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Abstract
High profile large scale public events are attractive targets
for terrorist attacks. The recent Boston Marathon bombings
on April 15, 2013 have further emphasized the importance
of protecting public events. The security challenge is exacer-
bated by the dynamic nature of such events: e.g., the impact
of an attack at different locations changes over time as the
Boston marathon participants and spectators move along the
race track. In addition, the defender can relocate security re-
sources among potential attack targets at any time and the
attacker may act at any time during the event.
This paper focuses on developing efficient patrolling algo-
rithms for such dynamic domains with continuous strategy
spaces for both the defender and the attacker. We propose
SCOUT-A, which makes assumptions on relocation cost, ex-
ploits payoff representation and computes optimal solutions
efficiently. We also propose SCOUT-C to compute the exact
optimal defender strategy for general cases despite the con-
tinuous strategy spaces. SCOUT-C computes the optimal de-
fender strategy by constructing an equivalent game with dis-
crete defender strategy space, then solving the constructed
game. Experimental results show that both SCOUT-A and
SCOUT-C significantly outperform other existing strategies.

Introduction
Public events in major cities are prime terrorism targets since
they usually provide easy access to large number of targets
for the adversary. There have been some successful terror-
ist attacks on large public events in the US and Europe in
the past few years, e.g., the recent Boston Marathon bomb-
ings on April 15, 2013; the 7/7 2005 London bombings. In-
telligent deployment of limited security resources to protect
such events is therefore extremely important and challenging
since the importance of targets changes over time. For exam-
ple, the value of targets along a marathon track changes over
time with the changing number of participants and specta-
tors at any specific area over the course of the race.

In addition, since the attacker may attack at any time and
the defender can relocate resources among targets at any
time, the strategy space of each agent is continuous and in-
finite. Furthermore, due to the relative infrequency of such
events, the attacker may not be able to conduct surveillance
and respond to a distribution of defender strategies (Ko-
rzhyk, Conitzer, and Parr 2011; Letchford and Vorobeychik
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2013). In this case, a pure defender strategy sampled from
the optimal mixed strategy does not necessarily outperform
the one-shot optimal pure strategy in terms of ex-post pay-
off. Thus, we propose algorithms to compute the optimal
pure defender strategy despite the infinite strategy space.

There has been lots of related research that applies game
theoretic approaches to real world security domains (Tambe
2011; An et al. 2013b). However, the proposed approaches
cannot be used to solve problems in our domain, since most
existing work (An et al. 2013a; Agmon, Urieli, and Stone
2011; Basilico, Gatti, and Amigoni 2009; Kiekintveld, Is-
lam, and Kreinovich 2013; Varakantham, Lau, and Yuan
2013) assumes that the payoffs of targets are static over
time. While some researchers addressed time-critical do-
mains (Fang, Jiang, and Tambe 2013; Yin et al. 2012), there
are two key differences in our work. First, previous work
arbitrarily discretizes defender strategy space and as such,
their solution is not optimal when continuous defender strat-
egy space is considered. Second, they compute the mixed
strategies for the defender assuming that the attacker will
observe and react to the defender, which is substantially dif-
ferent from the solution concept in our domain, where we
compute the optimal pure strategy for the defender.

This paper makes four key contributions. First, we de-
sign a game model to minimize the worst-case loss of the
defender. In our model, each agent has a continuous and
infinite strategy space and the payoff of an attack is time-
dependent. Second, we propose SCOUT-A to compute the
optimal dynamic allocation of resources when the defender
is able to relocate security resources among targets with-
out any delay in time. To avoid traversing the whole strat-
egy space, SCOUT-A exploits a novel approach to repre-
sent payoffs, in which utilities of targets are represented
by continuous functions. Third, we propose SCOUT-C to
deal with general cases in our model. SCOUT-C computes
the optimal defender strategy by constructing an equivalent
game with discrete defender strategy space, then solving
the constructed game. Finally, we present experimental re-
sults showing that both SCOUT-A and SCOUT-C outper-
form some simple defender strategies observed in previous
public events.
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Motivating Domain

While our model is quite general for modeling dynamic pa-
trolling in domains with time-critical payoff, we use the
tragedy of bombings near the finish line in the 2013 Boston
Marathon as a motivating example (Figure 1).

(a) Moment of bombing (b) Boston Marathon course
Figure 1: Boston Marathon bombings on April 15, 2013

For the purpose of illustration, we divide the course into
four segments to represent four potential targets as is marked
in Figure 2(a). Example values for the targets are shown in
Figure 2(b). As the event proceeds, the number of partic-
ipants and spectators near the starting line decreases, thus
the damage caused by attacking target 1 decreases, leading
to the decreasing in the value of target 1, depicted by Line
1 in Figure 2(b). Similar variations in the value of targets
happen for targets 2, 3 and 4 as well (shown via lines 2-4).
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(b) Time-critical values
Figure 2: Example values for targets

The ending point belongs to target 4 and is of great im-
portance when the race is approaching the end. Intuitively, if
the total number of resources is fixed, it may be better if the
defender transfers some resources from target 1 to target 4 as
the event proceeds. Thus a dynamic allocation of resources
during the event is in need. In addition, Boston Marathon is
held only once a year, which is too rare for the attacker to
observe and react to a mixed defender strategy. Therefore, a
pure dynamic strategy which minimizes the worst case loss
of the defender is a robust solution for the defender.

