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Abstract
A common challenge in personalized user preference predic-
tion is the cold-start problem. Due to the lack of user-item
interactions, directly learning from the new users’ log data
causes serious over-fitting problem. Recently, many existing
studies regard the cold-start personalized preference prediction
as a few-shot learning problem, where each user is the task and
recommended items are the classes, and the gradient-based
meta learning method (MAML) is leveraged to address this
challenge. However, in real-world application, the users are
not uniformly distributed (i.e., different users may have differ-
ent browsing history, recommended items, and user profiles.
We define the major users as the users in the groups with large
numbers of users sharing similar user information, and other
users are the minor users), existing MAML approaches tend
to fit the major users and ignore the minor users. To address
this cold-start task-overfitting problem, we propose a novel
personalized adaptive meta learning approach to consider both
the major and the minor users with three key contributions:
1) We are the first to present a personalized adaptive learning
rate meta-learning approach to improve the performance of
MAML by focusing on both the major and minor users. 2)
To provide better personalized learning rates for each user,
we introduce a similarity-based method to find similar users
as a reference and a tree-based method to store users’ fea-
tures for fast search. 3) To reduce the memory usage, we
design a memory agnostic regularizer to further reduce the
space complexity to constant while maintain the performance.
Experiments on MovieLens, BookCrossing, and real-world
production datasets reveal that our method outperforms the
state-of-the-art methods dramatically for both the minor and
major users.

1 Introduction
Recommender Systems (RS) help people to discover the
items they prefer (Guo et al. 2017; Qu et al. 2016). In order
to train a well-performing personalized user preference pre-
dictor, enough interactions with users are indispensable. To
address this challenge, many researchers take advantage of
the offline supervised training methods, which leverage the
historical data (log data) to train the model. However, when
the log data is lacking, these supervised training methods
cause the over-fitting issues (Vanschoren 2018), which is
known as the cold-start problem.
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Figure 1: An example illustrating that MAML has limitations
in the cold-start user imbalanced dataset. Users 1, 2, 3 are the
major users and user 4 is the minor user.

To train a well-performing model in the cold-start prob-
lem, meta learning-based approaches are introduced (Lee
et al. 2019; Dong et al. 2020). Intuitively, learning with a
few samples can be viewed as a few-shot learning problem
and meta learning, especially gradient-based meta learning
(e.g., Model Agnostic Meta Learning, MAML (Finn, Abbeel,
and Levine 2017)), which aims to adapt to any task with
only a few steps of parameter update, has been proven as
one of the most successful approaches for these problems.
Thanks to its good generalization ability, MAML has already
been leveraged into various domains, including computer vi-
sion, natural language process, and robotics (Gui et al. 2018;
Madotto et al. 2019; Finn et al. 2017). Recently, in the RS
area, meta learning is introduced for the cold-start problem
for either users or items, which treats the users/items as tasks,
log data as samples, and learns to do fast adaptation when
meeting new tasks (Dong et al. 2020; Pan et al. 2019; Lee
et al. 2019; Luo et al. 2020).

However, these MAML methods assume that the distribu-
tion of tasks (users) is uniform. But in the recommendation
systems, the user distribution is not always balanced, i.e.,
the user profile, browsing history, as well as the features of



recommended items are not always uniformly distributed1,
which harms the performance of MAML. For example, re-
garding the user profile, as shown in Tab. 1, most values are
imbalanced. In terms of the browsing histories, the distri-
bution of the browsing histories is also non-uniform (Pan
et al. 2019). Therefore, simply learning from these data will
overfit the users with similar feature values since these users
own the major similar features and fitting these users can al-
ready achieve good-enough average prediction performance
(like the MSE results in Tab. 1), which is known as the cold-
start user (task) overfitting problem. To illustrate the problem
clearly, we regard a collection of users with similar feature
values as a group and define the users as the major users
when the number of users in these groups are large, and oth-
ers users are the minor users. Now, we give an example to
illustrate how imbalanced distribution harms the performance
of MAML: as shown in Fig. 1, assuming that an MAML strat-
egy aims to learn to do fast adaptation to the four cold-start
users (three major users (users 1-3) and one minor user (user
4)). Different locations in the blue square indicate feature
values (embeddings) for different users. Since three of them
are near each other (have similar feature values), the model
may not focus on the minor user (user 4) because fitting the
major users can already achieve good prediction performance.

To address these limitations, in this paper, we propose a
personalized adaptive meta learning approach to improve
the performance of MAML in the cold-start user preference
prediction problem. The main idea is to set different learning
rates for different users so as to find task-adaptive parame-
ters for each user. Our main contributions are as follows: 1)
We are the first to introduce a novel user-adaptive learning
rate based meta learning in RS to improve the performance
of MAML by focusing on both the major and minor users.
2) To provide better-personalized learning rates, we intro-
duce a method to find similar users as a reference and a
tree-based method to store users’ features for fast search.
3) To reduce the memory usage, we introduce a memory
agnostic regularizer to reduce the space complexity while
maintaining good prediction performance. Experiments on
MovieLens-1M, BookCrossing, and real-world production
datasets from one of the largest e-commerce platforms re-
veal that our method outperforms state-of-the-art methods
dramatically for both the minor and the major users.

