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Appendix
A Proofs

A.1 Proof of Proposition 1
Proof. We extend the example in Figure 1 to a more gen-
eral form. That is, there are |O| “ n different paths from
the adversary’s initial location to the external world through
n different exit nodes with two time steps. Specifically, any
two paths do not intersect. On the other hand, there are n
different paths starting from the defender resource’s initial
location v0 to different exit nodes by one time step. Simi-
lar to the toy example in Figure 1, the probability of catch-
ing the adversary is Ud “ 1

n by the optimal non-real-time
strategy under the NE, while the probability of catching the
adversary is U‹d “ 1 by the optimal real-time strategy un-
der the NE. Then, U

‹
d

Ud
“ n, can be made arbitrarily large by

increasing n.

A.2 Proof of Theorem 1
Proof. We reduce the Set Cover problem to computing the
NE of NEST, which is described as follows: given a set U
of elements, a collection S Ď 2U of subsets of U, and an
integer m, determine whether there exists a set C Ď S of
size m or less, such that YCPC “ U.
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Reduction: The network
structure in NEST is demon-
strated by the right figure, where
va0 and vd0 are starting points for
the adversary and the defender
respectively. Between them,
there are three layers of nodes.
The S layer is fully connected
to vd0 where each node vC
corresponds to the set C in S. U layers I and II are two
identical layers representing all the elements in the ground
set U. These two layers are connected with each other in an
element-wise manner. Each node vIi in layer I is linked with
vC in the S layer if i P C. On the other hand, the adversary
can move from va0 to any node in the layer II. Moreover,
the defender has m resources, all located at vd0 initially. The
time horizon tmax is set to 2, and the nodes in U layer I are
characterized as exit nodes. It is easy to verify that this is a
polynomial-time reduction.

With a horizon of two time steps, suppose that the adver-
sary reaches vIIi at the first time step, and the defender is
aware of exit node vIi chosen by the adversary. If any one of
the defender’s resources reaches vC in the S layer with i P C
at the first time step, the adversary will be captured for sure.
On the other hand, if there is no set cover, then it is easy to
show that there is a positive probability that the adversary
will move to a vIIi such that the corresponding vIi is not pro-
tected by any defender resources and thus, the adversary can
escape. Thus, the NE of NEST answers the Set Cover prob-
lem: there exists a set C Ď S of size m or less covering the
ground set Uô in NE, the defender captures the adversary

with probability 1, which requires the defender to move the
m resources to nodes at S layer which fully protect U layer
I.

A.3 Proof of Theorem 2
Proof. Given x, we first show that conditions (3a)-(3c) are
satisfied. By Eq.(4), we have:

ř

lPAs0
fs0,l “

ř

lPAs0
Pxps0qxs0,l “

ř

lPAs0
xs0,l “ 1,

which is Eq.(3a). By Eq.(2c), Pxpsq “
ř

lPAs
xs,lPxpsq

p@s P SzStq. Moreover, by Eq.(1), @s P Szpts0u Y Stq,
ř

s1PSzSt:sPSs1,ls
Pxps

1qxs1,ls “
ř

lPAs
Pxpsqxs,l.

Further, by Eq.(4), @s P Szpts0u Y Stq,
ř

s1PSzSt:sPSs1,ls
fs1,ls “

ř

lPAs
fs,l,

which is Eq.(3b). Obviously, Eq.(3c) is obtained from
Eqs.(1), (2d) and (4). For each o P O,

Udpx, oq “
ř

sPSc:hsĎo Pxpsq

“
ř

sPSc:hsĎo

ř

s1PSzSt:sPSs1,ls
Pxps

1qxs1,ls

“
ř

sPSc:hsĎo

ř

s1PSzSt:sPSs1,ls
fs1,ls ,

“Udpf , oq.

Therefore, @x, Df defined by Eq.(4) such that Udpx, oq “
Udpf , oq (@o P O).

