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Abstract

With the increasing popularity of location-aware social me-
dia applications, Point-of-Interest (POI) recommendation has
recently been extensively studied. However, most of the exist-
ing studies explore from the users’ perspective, namely rec-
ommending POIs for users. In contrast, we consider a new re-
search problem of predicting users who will visit a given POI
in a given future period. The challenge of the problem lies
in the difficulty to effectively learn POI sequential transition
and user preference, and integrate them for prediction. In this
work, we propose a new latent representation model POI2Vec
that is able to incorporate the geographical influence, which
has been shown to be very important in modeling user mobil-
ity behavior. Note that existing representation models fail to
incorporate the geographical influence. We further propose a
method to jointly model the user preference and POI sequen-
tial transition influence for predicting potential visitors for a
given POI. We conduct experiments on 2 real-world datasets
to demonstrate the superiority of our proposed approach over
the state-of-the-art algorithms for both next POI prediction
and future user prediction.

Introduction
With the increasing availability of location-aware social me-
dia data, such as check-ins to Points-of-Interests (POIs),
the problem of modeling users’ mobility behaviors and POI
recommendation has been extensively studied (Cho, My-
ers, and Leskovec 2011; Ye et al. 2011). Many variants
of the POI recommendation problem are also explored,
among which the next-POI recommendation problem has
recently attracted significant attention (Cheng et al. 2013;
Feng et al. 2015; He et al. 2016), which is to recommend
POIs for a user to visit in the near future.

Most of existing POI recommendation studies focus on
suggesting POIs for users from the users’ perspective. In
contrast, very little research has been done to predict visi-
tors for a location. In this paper, we investigate a new re-
search problem from the perspective of POI: Given a POI,
we predict the users who will visit this POI in the next few
hours. For example, given a restaurant and the current time,
we want to predict potential consumers who would visit this
restaurant in the next several hours. Obviously, identifying
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the potential visitors for locations is of great value. Among
many other applications, it can help POI holders to find po-
tential customers for marketing.

A user’s mobility is highly influenced by his recent visits
and his personal interest (Cheng et al. 2013). However, the
users’ check-in data are very sparse, and it is challenging to
model the sequential influence of POIs and user preference.
This is also the main challenge for predicting future visitors
for a given POI. The progress in neural network language
models demonstrates that the word2vec technique (Mikolov
and Dean 2013; Mikolov et al. 2013) is able to effectively
capture the sequential semantic relationships among words.
Very recently, the word2vec algorithm has been utilized to
model users’ sequential check-ins (Liu, Liu, and Li 2016).
However, the method (Liu, Liu, and Li 2016) has two limi-
tations. First, it fails to incorporate geographical influence of
POIs, i.e., users tend to visit nearby POIs, in the word2vec
model. The geographical influence is very important in mod-
eling user movement behaviors as shown in almost all the
previous works in POI recommendation. Second, it sepa-
rately models the sequential transition and user preference.
Since each check-in behavior is related to both the sequen-
tial transition and user preference, it is more reasonable to
jointly model these two factors.

To incorporate geographical influence, we propose a
novel latent representation model, called POI2Vec. In our
model, each POI is represented as a vector in a latent low
dimensional space, and the inner product of two vectors
reflects the relevance between two POIs. To learn the la-
tent vectors, we exploit the hierarchical softmax (HS) tech-
nique (Morin and Bengio 2005), which is widely used in
neural network language models by exploiting a binary tree
structure. For the hierarchical softmax, the key to achieve
good performance is constructing a proper binary tree over
items (Mnih and Hinton 2009). Instead of using Huffman
tree in word2vec, we develop a novel binary tree building
method, which is able to incorporate the geographical coor-
dinates of POIs. We hierarchically split the POIs into dif-
ferent regions, and then build a binary tree over the POIs in
each region. Since a POI may also influence POIs in adja-
cent regions, we assign a POI to multiple nearby regions.
In the generated binary tree, one POI may occur more than
once, which is able to capture the various relationships with
other POIs.



