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Abstract

Reserve price is an effective tool for revenue maximization
in ad auctions. The optimal reserve price depends on bidders’
value distributions, which, however, are generally unknown
to auctioneers. A common practice for auctioneers is to first
collect information about the value distributions by a sam-
pling procedure and then apply the reserve price estimated
with the sampled bids to the following auctions. In order to
maximize the total revenue over finite auctions, it is important
for the auctioneer to find a proper sample size to trade off be-
tween the cost of the sampling procedure and the optimality
of the estimated reserve price. We investigate the sample size
optimization problem for Generalized Second Price auctions,
which is the most widely-used mechanism in ad auctions, and
make three main contributions along this line. First, we bound
the revenue losses in the form of competitive ratio during and
after sampling. Second, we formulate the problem of finding
the optimal sample size as a non-convex mixed integer op-
timization problem. Then we characterize the properties of
the problem and prove the uniqueness of the optimal sample
size. Third, we relax the integer optimization problem to a
continuous form and develop an efficient algorithm based on
the properties to solve it. Experimental results show that our
approach can significantly improve the revenue for the auc-
tioneer in finitely repeated ad auctions.

1 Introduction
Ad auctions have become a major monetization channel for
Internet applications, including sponsored search auctions
(Jansen and Mullen 2008; Milgrom 2010; Qin, Chen, and
Liu 2015) and realtime bidding (RTB) (Chakraborty et al.
2010; Chen et al. 2011; Yuan, Wang, and Zhao 2013). In
sponsored search, when a user issues a query to a search en-
gine, in addition to a list of relevant webpages, a selective
set of ads related to the query will also be shown to the user.
A position auction is used to determine which ads to show
and how much to charge the corresponding advertisers. In
RTB for display advertising, when a user visits a publisher’s
website, an ad impression with related information will be
sent to the advertisers (or ad networks) through an ad ex-
change. Then the bids from the advertisers are collected and
an auction is used to determine which ad to show and how
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much to charge the advertiser. In these applications, Gener-
alized Second Price1 (GSP) is the most popularly used auc-
tion mechanism and has attracted a lot of research attention
in recent years (Caragiannis et al. 2011; Chen et al. 2014;
Ma et al. 2014; Rong et al. 2016).

In ad auctions, revenue maximization is a very impor-
tant goal of the auctioneer and many research works have
been conducted on this topic (Xiao, Yang, and Li 2009;
Radovanovic and Heavlin 2012; Caragiannis et al. 2014;
Yuan et al. 2014). The famous Myerson’s theory (Myerson
1981; Nisan et al. 2007; Hartline and Roughgarden 2009)
reveals how to achieve the optimal revenue in the setting of
a single item for sale and independent and identically dis-
tributed (i.i.d.) values of the bidders: one just needs to adop-
t a second-price auction with an optimal reserve price that
is the zero point of the virtual value function. This result
has been extended to GSP. Edelman and Schwarz (2010)
proved that GSP with the optimal reserve price is an opti-
mal mechanism under the regularity assumption. Thompson
and Leyton-Brown (2013) investigated how to optimally set
the reserve price when squashing is considered. Sun, Zhou,
and Deng (2014) showed that the optimal reserve price of
weighted GSP depends on bidders’ ad qualities.

All the above works on revenue maximization rely on the
knowledge about the value distribution of bidders. However,
bidders’ valuations are private information and are invisi-
ble to the auctioneer. In practice, auctioneers usually need
to collect information about the value distribution using the
auction mechanism with a heuristically set reserve price. We
use sampling of bids to refer to this process. With the esti-
mated value distribution, the auctioneer can infer the optimal
reserve price and use it in the future auctions. Ostrovsky and
Schwarz (2011) conducted a field experiment on sampling of
bids with Yahoo’s datasets. They assumed the bidders’ val-
ues to be drawn from a log normal distribution and inferred
the parameters by simulation. Sun et al. (2012) estimated the
parameters of the value distribution by maximum likelihood
estimation. Cole and Roughgarden (2014) and Dhangwat-
notai, Roughgarden, and Yan (2015) directly estimated the

1This paper is based on unweighted GSP (Edelman, Ostrovsky,
and Schwarz 2007; Edelman and Schwarz 2010; Ostrovsky and
Schwarz 2011) where bidders are ranked and charged by bids. We
discuss how to extend our results to weighted GSP (Varian 2007;
Sun, Zhou, and Deng 2014) in Section 7.



optimal reserve price with sampled data and analyzed the
revenue guarantee with the estimated reserve price in a very
simple mechanism where all the winners pay the same price.
Mohri and Medina (2015) proposed a discriminative algo-
rithm for the estimation based on the assumption of symmet-
ric Bayes-Nash equilibrium and derived an additive regret.
While these works are good attempts on optimal reserve
price estimation from sampled bids, they have neglected the
revenue loss during the sampling period. Obviously, more
rounds of sampling will lead to a more accurate estimation
of the optimal reserve price. However, the sampling process
usually cannot achieve the optimal revenue by itself, i.e.,
there is a “cost” of sampling. Hence, the auctioneer needs to
determine how many rounds should be used for sampling in
order to maximize the overall revenue. Bulow and Klemper-
er (1994) provided some basic ideas for the cost of sampling
in the same environment as (Cole and Roughgarden 2014;
Dhangwatnotai, Roughgarden, and Yan 2015) which cannot
be applied to the GSP auctions directly.

