

Eht ,at∼p(τ0)[rt − log π(at |ht)] + Eφ∼p(Φα)"
min
πα

TX
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t)
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=
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+
X
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i
t, φ)

3535 . (26)

Step 2: Next, we transform the objective containing adver-
sarial rollouts into a regularization. Starting from our previous
objective, we get

J(π) =

TX
t=0

Eht ,at∼p(τ0)[rt − log π(at |ht)]

+ Eφ∼p(Φα)

24 TX
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=
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t=0

Eht ,at∼p(τ0)[rt − log π(at |ht)]
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"
TX
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#
. (27)

Plugging in the uniform coverage assumption [58], [59], [60],
i.e., log p(ht) = 1/c, we get

J(π)

≥
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Step 3: Finally, from information theory, we have

I (ht; at) = H (π (at)) − H (at | ht) (29)

plugging in our derivations above, we get

J(π) ≥
TX

t=0

Eht ,at∼p(τ0)[rt] + Eht∼p(τ0)[H(at |ht) −H(π(at))]

=

TX
t=0

Eht ,at∼p(τ0)[rt] + Eht∼p(τ0)[−I(ht; at)]

=

TX
t=0

Eτ0∼p(τ0)[rt − I(ht; at)]. (30)

This completes the proof. �

Remark 1: In control-as-inference theory, λ is not needed
in theoretical derivation since we can linearly scale the reward

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on November 10,2025 at 09:29:31 UTC from IEEE Xplore.  Restrictions apply. 



18124 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 10, OCTOBER 2025

Algorithm 1 MIR3 Defense With MADDPG Backbone
Input: Policy network of agents {π1, π2, . . . πN}, value function

network Qπ
i (s, a1, . . . , aN), mutual information estimation

network based on CLUB [49]: CLUB(hi
t, a

i
t), hyperparam-

eter λ for mutual information regularization.
Output: Trained robust policy networks {π1, π2, . . . πN}.

1 for episode = 0, 1, 2,...K do
2 Perform rollout using current policy, save trajectory in

buffer D.
3 Update CLUB(hi

t; ai
t) using D.

4 I(ht, at)←
P

i∈N CLUB(hi
t, a

i
t).

5 rMI
t ← rt − λ · I(ht; at).

6 Update critic {Qi} of each agents using rMI
t .

7 Update parameters of each agents using MADDPG.
// To implement MIR3 on other backbones,

just change the way of parameter update.

8 end for

by r′ = r/λ and absorb λ in reward function. Here, we make it
explicit to represent the trade-off between reward and mutual
information. See Haarnoja et al. [61] for more details.

Remark 2: Minimizing the objective I(ht; at) and enhancing
robustness can be explained as follows: when some agents
fail due to uncertainties, their erroneous actions will alter
the global state, affecting future observations and histories of
other benign agents. Compared to the intuitive approach of
minimizing the mutual information between agents’ actions,
our objective also accounts for environmental transitions under
the control-as-inference framework.

Remark 3: We acknowledge that in real-world settings,
the uniform coverage assumption might not hold. While
undesirable, the assumption is indispensable in many offline
RL articles [58], [59], [60]. Similar to their settings, we
derive theoretical insights based on this assumption, and eval-
uated MIR3’s performance under individual threat scenarios
involving one or two adversaries, which violates the uni-
form coverage assumption. Despite this, MIR3 demonstrated
improved robustness consistently. In the context of robustness,
the assumption is in fact favorable, since it ensures all possible
scenarios and trajectories are considered, which eliminates
corner cases.

Finally, all we need is to add the mutual information
between histories and joint actions −λI(ht; at) as a robust
regularization term to reward rt. Since our MIR3 is only an
additional reward, it can be optimized by any cooperative
MARL algorithms. Technically, the exact value of I(ht; at)
is intractable to calculate, so we estimate its upper bound
as a lower bound for −I(ht; at). We use CLUB [49], [55],
an off-the-shelf mutual information upper bound estimator,
to estimate this information. The pseudo code of our MIR3
on MADDPG backbone is given in Algorithm 1. The algo-
rithm first collects the history and actions of each agent,
and estimate the upper bound of mutual information I(hi

t; ai
t)

by training the CLUB estimator. Next, we added the upper
bound of mutual information I(hi

t; ai
t) to reward, and update

the policy using standard MADDPG algorithm. Notably,
MIR3 is architecture-agnostic: to apply MIR3 to other MARL

frameworks such as QMIX or MAPPO, one only needs to
replace the MADDPG-specific policy update step with the cor-
responding optimization procedure from the desired backbone.