Problem Statement

Assume that there are n targets (e.g., segments in the
marathon scenario) represented by T = {1, . . . , n} and
the defender has m identical security resources (each re-
source can be a police patrol team in the marathon domain).
We assume that a public event starts at time 0 and ends at
time te > 0. The value vi(t) of each target i ∈ T at time
t ∈ [0, te] is common knowledge and is a continuous func-
tion of t. For ease of analysis, we assume vi(t) to be piece-
wise linear (Figure 2(b) shows an example) since such func-
tions are widely used to approximate complicated functions,
while the accuracy of approximation can be controlled by
setting the number of linear segments. Our algorithms can
be easily extended to deal with general form value functions.
The defender executes an assignment of resources at time 0
when the event begins. As the event proceeds, the defender

may move resources from some targets to other targets. Thus
a pure defender strategy includes the initial assignment of
resources and the subsequent transfers during [0, te]. The at-
tacker will choose a certain target to attack during [0, te].

Formally, let Q0 = 〈q0i 〉 represent the initial assignment
of resources where q0i is the number of resources assigned
to target i when the event begins. We denote all resource
transfers during [0, te] as C = 〈Ck〉 where Ck represents the
kth transfer. Ck = 〈ckij :i, j ∈ T 〉 where ckij represents the
number of resources transferred from target i to target j in
the kth transfer. Let τk denote the time when the kth transfer
begins. Thus a pure defender strategy is fully represented by
a tuple S = (Q0, C). Let S be the defender strategy space.

Let Qt(S) = 〈qti(S) : i ∈ T 〉 denote the resource as-
signment at t, with qti(S) representing the number of re-
sources assigned to target i at time t in S. We represent the
time required to transfer resources from target i to target j
as dij . Given the set of transferring time of all target pairs,
D = 〈dij : i, j ∈ T 〉, and a defender strategy S = (Q0, C),
qti(S) can be computed as follows.

qti(S)=q0i +
∑

Ck∈C,τk≤t−dji,j∈T
ckji−

∑
Ck∈C,τk≤t,j∈T

ckij (1)

The attacker’s pure strategy is represented as (i, t) repre-
senting that the attacker attacks target i at time t, t ∈ [0, te].
Let p(r) be the probability of a successful attack if the tar-
get of the attack is protected by r resources. We set p(r) =
1
eλr (λ > 0), satisfying p(r) ∈ [0, 1]. λ is a parameter mea-
suring the marginal utility of adding one more security re-
source. Since ∂p(r)

∂r ≤ 0 and ∂2p(r)
∂r2 ≥ 0, p(r) satisfies the

law of diminishing marginal returns, i.e., when the number
of resources assigned to a target becomes larger, the effect
of adding one more resource decreases. We assume that the
payoff for a failed attack is 0 for both the players.

Since vi(t) is a continuous function of t, the payoff of
attacking target i when r resources are assigned to i is also
a continuous function of t, denoted as W r

i (t) = p(r)vi(t).
If an attacker chooses to attack target i at time t given the
defender strategy S, the expected attacker utility is

Ua(i, t, S) = W
qti(S)
i (t). (2)

We assume a zero-sum game to reduce the complexity of
the model. Thus the defender’s payoff is opposite to the at-
tacker’s payoff, i.e., Ud(i, t, S) = −Ua(i, t, S).

We model the problem as a one-shot game due to the
rarity of public events and adopt the maximin strategy as
the solution concept. Namely, the defender chooses a strat-
egy maximizing the worst case defender utility, which indi-
cates that the attacker maximizes his utility under the zero-
sum game assumption. We focus on computing optimal pure
defender strategy. Let the attacker’s response function be
f(S) = {ftg(S) : S → i, ftm(S) : S → t} where ftg(S) is
the target attacked and ftm(S) is the time of attack.
Definition 1. A pair of strategies (S, f(S)) form a maximin
equilibrium if they satisfy the following:

Ua(ftg(S), ftm(S), S) ≥ Ua(i, t, S), ∀i ∈ T , t ∈ [0, te],

Ud(ftg(S), ftm(S), S) ≥ Ud(ftg(S
′), ftm(S′), S′), ∀S′∈S.
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Equilibrium Without Transfer Delay

We first describe an algorithm for computing the maximin
equilibrium when the time needed to transfer resources
among targets is negligible compared to the event duration
(i.e., dij = 0). While we will relax this assumption in the
following section, this is a realistic approximation in do-
mains in which the event is held in a relative small area, the
event proceeds for a long time, or resources can be trans-
ferred quickly (e.g., using helicopters).

When the transfer time is 0, one straightforward approach
is computing the optimal assignment at each time point dur-
ing [0, te]. We denote a feasible defender assignment by
A = 〈ai〉 where ai represents the number of resources as-
signed to target i. Let A be the set of possible assignments.
For any defender strategy S, the assignment at time t is
Qt(S) ∈ A. We use the following example to explain con-
cepts used in the algorithm.