We consider the trade-off between the cost of sampling
and the optimality of the estimated reserve price for rev-
enue maximization, in the context of finitely repeated GSP
auctions. Bandit theory is a general framework for the
exploration-exploitation problem, which has been used in
post-price auctions (Kleinberg and Leighton 2003). How-
ever, the application of bandit algorithms to GSP is limit-
ed because 1) they need to update the reserve price in each
round, which is impractical in sponsored search auctions s-
ince a query may be searched for tens of thousands of times
one day and frequently updating the reserve price is very ex-
pensive, and 2) they all rely on specific assumptions on the
function to optimize (Cesa-Bianchi, Gentile, and Mansour
2013), e.g., smoothness and strong concavity (Cope 2009),
unimodality (Jia and Mannor 2011) and local Lipschitz con-
dition (Bubeck et al. 2011). In GSP, it is difficult to satis-
fy these conditions because the revenue is not a continuous
function with respect to the reserve price.

To solve the trade-off problem for GSP, we propose an
algorithm containing two procedures in this work: the infor-
mation collection (sampling) phase with zero reserve price
and the deployment phase with estimated optimal reserve
price. Our destination is to find an optimal sample size which
is independent of the value distribution and robust for the
auctioneer. We make three key contributions along this line.
First, we give the competitive ratio of the revenue during
the sampling period. We show that this ratio is distribution-
independent and is only related to the number of bidders and
ad slots. We assume that the (unknown) value distribution
is regular but do not require any further information about
its form (e.g., log normal, exponent, or normal). Besides,
we use a method inspired by (Dhangwatnotai, Roughgar-
den, and Yan 2015) to estimate the optimal reserve price and
prove its revenue guarantee in GSP. Second, we formulate
the trade-off problem as a non-convex mixed integer opti-
mization problem, which aims to maximize the auctioneer’s
worse-case total revenue, and derive many properties for it,
including the unimodal feature and uniqueness of optimal
solution. Third, we propose an efficient algorithm (with ex-
ponential convergence rate) based on these properties. We

evaluate the performance of our proposed approach using
numerical simulations. The experimental results show sig-
nificant improvements in revenue for the auctioneer as com-
pared with baseline strategies.

2 Preliminaries
We introduce the GSP mechanism and review basic ideas for
optimal reserve price when the value distribution is known
to the auctioneer in this section.

2.1 GSP Mechanism
There are N bidders competing for K ad slots and usu-
ally we assume that K < N . Let vi denote the value of
bidder i’s ad for a click and bi express the bid submit-
ted by i to participate in the auction. We use the vector
v = (v1, v2, . . . , vN ) = (vi, v−i) to represent the value pro-
file. In the real world, the advertisers in each auction may
be different (Cesa-Bianchi, Gentile, and Mansour 2013) and
the value of the same ad to different users with various ex-
perience and identities is not fixed (Abrams and Schwarz
2007). These uncertainties can be captured by assuming
that bidders’ values are i.i.d. from a distribution (Ostrovsky
and Schwarz 2011; Lucier, Paes Leme, and Tardos 2012;
Thompson and Leyton-Brown 2013). Furthermore, as as-
sumed in most works (Sun et al. 2012; Cole and Rough-
garden 2014; Dhangwatnotai, Roughgarden, and Yan 2015)
that consider real applications, the distribution is unknown
to the auctioneer. Each ad slot j has a corresponding click-
through-rate (CTR) θj . We define θj ≡ 0 for j > K and
then use a vector θ = (θ1, θ2, . . . , θN )T to denote the CTR
profile, where T represents the matrix transposition. Gener-
ally, we assume θ1 ≥ θ2 ≥ · · · ≥ θK > 0.

