
Appendix
Proof of Theorem 1

Theorem 1. The bestO-D problem is NP-hard.

Proof. Reduction from Set-Cover Problem to the bestO-
D Problem: We convert an arbitrary instance of the set
cover problem into an instance of the bestO-D problem.
Given a set U with n elements, letQ ⊆ 2U be a collection of
subsets of U . The set cover problem concerns that given an
integer k, whetherU can be covered with k subsets inQ. We
convert an arbitrary set cover problem into a bestO-D prob-
lem as follows. First, we construct the network of the terror-
ists G = 〈V,E〉. For each element i ∈ U , we add a vertex v
labeled as {i} into the network. For each non-singleton sub-
set Q ∈ Q, we add a vertex v labeled as Q into the network.
We call this set the label set of the corresponding vertex v,
denoted as l(v). For each i ∈ U,Q ∈ Q, we add an edge be-
tween the vertex labeled as {i} and the vertex labeled asQ if
i ∈ Q. Second, we construct the support set of the attacker’s
mixed strategy, i.e., the set of the pure strategies which are
used with non-zero probabilities. For each element i ∈ U ,
we construct an corresponding pure attacker strategy, de-
noted as Ai = {∪i∈Q,Q∈Ql

−1(Q)}, where l−1(Q) repre-
sents the vertex in the graph whose label set is Q. We then
add this strategy into the support set. Thus the support set
of the attacker’s mixed strategy includes |U | pure strategies,
each pure strategy corresponds to an element in U .

For example, assume that U = {1, 2, 3} and Q =
{{1}, {2}, {3}, {1, 2}, {2, 3}}. The constructed graph is
shown in Figure 1.

Figure 1: Constructed graph

The support set of the attacker’s mixed strategy includes
3 pure strategies as is shown in Table 1.

pure strategy corresponding element in U vertices
A1 1 {v1, v4}
A2 2 {v2, v4, v5}
A3 3 {v3, v5}

Table 1: Constructed attacker strategies

We then show that set U can be covered with k subsets in
Q if and only if the defender can monitor all of the attacker’s
strategies with k resources in the corresponding bestO-D
problem.

The ‘if’ direction: Assume that the defender can mon-
itor all the attacker strategies by allocating k resources on
k vertices of the graph. Let B represent the set of the k
vertices. We show that set U can be covered by k sets
l(v),∀v ∈ B.

Assume that the set U cannot be covered by the k sets
l(v),∀v ∈ B. It indicates that there exists at least an element
i ∈ U such that i /∈ l(v),∀v ∈ B. Note that attacker strategy
Ai is used with nonzero probability. Given the definition
of Ai, it holds that ∀v ∈ Ai, i ∈ l(v). Thus, no vertex
in Ai is included in B, and thus the attacker’s strategy Ai

is not monitored by the k resources, which contradicts our
assumption.

The ‘only if’ direction: If the set U can be covered by
k subsets Q ∈ Q, then the defender can monitor all attacker
strategies with k resources by allocating them on vertices
whose label sets are the k subsets Q. This is because for
each i ∈ U , if there exists a vertex v with i ∈ l(v) which
is covered, then the attacker strategy Ai will be monitored.
Given that U can be covered by the k subsets Q, it holds
that for each i ∈ U , it is a member of at least one of the k
subsets. Therefore, all attacker’s strategies can be monitored
by k resources.

Proof of Theorem 2
Theorem 2. Let U ′=maxS∈Sbetter Ud(S,y), where Sbetter
is the solution returned by betterO-D. Let U∗ =

maxS∈S Ud(S,y). Then U ′−Ud(∅,y)
U∗−Ud(∅,y) ≥ 1− 1

e .

Proof. The defender utilities are always negative, therefore
an approximation ratio in terms of utility is meaningless. To
facilitate analysis, we first define a non-negative function f
for each defender allocation S such that |S| ≤ R:

fy(S) = Ud(S,y)− Ud(∅,y) =
∑

A∈A′|A∩S 6=∅

yAP (A) (1)

Thus f gives the marginal benefit of allocation S over the
non-defending defender strategy.

Given the attacker’s mixed strategy y, we first prove that
fy(S) is sub-modular, i.e., fy(S1∪{v})−fy(S1) ≥ fy(S2∪
{v})− fy(S2), for each S1 ⊆ S2 ⊆ V , v ∈ V \ S2.

Let A1 = {A ∈ A′|A ∩ S1 = ∅}, i.e., the set of attacker
strategies that are not monitored by S1. Similarly, let A2 =
{A ∈ A′|A ∩ S2 = ∅}. Since S1 ⊆ S2, every subgraph that
is monitored by S1 is also monitored by S2, i.e., we have
A2 ⊆ A1.