Example 1: There are 2 targets whose value functions
over time vi(t) are shown in Figure 3(a). There is 1 re-
source. A = {A = 〈1, 0〉, A′ = 〈0, 1〉}. If the defender
executes 〈1, 0〉 at time t, the attacker’s utility of attacking
targets 1 and 2 at time t is W 1

1 (t) and W 0
2 (t) respectively, as

is shown by the lines marked by squares in Figure 3(b). Sim-
ilarly, the lines marked by triangles represent the attacker’s
utilities when the defender executes 〈0, 1〉. Our goal is to de-
termine when to play 〈1, 0〉 and when to play 〈0, 1〉, so that
the maximum attacker utility during [0, te] is minimized.
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0 t

v2(t)v1(t)

(a) Value functions

1

3

5

W
2
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0 t

(b) All possible attacker utility
Figure 3: Example of 2 targets and 1 resource

Formally, an assignment A = 〈ai〉 is a minimax assign-
ment at time t if for any A′ = 〈a′i〉 ∈ A, maxi∈T W ai

i (t)

≤ maxi∈T W
a′i
i (t). Consider Example 1, maxi∈T W ai

i (t)
(A = 〈1, 0〉) is shown by the bold black line in Fig-
ure 4 while maxi∈T W

a′i
i (t)(A′ = 〈0, 1〉) is shown by

the bold gray line. At time point t0, maxi∈T W ai
i (t0) ≤

maxi∈T W
a′i
i (t0), thus A is a minimax assignment at t0. A

pure strategy of the defender that executes the minimax as-
signments for all time points t ∈ [0, te] will then be the de-
sired minimax pure strategy.

Proposition 1. If a defender strategy S satisfies that ∀t ∈
[0, te], Qt(S) is a minimax assignment at t, then S is an
optimal defender strategy.

Proof. Since Qt(S) is a minimax assignment at any time
point t, maxi∈T W

qti(S)
i (t)≤maxi∈T W

qti(S
′)

i (t) for S′ ∈
S and ∀t ∈ [0, te]. It follows that Ua(ftg(S), ftm(S),

S) = maxi∈T W
qti(S)
i (t) ≤ maxi∈T W

qti(S
′)

i (t) ≤
Ua(ftg(S

′), ftm(S′), S′), where t = ftm(S). Thus S mini-
mizes the maximum attacker utility.

Proposition 1 suggests that we just need to compute the
minimax assignment at each time point to achieve a min-
imax pure defender strategy. In this paper, we focus on a
subclass of minimax assignments — Preferred Assignment
(PA), which always exists and is easier to compute.

Definition 2. Assignment A is a PA at time t if
maxj∈T W

aj
j (t) ≤W ai−1

i (t) = vi(t)

eλ(ai−1) , ∀i ∈ T , ai > 0.

Intuitively, a PA is better than any assignment which has
only one resource different from it.

Proposition 2. A preferred assignment A at time t is a min-
imax assignment at time t.

Proof. Given A = 〈ai〉, any assignment A′ = 〈a′i〉 can be
represented as a′i = ai+ki(∀i ∈ T ), where ki is an inte-
ger. Since the number of resources is fixed,

∑
i∈T ki = 0.

If A′ �= A, there must be at least one target j ∈ T such

that kj<0. Thus we have W
a′j
j (t)=

vj(t)

eλ(aj+kj)
≥ vj(t)

eλ(aj−1) =

W
aj−1
j (t). Since A is a preferred assignment at t, we have

W
aj−1
j (t) ≥ maxi∈T W ai

i (t) based on Definition 2, thus

W
a′j
j (t) ≥ maxi∈T W ai

i (t). Given that maxi∈T W
a′i
i (t) ≥

W
a′j
j (t), we have maxi∈T W

a′i
i (t)≥maxi∈T W ai

i (t).

Thus, we can compute an optimal defender strategy by
computing a PA for each time point t ∈ [0, te]. However,
it is computationally infeasible to list all continuous time
points to check which assignment is a PA at t. Fortunately,
we can show that the PA will not change continuously, thus
we do not need to compute PAs for all time points. Assume
that A is a PA at t0. For any pair of targets i, j which sat-

isfies that ∃t ∈ [t0, te] such that ∂W
ai−1

i (t)

∂t <
∂W

aj
j (t)

∂t , let
Iij(A, t0) represent the time of the first intersection of line
W ai−1
i (t) and line W aj

j (t) when t ∈ [t0, te). Let I(A, t0) =
{Iij(A, t0) : i, j ∈ T }. We have the following proposition
about the period during which a PA is valid.

Proposition 3. If A is a PA at time t0, A is a PA at any
t ∈ [t0,min(I(A, t0))].