Given f , we define x in Eq. (5). Obviously, Pxpsqxs,l “
fs,l, and then Udpf , oq “ Udpx, oq. Therefore, @f , Dx de-
fined by Eq. (5) such thatUdpf , oq “ Udpx, oq (@o P O).

A.4 Proof of Theorem 3
Proof. After calling our BR algorithm, we can obtain the
best response policy starting from s0 against y in GpS,Aq.
Note that V ps0q is the defender utility by the best response
against y in GpS,Aq by our BR algorithm. Then V ps0q ě
Udpx,yq ě 0. If V ps0q ą Udpx,yq, π, i.e., the output at
Line 4, must contain some states s with V psq ą 0 or their
actions that are not in GpS1, A1q. Consequently, new states
and actions will be added to GpS1, A1q, and then GpS1, A1q
is expanded. In the worst case, GpS1, A1q “ GpS,Aq, where
IGRS will stop and V ps0q “ Udpx,yq. Therefore, IGRS will
converge with V ps0q “ Udpx,yq with a finite number of it-
erations because the number of states and actions inGpS,Aq
is finite. Therefore, Udpx,yq ě Udpx

1,yq p@x1q. Note that
Uapx,yq ě Uapx,y

1q p@y1q. Then, px,yq is an NE.

A.5 Proof of Theorem 4
Proof. Because Ohs1 in Gs1 is similar to Ohs2 in Gs2 , we
have

V πs1Ñs2 ps2q “
ÿ

Pπs1Ñs2
pscq“1,scPScXSGs2

:hscĎoPOhs2

y1o

“
ÿ

Pπs1
pscq“1,scPScXSGs1

:hscĎoPOhs1

yo

“ V πs1 ps1q.



Suppose πs1Ñs2 is not the best response in Gs2 against y1.
Then, there is a best response strategy π1s2 against y1 such
that V π

1
s2 ps2q ą V πs1Ñs2 ps2q. Let Oy1 be the support set of

y1. If Oy XOhs2 “ H, then V π
1
s2 ps2q “ V πs1Ñs2 ps2q “ 0,

which leads to a contradiction. If Oy1 X Ohs2 “ O˚ ‰

H, then V π
1
s2Ñs1 ps1q “ V π

1
s2 ps2q ą V πs1Ñs2 ps2q “

V πs1 ps1q, i.e., πs1 is not the best response in Gs1 against
y, which causes a contradiction. Therefore, πs1Ñs2 is the
best response in Gs2 against y1.

A.6 Proof of Lemma 1
Proof. If there is a strategy y such that V π

‹
s psq “

ř

oPOhs
yo

ř

scPScXSGs :hscĎo Pπ‹s pscq ă
ř

oPOhs
yo un-

der π‹s , then there is a path o˚ P Ohs such that
ř

scPScXSGs :hscĎo˚ Pπ‹s pscq “ 0. Therefore, if π‹s
is played against y with yo ą 0 (@o P Ohs ),
V π

‹
s psq “

ř

oPOhs
yo

ř

scPScXSGs :hscĎo Pπ‹s pscq “
ř

oPOhs zto
˚u yo

ř

scPScXSGs :hscĎo Pπ‹s pscq ă
ř

oPOhs
yo,

which contradicts the definition of π‹s in Eq.(9).

A.7 Proof of Theorem 5
Proof. Suppose π‹s is not optimal in NEST. Then, there is
a strategy y, and πs is the best response in Gs such that
with V πspsq ą V π

‹
s psq. Let Oy be y’s support set. If Oy X

Ohs “ H, then V πspsq “ V π
‹
s psq “ 0, which leads to a

contradiction. If Oy X Ohs “ O˚ ‰ H, then, by Lemma 1,
V π

‹
s psq “

ř

oPOhs
yo “

ř

oPO˚ yo ě V πspsq, which also
causes a contradiction.

