Appendix A

Proof of Proposition 2

Proposition 2. The extended greedy approach provides a ($1-\frac{1}{e}$)-approximation to a WMC with a negative weight.

Proof. Let \mathbf{s}^{*} be the optimal solution of the WMC. Let \mathbf{s}^{0} and \mathbf{s}^{∞} be the optimal solutions of WMC^{0} and WMC^{∞} of the extended greedy approach, respectively. Let $\mathbf{c}^{*}=\Phi\left(\mathbf{s}^{*}\right)$, $\mathbf{c}^{0}=\Phi\left(\mathbf{s}^{0}\right)$, and $\mathbf{c}^{\infty}=\Phi\left(\mathbf{s}^{\infty}\right)$. Let the target with negative weight be target i^{+}.

We first prove the following two claims.
Claim 1. If $c_{i^{+}}^{*}=0$, i.e., target i^{+}is not covered by the optimal solution, then \mathbf{s}^{∞} is also optimal to the WMC.

Proof of Claim 1. Since $w_{i^{+}}$is replaced with $-\infty$ in WMC^{∞}, target i^{+}must not be covered by the optimal solution of WMC^{∞}. Thus $c_{i^{+}}^{\infty}=0$. We have $\sum_{i} w_{i} \cdot c_{i}^{*}=$ $\sum_{i \neq i^{+}} w_{i} \cdot c_{i}^{*}$ and $\sum_{i} w_{i} \cdot c_{i}^{\infty}=\sum_{i \neq i^{+}} w_{i} \cdot c_{i}^{\infty}$. Suppose that \mathbf{s}^{∞} is not optimal to the WMC. We have $\sum_{i} w_{i} \cdot c_{i}^{*}>$ $\sum_{i} w_{i} \cdot c_{i}^{\infty}$, and

$$
\begin{aligned}
& \sum_{i \neq i^{+}} w_{i} \cdot c_{i}^{*}+(-\infty) \cdot c_{i^{+}}^{*}=\sum_{i} w_{i} \cdot c_{i}^{*}>\sum_{i} w_{i} \cdot c_{i}^{\infty}= \\
& \sum_{i \neq i^{+}} w_{i} \cdot c_{i}^{\infty}+(-\infty) \cdot c_{i^{+}}^{\infty}
\end{aligned}
$$

This means that \mathbf{s}^{*} is a better solution to WMC^{∞} than \mathbf{s}^{∞}, which is a contradiction.

Claim 2. If $c_{i^{+}}^{*}=1$, i.e., target i^{+}is covered by the optimal solution, then \mathbf{s}^{0} is also optimal to the WMC when $w_{i^{+}}<0$.
Proof of Claim 2. Suppose \mathbf{s}^{0} is not optimal to the WMC. We have $\sum_{i} w_{i} \cdot c_{i}^{*}>\sum_{i} w_{i} \cdot c_{i}^{0}$. Thus,

$$
\begin{aligned}
& \sum_{i \neq i^{+}} w_{i} \cdot c_{i}^{*}+w_{i^{+}} \cdot c_{i^{+}}^{*}>\sum_{i \neq i^{+}} w_{i} \cdot c_{i}^{0}+w_{i^{+}} \cdot c_{i^{+}}^{0} \\
\Rightarrow & \sum_{i \neq i^{+}} w_{i} \cdot c_{i}^{*}>\sum_{i \neq i^{+}} w_{i} \cdot c_{i}^{0}-w_{i^{+}} \cdot\left(c_{i^{+}}^{*}-c_{i^{+}}^{0}\right) \\
\Rightarrow & \sum_{i \neq i^{+}} w_{i} \cdot c_{i}^{*}>\sum_{i \neq i^{+}} w_{i} \cdot c_{i}^{0}
\end{aligned}
$$

The last inequality holds since $w_{i^{+}} \cdot\left(c_{i^{+}}^{*}-c_{i^{+}}^{0}\right) \leq 0$, and it indicates that \mathbf{s}^{*} is a better solution to WMC^{0} than s^{0}, which is a contradiction.