Proof. We prove this result by contradiction. Let t1 =
min I(A, t0). If there exists a time point t2 ∈ (t0, t1) at
which A is not a preferred assignment, then there exist
i, j such that W ai−1

i (t2) < W
aj
j (t2) based on Definition

2. Since A is a preferred assignment at t0, W ai−1
i (t0) ≥

W
aj
j (t0). Therefore, line W ai−1

i (t) and line W aj
j (t) must

intersect at some time t ∈ [t0, t2]. Then t1 > t2 ≥
min(I(A, t0)), which contradicts our assumption of t1.

Since A is a preferred assignment at t0, thus we have
maxj∈T W

aj
j (t0)<W ai−1

i (t0)(∀i ∈ T , ai > 0). If no tar-

gets i, j satisfy that ∂W
ai−1

i (t)

∂t <
∂W

aj
j (t)

∂t at any t∈ [t0, te],
maxj∈T W

aj
j (t)≤W ai−1

i (t)(∀i ∈ T , t ∈ [t0, te]). Thus A
is a preferred assignment till te. Similarly, if there do not ex-
ist any targets i, j such that line W ai−1

i (t) and line W aj
j (t)

intersects in [t0, te], A is a preferred assignment till te.
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Proposition 3 lets us deduce that the optimal defender
strategy over continuous time can be computed when only
considering finite time points at which the PA changes.
Consider Example 1 again. Figure 4 shows that at time 0,
A = 〈1, 0〉 is a PA since W 0

1 (0) > max{W 1
1 (0),W

0
2 (0)}.

t1 in Figure 4 represents the intersection of line W 0
1 (t) and

W 0
2 (0), which is the only element in I(A, 0), and hence the

minimum value. Thus A is a PA in [0, t1]. We can directly
see from Figure 4 that A is not a PA any more after t1. Next,
we explore how to convert an ‘expiring’ PA to a new PA until
we compute PAs for all time points.

1

3

5

W2
0(t)

W2
1 (t)

W1
0(t)

W1
1(t)

0 t0 tt1

Figure 4: Minimax assignment

Proposition 4. If assignment A is a PA at time t and there
exist targets i, j such that W ai−1

i (t) = W
aj
j (t), then an

assignment A′ with a′i = ai−1, a′j = aj+1, a′k = ak(∀k ∈
T , k �= i, j) is also a PA at t.

Proof. Since only the number of resources assigned to i de-
creases and the number of resources assigned to j increases,
to prove A′ is a preferred strategy at t, we just need to prove

that W
a′j−1

j (t) ≥ W
a′k
k (t) and W a′k−1

k (t) ≥ W
a′i
i (t)(∀k ∈

T , a′k > 0). First, given W
a′j−1

j (t) = W
aj
j (t) = W ai−1

i (t)

based on our assumptions and W ai−1
i (t) ≥ W

a′k
k (t) based

on Definition 2, we have W
a′j−1

j (t) ≥ W
a′k
k (t). Similarly,

given W a′k−1
k (t)W ak−1

k (t) ≥ W
aj(t)
j based on Definition 2

and W aj(t)
j = W ai−1

i (t) = W
a′i
i (t) based on our assump-

tions, we have W a′k−1
k (t) ≥W

a′i
i (t).

Figure 4 shows that in Example 1, A = 〈1, 0〉 at t1 is a
PA. Since W a1−1

1 (t1) = W 0
1 (t1) = W a2

2 (t1) = W 0
2 (t1),

A′ = 〈0, 1〉 is also a minimax assignment at t1. For A′, after

t1, there are no targets i, j such that ∂W
ai−1

i (t)

∂t <
∂W

aj
j (t)

∂t .
Thus A′ is the PA till te based on Proposition 3.

We exploit these propositions in the SCOUT-A algorithm
(Scheduling seCurity resOurces in pUblic evenTs with no
relocating delAy). SCOUT-A is built on the following ideas:
1) Compute a PA at current time. 2) Compute the time point
at which this assignment stops being a PA, set this time
point as current time. 3) Convert this assignment to a new
PA based on Proposition 3, then repeat step 2 and step 3
till for all targets pair i, j, line W ai−1

i (t) and line W aj
j (t)

do not intersect between current time and te. In this way,
we can find an optimal defender strategy for the continuous
time strategy space in which all assignments are PAs.

We now discuss SCOUT-A described in Algorithm 1 line
by line. Lines 1-5 compute the PA at time 0. Firstly, all tar-
gets are not protected (Line 1). Then a resource is assigned

Algorithm 1: SCOUT-A
1 for i ∈ T do
2 Vi ← vi(0), ai ← 0

3 left ← m
4 while left > 0 do
5 i ← argmaxi∈T Vi, ai++, left- -, Vi ← W ai

i (0)

6 tm ← 0, k ← 0
7 while tm < te do
8 I ← ∅
9 for ∀i, j ∈ T do

10 if ∃t such that ∂W
ai−1
i (t)

∂t
<

∂W
aj
j (t)

∂t
then

11 Iij ← Iij(A, tm)
12 if Iij < te then I ← I ∪ Iij ;

13 if I = ∅ then break;
14 Iij ← min(I)