2 Related Works
In this section, we discuss some related works including
gradient-based meta learning for the imbalanced dataset and
the meta learning for cold-start recommendation..

Gradient-Based Meta Learning for Task Overfitting
Problem. MAML based methods have been widely adopted
for studying the few-shot learning problem (Finn, Abbeel,
and Levine 2017; Li et al. 2017; Xu, van Hasselt, and Silver
2018; Chen et al. 2018; Ravi and Larochelle 2016; Lee and
Choi 2018). To consider task-adaptive challenges, the vector
of learning rates, the block-diagonal preconditioning matrix,
latent embedding, and interleaving warp-layers are designed

1They are collectively named as the feature values.

The ratio of features The major users The minor users
Age Gender Zipcode Occup Ratio MSE Ratio MSE

72.4% 71.7% 56.7% 64.0% 0.648 1.413 0.352 1.506

Table 1: The ratio ( the number of users having certain feature values
total number of users ) of

the top 30% largest number of feature values that users own2,
ratio of certain users ( the number of users in certain group

total number of users ), and the
Mean Squared Errors (MSE) from one of the MAML meth-
ods (Lee et al. 2019) in MovieLens. The method used to split
the cold-start major and minor users can be found in Sec. 5.

to learn parameters for different tasks respectively (Li et al.
2017; Park and Oliva 2019; Rusu et al. 2018; Flennerhag et al.
2020). However, those methods still do not explicitly con-
sider the task overfitting problem. To take this problem into
consideration, Bayesian TAML introduces different initiation
parameters and inner gradient approaches to handle class im-
balance, task imbalance, as well as out-of-distribution tasks
together by higher-order statistics (Flennerhag et al. 2020).
However, in RS, a users’ feature space is high-dimensional
and those statistics are still hard to represent the embedding
completely. As far as we know, we are the first to propose
a novel meta learning method focusing on the two key chal-
lenges in cold-start RS: 1) comparing with the common-seen
few-shot learning problem which does not explicitly have
the task information, the dimension of features for the task
information (like the user profile) in our problem is large, and
2) task does not obey the uniform distribution (even long-tail)
while the standard few-shot learning problem is assumed
uniformly distributed.

Meta Learning for Cold-start Recommendation. In RS,
meta learning is mainly used to do fast adaptation with only
few samples for users and items, including the item cold-
start/warm-up problem (Vartak et al. 2017; Pan et al. 2019)
and the user cold-start problem (Dong et al. 2020; Lee et al.
2019; Bharadhwaj 2019). For the item cold-start problem,
linear weight adaptation is introduced to represent the items
by the users who have viewed it (Vartak et al. 2017) while
Meta-Embedding is given to generate different embeddings
for cold-start processes (Pan et al. 2019). For the user cold-
start approaches, MAML is used to address the challenge by
learning fast adaptation to new users. But those approaches
do not consider the task overfitting problems. Differently,
we are the first to investigate the personalized learning rate
based meta learning to address the cold-start user overfit-
ting problem in RS, considering both major and minor users
together.

3 Problem Formulation
This section discusses the gradient-based meta learn-
ing in RS and how user imbalance affects the per-
formance of MAML. Formally, following (Lee et al.
2019; Finn, Abbeel, and Levine 2017), the objective
of meta learning in RS scenario can be described as:
argminθ

[
1
|τ |
∑
τi∈τ Lτi (θi)

]
s.t. θi = θ − α∇θLτi(θ),

where i is the i-th index for user ui ∈ U (or task, since



each user is treated as a task in our RS settings), Lτi is the
loss function for user i (e.g., mean squared error) and the
item-feedback set τi = {〈itemj

i , scoreji 〉N̂j=1} is the set of

items 〈itemj
i 〉N̂j=1 ( N̂ items in total) and their corresponding

feedbacks 〈scoreji 〉N̂j=1 (e.g., ranking score) by user ui. Lτ
is the loss for different tasks and τ ⊇ τi is the union set
of the item-feedback subsets for all the users. α is the (in-
ner) Learning Rate (LR). For simplification, we use Lτ to
replace 1

|τ |
∑
τi∈τ Lτi . Before we discuss the user overfitting

problem, we present a special case that helps us to analyze
the problem better: users are clustered into two groups with
densities p1, p2 (p1 ≥ p2). Users’ actual preferences are x1,
x2 for group 1 and 2 respectively. Now, we show that MAML
ignores the minor users in this case:
Lemma 1. Suppose that the loss function is defined as L =∑2
i=1 pi(θi − xi)2 , where x1, x2 are the actual preferences

for task 1 and 2, and θi = θ − α∇θLτi(θ), when p1 ≥ p2,
x1 ≥ x2, we have (θ∗1 − x1)2 ≤ (θ∗2 − x2)2, where θ∗ is the
optimal parameter θ.

All the proofs can be found in Appendix A. This case
indicates that the MAML method tends to optimize the major
users preferentially.