Furthermore, we model the user preference with the pro-
posed POI2Vec model, where each user is also represented
with a latent vector. We propose a model to jointly learn the
latent representations of the users and POIs by considering
both the user preference and sequential transition. To pre-
dict potential visitors for a POI, we consider both the users
with recent locations and the users whose recent positions
are unknown. For users with recent locations, we aggregate
the user preference and sequential transition for prediction.
For the other users, we only make use of the user preference.

The main contributions are summarized as follows.
• We propose a novel latent representation model POI2Vec,

which incorporates the geographical influence of POIs, to
predict the potential visitors for a location in the next few
hours. To the best of our knowledge, this is the first work
to incorporate the geographical influence in the frame-
work of word2vec.

• We develop a method to jointly learn the latent representa-
tion for users and POIs. We aggregate the user preference
and POI sequential influence to predict the future visitors
for a POI. This model can also be used to predict the next
POIs for a user.

• We conduct extensive experiments to compare our algo-
rithm with state-of-the-art approaches, and our method
significantly outperforms the baselines for both next POI
prediction and future user prediction.

Related Work
The location recommendation problem has been extensively
investigated (Lian et al. 2014; Li, Ge, and Zhu 2016). Most
of previous solutions are based on Collaborative Filtering
methods (Yuan et al. 2013a; Ye et al. 2011) or Factoriza-
tion models (Cheng et al. 2012; Li et al. 2015), and model
user preference by exploiting the geographical influence.
The problem of user recommendation for a location is also
studied (Yuan et al. 2013b; Zhao et al. 2015), which is to
recommend potential users for a POI. However, it does not
predict future users for the next several hours.

Recently, the next POI recommendation task has attracted
significant attention, which exploits the sequential transi-
tion, and various methods have been proposed. Some stud-
ies utilize the Markov Chain (Zhang, Chow, and Li 2014) or
Hidden Markov Chain model (Ye, Zhu, and Cheng 2013) to
model the sequential influence. Meanwhile, the other stud-
ies utilize the factorization model to model the personalized
sequential transition: (Cheng et al. 2013) exploits the Factor-
ized Personalized Markov Chain (FPMC) (Rendle, Freuden-
thaler, and Schmidt-Thieme 2010) to model the personalized
POI transition; (Feng et al. 2015) uses the Metric Embed-
ding to model the user preference and POI transition. Our
work differs from these next POI recommendation studies
in two aspects at least. First, we consider a new task from
a different perspective: finding the potential visitors in the
next few hours for a POI. Second, we use the latent repre-
sentation algorithm to jointly learn the user preference and
sequential transitions.

Recently, other features have been considered for the next
POI recommendation problem. For example, (Zhang and

Wang 2015; Zhao et al. 2016; Liu et al. 2016) consider the
temporal influence; (He et al. 2016) incorporates the cate-
gory transition pattern. Such works are complementary to
our work.

Word2vec techniques (Mikolov and Dean 2013) are de-
veloped for the neural network language models. There are
two efficient solutions (Mikolov et al. 2013): one is hier-
archical softmax, and the other is negative sampling. Al-
though word2vec techniques are proposed for natural lan-
guage processing, they have been adopted by various ap-
plications, such as next product recommendation (Wang et
al. 2015). In particular, (Liu, Liu, and Li 2016) utilizes the
word2vec technique to model the check-in sequence. How-
ever, as mentioned earlier, it fails to incorporate the geo-
graphical influence when modeling the sequential POIs, and
it is not a joint model. Different from existing word2vec
techniques, we propose a new model POI2Vec, which learns
the representation of POIs by considering the geographical
influence of POIs.

Future Visitor Prediction Problem
We denote the set of users by U , and the set of POIs by L,
where each POI l is associated with its geographical coordi-
nates 〈lLat, lLon〉. Let H be the historical check-in dataset.
Each check-in (u, l, t) means that user u visits location l at
time t. Given a POI, we aim to identify the potential visitors
who will visit the POI in the next several hours. The problem
is defined as follows.

Definition 1 (Future Visitor Prediction Problem) Con-
sider a set of users U and a set of POIs L. Given a POI
l, current time t, and time threshold τ , the problem aims to
identify a set of users who will visit this POI in the time pe-
riod [t, t+ τ ].