The GSP sorts the bidders in descending order of their
bids. The allocation rule, leaving out the reserve price, can
be represented as a mapping x : RN 7→ θN . Specifi-
cally, given the bid profile b = (b1, b2, . . . , bN ), x(b) =
(x1(b), x2(b), . . . , xN (b)) is a vector consisting of CTRs
each bidder will receive, where xi(b) = θk if and on-
ly if bi is the k-th highest bid in b (ties are broken ran-
domly). When considering the reserve price r, the alloca-
tion rule xr : RN 7→ θN is defined as xri (b) = xi(b)
if bi ≥ r; xri (b) = 0 otherwise. Suppose bidders are la-
beled such that bi ≥ bi+1 and define bN+1 ≡ 0, then bidder
i should pay max{bi+1, r} once his/her ad is clicked and
the expected utility is ui(vi, b) = vix

r
i (b) − pi(b), where

the second part is the expected payment and is written as
pi(b) = xri (b) ·max{bi+1, r}. The expected revenue of the
auctioneer is

∑N
i=1 pi(b).

2.2 Optimal Reserve Price with Known Value
Distribution

We learn from the last subsection that the auctioneer’s ex-
pected revenue depends on the bid profile and reserve price.
Here we present how to compute the optimal reserve price
with known bidders’ value distribution. In the theory of rev-
enue maximization, equilibrium solution concept is wide-
ly used to model bidders’ behavior (Edelman and Schwarz
2010; Ostrovsky and Schwarz 2011). Sun, Zhou, and Deng



(2014) proved that if all bidders adopt the same equilibrium
strategy bi = β(vi), then the expected revenue of the auc-
tioneer with reserve price r, R(r), in each auction can be
written as

R(r) = Ev{
∑N

i=1
ψ(vi)x

r
i (v)}, (1)

where ψ(vi) = vi − 1−F (vi)
f(vi)

is called the virtual val-
ue function (Myerson 1981) with f(·) and F (·) denot-
ing the probability density function and cumulative distri-
bution function of bidders’ value distribution respective-
ly. Following the common practice like (Myerson 1981;
Hartline 2006; Lucier, Paes Leme, and Tardos 2012), we
assume that the virtual value function is regular, i.e., ψ(·)
is strictly monotonically increasing on (0,+∞). Given the
value distribution F (·), the revenue R(r) can be maximized
when

∑N
i=1 ψ(vi)x

r
i (v) is maximized pointwise for every

v, which happens when (i) slots are only allocated to bid-
ders with positive virtual values and (ii) bidders with higher
virtual values are assigned higher CTRs. Since both ψ(vi)
and xri (v) are non-decreasing functions of vi, the second
condition is satisfied. To meet the first condition, the auc-
tioneer just needs to set an optimal reserve price r∗ such
that ψ(r∗) = 0, because xr

∗

i (v) = 0 when vi < r∗,
∀i ∈ {1, 2, . . . , N}. We call the GSP mechanism with the
optimal reserve price the optimal GSP. Since bidders’ val-
ues are i.i.d., it follows that, ∀i′ ∈ {1, 2, . . . , N},

Ev{
∑N

i=1
ψ(vi)x

r
i (v)} = N · Ev{ψ(vi′)x

r
i′(v)}. (2)

3 Problem Formulation
Now we realistically consider that bidders’ value distribu-
tion is unknown to the auctioneer who aims to maximize
his/her overall revenue for M rounds. The first τ round-
s are used for sampling and the reserve price is set as ze-
ro in this period in order to observe complete (i.e., non-
truncated) value distribution. Note that the auctioneer can
only observe bids of the advertisers but not their values.
For ease of analysis, we assume that bidders were play-
ing the widely-used lowest-revenue Symmetric Nash Equi-
librium (SNE) (Varian 2007; Edelman and Schwarz 2010;
Ostrovsky and Schwarz 2011; Sun, Zhou, and Deng 2014),
which can easily recover values from bids (vi = β−1(bi))
(Varian 2007). Then we make an estimation of the optimal
reserve price, represented as r, with the sampled data and
set it for the remaining M − τ rounds. The total revenue the
auctioneer will get is τ ·R(0)+(M−τ) ·R(r). The revenue
loss is thus M ·R(r∗)− (τ ·R(0) + (M − τ) ·R(r)), which
is equal to M ·R(r∗)(1− ( τM ·

R(0)
R(r∗) + (1− τ

M ) · R(r)
R(r∗) )).

Then minimizing the total loss means that

max
τ∈{1,2,...,M}

τ

M

R(0)

R(r∗)
+ (1− τ

M
)
R(r)

R(r∗)
. (3)

Further analysis shows that the competitive ratios R(0)
R(r∗)

and R(r)
R(r∗) are related to the density function f(·). As a result,

the solution of the problem defined in Eq. (3) is a function of

f(·). Our destination is to find an optimal sample size which
is independent of the priori f(·). Specifically, we prove in
Section 4 that both R(0)

R(r∗) and R(r)
R(r∗) have lower bounds that

do not rely on f(·). Based on this result, in Section 5, we
reformulate the optimization problem with lower bounds of
R(0)
R(r∗) and R(r)

R(r∗) and derive its optimal sample size maxi-
mizing the worst-case total revenue, which is thus robust to
any distribution and safe for the auctioneer.