1) Convergence: Our MIR3 introduces mutual information
as a regularization term directly into the reward function,
without altering the policy space, the transition dynamics, or
the observation structure of the original problem. As a result,
the policy is still learned in a Dec-POMDP with a shaped
reward. As a result, the convergence of our algorithm can be
established via standard proofs of Q-learning [62].

Proposition 2: Define the Bellman equation used to update
the value function as

BV i(s) =
X
a∈A

π (a|h)

"
r − I (h; a)

+ γ
X
s′∈S

p
�
s′i|si, a

�
V i �s′i�# .

With finite joint action space A, state space S, and assume
each state-action pair is visited infinitesimally often, updating
value function by Bellman operator B converge to the optimal
value V∗(s).

Proof: Since our mutual information estimation is not
related to value function learning step, the mutual informa-
tion term cancels out just like the reward term in standard
proof of convergence of value function. Specifically, define
V i

1,V
i
2 ∈ R

|S |, we haveˇ̌
BV i

1(s) − BV i
2(s)

ˇ̌
=

ˇ̌̌̌X
a∈A

π(a|h)

"
r − I(h; a) + γ

X
s′∈S

p(s′i|si, a)V i
1(s′i)

#

−
X
a∈A

π(a|h)

"
r − I(h; a) + γ

X
s′∈S

p(s′i|si, a)V i
2(s′i)

# ˇ̌̌̌
=

ˇ̌̌̌
ˇγX

a∈A

π(a|h)
X
s′∈S

p(s′i|si, a)(V i
1(s) − V i

2(s))

ˇ̌̌̌
ˇ

≤ γ
X
a∈A

π(a|h)
X
s′∈S

p(s′i|si, a)
ˇ̌
V i

1(s) − V i
2(s)

ˇ̌
= γ

ˇ̌
V i

1(s) − V i
2(s)

ˇ̌
. (31)

Thus, B is a contraction operator. Finally, by Banach’s fixed
point theorem, with finite joint action space A, state space
S , and assume each state-action pair is visited infinitesimally
often, updating V i(s) by Bellman operator B will converge
to the optimal value function V i(s). Note that the guaran-
teed convergence happens in tabular case. In practice, we
use different MARL algorithms parameterized by nonconvex-
nonconcave neural networks for better representation learning
capabilities. �

2) Computational Complexity: We now analyze the compu-
tational complexity introduced by MIR3. During training, the
primary overhead arises from the estimation of mutual infor-
mation. To ensure scalability, we adopt a common practice
in centralized training with decentralized execution (CTDE):
we approximate the upper bound of I(ht; at) using the mutual
information between the global state and the joint actions,
I(st; at). This approximation remains an upper bound, as the
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Fig. 2. MIR3 as an information bottleneck for robust multi-agent coordination.
By minimizing mutual information between histories and actions, MIR3
reduces spurious agent-to-agent correlations. In the top example, Agent 1 waits
based on an incorrect assumption about Agent 2’s action, leading to failure.
As illustrated below, MIR3 instead promotes robust, task-relevant decisions,
where Agent 1 independently takes action when needed, improving reliability
under uncertainty.

global state st contains more information than the individual
agent observation histories ht. This approximation enables
MIR3 to estimate mutual information for the entire team
with a single call to the mutual information estimator per
training step, ensuring scalability to large multi-agent systems.
In contrast, existing max-min optimization-based approaches
[10], [11], [63] often require multiple gradient backward steps
to compute worst-case joint actions or to optimize worst-case
actions for each individual agent [18], resulting in significantly
higher computational cost. At test time, MIR3 introduces no
additional overhead, as all policies are executed using the same
neural network architectures as in standard MARL algorithms.
Thus, the runtime complexity of MIR3 matches that of the
baseline policies during execution. Further empirical results
on training time comparisons are reported in Section IV-B7.