POI2Vec Representation Model
We first present a POI-to-vector (POI2Vec) representation
method to model the POI sequential transition. The novelty
of POI2vec is that it is able to incorporate geographical in-
fluence. Then we extend the POI2Vec to jointly model user
preference and POI sequential transition. Lastly, we intro-
duce approaches to predict future visitors for a given POI.

POI2Vec Model for Sequential Transition
The sequential transition between check-ins is very impor-
tant for predicting future visitors since a user’s subsequent
movement behavior is highly influenced by the previously
visited locations. When the time interval of two successive
check-ins is small, the next check-in is influenced by the pre-
vious one (Cheng et al. 2013). However, due to the sparsity
of check-in data, it is challenging to model the sequential
transition.

Latent Representation Method The recent progress in
neural network language models (Mikolov and Dean 2013;
Le and Mikolov 2014) indicates that latent representation
methods can effectively capture the sequential semantic re-
lationships among words. Our analysis on two check-in
datasets show that the distribution of POI frequency also



follows the power law distribution as does the word fre-
quency distribution. This motivates us to utilize the well-
known word2vec (Mikolov et al. 2013) technique to model
the check-in sequences.

We next introduce the basic word2vec framework to cap-
ture the POI sequential transition. Given a user u, and his
current location luc , the context C(luc ) is the POIs that u have
visited before luc within a predefined time period. We define
C(luc ) = {lui , 0 < ∆(lui , l

u
c ) < τ}, where ∆(lui , l

u
c ) is the

time interval between visiting lui and luc . The goal of POI se-
quential modeling is to estimate the probability of visiting a
POI given its contextual POIs.

We represent each POI l with a vector w(l) ∈ RD in
D dimension latent space. We adopt the Continuous Bag-
of-Words (CBOW) architecture (Mikolov and Dean 2013),
which is to predict an item given its contexts. The probability
of Pr(l|C(l)) is defined with a softmax function:

Pr (l|C(l)) = e(w(l)·Φ(C(l)))
/
Z(C(l)) (1)

where Φ(C(l)) =
∑

lc∈C(l) w(lc) is the sum of vector of
contextual POIs, andZ(C(l)) =

∑
li∈L e

(w(li)·Φ(C(l)) is the
normalization term.

It is computationally expensive to directly compute
Eq. (1) since calculating Z(C(l)) needs to enumerate each
item li ∈ L. To alleviate this issue, we adopt the hierar-
chical softmax (Morin and Bengio 2005), which is widely
used to compute softmax. The hierarchical softmax utilizes
a binary tree to organize the items. The leaves of the binary
tree correspond to the items. In the hierarchical softmax, the
structure of the binary tree is important for achieving good
performance (Mnih and Hinton 2009). The mostly widely
used tree generating method is Huffman tree based on fre-
quency of items since it can get the shortest average path
length, thus obtaining the best learning efficiency.

Incorporating Geographical Influence The geographi-
cal influence is a very important factor to model both the se-
quential transition and user preference as shown in previous
studies on POI recommendation. For example, a user is more
likely to visit nearby places in the next several hours. How-
ever, the existing frequency-based structure of hierarchical
softmax fails to capture the geographical influence. To solve
this problem, we develop a geographical binary tree struc-
ture for the POI2Vec model, which incorporates the spatial
information into the binary tree.

Since the nearby POIs have high relevance, they should
be assigned closely in the binary tree. We split the POIs into
a hierarchy of binary regions such that the nearby POIs are
more likely to be clustered into the same region. To build
the binary hierarchy for POIs, we recursively split each re-
gion into two equal size sub-regions, until at least one edge
of the regions is smaller than 2 × θ, where θ is the region
size threshold. In this way, the regions are rectangles larger
than θ × θ square. The regions should also be represented
in a binary tree manner. As illustrated in Figure 1, we firstly
divide the POIs into two equal regions R0 and R1. Then we
split R0 into regions R00 and R01, and split R1 into regions
R10 and R11.

