
Appendix

Proof of Lemma 1
Lemma 1. u ∈ Γ(πx) if and only if xuaukuL > cu.

Proof. First we show that V ∗(s) ≥ 0 (∀s ∈ S):

V ∗(s) = arg max
a∈As

Q(s, a) ≥ Q(s, a = stop) = 0.

If direction: Consider state s = {u}, we have

V ∗(s) = (1− xu)(V ∗(s)− cu) + auxuku(L− cu)

+ xu(1− auku)(V ∗(s−u)− cu)

≥ (1− xu)(V ∗(s)− cu) + auxuku(L− cu)

+ xu(1− auku)(0− cu).

If xuaukuL > cu, then V ∗(s) > 0, which means that s is a
reachable state and the optimal action at state s is to attack
user u instead of stop attacking. Therefore, u belongs to the
potential attack set Γ(πx).

Only if direction: First, consider state s and s−u. If we
restrict the attacker’s policy so that he never attacks u, then
s and s−u are indifferent so that V ∗(s)=V ∗(s−u). Without
the restriction, we have V ∗(s)≥V ∗(s−u). In other words,
adding a user to a state does not decrease its value. We prove
that if πx(s)=u, then xu > cu

Lauku
. By definition we have:

V ∗(s) = (1− xu)(V ∗(s)− cu) + auxuku(L− cu)

+ xu(1− auku)(V ∗(s−u)− cu).

By adjusting the terms we have:

V ∗(s) = − cu
auxu

+ Lku + (1− ku)V ∗(s−u).

Since V ∗(s)≥V ∗(s−u), then:

− cu
auxu

+ Lku ≥ kuV
∗(s−u) ≥ 0

Note that if − cu
auxu

+Lku=0, we have V ∗(s)=V ∗(s−u)=0

and s={u}. Due to the setting that the attacker always
prefers stopping attack rather than launching another attack,
we have πx(s)=0, which contradicts the assumption that
πx(s)=u. Therefore, − cu

auxu
+ Lku > 0, equivalently,

xu >
cu

Lauku
.

Proof of Lemma 2
Lemma 2.

θ(x, πx) =

{
1−

∏
u∈Γ(πx)(1− auku), if Γ(πx) 6= ∅

0, if Γ(πx) = ∅
.

Proof. If Γ(πx) = ∅, meaning that the attacker stops
attacking at the initial state s0, therefore the probability
that the credential accessed is 0. Otherwise, we write the
reachable states set as ∆(πx) = {s0, s1, ..., sr} ∪ {sn, sy}.
We denote by M∆(πx) the transition probability matrix,

whose entry Mij represents the probability that state
si transitions to sj under policy πx (WLOG, we define
sr+1=sn and sr+2=sy). There are two cases for sr: (1)
πx(sr) = u ∈ Asr and (2) πx(sr) = stop.

If case (1), sr could transition to itself, sn or sy . Hence
M∆(πx) has the form like (denote di=auikui and xi = xui ):



1−x0 x0(1−d0) d0x0

1−x1 x1(1−d1) d1x1

. . . . . .
...

1−xr xr(1−dr) drxr

1

1


Precisely, M∆(πx) can be represented as:

M∆(πx) =

[
A B
0 I2

]
where A is r+1 dimensional square matrix, I2 is 2 dimen-
sional unit diagonal matrix and B is (r+1) × 2 matrix. We
introduce a (r+1)× 2 matrix E:

E = FB, where F = (Ir+1 −A)−1

Note that sn and sy are absorbing states. According to the
properties of absorbing Markov chain, s0 will eventually end
in state sn or sy with probability E11 and E12 respectively,
and E11+E12=1. Therefore, the probability of losing the
credential is equal to the probability that the attacker even-
tually ends in state sy , i.e., θ(x, πx)=E12. We can directly
calculate E11 based on the rules of matrix calculation:

E11 =
r+1∑
i=1

F1iBi1

= F1,r+1Br+1,1

=

∏r−1
i=0 (1− di)

xr
xr(1− dr)

=

r∏
i=0

(1− di)

=
∏

u∈Γ(πx)

(1− auku)

Then E12 = 1− E11 = 1−
∏
u∈Γ(πx)(1− auku).

If case (2), sr transitions to sn with probability 1. Thus
M∆(πx) has the form like (di=auikui and xi = xui ):





1−x0 x0(1−d0) x0k0

1−x1 x1(1−d1) x1k1

. . . . . .
...

1−xr−1 xr−1(1−dr−1) 0 xr−1dr−1

1

1

1


Similarly,

E11 =

r+1∑
i=1

F1iBi1

= F1,r+1

=

r−1∏
i=0

(1− di)

=
∏

u∈Γ(πx)

(1− auku)

Then, we still have E12 = 1 − E11 = 1 −
∏
u∈Γ(πx)(1 −

auku).

Proof of Theorem 1
Theorem 1. The defender’s expected utility remains the

same no matter how the attacker breaks ties, i.e., choosing
any optimal policy.

Proof. Recall that in single-credential case the defender’s
utility function is

Pd(x, πx) = −ρT θ(x, πx)L−
∑
u∈U

Λ(xu).

Based on the result of Lemma 1, Γ(πx) can be represented
as {u ∈ U |xu > cu

Lauku
}, then θ(x, πx) can be represented

as

θ(x, πx) = 1−
∏

u∈{u′∈U |xu′>
c
u′

La
u′ku′

}

(1− ku).

For any other optimal policy π′x, we have

θ(x, π′x) = 1−
∏

u∈{u′∈U |xu′>
c
u′

La
u′ku′

}

(1− ku).

Note that θ(x, πx) = θ(x, πx)′, which indicates that the de-
fender’s expected utility will be the same when the attacker
chooses any other optimal policy.

Proof of Theorem 2
Theorem 2. x1

u is an arbitrary point in
arg minx∈[0, cu

Lauku
] Λu and x2

u is an arbitrary point in
arg minx∈( cu

Lauku
,1] Λu.

Proof. Recall that in single-credential case the defender’s
utility function is

Pd(x, πx) = −ρT θ(x, πx)L−
∑
u∈U

Λu(xu).

Consider a user u, given all values of xu′ (u′ ∈ U \
{u}), θ(x, πx) is constant for any xu ∈ [0, cu

Lauku
] s-

ince the potential attack set Γ(πx) remains the same when
xu varies among [0, cu

Lauku
]. Therefore, any point in

arg minx∈[0, cu
Lauku

] Λu maximizes Pd(x, πx). Similarly,
θ(x, πx) is constant for any xu ∈ ( cu

Lauku
, 1]. Therefore, any

points in arg minx∈( cu
Lauku

,1] Λu maximizes Pd(x, πx).