15 if W ai−1
i (Iij −Δt) ≥ W

aj

j (Iij −Δt) then

16 τk ← Iij , tm ← Iij
17 ai −−, aj ++, c

k
ij ← 1, k ++

to the target with the highest payoff until all resources are as-
signed (Lines 3-5). tm in Line 6 is used to record when the
current PA stops being a PA. k is used to record how many
transfers have been made. Lines 7-14 compute the next time
point to transfer resources based on Proposition 3. If no in-
tersections of W ai−1

i (t) and W aj
j (t) exist before te, the cur-

rent assignment is the PA until te, then the iteration is ter-
minated (Line 13). Otherwise, Iij records the time at which
the PA changes (Line 14). Lines 15-17 change the PA based
on Proposition 4. In line 15, Δt is a number smaller than
the interval of any adjacent intersections of line W ai

i (t) and
W

aj
j (t)(∀i, j ∈ T , ∀ai, aj ∈ {0, . . . ,m}). Line 15 checks

whether the assignment is a PA immediately before Iij . This
is to avoid the algorithm repeatedly exchanging two assign-
ments at one time point. Since SCOUT-A computes a de-
fender strategy in which all assignments are minimax as-
signments at any time during [0, te], this defender strategy
is optimal based on Proposition 2. The time complexity of
SCOUT-A is polynomial in the number of resources, targets,
and the number of linear segments in value functions.

Equilibrium Considering Transfer Time

In this section, we propose algorithms to calculate optimal
defender strategies when the time needed to transfer re-
sources is not negligible, i.e., dij �= 0. When a resource is in
transfer, this resource is not assigned to any target.

Discrete Defender Strategy Space

We begin by assuming that the defender can only begin
transferring resources at discrete time points, denoted by a
set Φ = {tk}. Thus a resource may arrive at a target only
at time points in a set φ = {tδ : tδ = tk + dij , ∀tk ∈ Φ,
∀i, j ∈ T }. Denote Ψ = {tη : tη ∈ Φ or tη ∈ φ} with
elements in increasing order. Let η be an index specifying
a tη ∈ Ψ. Let H = |Ψ|. For η ∈ {1, . . . , H}, denote a
vector ση = 〈σηij : σηij ∈ {1, . . . , H}〉 with σηij mean-
ing that if a resource is transferred from target i to target
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j, and is supposed to arrive at target j at tη , then the transfer
should begin at time tση

ij
. Let atηi represent the number of

resources assigned to target i at time tη before any resource
is transferred from target i to other targets. Let btηi repre-
sent the number of resources left at target i at time tη after
the transfers. We propose SCOUT-D (Scheduling seCurity
resOurces in pUblic evenTs with Discrete defender strategy
space) to compute the optimal defender strategy. SCOUT-D
can be formulated as follows.

min U (3)

s.t.
∑

i∈T
a0i = m (4)

a
tk+1

i =btki +
∑

j∈T
c
σk+1
ji

ji ∀k ∈ {1, . . . , H − 1} (5)

btki = atki −
∑

j∈T
ckij ∀k ∈ {1, . . . , H} (6)

ckij ∈ {0, 1, . . .} ∀i, j∈T , ∀k∈ {1, . . . , H} (7)∑
c
tη
ij = 0 ∀tη ∈ φ and tη /∈ Φ (8)∑

c
ση
ij

ij = 0 ∀tη ∈ Φ and tη /∈ φ (9)

btki ≥ 0 ∀i∈T , ∀k∈{1, . . . ,H} (10)

U≥ max
t∈[tk,tk+1]

W
b
tk
i

i (t) ∀i∈T ,∀k∈{1,. . . ,H−1} (11)

We now describe the SCOUT-D program. Eq.(4) imple-
ments feasibility of initial assignment. In Eq.(5),

∑
j∈T

c
σk+1
ji

ji represents the number of resources arriving at target i
at tk+1. Similarly, in Eq.(6),

∑
j∈T ckij represents the num-

ber of resources transferred from target i to other targets at
tk. Eq.(7) restricts that the number of transferred resources
should be an integer. Eqs.(5)-(7) together enforce the fea-
sibility of resource transfers, much like the flow feasibility
constraints in a network flow setting. Eq.(8) deals with time
points in φ but not in Φ, at which begining transfers are not
allowed. Similarly, Eq.(9) deals with time points in Φ but
not in φ, at which no resources arrive at any target. Eq.(11)
forces U to be larger than the optimal attacker utility if the
attacker could attack at any time. Since vi(t) is a continu-

ous function, maxt∈[tk,tk+1]W
b
tk
i

i (t) must exist. The objec-
tive of the program and Eq.(11) together guarantee that the
defender strategy minimizes the maximum attacker utility
when the attacker strategy is continuous.

Computing Exact Equilibrium

When the defender strategy space is continuous, the de-
fender can transfer resources at any time in [0, te]. How-
ever, some transfers may not be beneficial and can be re-
placed by other transfers without affecting the optimal de-
fender utility. Consequently, it is possible to set time points
in Φ appropriately, thus the defender strategy calculated by
SCOUT-D is also an equilibrium strategy when the defender
strategy space is continuous. In this section, we first prove
that for any game with continuous defender strategy space,
there must exist an equilibrium defender strategy in which

the defender only transfers resources at some time points sat-
isfying specific conditions. We then propose an algorithm to
compute these time points, which will be passed to SCOUT-
D to compute the optimal strategy.