4 Methodology
This section presents a practical adaptive Learning Rate (LR)-
based meta-learning method to address the user overfitting
problem, including 1) why adaptive LR can solve the user
overfitting problem and how to apply adaptive LR by end-
to-end training, 2) a similarity-based learning approach to
improve the performance by considering similar users and
an approximated tree-based implementation for fast search,
and 3) a memory agnostic regularizer to further reduce space
complexity to constant.

4.1 Adaptive Learning Rate based MAML
To consider both major and minor users together, we propose
an adaptive learning rate approach to design different gradient
steps for different users :

argminθ

[
1

|τ |
∑

τi∈τ
Lτi (θi)

]
, s.t. θi = θ−α(hi)∇θLτi(θ),

(1)
where hi ∈ H is the i-th user’s feature embeddings3 (or
user embedding for short). The difference between ours and
MAML is that the LR in our method is a mapping from
the user embedding to a real number rather than a fixed LR.
Intuitively, with an adaptive learning rate, the meta agent can
fit any user even if it is far from the meta strategy (like the
user 4 in Fig. 1). Here, an analysis is given to illustrate the
adaptive learning rate can get better results in user imbalanced
dataset:
Lemma 2. Based on Lemma 1, we further defined as L′ =∑2
i=1 pi(θ

′
i − xi)2, s.t. θ′i = θ − α(hi)∇θLτi(θ), (x1, x2

3User’s feature embeddings can include different user informa-
tion like the user profile embeddings and user browsing history
embeddings.

are the target values for task 1 and 2, where x2 > x1) there
exists α1 and α2 that satisfying

(θ∗2 − x2)2 ≥ (θ∗′2 − x2)2and L∗ ≥ L∗′,

where L∗ and L∗′ are the optimal loss functions for standard
MAML and adaptive MAML respectively. θ∗′ is the optimal
θ′ parameters.

Lemma 2 indicates that learning a personalized adaptive
learning rate provides a lower loss value for minor users
than the standard MAML method, and is able to achieve
a lower total loss value than standard method (L∗ ≥ L∗′).
This coincides with our conjecture that the adaptive LR meta
learning methods perform better than the fixed LR methods
when facing an imbalanced distribution.

Therefore, the main challenge is to capture the relation-
ship among the user distribution, the parameters of network,
and user own learning rate. To construct it, we leverage the
end-to-end data-driven learning approach to map each user’s
features into different high-dimensional embedding and ob-
tain the individual learning rate adaptively. Based on this
idea, we propose the Personalized Adaptive Meta Learning
(PAML) method, a direct way to train the network by taking
the gradient descent of Eq. (1):

θ = θ − β
∑

τi
∇θLτi(θi)

(
I − α(hi;ψ)∇2

θLτi(θ)

)
,

ψ = ψ + β∇ψLτ (θ)
(∑

τi
∇ψα(hi;ψ)Lτi(θ)

)
.

where θ and ψ are the parameters for the model and learning
rate4. β is the outer learning rate. The two equations above
are drawn by the chain rule.

4.2 Approximated Tree-based PAML
The key for PAML is to get accurate personalized α(h) for
different users. However, directly using Fully-Connected
(FC) layers to learn α(hi) is hard since LRs are related to
the task distribution and FC layers are not capable to mem-
orize a large number of the users. To address the challenge,
one straightforward idea is to consider other similar users’
features as a reference since users with similar feature embed-
dings share similar LRs. Based on this idea, we introduce the
similarity-based method to find users with similar high-level
features (the embedding) and interests.

Formally speaking, when a new user ui with embedding
hi ∈ H comes, our goal is to find the users with the most sim-
ilar embeddings to ui. Here, we define a similarity function
sk : Rm × Rm → R to estimate the embedding similar-
ity between user ui and user uk. After computing top-K
nearest (the most similar) users with the values of similar-
ity, these values can be treated as a reference to obtain a
personalized adaptive learning rate. Thus, we can get an LR
function for a new user ui: α(hi) := α′(hi) + α̃, by consid-
ering the user information and the user similarities together,
where α̃ =

∑
k

sk∑
j sj+σ

α(hk) is the weighted average sum

4For simplification, we use α(hi) to replace α(hi;ψ) if not
specially mentioned.



of the nearest users’ LRs, sk is the k-th existing nearest user’s
similarity value to user i, α′(hi) is neural network modules
mapping from user embedding to a real value, and σ is a
small value (10−5). Here, we set the Gaussian kernel func-
tion sk = exp

(
−δ ‖hi − hk‖2

)
as the similarity function,

where δ is a constant and ‖ · ‖ is the 2-norm. Due to the lim-
ited space, details about how the kernel-based function can
be used to estimate the similarity can be found in Appendix
B.