C. Understandings and Discussions

Beyond theoretical insights, our MIR3 can be understood as
an information bottleneck that reduce unnecessary correlations
between agents, or as learning a robust action prior that favors
effective actions in the environment. These discussions provide
explanations for the success of our approach.

1) MIR3 as Information Bottleneck: Our mutual informa-
tion minimization objective can be seen as an information
bottleneck, which encourage policies to eliminate spurious
correlations among agents. This concept, initially introduced
by [28], seeks to identify a compressed representation that
retains the maximum relevant information with the label [64],
[65], [66]. In MARL, as depicted in Fig. 2, our objective
maxπ Eτ0∼p(τ0)[rt−λI(ht; at)] functions as an information bottle-
neck, considering history as input, actions as an intermediate
representation, and reward as the final label. The aim is to
find a set of actions employing minimal sufficient information
from the current history, which is maximally relevant for
solving the task and getting higher reward. This behavior can
be further understood through the lens of the exploration-
exploitation trade-off. On one hand, MIR3 encourages the
policy to extract minimal information from history, promoting
compact representations and thus favoring exploitation. On
the other hand, MIR3 still requires the agent to achieve high
rewards, which inherently demands sufficient exploration.

Fig. 3. MIR3 as a robust action prior. During training, MIR3 constrains
exploration to a learned action prior p(a), promoting task-relevant behaviors
such as skill execution in diverse situations. Under attack, this prior anchors
the agent’s behavior in a reliable action distribution, allowing it to retain
essential skills while remaining robust to action uncertainties.

The objective is crucial for eliminating spurious correlation
between agents, which helps handling action uncertainties
in MARL. For example, robot swarms trained in simulation
environment assumes each agent to be optimally cooperative
to enable best performance. As shown in Fig. 2, this objective
can form a spurious correlation that encourage robots to overly
rely on others. In reality, individual robots can malfunction
due to software/hardware errors, execute suboptimal actions,
or send erroneous signals, which is reflected in histories. As
such, information bottleneck encourage agents not to overly
rely on current history, and form a loose cooperation with
others only in case of need. Therefore, even if some agents
falter, our objective enables the remaining agents to fulfill their
tasks independently without overreacting or being swayed by
failed agents.

2) MIR3 as a Robust Action Prior: Minimizing mutual
information can be interpreted as establishing a robust
action prior, which favors actions that are both useful for
the current task and resilient under action uncertainties
through exploration. In information theory, the relationship
−I(h; a) = Eh∼p(h)[−DKL(π(a|h)||p(a))] ensures that policy
exploration does not diverge significantly from the marginal
distribution p(a). This aligns with the concept of an action
prior [29], [67]. Similarly, the commonly used maximum
entropy reinforcement learning objective [41], H(a|h), can
be viewed as employing a uniform action prior (H(a|h) =

Eh∼p(h)[−DKL(π(a|h)||U(a))] − c), where U(a) is a uniform
action distribution and c is a constant. In this way, our MIR3
replaces the random exploratory prior U(a) with a robust
exploratory prior p(a), which is implicitly learned from the
environment. This enables enhanced exploration in regions
that are more robust and task-relevant. This concept parallels
the human cautious in decision making found in situational
awareness theory [24]. In real-world scenarios like driving,
individuals do not generate specific responses for each poten-
tial threat. Instead, they rely on general “robust action priors”
such as reducing speed or changing lanes when confronted
with uncertain conditions, ensuring adaptable yet cautious
behavior.

As shown in Fig. 3, the benefit of constraining a policy to
p(a) on robustness can be interpreted from two aspects. First,
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p(a) can be viewed as a set of task-relevant actions consistently
favored by the environment, independent of current histories.
For example, in StarCraft II, actions directed at moving toward
and attacking enemies are usually preferred for victory. More
intricate tactics, such as kiting or focused fire, are optional and
depend on current histories [68]. Thus, if certain actions are
broadly effective within the environment, the policy is prone to
succeed in accomplishing the task by leaning on these actions,
even when confronted with action uncertainties. Second, keep-
ing the policy near p(a) fosters exploration in its vicinity.
Therefore, even if some agents deviate from the optimal policy,
the enhanced exploration around p(a) encourages the policy
to identify diverse methods for handling the task, preserving
some intricate tactics for the task to succeed.