𝑅0 𝑅1

𝑅00
𝑅01

𝑅10
𝑅11

𝑙4

𝑙1 𝑙2

𝑙3

Figure 1: The illustration of buliding binary tree over POIs

In the resulted binary tree, each POI is assigned to a single
region. For example, l1 is in region R01 and l2 is in region
R11 in Figure 1. However, this fails to capture the spatial
influences of POIs in different regions. For example, two
POIs l1 and l2 are close to each other, but they belong to two
different regions. To solve this issue, we further improve the
method by assigning a POI to multiple regions.

To assign a POI to multiple regions whose POIs may be
influenced by the POI, we consider the influence area of each
POI as users’ movement is influenced by the spatial distance.
The influence area is defined as a θ × θ square centered at
each POI. If the influence area of a POI l overlaps with a
region R in the binary tree, we assign l to region R. For in-
stance, as shown in Figure 1, the square centered at POI l1
overlaps with region R01 and R11, and thus POI l1 is as-
signed to region R01 and region R11.

Since the size of the influence area θ × θ is smaller than
the regions, it is easy to prove the following result.

Proposition 1 In the POI2Vec model, the number of regions
of a POI will be 1, 2 or 4.

We denote the set of regions of POI l by Ωl. For instance,
in Figure 1, Ωl3 = {R10}, Ωl1 = {R01, R11}, and Ωl4 =
{R00, R01, R11, R10}. The number of regions of POI for l3,
l1 and l4 are: |Ωl3 | = 1, |Ωl1 | = 2, and |Ωl4 | = 4.

If a POI is assigned to several regions, we compute
the probability distribution over these regions as follows:
The probability of l belonging to region Ri is Pr(Ri) =
Sl
Ri

/∑
Rk∈Ωl Sl

Rk
, where Sl

Ri
is the size of overlap be-

tween influence area of l and region Ri. For instance, the
region probability distribution of POI l1’s is: Pr(R01) = 0.7
and Pr(R11) = 0.3.

A region may contain many POIs, and we need to fur-
ther construct a hierarchy to organize these POIs. For each
region, we build a Huffman tree based on the frequency
of POIs by following the work (Mikolov and Dean 2013).
Therefore, in the generated binary tree, the upper levels are
the hierarchy of spatial regions, and the lower levels are hier-
archy of POIs in each region. Figure 2 illustrates the binary
tree generated by POI2Vec model. A POI may have several
paths. For example, l1 occurs twice in the generated binary
tree: one is in region R01 and the other is in R11.

In summary, the proposed POI2Vec method has two
advantages over the conventional Huffman tree struc-
ture (Mikolov and Dean 2013). First, it considers the geo-
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Figure 2: The binary tree generated by POI2Vec model

graphical influence of POIs in the process of building bi-
nary tree, and POIs under the same region node are ge-
ographically close to each other. Second, in the POI2Vec
model, a POI may occur multiple times in the binary tree,
while in conventional model, each POI only occurs once.
As demonstrated in (Mnih and Hinton 2009), the multiple
occurrence model would perform better than single occur-
rence model, since an item may have various relationships
with other items.

Once the binary tree is generated, we can effectively com-
pute the probability in Eq. (1) as follows.

Probability Estimation The hierarchical softmax model
approximates the softmax by estimating the probability of
a path from the root to the leaf node. In the binary tree,
leaf nodes are POIs and the others are inner nodes. Each
inner node can be treated as a binary classifier. The path to
leaf node l is defined as a sequence of inner nodes path =
(bl0, b

l
1, ..., b

l
n). Then the probability of observing l along the

path path can be estimated by

Pr (l|C(l))path =
∏

bli∈path
Pr(bli|Φ(C(l)). (2)

Each inner node b in the binary tree has a latent vector
Ψ(bli) ∈ RD, which can be viewed as the parameters of a
binary classifier. Here Pr(bli|Φ(C(l))) is defined as

Pr
(
bli|Φ(C(l))

)
= σ

(
Ψ(bli) · Φ(C(l))

)
, (3)

where σ(x) = 1/(1 + e−x) is a sigmiod function.
For example, as illustrated in Figure 2, one path for

item l1 is path1 = (b0, b1, b4, bi). For a classifier in the
binary tree, we define the left as “true” and right as “false”.
Then the probability of this path Pr (l1|C(l1))

path1 =
σ (Ψ(b0) · Φ(C(l1))) × (1− σ (Ψ(b1) · Φ(C(l1)))) ×
σ (Ψ(b4) · Φ(C(l1)))× σ (Ψ(bi) · Φ(C(l1))).