We consider a continuous value function as a series of
monotonic segments. For each target i, let ξi1, ξ

i
2, . . . , ξ

i
Ri

represent all time points at which the monotonicity of value
function vi(t) changes (in increasing order). Let ξi0 =0 and
ξiRi+1= te. Denote a set Ξi = {ξiρ : ρ ∈ {0, . . . Ri + 1}}
in which ρ is an index identifying a particular time point
ξiρ∈Ξi. Thus for the time period between any adjacent time
points in Ξi, vi(t) is monotonic. Denote Ξ={Ξi :∀i ∈ T }.

If for any optimal defender strategy S of a game with con-
tinuous defender strategy space, we can convert S to anther
optimal strategy in which transfers only occur at specific
time points, then we can compute the optimal defender strat-
egy of such games using SCOUT-D by adding all qualified
time points into Φ. Next, we describe the process with which
we convert an optimal strategy S. We begin with showing
that some transfers in S can be combined without affecting
the optimal attacker utility in Proposition 5.

Proposition 5. If in S, a resource is transferred from target
i to target j at time t1 then from target j to target l at time
t2, if t1 + dij ∈ [ξjρ, ξ

j
ρ+1) and t2 ∈ [t1 + dij , ξ

j
ρ+1), then

the optimal attacker utility will not be higher if the resource
is directly transferred from target i to target l at time t3 ∈
[t1, t2 + djl − dil].

Proof. Assume that in S, before the transfer at t1, the num-
ber of resources assigned to target i, j, l is ai, aj , al respec-
tively. In S, the number of resources assigned to these three
targets with respect to time is shown in Table 1.

time period qti(S) qtj(S) qtl (S)
right before t1 ai aj al
[t1, t1 + dij) ai − 1 aj al
[t1 + dij , t2) ai − 1 aj + 1 al
[t2, t2 + djl) ai − 1 aj al

right after t2 + djl ai − 1 aj al + 1

Table 1: Resources assigned to i, j, l in S

Note that dil ≤ dij + djl, otherwise the defender could
transfer resources from i to l passing j. Therefore, there
always exists t3 ∈ [t1, t2 + djl − dil]. We now construct
a defender strategy S1. In S1 everything else is the same
as S except that a resource is directly transferred from tar-
get i to target l at t3. Table 2 shows the time periods and
qti(S

1), qtj(S
1), qtl (S

1).

time period qti(S
1) qtj(S

1) qtl (S
1)

right before t3 ai aj al
[t3, t3 + dil) ai − 1 aj al

right after t3 + dil ai − 1 aj al + 1

Table 2: Resources assigned to i, j, l in S1

From Table 1 and Table 2, we can see that only
during [t1 + dij , t2), the number of resources assigned
to j in S1 is less than the number of resources as-
signed to j in S. For any other time t and any
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Figure 5: Experimental settings and solution quality

other target x, qtx(S
1) ≥ qtx(S). Therefore, only when

maxt∈[t1+dij ,t2)W
qjt (S

1)
j (t) > Ua(ftg(S), ftm(S), S), the

optimal attacker utility against S1 can be higher than the
optimal attacker utility against S. However, since vj(t) is
monotonic in [ξjρ, ξ

j
ρ+1], thus maxt∈[t1+dij ,t2)W

aj
j (t) ≤

max{W aj
j (t1 + dij),W

aj
j (t2)} ≤ Ua(ftg(S), ftm(S), S).

Therefore, the optimal attacker utility against S1 will not be
higher than that against S.

Based on Proposition 5 (proof is given in Appendix), we
can convert S to a new optimal strategy S1. Next, we show
that we can replace transfers in S1 with other transfers which
occur at time points satisfying specific conditions.

Assume that in S1, a resource is transferred from target
i at t1 ∈ [ξiρ, ξ

i
ρ+1) and this resource arrives at target j at

t2 ∈ [ξjρ′ , ξ
j
ρ′+1). Assume that right before t1, the number of

resources assigned to i is ai. Also assume that right before
t2, the number of resources assigned to j is aj . Then this
transfer can be represented by Tr = (i, j, ai, aj , ρ, ρ

′). To
explore how to replace Tr, we first denote a specific time
point θ(Tr) as follows.
θ(Tr) = argmin

t∈E
( max
t′∈[t,t+dij ]

{W ai−1
i (t′),W

aj
j (t′)}), (12)

where E = [ξiρ,min{ξiρ+1, ξ
j
ρ′+1 − dij}]. θ(Tr) means that,

given that ai resources are assigned to target i and aj re-
sources are assigned to target j, if a resource is transferred
from target i to target j during [ξiρ, ξ

i
ρ+1] and the resource

arrives at j during [ξjρ′ , ξ
j
ρ′+1], then beginning the transfer

at θ(Tr) can minimize the maximum attacker utility if the
attacker attacks i or j when the resource is in transfer. Next,
we show how to replace a transfer Tr = (i, j, ai, aj , ρ, ρ

′)
in S1 with a transfer starting at θ(Tr).