IV. EXPERIMENTS

A. Experiment Settings

1) Environments: We evaluated our result on six tasks
in StarCraft multi-agent challenge (SMAC) [68], quadratic
swarm control (Quads) [69], and a continuous robot swarm
control task with ten agents performing rendezvous, where
agents are randomly placed in the arena and learn to gather
together. We use SMAC and Quads to evaluate the perfor-
mance of MIR3 on both discrete and continuous control.
In all tasks, agents are required to complete the task with
worst-case adversaries during testing, which differs from the
standard cooperative MARL setting. For SMAC, we find hav-
ing an adversary controlling one agent makes the environment
unsolvable. We address this by allowing algorithms to control
over additional agents to ensure fair evaluation.

2) Compared Methods: We implement MIR3 on MAD-
DPG [1] and QMIX [2] backbones. The compared methods
include M3DDPG [10], ROMAX [11], and ERNIE [21], which
consider all other agents as adversaries; ROM-Q [18], which
considers one or more agents as adversaries. Note that the
design of M3DDPG [10] and ROMAX [11] relies on the cen-
tral critic of MADDPG, so we do not evaluate it on the QMIX
backbone. To comprehensively evaluate MIR3’s performance
across diverse backbones and environments, we benchmark
MIR3 against ERNIE, ROM-Q, and EIR [19] on Quads
environment that requires continuous control, and MAPPO
backbone that yields stochastic policy. Under MAPPO back-
bone, we add EIR [19] as a new baseline that identifies
unreliable agents and enables other agents to act optimally
based on inferred reliability. We do not evaluate EIR with other
backbone as its method relies on stochastic control, making
it incompatible with deterministic backbones like MADDPG
and QMIX. All methods are compared based on the same
network architecture, hyperparameters, and tricks. We leave
hyperparameters and implementation details in Appendix I.
See code and demo videos at https://github.com/DIG-Beihang/

MIR3
3) Evaluation Protocol: For environments with N agents,

all methods to be attacked were trained using five random
seeds. During attack, we fix the parameters in defender’s
policy, and train a worst-case adversary against current policy
[12]. For scenarios with one agent as adversary, we average

the attack result of each N agents using the same five seeds,
reporting results averaged over 5∗N seeds. For scenarios with
more than one adversary, we report the result with five attack
scenarios sampled randomly. All results are reported with 95%
confidence interval.

B. Simulation Results

We first present our results on six SMAC tasks. Experiments
show our MIR3 significantly surpasses baselines in robustness
and training efficiency, while maintaining cooperative perfor-
mance. Next, we evaluate the performance of MIR3 on Quads
environment with MAPPO backbone. The result of real-world
multi-agent rendezvous will be discussed in Section IV-C.

1) MIR3 Is More Robust: We evaluate the defense capa-
bility of MIR3 against worst-case attacks, with one agent as
an adversary. Experiments involving more adversaries will be
discussed later. As shown in Fig. 4, although MIR3 does not
encounter adversaries during training, it demonstrates supe-
rior defense capabilities across six tasks and two backbones,
consistently outperforming even the best-performing baselines
that directly consider adversaries.

The improved performance of MIR3 over baselines can
be explained as follows. Compared to M3DDPG, ERNIE,
and ROMAX, which assume all other agents as potential
adversaries, MIR3 avoids learning overly pessimistic or less
effective policies. Compared to ROM-Q, which prepares for
each threat scenario, its adversaries and defenders cannot
adequately explore or respond to the myriad threat scenarios
during training. Thus, the adversaries and defenders remain
weak at test time. Additional experiments in Appendix II
prove that while baselines are effective against adversaries
in training, their defenses can be easily compromised by the
learned optimal adversary at test time. In contrast, MIR3,
without exploring any threat scenarios, implicitly maximizes
the lower bound performance under any threat scenario.

2) MIR3 Does Not Harm Cooperative Performance: We
further show our MIR3 maintains cooperative performance
while enhancing robustness. This is achieved by minimizing
mutual information as an information bottleneck, which has
been reported to enhance task performance in computer vision
tasks [47]. Additionally, this is supported by the objective in
(13), where defenders maximize both cooperative and robust
performance.