Since each POI may have several regions in the POI2Vec
model, a POI may correspond to multiple paths in the gen-
erated tree. We need to consider all of them for calculat-
ing the probability. We denote the set of paths for POI l
by P(l). Each path pathk is associated with a probability
Pr(pathk), which is the same with the probability of its
corresponding region Pr(Rk), where Rk is the region con-
tained in the path pathk. For instance, in Figure 2, POI l1
has two paths in the binary tree: path1 = (b0, b1, b4, bi)
and path2 = (b0, b2, b6, bj). Here path1 contains the region
R01, and path1 contains the region R11. Recall that the re-
gion probability distribution of POI l1 is Pr(R01) = 0.7 and
Pr(R11) = 0.3. Thus Pr(path1) = 0.7 and Pr(path2) =

0.3. The probability of observing l given context C(l) is re-
defined as
Pr (l|C(l)) =

∏
pathk∈P(l)

Pr(pathk)× Pr (l|C(l))pathk (4)

Note that in Eq. (1), the time complexity of calculat-
ing Pr (l|C(l)) is O(|L|). The number of leaf nodes in the
POI2Vec model is (a × |L|), where a is the average num-
ber of paths of all POIs, and is a constant (1 ≤ a ≤ 4)
based on Proposition 1. In a binary tree, the average path
length for (a× |L|) leaf nodes is O(log(|L|)). Therefore, in
Eq. (4), the time complexity of calculating one observation
is O(log(|L|)), which is greatly reduced from O(|L|).

Parameter Learning The objective of POI2Vec model is
to maximize the posterior probability of observing all se-
quential POIs, assuming the observations are independent
with each other:

Θ = arg max
Θ

∏
(l,C(l))∈H

Pr(l|C(l)), (5)

where Θ = {W (L),Ψ(B)} is the set of parameters. Here
W (L) indicates the latent representations of all the POIs
l ∈ L, and Ψ(B) is the set of parameters for the inner
nodes. Since there are (a×|L|) leaf nodes in the binary tree,
the number of inner nodes is (a × |L| − 1). We can learn
all the parameters by Stochastic Gradient Descent (SGD)
method (Rong 2014).

Extend POI2Vec Model for User Preference
User preference is another important factor for modeling
users’ mobility, and predicting potential users for the target
POI. It is necessary to model user preference in the model.
Previous work (Liu, Liu, and Li 2016) models user pref-
erence and sequential transition separately, which fails to
capture their interaction. We extend the POI2Vec model to
jointly learn the user preference and sequential transition of
POIs. Similar to POIs, each user u is also represented as a
vector x(u) ∈ RD in the latent space.

As reported in (Feng et al. 2015), the time interval be-
tween some consecutive POIs is large. For a check-in, if
there is no check-in in the last τ hours, only the user pref-
erence will be considered. In other words, for a check-in
without recent context, this check-in is only related to the
user preference. Similar to Eq. (1), the probability that user
u visits POI l is estimated by

Pr(l|u)) = e(w(l)·x(u))
/
Z(u) , (6)

where Z(u) =
∑

li∈L e
(w(li)·x(u) is the normalization term.

Similar to Pr(l|C(l)), Pr(l|u)) can be computed by the hi-
erarchical softmax.

For a check-in for which there exist recent historical
check-ins, this check-in is related to both the user prefer-
ence and contextual influence. We assume that user prefer-
ence and contextual influence are independent. Given a user
u and location context C(l), the probability of observing l is

Pr(l|u,C(l)) = Pr(l|u)× Pr(l|C(l)). (7)
Depending on the presence of context or not, the proba-

bility of observing a check-in is computed by

Pr(u, l, t) =

{
Pr(l|u,C(l)) if C(l) exists
Pr(l|u) otherwise

(8)



The objective of the model is to maximize the posterior
probability of observing all check-ins:

Θ = arg max
Θ

∏
(u,l,t)∈H

Pr(u, l, t), (9)

where Θ = {W (L), X(U),Ψ(B)} is the set of parameters.
Here X(U) is the set of latent representations for all the
users. We learn the parameters similarly as we do for the
POI2Vec model.