4 Competitive Ratio Derivation
To solve the trade-off problem defined in Eq. (3), we first
derive the competitive ratios R(0)

R(r∗) and R(r)
R(r∗) in this section.

Theorem 1 gives the ratio for the sampling period.

Theorem 1. R(0)
R(r∗) ≥

N−K
N for GSP with N bidders and K

slots.

The theorem can be proved by combining the following
two lemmas.

Lemma 2. The expected revenue of GSP with N bidders,
K slots and zero reserve price is at least that of an optimal
GSP with N −K bidders and K slots.

Proof. The expected revenue of the optimal GSP with N −
K bidders is equal to EvN−k{

∑N−K
i=1 ψ(vi)x

r∗

i (vN−K)},
where vN−K is the value profile of the N − K bidders.
We learn from Section 2.2 that the first k ≤ min{K,N −
K} bidders whose values are greater than r∗ will be lo-
cated in descending order of values at the first k slots.
We use the function maxK : RN 7→ RK to compute
a vector consisting of the first K highest elements, sort-
ed in descending order, from a vector with N elements.
Then the optimal expected revenue can be represented as
EvN−K{maxK(ψ(v1), . . . , ψ(vN−K), 0K) ·θ}, where 0K is
a vector of K zeros.

When anotherK bidders, labeled byN−K+1, N−K+
2, . . . , N , are added to the auction with value profile vK , we
have thatEvK{ψ(vi)} = ψ(vi) for i = 1, 2, . . . , N−K and
EvK{ψ(vj)} = EvK−j

{EvKj {ψ(vj)}} = EvK−j
{0} = 0 for

j = N −K + 1, N −K + 2, . . . , N . Thus,

EvN−K{maxK(ψ(v1), . . . , ψ(vN−K), 0K) · θ}
=EvN−K{maxK(EvK{ψ(v1)}, . . . , EvK{ψ(vN )}) · θ}
≤EvN−K{EvK{maxK(ψ(v1), . . . , ψ(vN )) · θ}}
=Ev{maxK(ψ(v1), ψ(v2), . . . , ψ(vN )) · θ}

=Ev{
∑N

i=1
ψ(vi)xi(v)}, (4)

where the last equation is the expected revenue with N bid-
ders and zero reserve price.

Lemma 3. The expected revenue of the optimal GSP with
N − K bidders and K slots is at least N−K

N that of the
optimal GSP with N bidders and K slots.

Proof. For any advertiser i in the optimal GSP with
N − K bidders, new bidders will not rise i’s rank, i.e.,



xr
∗

i (vN−K) ≥ xr
∗

i (vN−K , vK) for any vN−K and vK . It
thus follows that

EvN−K{ψ(vi)x
r∗

i (vN−K)}=EvK{EvN−K{ψ(vi)x
r∗

i (vN−K)}}
≥ EvK{EvN−K{ψ(vi)x

r∗

i (vN−K , vK)}}
= Ev{ψ(vi)x

r∗

i (v)}. (5)

The proof is completed by multiplying the first and last e-
quations by N −K and N−K

N ·N , respectively.

Next, we first present the method to compute r with sam-
pled data, based on which we derive the ratio R(r)

R(r∗) for GSP
in Theorem 5.

The optimal reserve price r∗ satisfies ψ(r∗) = 0, which is
equivalent to −ψ(r∗)f(r∗) = 0. Readers can easily verify
that the primitive function of −ψ(r)f(r) is P (r) = r(1 −
F (r)). Regularity of F (·) thus implies that P (r) increases
with respect to r on (0, r∗) and decreases on (r∗,+∞) and
hence reaches its maximum at r∗. Givenm samples from F ,
renamed so that v(1) ≥ v(2) ≥ . . . ≥ v(m), a straightforward
idea for finding the optimal reserve price is to view i

m as
an approximation to 1 − F (v(i)), i = 1, 2, . . . ,m, and then
solve the following problem: arg maxv(i)

i
mv(i), s.t. 1 ≤

i ≤ m. This naive method is not feasible and may give over-
ly large estimated reserve price with a heavy-tailed distribu-
tionF (·). A common practice is to forbid the largest samples
from acting as reserve prices, leading to the guarded empir-
ical reserve (Cole and Roughgarden 2014; Dhangwatnotai,
Roughgarden, and Yan 2015):

r = arg max
v(i)

i

m
· v(i), s.t. δm ≤ i ≤ m. (6)

where 0 < δ < 1 is an accuracy parameter. The following
lemma demonstrates the sample complexity for r to be (1−
ε)-optimal in the point of view of P (r∗), which serves as a
key component of finding the bound for R(r)

R(r∗) .