Since we need to find the top-K nearest users in every
training step, it is necessary to find a fast searching approach
to accelerate the training process. Here, we leverage the kd-
tree (Muja and Lowe 2014) as the basic structure to store
users’ embeddings. Specifically, we first initialize the tree
structure with several users’ (≥ K) embeddings and its corre-
sponding LRs (the warm-up stage). Then, when a new user ui
with embedding hi comes, we search the K-th nearest users
in the tree. After that, we add the new user embedding and its
LR into that tree and rebuild that tree. We remove the least
frequent used user’s embedding and its LR when the tree-size
is larger than the memory size we set manually. Based on
this structure, the time complexity of searching each user can
be reduced from O(n) (brute force method) to O(

√
n) for

two-dimension embedding cases (Yianilos 1993).
However, this structure induces bias because the user em-

bedding layers are dynamically updated during the training
process but the previous users’ embeddings stored in the tree
nodes are fixed, causing the new embeddings and the old
embeddings unfitted. In order to coordinate them, we also
let the tree nodes be dynamically updated by gradient de-
scent: nodej = nodej − β∇nodejLτ , where nodej indicates
the j-th node value (the user’s embedding). The tree-based
structure will also be updated once the embeddings change.
The learning-rates stored in nodes are also updated similarly.

To further reduce space usage and speed up, we use the
approximated store and search methods in place of the exact
(precious) ones. That is, we can take advantage of the random-
ized kd-tree algorithm (Muja and Lowe 2014) to achieve the
approximation. These structures can be easily implemented
by the open-source python package (e.g., Pyflann (Muja and
Lowe 2013)). We name it as Approximated-Tree PAML (AT-
PAML). The loss function is the same as Eq. (1) and the
pseudo-code can be found in Algs. 1 and 2.

4.3 Regularizer-based PAML
However, for large-scale real-world applications (e.g., Net-
flix) which involve more than millions of users, even the
linear space complexity methods (the space size is propor-
tional to the number of user embeddings) to store user em-
bedding is unacceptable. Thus, a constant space complexity
algorithm needs to be proposed. A widely adopted method
to achieve long-term memorization is the continual learning
approach (Aljundi et al. 2018; Kirkpatrick et al. 2017), which
designs losses and training schemes to memorize the previous
tasks. Inspired by their works, we design an auxiliary loss
function to help the model to remember the users it has seen.

Algorithm 1: Personalized Adaptive Meta Learning
Input: User distribution p(U), the learning rate β.

1 Initialize the meta-policy with parameters θ;
2 for episode T do
3 sample N of users from p(U);
4 for each user i ∈ U do
5 Split the support set τi and query set τ̂i

randomly;
6 Extract user embedding hi;
7 if Approximated Tree-based method then
8 if Warm-up stage then
9 Set LR as α;

10 Store Node(hi, α);
11 else
12 〈hk〉Kk=1, 〈α(hk)〉Kk=1 =

Search Tree(hi);
13 s := {sk}Kk=1 =

{〈φ(hi), φ(hk)〉2H}Kk=1;
14 Obtain α(hi) =∑

k
sk∑
j sj+σ

α(hk) + α′(hi);

15 Store Node(hi, α(hi));

16 else if Regularized-based method then
17 Obtain the learning rate α directly by

α(hi);
18 Update θi ← θ − α(hi)∇θLτi(; θ) with

support set τi;
19 if Regularized-based method then
20 update θ by Eq. (4) with query set

τ̂ = 〈τ̂i〉Ni=1;
21 else if Approximated Tree-based method then
22 update θ by Eqs. (5) & (6) with query set

τ̂ = 〈τ̂i〉Ni=1. (Eqs. (4), (5) and (6) are shown
in Appendix C).

Output: a well-trained meta-strategy.

That is, for any two users ui and uj , memorizing the infor-
mation of those two users means the loss values for those
users are similar: i.e., ‖Lτi (θi)− Lτj (θj) ‖. Similarly, the
multi-user loss is

∑
ui,uj∈U ;i>j ‖Lτi (θi)− Lτj (θj) ‖. It is

easy to understand because forgetting a task means its loss
value for that task is higher than the loss value of other tasks.
If the model can obtain qualified and similar loss values for
each user, we can guarantee that the model has memorized
all existing users’ information.

However, it is hard to implement it into practice since
computing multi-user loss needs to calculate all the user-pair
losses together. To address this challenge, we turn to optimize
its upper bound:∑

ui,uj∈U;i>j
‖Lτi(θi)− Lτj (θj) ‖ ≤∑

i
(|U| − 1)||∂Lτi

∂θ
||2||α(hi)||+ C,

where C is a constant. The proof of the upper bound
can be found in Appendix A.2. Notice that the sum of



Figure 2: The network structure of the tree-based PAML. The right part is the network for inner update while the left part is
the tree-based module. Specifically, Fusing Layer indicates the concatenation of user and item embeddings, Add is an adding
function: α′(hi) + α̃. Layer1, . . . N means fully connected layers and S1, . . . S4 are similarity values.