Therefore, if $c_{i^{+}}^{*}=0$, the optimal solution of WMC^{∞} is optimal to the WMC, and obviously, the objective values induced by this solution are the same for these two problems since the two problems only differ in the weight $w_{i^{+}}$, which is however not counted in the solution. Therefore, the greedy algorithm provides a $\left(1-\frac{1}{e}\right)$ approximation to WMC^{∞} (as all weights in WMC^{∞} is non-negative) and furthermore the

WMC, i.e.,

$$
\begin{aligned}
& G R D \geq\left(1-\frac{1}{e}\right) \cdot O P T \\
\Rightarrow & G R D+\left|w_{i^{+}}\right|>\left(1-\frac{1}{e}\right) \cdot\left(O P T+\left|w_{i^{+}}\right|\right) \\
\Rightarrow & \frac{G R D+\left|w_{i^{+}}\right|}{O P T+\left|w_{i^{+}}\right|}>1-\frac{1}{e} .
\end{aligned}
$$

On the other hand, if $c_{i^{+}}^{*}=1$, the optimal solution of WMC^{0} is optimal to the WMC. In this case, the optimal objective value of WMC^{0} is $\left|w_{i^{+}}\right|$larger than that of the WMC, i.e., $O P T+\left|w_{i+}\right|=O P T_{0}$. For the greedy solution of WMC 0, since target i^{+}can be either covered or uncovered, we have $G R D=G R D_{0}-\left|w_{i+}\right|$ or $G R D=G R D_{0}$, and in both cases $G R D+\left|w_{i^{+}}\right| \geq G R D_{0}$. Since $G R D_{0}$ provides a ($1-\frac{1}{e}$)-approximation to $O P T_{0}$ (as all weights in WMC^{0} is non-negative), we have $G R D_{0} \geq\left(1-\frac{1}{e}\right) \cdot O P T_{0}$. It follows that

$$
\begin{aligned}
& G R D+\left|w_{i+}\right| \geq\left(1-\frac{1}{e}\right) \cdot\left(O P T+\left|w_{i+}\right|\right) \\
\Rightarrow & \frac{G R D+\left|w_{i+}\right|}{O P T+\left|w_{i+}\right|} \geq 1-\frac{1}{e} .
\end{aligned}
$$

Therefore, we have in both cases $\frac{G R D+\left|w_{i}\right|}{O P T+\left|w_{i}+\right|} \geq 1-\frac{1}{e}$, i.e., a $\left(1-\frac{1}{e}\right)$-approximation.

Proof of Proposition 3

Proposition 3. Let the polytope defined by Eq. (16) be $\overline{\mathcal{C}}$, and let the polytope of $\overline{\mathbf{c}}$ defined by Eqs. (17)-(20) be $\overline{\mathcal{C}^{\prime}}$. Then $\overline{\mathcal{C}} \subseteq \overline{\mathcal{C}}^{\prime}$.

Proof. Suppose $\overline{\mathbf{c}}$ is a vector in $\overline{\mathcal{C}}$. There must be a mixed strategy \mathbf{x} such that $\overline{\mathbf{c}}=\sum_{\mathbf{s} \in \mathcal{S}} x_{\mathbf{s}} \cdot \Phi(\mathbf{s})$. Let $\overline{\mathbf{s}}=\sum_{\mathbf{s} \in \mathcal{S}} x_{\mathbf{s}}$. \mathbf{s}. It follows that $\overline{\mathbf{c}}$ and $\overline{\mathbf{s}}$ satisfies Eqs. (17)-(20) since $\Phi(\mathbf{s})$ and s satisfy Eqs. (10)-(13).

Appendix B

A $\frac{1}{K}$-approximation of a Naïve Greedy Approach

As mentioned in the paper, a naïve greedy approach to deal with a WMC with a negative weight is to keep track of the total weight in each step of the main loop (Lines 2-4, Algorithm 1), and choose the maximum record as the final solution. This approach provides a $\frac{1}{K}$-approximation to the WMC. The approach is depicted with Algorithm B-1 below, and the approximation ratio is demonstrated in Proposition B-1.

```
Algorithm B-1: A naïve greedy approach to deal
with a WMC with negative weights
    Input: An adjacency matrix \(\mathbf{A}=\left\langle a_{i j}\right\rangle\)
            A set of weights \(\mathbf{w}=\left\langle w_{i}\right\rangle\)
    Output: A pure strategy s*
    \(r \leftarrow 0, \mathbf{s} \leftarrow \mathbf{0}, \mathbf{c} \leftarrow \mathbf{0} ;\)
    \(r^{*} \leftarrow 0, \mathbf{s}^{*} \leftarrow \mathbf{0}\);
    for \(k=1\) to \(K\) do
        \(\hat{i} \leftarrow \arg \max _{\left\{i \mid s_{i}=0\right\}} \sum_{\left\{j \mid a_{i j}=1 \text { and } c_{j}=0\right\}} w_{j} ;\)
        \(r \leftarrow r+\sum_{\left\{j \mid a_{\hat{i} j}=1 \text { and } c_{j}=0\right\}} w_{j}\);
        \(s_{\hat{i}} \leftarrow 1, \mathbf{c} \leftarrow \Phi(\mathbf{s}) ;\)
        if \(r>r^{*}\) then \(r^{*} \leftarrow r, \mathbf{s} \leftarrow \mathbf{s}^{*}\);
```

