Appendix

Proof of Theorem 1
Theorem 1. The bestO-D problem is NP-hard.

Proof. Reduction from Set-Cover Problem to the bestO-
D Problem: We convert an arbitrary instance of the set
cover problem into an instance of the bestO-D problem.
Given a set U with n elements, let @ C 2V be a collection of
subsets of U. The set cover problem concerns that given an
integer k, whether U can be covered with & subsets in Q. We
convert an arbitrary set cover problem into a bestO-D prob-
lem as follows. First, we construct the network of the terror-
ists G = (V, E). For each element i € U, we add a vertex v
labeled as {4} into the network. For each non-singleton sub-
set ) € 9, we add a vertex v labeled as @ into the network.
We call this set the label set of the corresponding vertex v,
denoted as I(v). Foreachi € U, Q € Q, we add an edge be-
tween the vertex labeled as {i} and the vertex labeled as @ if
i € Q. Second, we construct the support set of the attacker’s
mixed strategy, i.e., the set of the pure strategies which are
used with non-zero probabilities. For each element ¢ € U,
we construct an correspondlng pure attacker strategy, de-
noted as A; = {UZGQ 0eol™1(Q)}, where [71(Q) repre-
sents the Vertex in the graph whose label set is ). We then
add this strategy into the support set. Thus the support set
of the attacker’s mixed strategy includes |U| pure strategies,
each pure strategy corresponds to an element in U'.

For example, assume that U = {1,2,3} and Q =
{{1},{2},{3},{1,2},{2,3}}. The constructed graph is
shown in Figure 1.
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Figure 1: Constructed graph

The support set of the attacker’s mixed strategy includes
3 pure strategies as is shown in Table 1.

pure strategy | corresponding element in U vertices
Al 1 {1)1, 1}4}
Ay 2 V2, V4, Vs
A3 3 {1}3, Us

Table 1: Constructed attacker strategies

We then show that set U can be covered with k subsets in
Q if and only if the defender can monitor all of the attacker’s
strategies with & resources in the corresponding bestO-D
problem.

The ‘if’ direction: Assume that the defender can mon-
itor all the attacker strategies by allocating k& resources on
k vertices of the graph. Let B represent the set of the k
vertices. We show that set U can be covered by k sets
l(v),Yv € B.

Assume that the set U cannot be covered by the k sets
I(v),Vv € B. Itindicates that there exists at least an element
i € Usuchthati ¢ [(v), Vv € B. Note that attacker strategy
A; is used with nonzero probability. Given the definition
of A;, it holds that Vv € A;,i € l(v). Thus, no vertex
in A; is included in B, and thus the attacker’s strategy A;
is not monitored by the k resources, which contradicts our
assumption.

The ‘only if’ direction: If the set U can be covered by
k subsets Q € Q, then the defender can monitor all attacker
strategies with &k resources by allocating them on vertices
whose label sets are the k subsets (). This is because for
each ¢ € U, if there exists a vertex v with ¢ € [(v) which
is covered, then the attacker strategy A; will be monitored.
Given that U can be covered by the k£ subsets @, it holds
that for each ¢ € U, it is a member of at least one of the &
subsets. Therefore, all attacker’s strategies can be monitored
by k resources. O

Proof of Theorem 2

Theorem 2. Let U'=maxges,.,,., Ud(S,y), where Spetter
is the solution returned by betterO-D. Let U =
U'-U

maxges Uq(S,y). Then % 1-=

Proof. The defender utilities are always negative, therefore
an approximation ratio in terms of utility is meaningless. To
facilitate analysis, we first define a non-negative function f
for each defender allocation S such that |S| < R:

fy(8) =Ua(S,y) = UaB,y) = > yaP(4) (1)
A€ A|ANS#)D

Thus f gives the marginal benefit of allocation S over the
non-defending defender strategy.

Given the attacker’s mixed strategy y, we first prove that
fy(S) is sub-modular, i.e., fy (S1U{v})—fy (S1) > fy (S2U
{v}) = fy(S2),foreach S4 C S, CV,v eV \ S,

Let A; = {A € A'|AN S, = 0}, i.e., the set of attacker
strategies that are not monitored by S;. Similarly, let Ay =
{A e A|AN Sy = 0}. Since S; C So, every subgraph that
is monitored by S; is also monitored by S5, i.e., we have
Ay C A

Now we will show that fy (S1U{v})— fy (51) > fy(S2U
{v}) — fy(S2). According to Eq.(1), we have:

fy(S1u{v}) = fy(S1)

= > yaP(A) = >

Ac A’ |AN(S1U{v})#£0 AcA'|ANS1#D
yaP(A) 2

yaP(A)

ZAeﬂllAn{v};ém

and similarly,

fy(S2U{v}) = fy(S2) = yaP(A) ()

ZAEXzIAﬂ{v};é@



Since Ay C A; and y4aP(A) > 0, we conclude that
fy(S1U{v}) = fy(S1) = fy(S2 U{v}) — fy(S2). Hence,
fy(S) is a non-negative sub-modular function.