Proposition 6. Keeping all else in S1 unchanged, the opti-
mal attacker utility will not be higher if the beginning time
of transfer Tr in S1 is changed to θ(Tr).

Proof. Assume that in S1, the beginning time of Tr is
t1. We construct a new strategy S2 in which everything
is the same as S1 except that the beginning time of Tr
is changed to θ(Tr). Next, we prove Proposition 6 under
the assumption that t1 < θ(Tr). If t1 ≥ θ(Tr), it can be
proved in a similar way. When t1 < θ(Tr), only when
t ∈ (t1 + dij , θ(Tr) + dij), the number of resources as-
signed to target j is one less in S2 than that in S1. For
any other target k and any other time t, qtk(S

2) ≥ qtk(S
1).

Therefore, the optimal attacker utility in S2 is higher than

that in S1 only when maxt∈(t1+dij ,θ(Tr)+dij)W
qjt (S

2)
j (t) >

Ua(ftg(S
1), ftm(S1), S1).

Given the definition of θ(Tr), we have θ(Tr) + dij ∈
[ξjρ′ , ξ

j
ρ′+1]. The property of S1 ensures that no resource is

transferred from target j to others during [t1+dij , ξ
j
ρ′+1]. Let

ω be the interval of [t1+dij , θ(Tr)+dij ], qtj(S
2) ≥ aj when

t ∈ ω. Therefore, maxt∈ωW
qjt (S

2)
j (t) ≤ maxt∈ωW

aj
j (t).

To show maxt∈ωW
aj
j (t) ≤ Ua(ftg(S

1), ftm(S1), S1), we
consider the following two situations.

Case 1 (t1 + dij ≥ θ(Tr)): We have maxt∈ωW
aj
j (t)

≤ maxt∈[θ(Tr),θ(Tr)+dij ]W
aj
j (t) ≤ maxt∈[θ(Tr),θ(Tr)+dij ]

{W ai−1
i (t),W

aj
j (t)}. Based on the definition of θ(Tr), we

know that maxt∈[θ(Tr),θ(Tr)+dij ]{W
ai−1
i (t),W

aj
j (t)} ≤

maxt∈[t1,t1+dij ]{W
ai−1
i (t),W

aj
j (t)} ≤ Ua(ftg(S

1),

ftm(S1), S1). It then follows that maxt∈ωW
qjt (S

2)
j (t)

≤ Ua(ftg(S
1), ftm(S1), S1), the optimal attacker utility

against S2 is not higher than that against S1.

Case 2 (t1+dij<θ(Tr)): If maxt∈[t1+dij ,θ(Tr)]W
aj
j (t)

≤ maxt∈[θ(Tr),θ(Tr)+dij ]W
aj
j (t), then maxt∈ωW

aj
j (t) ≤

maxt∈[θ(Tr),θ(Tr)+dij ]W
aj
j (t), thus we can prove maxt∈ω

W
aj
j (t) ≤ Ua(ftg(S

1), ftm(S1), S1) as in Case 1. Oth-
erwise, since vj(t) is monotonic in [ξjρ′ , ξ

j
ρ′+1], we have

dW
aj
j (t)

dt ≤ 0 for t ∈ [ξjρ′ , ξ
j
ρ′+1]. Thus maxt∈ωW

aj
j (t)

≤W
aj
j (t1 + dij) ≤ Ua(ftg(S

1), ftm(S1), S1).

Denote a set Θ = {θ(Tr) : Tr = (i, j, ai, aj , ρ, ρ
′), ∀i,

j ∈ T , ∀ai, aj ∈ {0, . . .m}, ∀ρ ∈ {0, . . . , Ri}, ∀ρ′ ∈ {0,
. . . , Rj}}. Proposition 6 implies that we can convert S1 to
another optimal strategy S2 in which all transfers occur at
t ∈ Θ. In other words, as long as a game with continuous
defender strategy space has an equilibrium defender strat-
egy S, it must also have an equilibrium defender strategy in
which transfers only begin at t ∈ Θ. We propose SCOUT-
C (Scheduling seCurity resOurces in pUblic evenTs against
Continuous strategy space) in Algorithm 2 to compute the
optimal defender strategy. SCOUT-C first computes all the
time points at which a transfer may begin (Line 5) and a
transfer may end (Line 6) in an optimal defender strategy,
recording all these time points in a set Ψ. Then SCOUT-D
is called to solve the game using Ψ as the time point set,
resulting in an optimal defender strategy when the defender
strategy space is continuous.
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Algorithm 2: SCOUT-C
1 Ψ← ∅
2 for i, j ∈ T do
3 for ai ∈ {0, . . . ,m}, aj ∈ {0, . . . ,m} do
4 for ρ ∈ {0, . . . , Ri}, ρ′ ∈ {0, . . . , Rj} do
5 Ψ← Ψ ∪ {θ(Tr)} ∪ {θ(Tr) + dij}, where

Tr = (i, j, ai, aj , ρ, ρ
′)

6 run SCOUT-D, using Ψ as the time points set

Experimental Evaluation

We compare the performance of SCOUT-A and SCOUT-C
in terms of attacker utility. As it is a zero-sum game, a lower
attacker utility indicates a higher defender utility. We con-
sider two baseline strategies. The first one, SDS, is a static
defender strategy in which defender assigns resources to tar-
gets at the beginning of the event without transferring them
any more. In SDS, the number of resources assigned to each
target is in proportion with its maximum value during the
event. The second one, which we call DDS, is a dynamic de-
fender strategy with a discrete defender strategy space. We
use SCOUT-D to compute a DDS for a game, setting the
time point set as Φ = {n·te4 : n ∈ {0, 1, . . . 4}}.