Algorithm 2: Store and Search approaches
1 Def Store Node(hi, α):
2 if Memory is full then
3 Remove the embeddings and LR that are least

recently used;
4 Store the embeddings, LR, and build the standard

kd-tree by embedding (Friedman, Bentley, and
Finkel 1976);

5 return the kd-tree;
6 Def Search Tree(hi):
7 Search the nearest neighbours (Yianilos 1993) and

their corresponding LRs;
8 return the nearest neighbours and their

corresponding LRs ;

||∂Lτi∂θ ||
2||α(hi)|| can be divided into each task (user) loss

as a regularizer to enable the network to remember each
user information: i.e., for user i, the regularizer Lri is set as:
Lri = ||∂Lτi∂θ ||

2||α(hi)||. Intuitively, when Lri = 0, it indi-
cates that the meta strategy has already obtained a good score
for user i without training. Therefore, this term reinforces the
model to remember the users it meets. Moreover, since |U|−1
is a constant, we can replace it with a positive real number γ
to balance Lrτi and Lτi . We name the PAML with this REGu-
larizer as REG-PAML. Since we do not need any extra space
to store user embedding, the space complexity is constant.
The total loss function for REG-PAML is L =

∑
i Lτi+γL

r
i .

The relationship to implicit MAML (Rajeswaran et al. 2019)
can be found in Appendix C. The pseudo-code can also be

found in Alg. 1.

5 Empirical Studies
This section validates our methods in various environments
and tasks, including the rating prediction (in the MovieLens-
1M dataset and the BookCrossing dataset) as well as the
CTR prediction (the real-world production dataset). We also
analyze the performance of our methods for both the minor
and major users and conduct ablation studies.

5.1 Experimental Setup
Datasets. We use both open-source datasets as well as real-
world production dataset to evaluate the performance of our
methods in user imbalanced dataset, including MovieLens-
1M (Harper and Konstan 2015), BookCrossing (Ziegler et al.
2005) as well as production dataset (collected from Taobao
e-commerce platforms, which is somewhat similar to (Zhao
et al. 2018; Guo et al. 2019)). The data pre-processing scheme
is: 1) We rank the users with the number of their log data and
choose the 80% users least log data as the cold-start users (the
value 80% is based on the Pareto Principle). 2) We randomly
split the users by 7 : 1 : 2 for training, validation, and testing.
3) We tick out the users when they either have blank or wrong
features (including the ages are less than 10 or larger than
100 as well as the location features with garble) or the items
they viewed are less than a threshold (two items for rating
prediction and two clicked items for CTR prediction). 4) We
separate the support and query sets for each user with a ratio



of 80%:20% randomly. Details about the features we use,
and the statistics can be found in Appendix D.1 & D.3.

Major and minor users separating. To testify whether
our methods provide better prediction results for both minor
users and major users, we need to define a criteria to split
the major and minor users. However, as we mentioned above,
finding the minor users are hard because there is not an exact
method to precisely cluster the users by their features. Here
we define a simple but not completely precise rule to approx-
imately split the minor and major users: since distribution of
the feature embeddings is the key to classify whether a user
is minor or major user, we split the minor and major users
by the following criteria: if the user with more than two of
features which are in the top 30% largest number of feature
values set, we regard it as the major user. Otherwise, it is the
minor user. The major and minor users are 65% and 35% in
MovieLens, 72% and 28% in BookCrossing, and 71% and
29% in the Taobao dataset.

Baselines. To validate our methods, we compare them
with several State-Of-The-Art (SOTA) methods, including
MeLU (Lee et al. 2019), Meta-SGD (Li et al. 2017), and
transfer learning (Tan et al. 2018). 1) MeLU (Lee et al.
2019). MeLU is one o f the state-of-the-art gradient-based
meta-learning methods in RS. Since it is very similar to
other user-based meta learning (Finn, Abbeel, and Levine
2017; Bharadhwaj 2019), we use it as the standard gradient-
based meta-learning method. 2) Meta-SGD (Li et al. 2017).
Meta-SGD is an adaptive learning rate meta-learning method.
Comparing with standard MAML using a fixed (inner) learn-
ing rate, it uses different learning rates for each parameter.
But those adaptive parameters do not rely on the user em-
bedding. We use it as a baseline to testify the performance
of our embedding-based adaptive LR methods. 3) Transfer-
learning (Tan et al. 2018). We choose the standard transfer-
learning approach which has been widely adopted to address
the user imbalance issue as the baseline. Specifically, we train
the model with all users in training data and fine-tune the
trained model in each user support set in the test data.

Network structures. For the AT-PAML, as shown in
Fig. 2, it contains five modules, the embedding modules
(including the embedding layers for each feature respectively,
we use an FC layer to concatenate them together), the tree-
based module, the learning-rate module, the decision module
as well as the fusing module. The embedding modules are the
standard embedding layers (Pennington, Socher, and Man-
ning 2014). The tree-based module is what we discussed
in Sec. 4.2. The LR module is two FC layers with ReLU
as activation function. The decision module (except for the
last layer) is based on the FC layer with ReLU as activation
function. For the CTR prediction, the last layer is a two-
dimension softmax layer. For the rating prediction, it is a
real value without any activation function. The fusing layer is
to concatenate all user and item embeddings together. More
details can be found in Appendix D.2. For the REG-PAML
and PAML, except that they do not have the tree module,
other modules are similar.