Now we will show that fy(S1∪{v})−fy(S1) ≥ fy(S2∪
{v})− fy(S2). According to Eq.(1), we have:

fy(S1 ∪ {v})− fy(S1)

=
∑

A∈A′|A∩(S1∪{v})6=∅

yAP (A)−
∑

A∈A′|A∩S1 6=∅

yAP (A)

=
∑

A∈A1|A∩{v}6=∅
yAP (A) (2)

and similarly,

fy(S2 ∪ {v})− fy(S2) =
∑

A∈A2|A∩{v}6=∅
yAP (A) (3)



Since A2 ⊆ A1 and yAP (A) ≥ 0, we conclude that
fy(S1 ∪ {v})− fy(S1) ≥ fy(S2 ∪ {v})− fy(S2). Hence,
fy(S) is a non-negative sub-modular function.

Observe that, betterO-D (Algorithm 2) repeatedly starts
from each single vertex v ∈ V and iteratively maxi-
mizes Ud(S,y) by adding a node v∗ to the current de-
fender allocation S. Consider the best starting vertex
vg = argmaxv∈V Ud({v},y) and the solution Svg ob-
tained from this vertex vg . Because Ud(∅,y) is a con-
stant, it is equivalent to say Svg is an solution obtained
by greedily maximizing the non-negative sub-modular
function fy(S). Let S∗ = argmaxS∈S Ud(S,y) and
S′ = argmaxS∈Sbetter Ud(S,y), according to (Nemhauser,
Wolsey, and Fisher 1978), we have:

fy(S
′) ≥ fy(Svg ) ≥ (1− 1

e
)fy(S

∗) (4)

Thus, U ′−Ud(∅,y)
U∗−Ud(∅,y) ≥ 1− 1

e .

Proof of Theorem 3
Theorem 3. Let (x∗,y∗) be the optimal solution of a TPD,
and let (x′,y′) be the solution computed by Algorithm 1 with
Line 5 skipped. Then Ud(x

′,y′)−Ud(∅,y′)
Ud(x∗,y∗)−Ud(∅,y′) ≥ 1− 1

e .

Proof. Firstly, given that (x∗,y∗) is a minimax solution,

Ud(x
∗,y∗) ≥ Ud(x,y

∗) ∀x (5)

Ud(x
∗,y) ≥ Ud(x

∗,y∗) ∀y (6)
Furthermore, we define

fy(x) =
∑
S∈S

xSfy(S) (7)

According to Eqs.(1), (5), (6) and (7), we have:

fy∗(x
∗) =

∑
S∈S

x∗Sfy∗(S)

=
∑
S∈S

x∗S(Ud(S,y
∗)− Ud(∅,y∗))

= Ud(x
∗,y∗)− Ud(∅,y∗)

≥ Ud(x,y
∗)− Ud(∅,y∗)

= fy∗(x) ∀x (8)

fy(x
∗) =

∑
S∈S

x∗Sfy(S)

=
∑
S∈S

x∗S(Ud(S,y)− Ud(∅,y))

= Ud(x
∗,y)− Ud(∅,y)

≥ Ud(x
∗,y∗)− Ud(∅,y)

= fy∗(x
∗) + Ud(∅,y∗)− Ud(∅,y) ∀y (9)

Let S′ = argmaxS∈Sbetter Ud(S,y
′), i.e., S′ is the

pure defender strategy with maximal defender utility, when
using betterO-D against attacker mixed strategy y′. By
definition of y′, we have Ud(S

′,y′) = Ud(x
′,y′). Let

S∗ = argmaxS∈S Ud(S,y
′), it holds that Ud(S

∗,y′) ≥
Ud(x

∗,y′). Using Eqs.(4) and (9),

fy′(x
′) = fy′(S

′)

≥ (1− 1

e
)fy′(S

∗)

≥ (1− 1

e
)fy′(x

∗)

≥ (1− 1

e
)[fy∗(x

∗) + Ud(∅,y∗)− Ud(∅,y′)] (10)

Therefore, Ud(x
′,y′)−Ud(∅,y′)

Ud(x∗,y∗)−Ud(∅,y′) ≥ 1− 1
e .

Proof of Theorem 4
Theorem 4. The bestO-A problem is NP-hard, even when
network externality is zero, i.e., δ = 0.

Proof. We reduce a set-cover optimization problem to a
bestO-A problem without the network externality effect.
Given a set U with n elements and a set Q of subsets of U
such that ∪Q∈QQ = U , the task for the set-cover optimiza-
tion problem is to find a minimum subsetQ′ ⊆ Q, such that
each element of U is contained in at least one set inQ′. De-
note a set-cover optimization problem as a pair 〈U,Q〉. For
arbitrary 〈U,Q〉, we construct a bestO-A problem as follows.

Step 1: We create a vertex ui for each element ui ∈ U ,
and set the capability value τui

of each vertex ui to 1.
Step 2: For each Qj ∈ Q, we create a new vertex Qj and

set the capability value τQj of each vertex Qj to 0. Then
we create an edge between each node ui and Qj such that
ui ∈ Qj .