Predict Future Visitors
Once we learn the latent representations of users X(U) and
representations of POIs W (L), we can utilize them to find
users who will visit a POI in the future.

We first consider users who have recent check-ins in the
last few hours. Given a time point t, if a user has check-ins
in the time period [t − τ, t], we say this user is a user with
recent positions. For such users, we make use of their re-
cent positions to determine their inclination to visit the given
POI. If a user visits several POIs in the period [t − τ, t],
we only keep the latest POI lc, which represents his latest
location. Additionally, we also utilize the user preference.
Given a target POI l, and user u with his latest position lc,
the likelihood that u visits l in the near future is defined by:
F (x(u) · w(l), w(lc) · w(l)), where x(u) · w(l) reflects the
user preference and w(lc) · w(l) indicates the sequential in-
fluence. Here F() is an aggregation function to fuse them.

In this paper, we employ two popular aggregate functions
to combine the user preference and sequential influence. The
first aggregation is Max, which chooses the more important
factor by taking the larger value: F(a, b) = Max(a, b). The
second aggregation function is Sum, which linearly com-
bines the two factors: F(a, b) = Sum(a, b).

Due to the sparsity of check-in data, most of the users
do not have recent check-ins in the past several hours. For
such users, since their latest positions are unknown, we can
only exploit the user preference to predict the likelihood that
these users visit the given POI. The prediction score is com-
puted by x(u) · w(l).

To identify the potential visitors for a given POI, we need
to consider users with recent positions and users without re-
cent positions. For each user u ∈ U , we compute the score:

s(u, l) =

{
F ((x(u) · w(l), w(lc) · w(l)) with recent positions
x(u) · w(l) otherwise

(10)
We rank all the users by their scores and select top-K users

as the potential visitors for the target location.

Experiments
Experimental Setup
We conduct experiments on two publicly available datasets.
The first one is the Foursquare check-ins within Singa-
pore (Yuan et al. 2013a) and the second one is the Gowalla
check-ins within Houston (Liu et al. 2013). We remove the
users who have fewer than 5 check-ins, and the POIs which
have been visited by fewer than 5 users by following the
previous work. Table 1 summarizes the statistics of datasets.

For both datasets, we use the first 90% chronological
check-ins as the training set, the 90− 95% as the tuning set,

Dataset #User #POI #Check-in
Foursquare 2321 5596 194108
Gowalla 4627 15234 362783

Table 1: Statistics of two datasets

and the last 5% as test set. We consider two evaluation tasks.
The first one is to evaluate the quality of latent representa-
tion for sequential transition in the next POI prediction task.
The second task is to evaluate the accuracy of future visitors
prediction. Following (Feng et al. 2015), we set τ = 6 hours
in this paper. Based on the tuning set, the number of dimen-
sions D = 200, region size threshold θ = 0.1, learning rate
is set at 0.005.

Latent Representation for Sequential Transition
To evaluate the quality of latent representation based
on sequential POIs, we compare our proposed algorithm
POI2Vec with 4 baselines in the task of predicting next
POIs. (1) FMC: the factorized Markov chain model (Ren-
dle, Freudenthaler, and Schmidt-Thieme 2010), which uti-
lizes the Matrix Factorization to model the sequential transi-
tion. (2) ME: Metric Embedding model (Feng et al. 2015),
which projects every POI into one object in a latent Eu-
clidean space. (3) NS: the negative sampling technique for
word2vec (Mikolov and Dean 2013), which is used to model
POI sequences (Liu, Liu, and Li 2016). (4) HS: conventional
hierarchical softmax with Huffman tree (Mikolov and Dean
2013). Given a user and his current POI, we utilize the sub-
sequent POIs in the next 6 hours as the ground truth. Follow-
ing the work (Feng et al. 2015), we use two metrics: Pre@N
and Rec@N.