Our methods. We validate our proposed methods, includ-
ing the Approximated Tree-based PAML(AT-PAML) as well
as Regularizer PAML (REG-PAML). For ablations, we imple-

ment vanilla PAML and REG-PAML with different γ values
(we use γ = 10−3 as default gamma value). We use Pytorch5

as the deep learning library and we use the ADAM as the op-
timizer (Kingma and Ba 2014). All the experiments are done
on a single GeForce GTX 1080 Ti. The production dataset
is obtained by the company’s recommendation pipeline. The
package for the two-tailed student’s t-test is from6. he running
time for REG-PAML and PAML are about 2 hours, and for
AT-PAML is about 4 hours on a single GTX 1080 GPU for
MovieLens. For memory space, the space size for AT-PAML
is 2.12GB, while that of the REG-PAML/ PAML is about
669MB in MovieLens.

Evaluation metrics. Following (Lee et al. 2019; Ren et al.
2019), we leverage different evaluation metrics to testify dif-
ferent aspects of our methods, including Mean Squared Error
(MSE) and average Normalized Discounted Cumulative Gain
(NDCG) for rating prediction results; as well as Area Un-
der the Curve (AUC) and weighted Negative Entropy Loss
(NEL) for CTR prediction results. To evaluate the perfor-
mance difference between the minor and major users, we
use the two-tailed student’s t-test for statistical hypothesis
test. The null hypothesis is that 2 independent samples (mi-
nor users and major users) have identical average (expected)
values. If the p-value is high, indicating that the expected
values of the minor users and major users are not different.
On the contrary, when the p-value is low, it shows that the
expected values of the minor users and major users are dif-
ferent. Therefore, when a method focuses on both minor and
major users, it does not have a low p-value. More detailed
definitions can be found in Appendix D.6.

5.2 Results and Discussions
Rating Prediction. We first analyse the rating prediction re-
sults. As shown in Table 2, our methods (AT-PAML & REG-
PAML) outperform other SOTA methods in different metrics,
especially for REG-PAML, which has reached 3 out of 6 best
results. For the AT-PAML, it has two best results and two
second-best results, implying that this method is also well-
performing. From the Figs. 5 and 6 in Appendix D.7, we can
find that REG-PAML has fewer outliners, indicating the ro-
bustness of REG-PAML. Moreover, in Fig. 5, Meta-SGD has
some outliners with large values, which might be the reason
that Meta-SGD does not perform well in the BookCrossing
dataset. Moreover, both the AT-PAML and REG-PAML have
lower third quartile comparing with SOTAs, showing that our
methods can achieve good-enough performance for most of
the cold-start users.

CTR prediction. We then testify our method in the CTR
prediction task. As shown in Figs. 3(a) and 3(c), Our methods
achieve the best (0.5882) and the second-best (0.5806) results
in the AUC metric comparing with other SOTA methods (the
best result of SOTA methods is 0.5796). One interesting phe-
nomenon is that for AUC, MeLU gets the worst result among
all the methods, indicating that the vanilla meta learning

5https://pytorch.org/
6https://docs.scipy.org/doc/scipy/reference/generated/scipy.

stats.ttest ind.html



MovieLens-1M BookCrossing
MSE ↓ Avg nDCG@3 ↑ Avg nDCG@5 ↑ MSE ↓ Avg nDCG@3 ↑ Avg nDCG@5 ↑

MeLU (Lee et al. 2019) 1.451±0.022 0.793± 0.002 0.800± 0.001 4.019 ±0.101 0.864±0.002 0.914±0.002
Meta-SGD (Li et al. 2017) 1.340± 0.054 0.773± 0.007 0.794± 0.007 5.197± 0.089 0.867± 0.001 0.921± 0.002

Transfer-Learning (Tan et al. 2018) 1.308±0.016 0.778± 0.001 0.796± 0.002 4.522±0.376 0.862±0.010 0.919±0.005
AT-PAML (ours) 1.322±0.007 0.788±0.003 0.806∗±0.006 3.991±0.114 0.852±0.001 0.930∗±0.002

REG-PAML (ours) 1.210∗± 0.029 0.779± 0.002 0.803± 0.001 3.928∗± 0.176 0.868± 0.001 0.917± 0.001

Table 2: Comparison of different methods on the MovieLens and the BookCrossing datasets. The best results are highlighted in
bold and the second-best results are in italic. Avg means average. The mean and standard deviation are reported by 3 independent
trials. ∗ denotes statistically significant improvement over the best baseline method (measured by t-test with p-value< 0.05).

(a) The AUC for different methods in test
dataset. TL is the abbreviation for transfer
learning. Higher is better.

(b) The box plot of the user NEL in test
dataset.

(c) The NEL for different methods in the
production dataset. Lower is better.

Figure 3: The performance and statistics of different methods in the production dataset. The results are reported by 3 independent
trials. The NEL for REG-PAML has statistically significant improvement over the best baseline method (measured by t-test with
p-value< 0.05).

(a) The distribution of minor and major user
LRs for REG-PAML (γ = 10−3).

(b) The distribution of minor and major user
LRs for REG-PAML (γ = 10−5).

(c) The distribution of minor and major user
LRs for PAML.