3) MIR3 Learns Robust Behaviors: Next, we show MIR3
learns distinct robust behaviors. As illustrated in Fig. 5, for
MADDPG backbone, raw MADDPG can be easily swayed by
adversaries, causing agents to move forward without attacking
and getting killed by enemies. Other robust baselines are
rarely swayed but fail to retain cooperative behaviors (e.g.,
no focused fire on enemies), eventually losing the game. In
contrast, by reducing mutual information, MIR3 ensures that
agents are not only unswayed but also maintain focused fire
behavior under attack. We attribute the improved performance
of MIR3 to its ability to reduce spurious correlations between
agents. In cooperative tasks that require agents to focus fire on
enemies, baseline methods often lead agents to overfit to their
teammates’ behaviors. As a result, when some agents become
unreliable—such as when compromised by an attacker—the
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Fig. 4. Cooperative and robust performance under worst-case adversarial attacks. The four rows correspond to cooperative performance without attack and
robustness under worst-case attack, under MADDPG and QMIX backbone. Results are reported across six SMAC tasks with 95% confidence intervals. Despite
being trained without adversarial exposure, MIR3 consistently outperforms baselines—including those trained with adversaries—in terms of robustness, while
also maintaining strong cooperative performance.

Fig. 5. Agent behaviors under attack in task 4 versus 3 m, adversary denoted by red square. Under MADDPG backbone, our MIR3 is not swayed by adversary
and preserves focused fire behavior. Under QMIX backbone, baselines agents are frequently swayed back and forth. In contrast, our MIR3 is less swayed by
adversary. (a) MADDPG; (b) M3DDPG; (c) ROM-Q; (d) ERNIE; (e) ROM-Q; and (f) MIR3 (Ours) (first row). (a) QMIX; (b) ROM-Q; (c) ERNIE; and (d)
MIR3 (Ours) (second row).

remaining agents may overreact or lose coordination, leading
to a breakdown in focused fire strategies. In contrast, MIR3
learns to execute such coordinated behaviors during training
without relying on attacker presence, and is inherently less
sensitive to erroneous behaviors from compromised agents.
This enables it to maintain robust performance under attack.

Under QMIX backbone, benign agents in all baselines are
frequently swayed by the adversary, moving randomly without
attacking. In contrast, MIR3 agents are less swayed by the
adversary. We explain by MIR3 learning a robust action
prior. In QMIX, the underlying assumption is that all agents
contribute positively toward team performance. However, this

assumption breaks down in the presence of adversaries, ren-
dering baseline methods vulnerable—even those explicitly
designed for robustness. MIR3, by contrast, learns a prior
centered around broadly effective actions (e.g., advancing
and attacking the enemy), which remain valid regardless of
teammate behavior. This grounding allows MIR3 to maintain
effective performance even when facing adversarial pertur-
bations. Videos available at https://github.com/DIG-Beihang/

MIR3

4) MIR3 Is Robust With Many Adversaries: In extreme
situations, there could be more than one adversaries. We
examined this by adding an extra adversarial agent in map 4
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Fig. 6. Defense with two adversaries, evaluated in SMAC 5 versus 3 m. In this challenging scenario, our MIR3 consistently exhibits stronger defense capability
than all baselines, in both MADDPG and QMIX backbones. This demonstrates the potential of our MIR3 to be applied in more complex scenarios with many
adversaries. See results of another five SMAC tasks in Appendix III..

versus 3 m in SMAC, creating a map 5 versus 3 m
with two adversaries. As illustrated in Fig. 6, in this chal-
lenging scenario, our MIR3 consistently exhibits stronger
defense capability than all baselines, in both MADDPG
and QMIX backbones. This demonstrates the potential of
our MIR3 to be applied in more complex scenarios with
many adversaries. See results of another five SMAC tasks in
Appendix III.

5) MIR3 Is Robust Against Nonadversarial Disturbances:
We further demonstrate that MIR3 handles common nonadver-
sarial disturbances more effectively than traditional max-min
approaches. To illustrate this, we design three typical types of
disturbances affecting observations, actions, and environments.
For observation failure, we introduce Gaussian noise N (0, ε)
with ε = 0.3 to the observations of all agents at every
timestep, simulating sensor inaccuracies or noisy observations.
For action failure, each agent has a probability of 0.3 at every
timestep to repeat the action from the previous timestep instead
of executing the action based on the current observation,
mimicking delayed observation scenarios. For environment
uncertainty, we increase the difficulty of the opponent rule-
based agents from level 7 to level 9, forcing MIR3 to adapt
to stronger opponents and consequently increasing the uncer-
tainty in environment transitions. All methods are evaluated
using the MADDPG backbone on the SMAC tasks 4 versus
3 m and 3 versus 1 s.