Observe that, betterO-D (Algorithm 2) repeatedly starts
from each single vertex v € V and iteratively maxi-
mizes Uy(S,y) by adding a node v* to the current de-
fender allocation S. Consider the best starting vertex
vy = argmax,ey Ug({v},y) and the solution S”¢ ob-
tained from this vertex v,. Because Ugy(0),y) is a con-
stant, it is equivalent to say SYs is an solution obtained
by greedily maximizing the non-negative sub-modular
function fy(S). Let S* = argmaxgesUq(S,y) and
S’ = argmaxges,.,,.,. Ui(S,y), according to (Nemhauser,
Wolsey, and Fisher 1978), we have:

1 *
fy(87) 2 fy (") = (1= )£y (57) “
Thus, f—g2G¥ > 1 - 1. 0

Proof of Theorem 3
Theorem 3. Let (x*,y*) be the optimal solution of a TPD,
and let (X',y") be the solution computed by Algorithm 1 with

Line 5 skipped. Then gd d((;‘;:z;)):%i ((%?,y/’)) >1-1

Proof. Firstly, given that (x*, y*) is a minimax solution,

Ug(x*,y") > Ug(x,y") Vx )
Ua(x",y) =2 Ua(x",y") Vy (©6)
Furthermore, we define
fy(x) =" zsfy(S) )
Ses

According to Egs.(1), (5), (6) and (7), we have:
fy- () = w5 fy+ (5)

ses
= a5(Ua(S,y*) — Ua(D,y"))
Ses
= Us(x*,y%) — Ua(0, %)
> Ua(x,y") = Ua(0,y7")
= fy=(x) Vx (8)

fy(x) =) a5 fy(5)

SeS
=2 #5(Uu(S,y) — Ua(h,))

Ses
= Ud(X*7Y) - Ud<®7Y)

> Ud(X*7y*) - Ud( 7y)

= fy-(x) +Ua(D,y") = Ua(d,y) Vy 9
Let S = argmaxges,.,,.. Ud(S,y’), ie, S is the
pure defender strategy with maximal defender utility, when

using betterO-D against attacker mixed strategy y’. By
definition of y’, we have Uy(S’,y") = Uy(x',y’). Let

S* = argmaxges Uq(S,y’), it holds that Uy(S*,y’) >
Uq(x*,y’). Using Egs.(4) and (9),

Iy’ (X/) = fy (S/)

> (1 ) [y (5)

> (1- )y (<)
> (1= D)lfy- () + Ual0.y) = Ua0,y')]  (10)

Ua(x',y")=Ua(D,y") 1
Therefore, U:(x*,y*)—lfld(w,y/) >1—. O

Proof of Theorem 4

Theorem 4. The bestO-A problem is NP-hard, even when
network externality is zero, i.e., § = 0.

Proof. We reduce a set-cover optimization problem to a
bestO-A problem without the network externality effect.
Given a set U with n elements and a set Q of subsets of U
such that Ugeo@ = U, the task for the set-cover optimiza-
tion problem is to find a minimum subset @’ C Q, such that
each element of U is contained in at least one set in Q’. De-
note a set-cover optimization problem as a pair (U, Q). For
arbitrary (U, Q), we construct a bestO-A problem as follows.

Step 1: We create a vertex u; for each element u; € U,
and set the capability value 7, of each vertex u; to 1.

Step 2: For each Q; € Q, we create a new vertex (); and
set the capability value 7, of each vertex (); to 0. Then
we create an edge between each node u; and @); such that
Uu; € Qj.

Step 3: We create an auxiliary vertex H which is con-
nected to each vertex (; and set the capability value 7z to
1. Then, we create R auxiliary vertices where R is the num-
ber of defender resources and set the capability value 7g,
of each vertex Ry to 0. For each vertex Ry, k = 2,--- | R,
we create an edge between Ry, and Rj_1, then we create an
edge between R, and H'.