Proposition B-1. Algorithm B-1 provides a $\frac{1}{K}$-approximation to a WMC with a negative weight $w_{i^{+}}<0$, and $\frac{1}{K}$ is a tight bound.

Proof. Let $O P T$ denote the objective value of the optimal solution. Let $G R D$ denote the objective value of of the solution returned by Algorithm B-1. Let x_{l} denote the total weight of new targets covered by Algorithm B-1 with the $l^{\text {th }}$ set that it picks for all $l=1, \ldots, K$. Note that the solution of Algorithm B-1 may contain less than K sets, say K^{\prime} sets. Without loss of generality, we let $x_{l}=0$ for all $l>K^{\prime}$. Let $y_{l}=\sum_{j=1}^{l} x_{j}$, i.e., the total weights covered by Algorithm B-1 with the first l sets it picks, and let $z_{l}=O P T-y_{l}$. We also let $y_{0}=0$ and $z_{0}=O P T$.

Claim 1. $x_{l+1}+\left|w_{i^{+}}\right| \geq \frac{z_{l}+\left|w_{i+}\right|}{K}$.
Proof of Claim 1. Suppose the optimal solution chooses $k \leq$ K sets S^{1}, \ldots, S^{k}. Let S_{l}^{j} denote the elements in S^{j} that is yet not covered when Algorithm B-1 has picked l sets. Define $w(S)=\sum_{i \in S} w_{i}$, i.e., the total weight of targets covered by any set S.
a) If i^{+}is not in any of $S_{l}^{1}, \ldots, S_{l}^{k}$, we have $w\left(S_{l}^{j}\right) \geq 0$ for all $j=1, \ldots, k$, and $\sum_{j=1}^{k} w\left(S_{l}^{j}\right) \geq w\left(\bigcup_{j=1}^{k} S_{l}^{j}\right)=z_{l}$. Thus there must be one set in $S_{l}^{1}, \ldots, S_{l}^{k}$, say S_{l}^{j}, such that $w\left(S_{l}^{j}\right) \geq \frac{z_{l}}{k} \geq \frac{z_{l}}{K}$, and furthermore $w\left(S_{l}^{j}\right)+\left|w_{i^{+}}\right| \geq$ $\frac{z_{l}+\left|w_{i}+\right|}{K}$.
b) If i^{+}is in some of $S_{l}^{1}, \ldots, S_{l}^{k}$, we replace the negative weight with 0 and thus have $\sum_{j=1}^{k}\left(w\left(S_{l}^{j}\right)+\left|w_{i^{+}}\right|\right) \geq$ $w\left(\bigcup_{j=1}^{k} S_{l}^{j}\right)+\left|w_{i^{+}}\right|=z_{l}+\left|w_{i^{+}}\right|$. Similarly, there must be some S_{l}^{j}, such that $w\left(S_{l}^{j}\right)+\left|w_{i+}\right| \geq \frac{z_{l}+\left|w_{i}+\right|}{k} \geq$ $\frac{z_{l}+\left|w_{i}+\right|}{K}$.
Since in the $(l+1)^{\text {th }}$ pick Algorithm B-1 picks the set with largest total weight of uncovered new targets, we have $x_{l+1} \geq w\left(S_{l}^{j}\right), \forall j=1, \ldots, k$. This is also true if the solution of Algorithm B-1 picks less than K sets, since when the total weight cannot be increased by selecting more sets, the total weight of uncovered targets in each set must be no larger than 0 . We conclude that $x_{l+1}+\left|w_{i^{+}}\right| \geq \frac{z_{l}+\left|w_{i+}\right|}{K}$.