As demonstrated in Table I, MIR3 effectively handles
nonadversarial disturbances better than the MADDPG base-
line and traditional max-min approaches. We attribute this
difference to the fact that max-min methods explicitly consider
worst-case attackers, making them particularly robust against
perturbations defined within their uncertainty sets, but less
capable of generalizing to typical, nonadversarial uncertain-
ties encountered in practice. Consequently, while max-min
approaches still achieve greater robustness than the nonro-
bust MADDPG baseline, they do not significantly enhance
robustness against common, realistic disturbances. In contrast,
MIR3 not only provides stronger resilience against worst-
case scenarios but also maintains superior general-purpose
robustness by minimizing mutual information, which acts as
both an information bottleneck and a robust action prior. Thus,
MIR3 agents effectively learn a generalized notion of cau-
tion, enabling better performance when faced with unforeseen
uncertainties.

TABLE I
ROBUSTNESS EVALUATION OF MIR3 AGAINST NONADVERSARIAL DIS-

TURBANCES. WE ASSESS ROBUSTNESS UNDER THREE DIFFERENT
DISTURBANCE CONDITIONS: OBSERVATION FAILURE (OBS. FAIL.),

WHERE GAUSSIAN NOISE IS ADDED TO AGENTS’ OBSER-
VATIONS TO MIMIC HARDWARE NOISE; ACTION FAILURE

(ACT. FAIL.), WHERE AGENTS REPEAT THEIR PREVI-
OUS ACTIONS TO SIMULATE DELAYED OBSERVA-

TIONS; AND ENVIRONMENT UNCERTAINTY (ENV.
UNCERT.), WHERE OPPONENT POLICIES ARE

MODIFIED TO SIMULATE UNCERTAINTY
IN ENVIRONMENTAL TRANSITIONS

6) MIR3 Generalizes to Continuous Control With Stochas-
tic Policies: Previously, we have demonstrated that MIR3
achieves robust performance in discrete-control tasks within
the SMAC environment using deterministic policy backbones
(MADDPG and QMIX). To comprehensively assess the gen-
eralization capability of MIR3, we further evaluate it in
the Quads environment, which requires continuous control
with a stochastic policy backbone (MAPPO). Specifically,
we compare MIR3 and baseline methods on two tasks:
static same goal and swarm vs swarm, examining both
cooperative performance and robustness under worst-case
adversarial scenarios involving one or two adversaries. As
shown in Fig. 7, MIR3 consistently maintains robust perfor-
mance one or more adversaries in continuous control settings
with stochastic policies, without compromising cooperative
outcomes. These results are consistent with our earlier findings
in discrete control settings with deterministic policies.

We note that although EIR demonstrates strong per-
formance, it remains inferior to MIR3 under adversarial
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TABLE II
PER-EPOCH TRAINING TIME (IN SECONDS) OF MIR3 AND BASELINES ACROSS FIVE ENVIRONMENTS. MIR3 INTRODUCES MINIMAL OVERHEAD TO

MADDPG AND QMIX WHILE MUCH FASTER THAN METHODS THAT CONSIDERS THREAT SCENARIOS EXPLICITLY

Fig. 7. Performance and robustness of MIR3 and baselines in continuous
Quads environment (MAPPO backbone), under cooperative conditions and
worst-case attacks with 1 and 2 adversaries. MIR3 generalizes effectively
beyond SMAC tasks and deterministic backbones (QMIX, MADDPG) to the
stochastic MAPPO backbone.

conditions. This performance gap arises primarily due to
EIR’s reliance on explicitly detecting unreliable agents and
subsequently selecting optimal actions based on inferred agent
reliability. As the number of agents increases, the complexity
and number of potential threat scenarios grow substantially.
While EIR accurately identifies unreliable agents in practice,
the expanding scenario space results in insufficient coverage
of each potential threat during training. Consequently, EIR’s
defense remains susceptible to worst-case adversarial attacks
during testing.