A.8 Proof of Theorem 6
Proof. Suppose π‹s1Ñs2 is not optimal in Gs2 . Then, there
is a strategy y, and πs2 is the best response in Gs2 such that
with V πs2 ps2q ą V π

‹
s1Ñs2 ps2q. Let Oy be y’s support set.

If Oy X Ohs2 “ H, then V πs2 ps2q “ V π
‹
s1Ñs2 ps2q “ 0,

which leads to a contradiction. If Oy X Ohs2 “ O˚ ‰ H,

by the assumption V πs2 ps2q ą V π
‹
s1Ñs2 ps2q, then there is

a path o1 P Ohs2 which is not interdicted by π‹s1Ñs2 , i.e.,
Pπ‹s1Ñs2 pscq “ 0 (@sc P Sc X SGs2 with hsc Ď o1). Note
that, given a deterministic policy πs in Gs, for each path
o P Ohs , there is at most one capture state sc such that
Pπ‹s pscq “ 1 and hsc Ď o. For each o1 P Ohs1 , if there is
a capture state sc with Pπ‹s1 pscq “ 1 and hsc Ď o1, then
for its similar o2 in Ohs2 such that qphs1 , o1q “ qphs2 , o2q,
there is a capture state s1c with Pπ‹s1Ñs2

ps1cq “ 1 and
hs1c Ď o2 because resources at the key locations take the
same actions in semi-similar states in both subgames by
Eq.(10). Therefore, o˚ P Ohs1 with qphs1 , o

˚q “ qphs2 , o
1q

does not generate the history in any capture state reached
from s1 by π‹s1 , i.e., Pπ‹s1 pscq “ 0 (@sc P Sc X SGs1 with
hsc Ď o˚). It means that, for y1 with y1o ą 0(@o P Ohs1 ),

V π
‹
s1 ps1q “

ř

oPOhs1
y1o

ř

scPScXSGs1
:hscĎo Pπ‹s1 pscq “

ř

oPOhs1
zto˚u y

1
o

ř

scPScXSGs1
:hscĎo Pπ‹s1pscqă

ř

oPOhs1
y1o,
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Figure 3: The full game before and after using the optimal strate-
gies in subgames.

which contradicts Lemma 1 for π‹s1 . Therefore,
V π

‹
s1Ñs2 ps2q “

ř

oPOhs2
yo for y with yo ą 0 (@o P Ohs2 ),

and π‹s1Ñs2 is optimal in NEST by Theorem 5.

A.9 Proof of Theorem 7
Proof. This theorem is implied by Theorems 3–6.

B Illustration for Two Techniques
B.1 Mapping Between Subgames
As shown in Figure 3(a), in the full game, the defender’s
strategy space pS,Aq includes all states and actions, while
the adversary’s strategy space O includes all escaping paths.
Subgames ofGs1 ,Gs2 ,Gs3 ,Gs4 , andGs5 are part of the full
game starting from states s1, s2, s3, s4, and s5, respectively.
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Figure 4: Scenario

To illustrate the charac-
teristic of subgames, we
analyze the scenario shown
in the right figure. The
adversary arrives at v12
through two different direc-
tions generating history h1
(“ xva0 , v13, v12y) and his-
tory h2 (“ xva0 , v14, v12y),
respectively. Exit nodes are
v1 and v2.

We consider three initial
locations for two defender
resources: l1 “ pv11, v5q, l2 “ pv3, v4q, and l3 “ pv3, v5q.
By combining the observed adversary history with the loca-
tions of two defender resources, we consider five states s1 “
ppv11, v5q, h1q, s2 “ ppv11, v5q, h2q, s3 “ ppv3, v4q, h1q,
s4 “ ppv3, v4q, h2q, and s5 “ ppv3, v5q, h2q, which are the
initial states of five subgames:Gs1 ,Gs2 ,Gs3 ,Gs4 , andGs5 .