Figure 4: The distribution of LRs for REG-PAML (γ = 10−3), REG-PAML (γ = 10−5), and PAML.

does not work well in this dataset. For the NEL, our meth-
ods also get the top two results (-0.5382,-0.5426) among all
other methods (the best result of SOTA methods is -0.5080).
Moreover, MeLU does not perform well enough comparing
with ours, indicating the importance of building a learnable
mapping between user embedding to LR. Fig. 3(b) reveals
some statistical information on the NEL. We can find that
the mean and the first quartile of the NEL distribution for
Meta-SGD are larger than ours. This result reveals that our
methods can make better prediction results than other meta

learning methods for both the minor and major users.

Minor users. We conduct experiments to show whether
our methods help to improve the performance of minor users.
As shown in Tab. 4, AT-PAML outperforms all the SOTAs in
both minor users and major users significantly. Also, from the
two-tailed student’s t-test analysis, we find that the AT-PAML
has the highest p-value, indicating that with a high probabil-
ity the expected values for minor users and major users are
similar. We also notice that SOTA meta-learning methods
(MeLU and Meta-SGD) have relatively low p-values, reveal-



MovieLens
MSE Avg nDCG@3 Avg nDCG@5

REG-PAML (γ = 10−5) 1.509± 0.029 0.773± 0.004 0.799± 0.003
REG-PAML (γ = 10−4) 1.227± 0.026 0.779± 0.003 0.803± 0.002
REG-PAML (γ = 10−3) 1.210± 0.013 0.791*± 0.002 0.814*± 0.004
REG-PAML (γ = 10−2) 1.191*± 0.021 0.777± 0.002 0.803± 0.004

PAML 1.520± 0.034 0.787± 0.001 0.809± 0.004
AT-PAML 1.322±0.007 0.788±0.003 0.806±0.006

Table 3: Ablations of different methods on MovieLens-1M.
The best results are highlighted in bold and the second-best

results are in italic. Avg means average. The results are
reported by 3 independent trials. ∗ denotes statistically

significant improvement over PAML (measured by t-test
with p-value<0.05).

MovieLens-1M
MSE (MAU) MSE (MU) P-value

MELU 1.413± 0.025 1.506± 0.021 0.071
Meta-SGD 1.300± 0.059 1.403± 0.045 0.024

Transfer-Learning 1.288± 0.016 1.340± 0.013 0.227
REG-PAML (ours) 1.194± 0.019 1.236± 0.011 0.312

AT-PAML (ours) 1.284± 0.005 1.382± 0.011 0.018

Table 4: Results of different MSEs for MAjor Users (MAU)
and Minor Users (MU) on MovieLens. The best results are
highlighted in bold and the second-best results are in italic.
P-value is drawn by two-tailed student’s t-test between the

minor user MSEs and major user MSEs over the same
methods.

ing that the expected values for minor and major users are
different with high probability. The results reveal that our
methods are not only well-performing in the whole datasets
but also focus on both the minor and major users than the
SOTA meta-learning methods. Moreover, we also visualize
the LRs for each user, as shown in Fig. 4. Combining with
Tab. 3, the closer the LRs of minor and major users are, the
higher the MSEs, showing different LRs do play an important
role in different user preference predictions. One interesting
phenomenon is that during the experiments, we notice a fail-
ure case shown in Fig. 8 in Appendix D.7, which reveals
when the method is not capable to distinguish the minor users
and the major users, it cannot perform well. These results
also empirically show the significance of different LRs for
different users. Also, the t-SNE (Maaten and Hinton 2008)
visualization of user embeddings ( Fig. 11 in Appendix D.7)
show that our methods can distinguish the minor and major
users. Tab. 5 reveals that γ affects the performance of both
major and minor users.

Ablations. We do ablation studies to evaluate whether our
proposed modules work. As shown in Tab. 3, PAML with tree-
based structures and regularizer (γ = 10−3) perform better
than the vanilla one under the MSE and the Avg nDCG@3
metrics. Also, AT-PAML and REG-PAML achieve lower
values in the MSE metric for both minor and major users

MovieLens-1M
MSE (MAU) MSE (MU) P-value

REG-PAML (γ = 10−5) 1.464± 0.032 1.601± 0.021 0.008
REG-PAML (γ = 10−4) 1.210± 0.026 1.255± 0.024 0.226
REG-PAML (γ = 10−3) 1.196± 0.019 1.183± 0.024 0.738
REG-PAML (γ = 10−2) 1.194± 0.014 1.236± 0.011 0.312

PAML 1.471± 0.036 1.569± 0.031 0.038
AT-PAML 1.284± 0.005 1.382± 0.011 0.018

Table 5: Ablations of different methods for MAjor Users
(MAU) and Minor Users (MU) on MovieLens. The best

results are highlighted in bold and the second-best results
are in italic. Avg means average. P-value is drawn by

two-tailed student’s t-test between the minor user MSEs and
major user MSEs over the same methods.