We compare the results of various embedding methods
in Figure 3. The latent representation models (NS, HS and
POI2vec) perform better than factorization model (FMC)
and Metric Embedding model (ME). This indicates that
latent representation methods are effective in modeling
check-in sequences. Our POI2vec consistently performs bet-
ter than HS, and this demonstrates that the proposed bi-
nary tree structure is better than the conventional Huffman
tree. For example, POI2Vec outperforms HS by 16% and
9% on Foursquare and Gowalla, respectively, in terms of
Pre@5. This is because POI2Vec incorporates the geograph-
ical influence into the binary tree. Overall, POI2Vec outper-
forms the other benchmark algorithms, which implies that
POI2Vec can effectively learn the representations of POIs.

Future Visitor Prediction
To evaluate the performance of predicting future visitors,
we compare our methods with 3 state-of-the-art baselines.
(1) FPMC: factorizing personalized Markov chains, which
linearly combines the user preference and Markov transi-
tion (Cheng et al. 2013). (2) PRME: personalized rank-
ing metric embedding, which linearly fuses the user prefer-
ence and Markov transition (Feng et al. 2015). (3) CWRAP:
which explores the context of locations to model user pref-
erence. In our methods, we learn the latent representations
of users and POIs by using the POI2Vec method. Then we
investigate 4 approaches to predict future visitors for POIs.
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Figure 3: The experimental results for sequential transition.
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Figure 4: The experimental results of predicting future visitors.

(1) U: We only utilize user preference to predict poten-
tial visitors. (2) URP: We only consider users with recent
positions. (3) MAX: Max aggregation function is used in
Eq. (10). (4) SUM: We utilize the Sum aggregation func-
tion to integrate the user preference and sequential influence.
Given a target POI and a time point, we utilize the users who
visit this POI in the next τ hours as the ground truth. We use
Pre@N and Rec@N as the metrics.

Figure 4 shows the experimental results. SUM achieves
better results than FPMC and PRME. For instance, SUM
outperforms FPMC and PRME by 29% and 32%, respec-
tively, in terms of Pre@5 on Foursquare dataset. Note that
all the three methods utilize the same linear aggregation.
The experimental result demonstrates that the quality of the
representation learned by POI2Vec is better than that by the
others. U preforms better than CWRAP, both of which uti-
lize the user preference to predict the potential visitors. This
also demonstrates that POI2Vec generates better users’ rep-
resentations than CWRAP. CWARP learns user representa-
tion and POI representation separately: It first learns the POI
representation, and the user representation is learned when
POI representation is fixed. The result shows that it is more
reasonable to jointly model the user preference and sequen-
tial transition. The performance of U is not as good as that
of SUM, since it does not exploit users’ recent positions.
URP is worse than SUM, because it only considers the users
with recent positions. This result shows that it is useful to
consider both users with recent positions and users with-
out recent positions. SUM outperforms MAX, and this in-
dicates that combining user preference and sequential tran-
sition helps to predict potential users.

Effects of Parameters
Effect of region size To investigate the effect of region
size threshold θ, we show the precision results in Figure 5(a).
We observe that the performance first increases as we en-
large the region threshold, and then it decreases slightly.
Small θ means that only very close POIs are clustered into

the same region, which fails to capture the relationships with
other POIs. The best performance is obtained at θ = 0.1,
which is about 11km on the earth. Hence, we set θ = 0.1 in
other experiments.

Effect of number of dimensions This experiment is to
evaluate the effect of the number of dimensions D. As
shown in Figure 5(b), the performance improves with the in-
crease ofD. We setD = 200 empirically in our experiments
by considering the trade-off between effectiveness and effi-
ciency.
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Figure 5: Effect of parameters.

Conclusions and Future Work
In this paper, we consider the problem of predicting the po-
tential users who will visit a given POI in the near future. We
propose a new latent representation model POI2Vec, which
incorporates the geographical influence of POIs in learn-
ing latent representations. We further develop a method to
jointly model POI sequential transition and user preference.
Experiments on two datasets demonstrate that our algorithm
significantly outperforms the state-of-the-art methods.

Several interesting research problems exist for further ex-
ploration. First, users’ movements are influenced by many
factors and we can consider other information such as the
temporal influence for the visitor prediction problem. Sec-
ond, our method of building binary tree is not tied for spatial
items and can be adopted for other applications, such as us-
ing the taxonomy of items for product recommendation.
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