Lemma 4 ((Dhangwatnotai, Roughgarden, and Yan 2015),
Lemma 4.12). For every regular distribution F (·) and 0 <
ε < 1, the following statement holds: with probability at
least 1 − ε, the guarded empirical reserve r of Eq. (6) with
m = cε−3lnε−1 samples from F (·) is a (1 − ε)-optimal
reserve price, meaning that P (r) ≥ (1− ε)P (r∗) where c is
a positive constant number.

Based on Lemma 4, we can prove the following theorem
for the lower bound of R(r)

R(r∗) .

Theorem 5. For GSP mechanism and r obtained from Eq.
(6), we have that R(r)

R(r∗) ≥ (1− ε)2 for any i.i.d. and regular
value distributions with m = cε−3lnε−1 samples.

Proof. Fix bidder i and v−i, and let t be the mini-
mal bid for i to be a winner without regard to the re-
serve price. The expected revenue generated from bid-
der i with r∗ and r are

∫ +∞
max{r∗,t} ψ(vi)f(vi)xi(v)dvi and

2We restate the lemma where we let ε = δ. Readers can check
the proof in (Dhangwatnotai, Roughgarden, and Yan 2015) and ver-
ify that Lemma 4 always holds if ε is bounded by (0, 1).

∫ +∞
max{r,t} ψ(vi)f(vi)xi(v)dvi, respectively. There are three

situations depending on the maximum value of r∗, r and
t. Consider the first case, max{r∗, r, t} = t, which leads
to the same revenue for the auctioneer using r∗ or r. Now
consider the second case, max{r∗, r, t} = r∗. We assume
that there are n bidders, excluding bidder i, whose values
are greater than r∗ in this case. Then the auctioneer’s ex-
pected revenue from i with optimal reserve price, denoted
by R∗, is R∗ = θn+1

∫ v(n)

r∗
φ(vi) + θn

∫ v(n−1)

v(n)
φ(vi) + . . .+

θ1

∫ +∞
v(1)

φ(vi) = θn+1(P (r∗) − P (v(n))) + θn(P (v(n)) −
P (v(n−1))) + . . . + θ1(P (v(1)) − 0) = θn+1P (r∗) +∑n
j=1(θj − θj+1)P (v(j)), where φ(vi) = ψ(vi)f(vi)dvi

for simplicity. Suppose that without consideration of bidder
i, there are k bidders with values less than r∗ but greater
than max{r, t}. When k = 0, the revenues from i with
r and r∗ are the same. When k > 0, the auctioneer’s ex-
pected revenue contributed by i with r, represented with R,
is R = θn+k+1

∫ v(n+k)

max{r,t} φ(vi) + θn+k

∫ v(n+k−1)

v(n+k)
φ(vi) +

. . .+ θ1

∫ +∞
v(1)

φ(vi) = θn+k+1P (max{r, t}) +
∑n+k
j=1 (θj −

θj+1)P (v(j)). Since P (r) is increasing on (0, r∗), and
r∗ > v(n+j) > max{r, t} ≥ r for j = 1, 2, . . . , k
in the second case, and P (r) ≥ (1 − ε)P (r∗), the e-
quation P (v(n+j)) > P (max{r, t}) ≥ P (r) ≥ (1 −
ε)P (r∗) holds for j = 1, 2, . . . , k. Hence, we have R ≥
θn+k+1(1− ε)P (r∗) +

∑n+k
j=n+1(θj − θj+1)(1− ε)P (r∗) +∑n

j=1(θj−θj+1)P (v(j)) = (1−ε)θn+1P (r∗)+
∑n
j=1(θj−

θj+1)P (v(j)) ≥ (1 − ε)θn+1P (r∗) + (1 − ε)
∑n
j=1(θj −

θj+1)P (v(j)) = (1− ε)R∗.
The analysis for the third case where max{r∗, r, t} = r

is similar. Overall, the expected revenue from bidder i with
guarded empirical reserve is at least a (1− ε) fraction of that
of the optimal GSP mechanism in each case. Taking expec-
tation over v−i and i, and considering the probability (1−ε),
we have that R(r)

R(r∗) ≥ (1− ε)2.

5 Sample Size Optimization
In this section we formulate the problem of finding the opti-
mal sample size as a constrained optimization problem and
prove the uniqueness of the solution.

Considering that R(0)
R(r∗) ≥ N−K

N (Theorem 1) and
R(r)
R(r∗) ≥ (1 − ε)2 with τN = cε−3lnε−1 (Theorem 5), we
maximize the worst-case total revenue:

max
τ
R̂(τ) = τ

N −K
NM

+ (1− τ

M
)(1− ε)2, (7)

s.t.