Step 3: We create an auxiliary vertex H which is con-
nected to each vertex Qj and set the capability value τH to
1. Then, we create R auxiliary vertices where R is the num-
ber of defender resources and set the capability value τRk

of each vertex Rk to 0. For each vertex Rk, k = 2, · · · , R,
we create an edge between Rk and Rk−1, then we create an
edge between R1 and H1.

Step 4: We then create |Q|+ 1 pure strategies for the de-
fender. First, for each vertex Qj , we create a pure strategy
Sj = {R1, · · · , RR−1, Qj} and set the corresponding pos-
sibility xj to 1

|Q|(|U |+1) . Then, we create the last pure de-
fender strategy S|Q|+1 = {R1, · · · , RR−1, RR} and put the
remaining possibility |U |

|U |+1 on it. Thus, the marginal cover
probabilities for each vertex ui and the auxiliary vertex H
are 0, that for each vertex Qj is 1

|Q|(|U |+1) . The auxiliary
vertices Rk, k = 1, · · · , R − 1 are covered by all the de-
fender pure strategies, the last auxiliary vertex RR is only
covered by S|Q|+1.

Obviously, the above steps are executed in polynomial
time. For a given set-cover instance 〈U,Q〉 and the number
of defender resources R, the above steps create a weighted
graph G = (V,E) with |U | + |Q| + R + 1 vertices and a
mixed defender strategy with |Q|+ 1 pure strategies for the

1We use such a construction for simplicity, this connection is
not essential for the NP-hardness reduction. Indeed, these R auxil-
iary vertices can be arbitrarily connected to other vertices.



corresponding bestO-A problem instance. For example, for
a set-cover instance with U = {u1, u2, u3} andQ = {Q1 =
{u1, u2}, Q2 = {u1}, Q3 = {u2}, Q4 = {u2, u3}}, sup-
pose R = 2, the corresponding bestO-A problem instance is
shown in Figure 2.
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Figure 2: A bestO-A problem instance corresponding to the
set-cover instance with U = {u1, u2, u3} and Q = {Q1 =
{u1, u2}, Q2 = {u1}, Q3 = {u2}, Q4 = {u2, u3}}. Here,
the mixed defender strategy uses five allocations: {R1, Q1},
{R1, Q2}, {R1, Q3}, {R1, Q4}, {R1, R2}, and the corre-
sponding possibilities are 1

16 , 1
16 , 1

16 , 1
16 , 3

4 , respectively.

The task for the bestO-A problem is to find a subset A
of V such that the induced subgraph G[A] is connected and
the attacker can obtain the maximum expected utility play-
ing against the defender’s mixed strategy x. We now show
that any set ofQj contained in a maximum-utility connected
subgraph of G is a minimum cover with respect to the set-
cover instance and vice versa.

We first show that any optimal solution G[A] for the
bestO-A problem does not contain any auxiliary vertex
Rk, k = 1, · · · , R. Observe that the marginal cover prob-
ability of each vertex Rk, k = 1, · · · , R − 1 is 1, then the
expected utility of any subgraph containing a vertexRk, k =
1, · · · , R − 1 is 0. We can easily find a subgraph (e.g.,
G[{H}]) with utility 1, so any vertex Rk, k = 1, · · · , R− 1
is not included in a optimal solution. Besides, the capabil-
ity value τRR

is 0, so the expected utility of G[{RR}] is 0.
and vertex RR is only connected to RR−1, thus any larger
connected subgraph containing RR must contain RR−1, re-
sulting that its expected utility is also 0. Therefore, RR is
not included in any optimal solution.

Then, we show that any optimal solution G[A] must con-
tains H and all the vertices ui. First, we can find a fea-
sible solution A = V \ {Rk, Rk, k = 1, · · · , R}. The
payoff of this solution is |U | + 1 and the cover probabil-
ity of G[A] is 1

|U |+1 , thus the expected utility of G[A] is
(|U |+ 1)(1− 1

|U |+1 ) = |U |. It is obvious that any solution
not containing all the vertices ui and H cannot achieve this
expected utility, thus is not optimal solution.

To this end, any optimal solution G[A] contains H and

all vertices ui, and does not contain any auxiliary vertex
Rk, k = 1, · · · , R. Thus, any optimal solution can be iden-
tified by the set of vertices Qj contained in it. Since H
is included in G[A], the connectivity of G[A] is equivalent
to the requirement that, for each vertex ui, there is at least
one vertex Qj ∈ A such that ui ∈ Qj . Thus, maximiz-
ing the expected utility of G[A] is equivalent to minimizing
of the Qj vertices, which, in turn, is equivalent to minimiz-
ing the set cover represented by the Qj . For example, in
the instance shown in Figure 2, the set-cover instance has
two optimal solutions of size 2 (i.e., Q′ = {Q1, Q4} or
{Q2, Q4}.), corresponding to the two optimal solutions with
utility 4 ∗ (1− 2

16 ) = 3.5 of the bestO-A problem (i.e., A =
{Q1, Q4, H, u1, u2, u3} or {Q2, Q4, H, u1, u2, u3}).