All experiments are averaged over 50 sample games. Un-
less otherwise specified, we use 4 targets, 5 security re-
sources, te = 10, λ = 1 to describe the marginal utility of
an extra security resource. We use KNITRO version 8.0.0 to
solve SCOUT-D. We provide 4 experiment sets that compare
the performance of SCOUT-A, SCOUT-C and the baseline
strategies against: 1) Different levels of transfer time. 2) Dif-
ferent numbers of targets and resources. 3) Different values
of λ. 4) More general forms of targets’ value functions.

Figure 5(a) shows an example of the piecewise linear
value functions of 4 different targets where the x-axis in-
dicates the time and the y-axis is the value of each target.
Each value function has at most three linear segments. We
randomly choose a time period in [0, te] in which a value
function is non-zero. We constrain that the value function is
continuous and that the maximum value of each value func-
tion is less than 50 while the minimum value is no less than
0.

In the first experiment set, we consider three different lev-
els of transfer time. For level 1, the time needed to transfer
resources between any two targets dij is uniformly gener-
ated in [0, 0.1]. For level 2, dij is in [0, 1]. For level 3, dij is
in [0, 5]. Figure 5(b) shows the solution quality of the algo-
rithms against different transfer time levels. In Figure 5(b),
the x-axis indicates three transfer time levels while the y-
axis shows the expected attacker utility. The results show
that SCOUT-C and SCOUT-A outperform DDS and SDS
despite the transfer time level. It is noticeable that arbitrarily
discretizing time may lead to significant loss in time-critical
domains, e.g., when proceeding time is averagely divided as
4 points (DDS) and transfer time is Level 2, the attacker util-
ity is around 30% higher than that against SCOUT-C, i.e.,
the loss in defender utility is around 30%.

Figure 5(c) shows the average difference (and the er-
ror bars) between the solution quality of SCOUT-C and
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SCOUT-A with different transfer time levels (higher means
SCOUT-C is better). The results show that when transfer
time is small (Level 1), the solution quality of SCOUT-A
is quite close to that of SCOUT-C. As the transfer time
increases, solution quality of SCOUT-A becomes worse
compared to SCOUT-C. However, from Figures 5(b) and
5(c), we can see that the difference between defender util-
ity against SCOUT-A and the optimal defender utility com-
puted by SCOUT-C is less than 5% under the Level 2 trans-
fer time.

In the second experiment set, we fix transfer time to Level
2. Figure 6(a) shows the runtime of SCOUT-A and SCOUT-
C. The x-axis in Figure 6(a) indicates several combinations
of different numbers of targets and resources while the y-
axis shows the runtime. Figure 6(b) extends the data out for
SCOUT-A, with the x-axis indicating the number of targets
and the y-axis indicating runtime. The three marked lines in
Figure 6(b) represent the number of resources to be 10, 20
and 30 respectively. For example, the point (100, 890) on
the line marked by squares indicates that SCOUT-A has an
average runtime of 890s on problems with 100 targets and
20 resources. SCOUT-A can solve a game with 100 targets
and 30 resources within 30 minutes.
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Figure 7: Expansions of general-form value functions

In the third experiment set, shown in Figure 5(d), we show
the effect of changing the value of λ. We still fix the num-
ber of targets and resources to 4 and 5. Intuitively, a larger λ
means that the marginal utility of adding a security resource
is higher. There are three sets of results, corresponding to
λ = ln2, λ = 1, λ = 2 respectively. The expected attacker
utility is shown by the y-axis. SCOUT-A and SCOUT-C out-
perform DDS and SDS in spite of the value of λ.

Finally, we consider value functions of quadratic seg-
ments. Figure 7(a) shows an example of value functions of
4 targets. Figure 7(b) shows the solution quality of SCOUT-
A, SCOUT-C, DDS, and SDS against such value function
forms. SCOUT-A and SCOUT-C still significantly outper-
form DDS and SDS, similar to the results for piecewise lin-
ear value functions.

Conclusions

In this paper, we design a new defender-attacker game model
with continuous strategies for both agents to describe dy-
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namic patrolling in domains such as public events. We
present SCOUT-A to solve the game when the resources
can be relocated without any delay in time. We also pro-
pose SCOUT-C to deal with general cases. Both SCOUT-A
and SCOUT-C compute the optimal defender strategy de-
spite the continuous strategy space and the time-dependent
payoff of an attack. Our detailed experimental results show
that both SCOUT-A and SCOUT-C outperform the defender
strategies observed in the real world.
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