{
τ ∈ {1, 2, . . . ,M};
τ = cε−3lnε−1

N .
(8)

Since the bounds we find are prior-independent, the rev-
enue generated with τ∗ is robust for any distribution, where
τ∗ is the solution of the above optimization problem.

We see from Eqs. (7) and (8) that it is difficult to explic-
itly express ε using τ , so we replace τ with ε and get the



following equivalent formulation:

max
ε
R(ε) = cε−3lnε−1N −K

N2M
+(1− cε

−3lnε−1

NM
)(1−ε)2,

(9)

s.t. 1 ≤ cε−3lnε−1

N
≤M. (10)

We have the following theorem for the above optimization
problem.

Theorem 6 (Uniqueness of ε∗). The solution ε∗ of the opti-
mization problem defined in Eqs. (9) and (10) is unique.

The proof Theorem 6 is straightforward based on the uni-
modal property ofR(ε) demonstrated in Theorem 7.

Theorem 7 (Unimodal property of R(ε)). R(ε) is not con-
cave on (0, 1), but there exists an s ∈ (0, 1) such that
R′(ε) > 0 for ε ∈ (0, s), R′(s) = 0 and R′(ε) < 0 for
ε ∈ (s, 1).

Proof. We use 0 < α < 1 to denote K
N in this proof. By tak-

ing the first-order derivative of R(ε), we have that R′(ε) =

−2(1− ε)− c ln ε−1

NM (−3αε−4 + 4ε−3− ε−2) + c
NM (αε−4−

2ε−3 + ε−2). We can check that limε→0+ R′(ε)→ +∞ > 0

and limε→1− R′(ε) → c(α−1)
NM < 0. If the statement that

there is a point ε′ ∈ (0, 1) such that R′(ε) is decreasing on
(0, ε′) and increasing on (ε′, 1) holds, then combining with
the fact that R′(0+) > 0 and R′(1−) < 0, Theorem 7 is
proved. Next we will demonstrate the validity of the state-
ment, which is equivalent to proving that R′′(ε) is negative
on (0, ε′) and positive on (ε′, 1).

The second-order derivative of R(ε) is R′′(ε) = 2 −
c

NM (R′′1(ε) + R′′2(ε)), where R′′1(ε) = ε−5 ln ε−1(2ε2 −
12ε+ 12α) andR′′2(ε) = ε−5(3ε2 − 10ε+ 7α). It is easy to
get that limε→0+(R′′1(ε) +R′′2(ε))→ +∞. The zero points
of the convex functions 2ε2−12ε+ 12α and 3ε2−10ε+ 7α
are 3±

√
9− 6α and 5±

√
25−21α
3 respectively. Further analy-

sis indicates that 0 < 5−
√

25−21α
3 < η ≤ 1 < 5+

√
25−21α
3 <

3 +
√

9− 6α, where η = min{3 −
√

9− 6α, 1}, hence
R′′2(η) < 0. SinceR′′1(η) = 0, we haveR′′1(η)+R′′2(η) < 0.
We can further prove thatR′′1(ε)+R′′2(ε) is convex on (0, η)
(see Lemma 8). So there exists a point ε′′ on (0, η) such that
R′′1(ε)+R′′2(ε) decreases monotonically from positive infin-
ity to zero as ε rises from 0+ to ε′′, and then becomes neg-
ative when ε ∈ (ε′′, η). Because ε−5 and ln ε−1 are always
positive on (0, 1), R′′1(ε) and R′′2(ε) are negative on (η, 1),
which implies thatR′′1(ε) +R′′2(ε) is negative on (ε′′, 1).

Since R′′(ε) has the opposite monotonicity of R′′1(ε) +
R′′2(ε), R′′(ε) increases monotonically from negative infin-
ity to 2 as ε increases from 0+ to ε′′, and keeps positive on
(ε′′, 1). Then a point ε′ ∈ (0, ε′′) exists such that the state-
ment holds.

Lemma 8 (Concavity of R′′(ε)). The second-order deriva-
tiveR′′(ε) ofR(ε) is concave on (0, η), where η = min{3−√

9− 6K/N, 1}.

Proof. Let α = K
N for simplicity. R′′(ε) = 2 −

c
NM (R′′1(ε) + R′′2(ε)), where R′′1(ε) = ε−5 ln ε−1(2ε2 −

12ε+12α) andR′′2(ε) = ε−5(3ε2−10ε+7α). We just need
to prove that bothR′′1(ε) andR′′2(ε) are convex on (0, η).