Claim 2. $z_{l}-(K-1) \cdot\left|w_{i^{+}}\right| \leq\left(1-\frac{1}{K}\right)^{l} \cdot(O P T-$ $\left.(K-1) \cdot\left|w_{i+}\right|\right)$.
Proof of Claim 2. According to the definition of x_{l} and z_{l}, we have

$$
\begin{aligned}
z_{l} & \leq z_{l-1}-x_{l} \\
& \leq\left(1-\frac{1}{K}\right) \cdot\left(z_{l-1}+\left|w_{i^{+}}\right|\right) \quad \text { (using Claim 1) } \\
\Rightarrow z_{l}- & (K-1) \cdot\left|w_{i^{+}}\right| \leq\left(1-\frac{1}{K}\right) \cdot\left(z_{l-1}-(K-1) \cdot\left|w_{i^{+}}\right|\right) \\
& \leq\left(1-\frac{1}{K}\right)^{l} \cdot\left(z_{0}-(K-1) \cdot\left|w_{i^{+}}\right|\right) \\
& =\left(1-\frac{1}{K}\right)^{l} \cdot\left(O P T-(K-1) \cdot\left|w_{i^{+}}\right|\right)
\end{aligned}
$$

According to Claim 2, we have

$$
\begin{aligned}
& z_{K}-(K-1) \cdot\left|w_{i^{+}}\right| \leq\left(1-\frac{1}{K}\right)^{K} \cdot\left(O P T-(K-1) \cdot\left|w_{i^{+}}\right|\right) \\
& \leq \frac{1}{e} \cdot\left(O P T-(K-1) \cdot\left|w_{i^{+}}\right|\right) \\
& \Rightarrow G R D=O P T- z_{K} \geq\left(1-\frac{1}{e}\right) \cdot\left(O P T-(K-1) \cdot\left|w_{i^{+}}\right|\right) \\
& \Rightarrow O P T \leq \frac{e}{e-1} \cdot G R D+(K-1) \cdot\left|w_{i^{+}}\right|
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\frac{G R D+\left|w_{i^{+}}\right|}{O P T+\left|w_{i^{+}}\right|} & \geq \frac{G R D+\left|w_{i^{+}}\right|}{\frac{e}{e-1} \cdot G R D+(K-1) \cdot\left|w_{i^{+}}\right|+\left|w_{i^{+}}\right|} \\
& =\frac{1}{K} \cdot \frac{G R D+\left|w_{i^{+}}\right|}{\frac{e}{K \cdot(e-1)} \cdot G R D+\left|w_{i^{+}}\right|} \geq \frac{1}{K}
\end{aligned}
$$

Note that the last inequality holds since $G R D \geq 0$ (the initial solution of a zero vector already provides a solution with an objective value of 0 , Line 2, Algorithm B-1), and $\frac{e}{K \cdot(e-1)}>1$.
The Bound is Tight To show that $\frac{1}{K}$ is a tight bound, we construct the following example. Let $w_{1}=w_{2}=\ldots w_{K}=$ $W>0, w_{K+1}=-W$, and $w_{i}=\varepsilon>0$ for all the other targets. For the adjacency matrix, let $a_{i i}=1$ for all $i \in$ $[N] ; a_{i, K+1}=1$ for all $i=1, \ldots, K$; and $a_{i j}=0$ for
all other $i, j \in[N]$. Also let $N>2 K+1$ and $\varepsilon \ll W$. Obviously, the optimal solution is to assign the K resources to target 1 to K, by which a total weight of $(K-1) \cdot W$ is obtained; whereas Algorithm B-1 will pick K targets with weight ε, by witch a total weight of $K \cdot \varepsilon$ is obtained. Thus $\frac{G R D+\left|w_{i}+\right|}{O P T+\left|w_{i}+\right|}=\frac{K \cdot \varepsilon+W}{(K-1) \cdot W+W}=\frac{1}{K}$.

We conclude that Algorithm B-1 provides a tight $\frac{1}{K}$ approximation to the WMC when $w_{i^{+}}<0$.

Appendix C

Generalizations of SPEs

In some real-world scenarios, there can be more complex SPEs where the status of a target is more than simply "covered" or "uncovered". In these cases, entries of the adjacency matrix are allowed to take continuous values between 0 and 1, i.e., $\mathbf{A} \in[0,1]^{n \times n}$. This modification reveals the fact that some factors (such as distance) make a difference on how well a target can be protected by a resource. The way a resource allocation determines the protection status, i.e., the way $\Phi(\mathbf{s})$ is defined, leads to the following two generalizations of SPEs.