We consider time horizon tmax “ 4. Then, the set of paths
generating h1 isOh1

“to1, o2uwith o1“h1Yxv6, v1y“h13
and o2“h1Yxv7, v2y“h14, while CHh1

“th11, h12u with
h11“h1 ¨v6 and h12“h1 ¨v7,CHh11

“th13u, andCHh12
“

th14u. The set of paths generating h2 is Oh2
“to3, o4u with

o3 “ h2 Y xv6, v1y “ h23 and o4 “ h2 Y xv7, v2y “ h24,
while CHh2

“ th21, h22u with h21 “ h2 ¨ v6 and h22 “



h2 ¨ v7, CHh21 “ th23u, and CHh22 “ th24u. Then, Oh1

and Oh2 are similar after v12 because ηph1q “ ηph2q “ v12,
qph1, o1q “ xv6, v1y “ qph2, o3q, and qph1, o2q “ xv7, v2y “
qph2, o4q.
Oh1

is the adversary’s strategy space of Gs1 and Gs3 , and
Oh2

is the adversary’s strategy space of Gs2 , Gs4 , and Gs5 .
Thus, Gs1 and Gs2 are similar because p11, 5q “ ls1 “ ls2 ,
and Oh1

and Oh2
are similar after node ηphs1q “ v12

(hs1 “ h1). After we compute the best response in Gs1
(i.e., πs1 with πs1ps1q “ pv6, v5q transiting to a capture state
pp6, 5q, h11q such that V πs1 ps1q “ 0.2) against the adver-
sary strategy y with yo1 “ 0.2 and yo2 “ 0.1, we can map
it to Gs2 against the adversary strategy with yo3 “ 0.2 and
yo4 “ 0.1 (Theorem 4). That is, the best response strategy
for state s1 is taking l “ pv6, v5q, which is also the best
response strategy for its similar state s2 after the mapping.

Some computed strategies in subgames are the best re-
sponse against any adversary strategy. The defender strat-
egy in Gs3 against the adversary strategy with yo1 “ 0.2
and yo2 “ 0.1 is πs3 such that V πs3 ps3q “ 0.3: πs3ps3q “
pv2, v3q transiting to states s31 “ ppv2, v3q, h11q and s32 “
ppv2, v3q, h12q, πs3ps31q “ pv1, v2q transiting to capture
state s33 “ ppv1, v2q, h13q, and πs3ps32q “ pv2, v3q tran-
siting to capture state s34 “ ppv2, v3q, h14q. Indeed, by πs3
in Gs3 , given any adversary strategy, we have V πs3 ps3q “
yo1 ` yo2 (Lemma 1). That is, starting from s3, the adver-
sary will be captured certainly. This strategy is denoted as
π‹s3 , which is optimal in NEST (Theorem 5). Then, we can
define the payoff 1 for the defender in state s3 as shown in
Figure 3(b), i.e., the defender’s expected utility in subgame
Gs3 is yo1 ` yo2 . Then, if this subgame is reached again, the
defender’s expected utility yo1`yo2 is returned immediately.
π‹s3 in Gs3 can also be mapped to its semi-similar sub-