7) MIR3 Requires Less Training Time: We also demonstrate
that our MIR3 method is computationally more efficient than
baselines that explicitly consider threat scenarios. Following
[40], we report the average training time per epoch over
50 episodes. All statistics are obtained based on one Intel Xeon
Gold 5220 CPU and one NVIDIA RTX 2080 Ti GPU, using
task 4 versus 3 m, 9 versus 8 m, and 2s4z versus 2s3z for
SMAC and ten agents for rendezvous (rendezvous requires
agents to gather together. We train rendezvous in simulation
for real-world experiment discussed later). We include 9 versus
8 m to evaluate our method with large number of agents, and
2s4z versus 2s3z to evaluate our method with heterogeneous
agents. As shown in Table II, our MIR3 only requires moder-
ately more training time than backbones without considering
robustness (+10.71% in MADDPG 4 versus 3 m, +17.39%
in QMIX 4 versus 3 m, +54.76% in MADDPG 9 versus
8 m, +9.72% in MADDPG 2s4z versus 2s3z, +3.28% in

Fig. 8. Ablations on hyperparameter λ, showing a trade-off between policy
effectiveness and limiting information flow. Evaluated on SMAC 4 versus 3 m.

rendezvous), showing our defense can be added at low cost.
In contrast, considering threat scenarios involves the costly
approach of approximating an adversarial policy, resulting
in significantly higher training times compared to our MIR3
approach (+29.03% in MADDPG 4 versus 3 m, +20.99%
in QMIX 4 versus 3 m, +74.74% in MADDPG 9 versus
8 m, +26.58% in MADDPG 9 versus 8 m, and +149.21%
in rendezvous).

8) Ablations on Hyperparameters: We next study the effect
of hyperparameter λ in penalizing mutual information between
histories and actions, which can be seen as an information
bottleneck. We set λ in {0, 10−5, . . . , 1} and evaluate the results
on task 4 versus 3 m in SMAC with MADDPG backbone. The
results are illustrated in Fig. 8. Note that with λ = 0, our MIR3
reduces to MADDPG.

For relatively small λ (i.e., λ ≤ 5 × 10−4), the policy is
steered to focus less, but more relevant information in the
current history. This efficiently suppresses unnecessary agent-
wise interactions, leading to more robust policies and even
slightly enhancing cooperative performance, which is also
evident in computer vision tasks using information bottleneck
as regularizer [47]. Conversely, when λ > 5× 10−4, the policy
is restricted from utilizing any information from the current
history, resulting in a collapse of both cooperative and robust
performance. As a consequence, we select λ = 5 × 10−4 for
an optimal trade-off between limiting information flow and
maintaining policy effectiveness.

9) Ablations on Mutual Information Estimation Methods:
We further evaluate the impact of different mutual informa-
tion upper bound estimation methods beyond CLUB [49].
Specifically, we consider VUB [47], L1Out [48], and CLUB-
Sample [49] as alternative estimators, each tuned for optimal
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Fig. 9. Ablations on mutual information estimation methods. The robust-
ness is evaluated with one worst-case adversary. While using CLUB as
mutual information upper bound estimation method empirically shows the
best result, our MIR3 also yields reasonable robustness when using other
mutual information estimation methods. Evaluated on SMAC 4 versus 3 m
and 3 versus 1 s.

performance. An introduction of these methods are available
at preliminaries. Experiments are conducted on the SMAC 4
versus 3 m and 3 versus 1 s scenarios, each involving one
worst-case adversary.

As shown in Fig. 9, while CLUB yields the strongest
empirical performance, MIR3 achieves competitive robustness
across all evaluated MI estimators. These results suggest that
MIR3 is not tightly coupled to a specific MI estimator and
can maintain robust performance even when the estimator is
replaced by a less accurate one.