- SPE-add, which assumes that protections of security resources accumulate, i.e., $\Phi(\mathbf{s})=\left(\phi_{1}(\mathbf{s}), \ldots, \phi_{N}(\mathbf{s})\right)$, and

$$
\phi_{i}(\mathbf{s})= \begin{cases}\sum_{j} s_{j} \cdot a_{j i}, & \text { if } \sum_{j} s_{j} \cdot a_{j i}<1 \tag{C-1}\\ 1, & \text { if } \sum_{j} s_{j} \cdot a_{j i}>=1\end{cases}
$$

- SPE-max, which uses the best protection offered by security resources, i.e., $\Phi(\mathbf{s})=\left(\phi_{1}(\mathbf{s}), \ldots, \phi_{N}(\mathbf{s})\right)$, and

$$
\begin{equation*}
\phi_{i}(\mathbf{s})=\max _{j} s_{j} \cdot a_{j i} \tag{C-2}
\end{equation*}
$$

Note that SPE can be treated as a special case of both SPEadd and SPE-max. We adopt similar column generation approach to these two cases, where only the slave problems need to be reformulated. The u-LP for SPEs also provides an upper bound for the t-LPs of SPE-add and SPE-max as Eqs. (17)-(20) defines a superset of the feasible marginal coverage spaces for the same reason as stated in Proposition 3.

Slave Problem Formulations

SPE-add: We use an auxiliary variable θ_{i} to indicate whether $\sum_{j} s_{j} \cdot a_{j i} \geq 1$. The slave problem of SPE-add is formulated as the following MILP.

$$
\begin{align*}
\max _{\mathbf{c}, \mathbf{s},\left\langle\theta_{i}\right\rangle} & w+\sum_{i} w_{i} \cdot c_{i} \\
\text { s.t. } & \mathbf{c} \in[0,1]^{N}, \mathbf{s} \in\{0,1\}^{N},\left\langle\theta_{i}\right\rangle \in\{0,1\}^{N} \\
& \sum_{i} s_{i} \leq K \\
& -K \cdot \theta_{i} \leq c_{i}-\sum_{j} s_{j} \cdot a_{j i} \leq 0, \forall i \in[N] \tag{C-6}\\
& \theta_{i} \leq c_{i} \leq 1, \forall i \in[N] \tag{C-7}
\end{align*}
$$

When $\sum_{j} s_{j} \cdot a_{j i}<1$, it must be that $\theta_{i}=0$ (since otherwise Eq. (C-7) will indicate $c_{i}=1$, which contradicts the second ineuqality of Eq. (C-6)), and it follows that $c_{i}=\sum_{j} s_{j} \cdot a_{j i}$; similarly, when $\sum_{j} s_{j} \cdot a_{j i} \geq 1$, we have $c_{i}=1$.

SPE-max: Similarly, we introduce auxiliary variables $\left\langle\theta_{i j}\right\rangle \forall i, j \in[N]$, and formulate the slave problem of SPE-
max as the following MILP.

$$
\begin{align*}
\max _{\mathbf{c}, \mathbf{s},\left\langle\theta_{i j}\right\rangle} & w+\sum_{i} w_{i} \cdot c_{i} \tag{C-8}\\
\text { s.t. } & \mathbf{c} \in[0,1]^{N}, \mathbf{s} \in\{0,1\}^{N},\left\langle\theta_{i j}\right\rangle \in\{0,1\}^{N \times N} \tag{C-9}\\
& \sum_{i} s_{i} \leq K \tag{C-10}\\
& 0 \leq c_{i}-s_{j} \cdot a_{j i} \leq 1-\theta_{i j}, \forall i, j \in[N] \\
& \sum_{j} \theta_{i j}=1, \forall i \in[N] \tag{C-12}
\end{align*}
$$

Eq. (C-12) requires that for each $i \in[N]$, one and only one $\theta_{i j}$ equals 1. According to Eq. (C-11), $\theta_{i j}$ equals 1 only when j maximizes $s_{j} \cdot a_{j i}$, and $c_{i}=\max _{j} s_{j} \cdot a_{j i}$ is thus satisfied.