We first prove the convexity of R′′1(ε), which is rep-
resented as the product of the following two equation-
s: g1(ε) = ε−5 ln ε−1 and g2(ε) = 2ε2 − 12ε + 12α.
The convexity of R′′1(ε) = g1(ε)g2(ε) means that the
limitation lim∆→0+

g1(ε+∆)g2(ε+∆)−g1(ε)g2(ε)
∆ is increasing

w.r.t. ε. We use ∆gi(ε) to denote gi(ε) − gi(ε + ∆),
i = 1, 2. Given ∆ > 0, we have that g1(ε + ∆)g2(ε +
∆) − g1(ε)g2(ε) = (g1(ε) − ∆g1(ε))(g2(ε) − ∆g2(ε)) −
g1(ε)g2(ε) = −∆g2(ε)(g1(ε) − ∆g1(ε)) − ∆g1(ε)g2(ε) =
−∆g2(ε)g1(ε+ ∆)−∆g1(ε)g2(ε). Suppose ε1 and ε2 satisfy
ε1 < ε2 in (0, η). It is easy to verify that g1(ε) and g2(ε)
are positive decreasing convex functions on (0, η), which
implies that g1(ε1 + ∆) > g1(ε2 + ∆) > 0, g2(ε1) >
g2(ε2) > 0 and ∆gi(ε1) > ∆gi(ε2) > 0. Hence the equation
−∆g2(ε1)g1(ε1 + ∆) − ∆g1(ε1)g2(ε1) < −∆g2(ε2)g1(ε2 +
∆) − ∆g1(ε2)g2(ε2) holds for any ∆ > 0 and ε1 < ε2
in (0, η). Then we can conclude that −∆g2(ε)g1(ε + ∆) −
∆g1(ε)g2(ε) is increasing w.r.t. ε ∈ (0, η), so is the limita-
tion. ThusR′′1(ε) = g1(ε)g2(ε) is convex on (0, η).

Next we focus on R′′2(ε). The second-order derivative of
R′′2(ε) is 2ε−7(18ε2−100ε+105α), which is positive in the
support (0, 50−

√
2500−1890α

18 ). Furthermore, we can verify
that η ≤ 3−

√
9− 6α < 50−

√
2500−1890α

18 . SoR′′2(ε) is con-
vex (with positive second-order derivative) on (0, η).

As declared in Theorem 7,R(ε) is not a concave function
on (0, 1). Fortunately,R(ε) is proved to be unimodal, based
on which we propose an efficient algorithm to maximize it.
Let [l, 1) ⊂ (0, 1), l > 0, denote the domain of ε constrained
by Eqs. (7) and (9), and then the optimal ε∗ of Eqs. (9) and
(10) can be computed as

ε∗ =

{
s, ifR′(l) > 0 (i.e., l < s);
l, otherwise.

(11)

Next we give the idea on how to find τ∗ for the problem
defined in Eq. (7) and (8) based on ε∗.

We first define the function g as t = g(ε) = cε−3lnε−1

N ,
ε ∈ [l, 1), where l = g−1(M). Because g(ε) is a decreas-
ing function on [l, 1), so is g−1(t) for t ∈ (0, g(l)]. Thus
R̂(t) = R(g−1(t)) has the opposite monotonicity ofR(ε) in
the corresponding intervals. Specifically, the increasing and
decreasing intervals of R̂(t) are (0, g(ε∗)] and [g(ε∗), g(l)]

respectively, which implies that R̂(t) is also a unimodal on
(0, g(l)] and the unique maximal point is t∗ = g(ε∗). Then
τ∗ can be represented with respect to t∗.
Corollary 9. The optimal sample size τ∗ satisfies

τ∗ =

{
dt∗e, if R̂(dt∗e) > R̂(bt∗c);
bt∗c, otherwise.

(12)

Proof. First note that g(l) = M according to Eqs. (7)
and (9), and hence {1, 2, . . . ,M} ⊂ (0, g(l)]. Since
dt∗e ≥ t∗ ≥ bt∗c, according to the monotonicity of
R̂(·), we have that R̂(τ) < R̂(dt∗e), if τ > dt∗e; R̂(τ) <



R̂(bt∗c), if τ < bt∗c, which implies that R̂(τ) reaches its
maximum at either dt∗e (when R̂(dt∗e) > R̂(bt∗c)) or bt∗c
(when R̂(bt∗c) > R̂(dt∗e)).

Theorem 10 (Uniqueness of optimal sample size). The op-
timal sample size τ∗ is unique.

The proof is straightforward based on Theorem 6 and
Corollary 9.

6 Algorithm and Experimental Evaluation

Algorithm 1: Optimal sample size
1 lower ← 0, upper ← 1, s← 1/2;
2 while |R′(s)| 6= 0 do
3 ifR′(s) > 0 then lower ← s;
4 else upper ← s;
5 s← (lower + upper)/2;

6 Compute ε∗ based on Eq. (11), t∗ ← g(ε∗);
7 Use Eq. (12) to compute τ∗;
8 return τ∗;

Based on Theorem 7 and Corollary 9, we propose Algo-
rithm 1 to compute τ∗. The first step is to iteratively com-
pute s based on the unimodal property of R(ε) (Lines 1-5),
i.e., if the current point is in the increasing interval of R(·),
search in the right side of (lower, upper) in the next iter-
ation; otherwise, search in the left side of (lower, upper).
This procedure is similar to the binary search and hence has
exponential convergence rate. Then ε∗ and τ∗ are computed
based on s in Lines 6 and 7.