Step 4: We then create |Q| + 1 pure strategies for the de-
fender. First, for each vertex ();, we create a pure strategy
S; = {Ri1, -+ ,Rr—1,Q;} and set the corresponding pos-
sibility x; to m Then, we create the last pure de-
fender strategy S|g|+1 = {R1, -, Rr—1, Rr} and put the

remaining possibility ‘[yﬁrl on it. Thus, the marginal cover

probabilities for each vertex u; and the auxiliary vertex H
are 0, that for each vertex Q; is gryiry- The auxiliary
vertices Rg,k = 1,--- , R — 1 are covered by all the de-
fender pure strategies, the last auxiliary vertex Ry is only
covered by S|g|41-

Obviously, the above steps are executed in polynomial
time. For a given set-cover instance (U, Q) and the number
of defender resources R, the above steps create a weighted
graph G = (V, E) with |U| + |Q| + R + 1 vertices and a
mixed defender strategy with |Q| + 1 pure strategies for the

"We use such a construction for simplicity, this connection is
not essential for the NP-hardness reduction. Indeed, these R auxil-
iary vertices can be arbitrarily connected to other vertices.



corresponding bestO-A problem instance. For example, for
a set-cover instance with U = {uy, ug,us} and Q@ = {Q; =
{ur, us}, Q2 = {ua}, Qs = {u2}, Qs = {uz,us}}, sup-
pose R = 2, the corresponding bestO-A problem instance is
shown in Figure 2.

Figure 2: A bestO-A problem instance corresponding to the
set-cover instance with U = {uy,uz,us} and Q = {Q; =
{ur,uz}, Q2 = {u1}, Q3 = {ua2}, Qs = {uz,us}}. Here,
the mixed defender strategy uses five allocations: {R1, Q1},
{R1,Q2}, {R1,Q3}, {Rl, Q4} {1R1, Rg} and the corre-
sponding possibilities are E* E’ 16> 167 Z’ respectively.

The task for the bestO-A problem is to find a subset A
of V such that the induced subgraph G[A] is connected and
the attacker can obtain the maximum expected utility play-
ing against the defender’s mixed strategy x. We now show
that any set of (); contained in a maximum-utility connected
subgraph of GG is a minimum cover with respect to the set-
cover instance and vice versa.

We first show that any optimal solution G[A] for the
bestO-A problem does not contain any auxiliary vertex
Ry, k = 1,--- , R. Observe that the marginal cover prob-
ability of each vertex Ry, k = 1,--- , R — 1 is 1, then the
expected utility of any subgraph containing a vertex Ry, k =
1,---,R —11is 0. We can easily find a subgraph (e.g.,

[{H}]) with utility 1, so any vertex R,k =1,--- ,R—1
is not included in a optimal solution. Besides, the capabil—
ity value 7g,, is 0, so the expected utility of G[{Rg}] is 0.
and vertex Rp is only connected to Rr_1, thus any larger
connected subgraph containing Rp must contain Rp_1, re-
sulting that its expected utility is also 0. Therefore, Ry is
not included in any optimal solution.

Then, we show that any optimal solution G[A] must con-
tains H and all the vertices u;. First, we can find a fea-
sible solution A = V \ {Ry, R,k = 1,--- ,R}. The
payoff of this solution is |U| + 1 and the cover probabil-
ity of G[A] is . thus the expected utility of G[A] is
(U1+1)(1 - ‘U‘ﬁ) = |U]. It is obvious that any solution
not containing all the vertices u; and H cannot achieve this

expected utility, thus is not optimal solution.
To this end, any optimal solution G[A] contains H and

all vertices u;, and does not contain any auxiliary vertex
R,k =1,---, R. Thus, any optimal solution can be iden-
tified by the set of vertices (); contained in it. Since H
is included in G[A], the connectivity of G[A] is equivalent
to the requirement that, for each vertex u;, there is at least
one vertex (); € A such that u; € ;. Thus, maximiz-
ing the expected utility of G[A4] is equivalent to minimizing
of the @); vertices, which, in turn, is equivalent to minimiz-
ing the set cover represented by the ();. For example, in
the instance shown in Figure 2, the set-cover instance has
two optimal solutions of size 2 (i.e., @ = {Q1,Q4} or
{Q2,Q4}.), corresponding to the two optimal solutions with
utility 4 # (1 — 2) = 3.5 of the bestO-A problem (i.e., A =
{Q1,Qu, H,uy, uz, uz} or {Q2, Qu, H,uy, uz, us}). O