C. Real-World Experiments

In this section, we evaluate the robustness of our MIR3
under action uncertainties in real-world robot swarm control.
This setting presents three major challenges. First, consistent
with our simulation setup, we introduce an adversarial agent
executing a worst-case policy; the remaining agents must
maintain robust behavior despite this adversary’s presence.
Second, physical parameters in the real world can differ from
those in simulation due to variations in friction, mass, and
other factors. As a result, policies trained in simulation may
struggle to maintain effective cooperation when deployed in
real-world settings. Third, system-level noise further disrupts
control accuracy: for instance, robot localization may be
imprecise, and hardware imperfections may cause actions to
deviate from those prescribed by the policy. In this challenging
scenario, following the widely accepted Sim2Real paradigm
in the reinforcement learning community [70], we directly
transfer the policies for both defenders and adversaries trained
in simulation environments, to our robots in the real world.

We first show simulation results. As illustrated in Fig. 10(a),
our MIR3 consistently outperforms baselines in robustness,
without sacrificing cooperative performance. It is interesting
to note that in our simulation, while only trained on rendezvous
task, our MIR3 agents show an emergent pursuit-evade behav-
ior when facing an adversary running away. See analysis of
this behavior in Appendix IV.

Next, following the Sim2Real paradigm, we deploy our
trained algorithm in a 2× 2 m indoor arena with ten e-puck2
robots [71], see Fig. 10(b) for depictions of our arena. We
run each algorithm in the real-world arena ten times, with all
algorithms following the same initialization. The results are

Fig. 10. Illustration of our real-world rendezvous environment. Our MIR3
obtains stronger robustness against action uncertainties in both simulation
and real-world deployment. (a) Simulation results. (b) Arena. (c) Real-world
results.

TABLE III
SUMMARY STATISTICS OF REAL-WORLD PERFORMANCE FOR EACH

METHOD, WITH EACH METHOD DEPLOYED TO REAL WORLD IN TEN
RUNS. OUR MIR3 ACHIEVES +14.29% PERFORMANCE INCREASE

IN AVERAGE (I.E., MEAN PERFORMANCE)

Fig. 11. Real-world trajectories of robot swarm control, with defenders in
orange and adversaries in blue. We use a star to denote the final position. Our
MIR3 act reliably without being swayed by adversary.

summarized in Fig. 10(c), with statistics shown in Table III.
Our MIR3 achieves +14.29% average reward improvement
compared to the best-performing baseline. Moreover, as shown
in Fig. 11, a detailed examination of the trajectories reveals
that MIR3 successfully learn robust behaviors. In contrast
to the simulation, MADDPG completely failed to handle
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real-world uncertainties, leading to multiple agents malfunc-
tioning and failing to gather, underscoring the necessity of
evaluating robustness in the real world. M3DDPG, ROM-
Q, ERNIE, EIR, and ROMAX perform substantially better
than MADDPG, although one or several agents are still
misled by the adversary. While EIR has the potential to find
the adversary and learn the optimal equilibrium, it struggles
to find the best equilibrium with large number of agents.
Conversely, our MIR3 can group together without deviation
and maintain consistent behavior throughout the evaluation.
Videos available at https://github.com/DIG-Beihang/MIR3

V. CONCLUSION
In this article, we introduce MIR3, a novel regularization-

based approach for robust MARL. Motivated by robust
decision making of humans, MIR3 does not require training
with adversaries, yet is provably robust against cooperative
agents deviate from their policy and executing worst-case
actions. Theoretically, we formulate robust MARL as an
control-as-inference problem, which implicitly optimize worst-
case robustness through off-policy evaluation. Under this
formulation, we prove that minimizing mutual information
serves as a lower bound for robustness. This objective can
further be interpreted as suppressing spurious correlations
through an information bottleneck, or as learning a robust
action prior that encourages actions favored by the environ-
ment. In line of our theoretical findings, empirical results
demonstrate that our MIR3 surpass baselines in robustness and
training efficiency in StarCraft II, quadrotor swarm control
and robot swarm control, and consistently exhibits superior
robustness when deployed in real world.
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[70] S. Höfer et al., “Sim2Real in robotics and automation: Applications and
challenges,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 2, pp. 398–400,
Apr. 2021.

[71] F. Mondada et al., “The e-puck, a robot designed for education in
engineering,” in Proc. 9th Conf. Auto. Robot Syst. Competitions, Jan.
2009, vol. 1, no. 1, pp. 59–65.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on November 10,2025 at 09:29:31 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TNNLS.2021.3133537
http://dx.doi.org/10.1109/TNNLS.2021.3133537