gameGs5 . InGs3 andGs5 , the adversary has the same move
space and the first defender resource in Gs3 and the first de-
fender resource in Gs5 has the same initial location (v3) in
their initial states s3 and s5, respectively. For strategy π‹s3 ,
the first resource will finally catch the adversary in state s33
or state s34 by moving to v2 first, then moving to v1 if she
observes the adversary history h11 (i.e., in state s31), or stay-
ing at v2 if she observes the adversary history h12 (i.e., in
state s32). That is, v3 is the key location in Gs3 . Therefore,
given the mapping of π‹s3 guaranteeing that the first defender
resource in Gs3 and the first defender resource in Gs5 take
the same action after observing the adversary’s same move
in both subgames, this mapping can guarantee optimality
(Theorem 6). That is, the first defender resource in Gs5 will
finally catch the adversary in state s53 “ ppv1, v5q, h23q or
state s54 “ ppv2, v5q, h24q if she moves to v2 first, then
moves to v1 if she observes the adversary history h21 (i.e., in
state s51 “ ppv2, v5q, h21q), or stays at v2 if she observes the
adversary history h22 (i.e., in state s52 “ ppv2, v5q, h22q)
when the first resource does not move. More specifically,
the optimal strategy for state s31 “ ppv2, v3q, h11q (note that
Pπ‹s31 “ 1) is taking l “ pv1, v2q, i.e., the first resource in
s31, locating at the key location v2 that is reached from v3 in
s1, moves to v1; and then the mapping strategy for its semi-
similar state s51 “ ppv2, v5q, h21q is taking l1 “ pv1, v5q,
i.e., the first resource in s51, locating at the key location v2
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Figure 5: Adding multiple best response strategies at one iteration.

that is reached from v3 in s5, moves to v1 while the sec-
ond resource in s51 stays at the current node by Eq.(10).
This π‹s3Ñs5 defined by Eq.(10) in Gs5 is optimal in the full
game. By π‹s3Ñs5 , as shown in Figure 3(b), we define the
payoff 1 for the defender in state s5, i.e., the defender’s ex-
pected utility in subgame Gs5 is yo3 ` yo4 . Similarly, Gs3
and Gs4 are semi-similar and π‹s3Ñs4 in Gs4 by Eq.(10) is
optimal in NEST.

B.2 Adding Multiple Strategies at One Iteration
For using our technique to add multiple best response strate-
gies at one iteration, the procedure of IGRS is shown in Fig-
ure 5. Specifically, before the convergence, we sample the
uniform adversary strategies based on the states that are part
of the best response and then call BRps0, 0q at Line 4 in IGRS
to compute the best response strategies against them. Here,
S˚ is the set of the states involved in the best response, A˚
is the set of actions involved in the best response, and a uni-
form strategy over Ohs means yo “ 1{|Ohs | (@o P Ohs ).
Especially, we sample a strategy with yo “ 1{|O| (@o P O)
at the initial step in IGRS (i.e., after s0 is added to S1) be-
cause we can compute the best response efficiently by us-
ing our effective pruning techniques including the mapping
technique. Each strategy will be sampled at most once.

C The Reason to Consider Similar Subgames
We consider the scenario shown in Figure 4 again. For sub-
gameGs1 we know that πs1 (πs1ps1q “ p6, 5q transiting to a
capture state s11 “ pp6, 5q, h11q such that V πs1 ps1q “ 0.2)
is the best response in Gs1 against the adversary strategy
with yo1 “ 0.2 and yo2 “ 0.1. Here, only the first resource
contributes to the interdiction, i.e., interdicting the adversary
in s11 due to ηph11q “ 6. Now we consider subgame Gs6
with initial state s6 “ pp11, 8q, h2q. Obviously, Gs1 and
Gs6 are semi-similar on l “ p11q that is also the key lo-
cation of Gs1 . Let us define the mapping strategy of πs1 as
πs1Ñs6 by Eq.(10). That is, πs1Ñs6ps6q “ p6, 8q. However,
πs1Ñs6 is not the best response in Gs6 against the adver-
sary strategy with yo3 “ 0.2 and yo4 “ 0.1 because taking
action p6, 7q in s6 will result in V ps6q “ 0.3 (larger than



V πs1Ñs6 ps6q “ 0.2). That is, given a best response (non-
optimal) strategy in Gs1 with the key location set l˚s1 , re-
sources in a semi-similar subgame Gs6 of Gs1 who are not
initially at nodes in l˚s1 may contribute to the interdiction,
which results in a better strategy than its mapping strategy.
Therefore, we cannot have the property similar to Theorem 4
between semi-similar subgames. However, Theorem 4 holds
between similar subgames.