We use the commonly used log normal distribution and
exponential distribution to evaluate the performance of Al-
gorithm 1. The parameters for the former distribution are set
as µ = 0, σ = 1.5 and the corresponding optimal reserve
price r∗ is 4.2755. The parameter for the latter is λ = 3,
with which we have that r∗ = 3.0005.

We first analyze the robustness of Algorithm 1. M can
be estimated by the auctioneer with historical data, but the
estimation could be inaccurate. We use τ (5) to represent the
sample sizes computed by Algorithm 1 when the errors of
the estimation for M is 5%. The overall revenues with τ∗
and τ (5) samples are presented in Tables 1 and 2, where R̂(·)
for each setting (N = 5) is averaged over 400 instances.
The theoretical maximal revenue when the auctioneer knows
bidders value distribution is 1. We see that τ∗ can gain very
high total revenue (R̂(τ∗) > 0.9 in all the experiments) and
Algorithm 1 is robust against the inaccurate estimation for
M given that the performance degradation is very tiny.

Next we compare the revenue generated with τ∗ samples
with three baseline strategies. The first two, denoted by S1

and S2, are fraction-based strategies, which use 0.1 ·M and
0.3 ·M rounds for sampling respectively. The third one (S3)
serves as a bench mark which sets the reserve price as zero
for the auctions. G(Sj) measures the relative revenue gain
of our method over the baseline Sj , j = 1, 2, 3. The larg-
er G(Sj) is, the better our method is over Sj . We see from
Tables 1 and 2 that our proposed algorithm outperforms the

other three strategies in all settings. We find that G(S1) de-
creases whileG(S2) increases asK grows. That is because a
larger K usually leads to more cost for sampling according
to Theorem 1, and hence smaller-fraction strategy is more
preferred. The comparison with S3 implies that setting prop-
er reserve prices can significantly improve the auctioneer’s
revenue. Overall, the strategy we proposed can achieve the
highest revenue for the auctioneer among all the strategies.

M K R̂(τ∗) R̂(τ (5)) G(S1) G(S2) G(S3)

2 .9199 .9174 13.2% 0.54% 16.2%
5e+6 3 .9079 .9047 6.65% 0.61% 45.5%

4 .9005 .8969 3.14% 4.10% 101%

2 .9614 .9601 1.67% 1.15% 20.2%
5e+7 3 .9513 .9496 0.28% 5.37% 50.8%

4 .9449 .9428 0.09% 11.6% 114%

Table 1: Evaluation for log normal distribution

M K R̂(τ∗) R̂(τ (5)) G(S1) G(S2) G(S3)

2 .9677 .9542 11.2% 0.48% 15.3%
5e+6 3 .9446 .9401 5.64% 0.56% 43.5%

4 .9186 .9045 3.10% 3.89% 89.1%

2 .9842 .9837 1.55% 1.03% 18.7%
5e+7 3 .9700 .9652 0.22% 4.97% 47.6%

4 .9542 .9450 0.08% 11.2% 105%

Table 2: Evaluation for exponential distribution.

7 Conclusion and Discussion
In this paper, we studied the problem of finding the opti-
mal sample size for finitely repeated GSP auctions. We an-
alyzed the competitive ratios of expected revenues during
and after sampling for GSP and formulated the problem as a
constrained mixed integer non-convex program. We proved
the uniqueness of the optimal sample size. The evaluation
showed that the solution we provided outperforms baseline
strategies.

Our results can be extended to weighted GSP and VCG.
We can follow (Sun, Zhou, and Deng 2014) to assume si =
viei is drawn from an i.i.d. regular distribution F (s), where
ei is bidder i’s ad quality. The optimal reserve price for bid-
der i is modified as s∗/ei, where s∗ satisfies ψ(s∗) = 0.
The proofs in Section 4 still hold if we replace vi and bi
with viei and biei respectively. Thus all results can be ex-
tended to weighted GSP. Besides, it is known that bidders’
payments are the same for the (dominant) truth-telling equi-
librium with VCG mechanism and the SNE with GSP mech-
anism. Hence, if we assume bidders in VCG auctions to have
i.i.d. values and to bid truthfully, all the results can be direct-
ly extended to VCG.

In future work, we will try other (non-zero) reserve prices
for sampling and investigate their convergence properties.
Besides, we will consider other strategic behavior model of
advertisers.
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