(Tab. 5 in Appendix D.7). An interesting phenomenon is that
with the decrease of parameter γ, the MSE values become
higher while the p-values become lower, meaning that the
model performs worse and focuses more on major users. This
result reveals that the regularizer does play an important role
to achieve better performance and drive the model to focus
on both minor and major users.

6 Conclusion
In this paper, we propose a novel personalized adaptive meta-
learning method to address the user overfitting problem in
cold-start user preference prediction challenge with three
key contributions: 1) We are the first to introduce a person-
alized adaptive learning rate based meta learning approach
to improve the performance of MAML by focusing on both
the major and minor users. 2) We build an approximated
tree-based method to store different users’ features for fast
calculation and a similarity-based method to find similar
users as a reference to obtain accurate personalized learning
rates for different users. 3) To reduce the memory usage, we
propose a memory agnostic regularizer to reduce the space
complexity and maintain the memorizing ability by learning.
Experiments on MovieLens-1M, BookCrossing, and real-
world production dataset reveal that our method outperforms
the state-of-the-art methods dramatically for both the minor
users and the major users.
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A Omitted Proofs
A.1 Proofs of Lemmas 1 and 2
Lemma 1. Suppose that the loss function is defined as L =

∑2
i=1 pi(θi − xi)2 , where x1, x2 are the actual preferences for

task 1 and 2, and θi = θ − α∇θLτi(θ), when p1 ≥ p2, x1 ≥ x2, we have (θ∗1 − x1)2 ≤ (θ∗2 − x2)2, where θ∗ is the optimal
parameter θ.

Proof. Taking the gradient of L, we have:
∇θL = ∇θp1L1 +∇θp2L2,

= p1∇θ
(
x1 − θ − α∇θ(x1 − θ)2

)2
+ p2∇θ

(
x2 − θ − α∇θ(x2 − θ)2

)2
,

= p1∇θ(x1 − θ − 2α(θ − x1))2 + p2∇θ(x2 − θ − 2α(θ − θ − x2))2,
= 2p1(x1 − θ − 2α(θ − x1))(−2α− 1) + 2p2(x2 − 2α(θ − x2))(−2α− 1).

Solving∇θ′L = 0 above, we can get
2p1(x1 − θ − 2α(θ − x1))(−2α) + 2p2(x2 − θ − 2α(θ − x2))(−2α) = 0

→ θ∗ =
(2α+ 1)(x2p2 + x1p1)

(2α+ 1)(p2 + p1)
=

(x2p2 + x1p1)

(p2 + p1)
.

If p1 ≥ p2, putting θ∗ into L1 and L2, we have (θ∗1 − x1)2 ≤ (θ∗2 − x2)2, which concludes our proof.

Lemma 2. Based on Lemma 1, we further defined as L′ =
∑2
i=1 pi(θ

′
i − xi)2, s.t. θ′i = θ − α(hi)∇θLτi(θ), (x1, x2 are the

target values for task 1 and 2, where x2 > x1) there exists α1 and α2 that satisfying
(θ∗2 − x2)2 ≥ (θ∗′2 − x2)2and L∗ ≥ L∗′,

where L∗ and L∗′ are the optimal loss functions for standard MAML and adaptive MAML respectively. θ∗′ is the optimal θ′
parameters.

Proof. For L′, using the similar approach, we have:
∇θL′ = ∇θp1L′1 +∇θp2L′2
= 2p1(x1 − θ′ − 2α1(θ

′ − x1))(−2α1 − 1) + 2p2(x2 − θ′ − 2α2(θ
′ − x2))(−2α2 − 1)

Solving∇θL = 0 above, we can get

θ∗′ =
(2α1 + 1)2p1x1 + (2α2 + 1)2p2x2

(2α1 + 1)2p1 + (2α2 + 1)2p2

Then if taking α1 = α and α2 =
[(2α+1)

√
q1
q2
−1]

2 . We can check that (θ∗2 − x2)2 ≥ (θ∗
′

2 − x2)2 and L∗ ≥ L∗′.

A.2 Proof of upper bound in Sec. 4.3
Proposition 1. Suppose Lτi(θ) is Lipschitz continuity w.r.t user embedding, i.e., ‖Lτi(θ)−Lτj (θ)‖ ≤ κ‖hi − hj ‖. The upper
bound for the multi-user case is:∑

ui,uj∈U ;i>j
||Lτi (θi)− Lτj (θj) || ≤

∑
i

(
(|U| − 1)||∂L

∂θ
||2||α(hi)||

)
+ C,

Proof. We firstly consider a simple two-agent case: min ||Lτi (θi)− Lτj (θj) ||.
By Taylor series approximation, we have

||Lτi (θi)− Lτj (θj) || ≈ ||Lτi(θ) +
∂Lτi
∂θ

(θi − θ)− (Lτj (θ) +
∂Lτj
∂θ

(θj − θ))||.

Here7, We use the first-order Taylor series to approximate the loss function Lτi and Lτj . Then, through the triangle inequality,
we have:

||Lτi (θi)− Lτj (θj) ||

≤ ||∂Lτi
∂θ

(θi − θ)−
∂Lτj
∂θ

(θj − θ)||+ ||Lτi(θ)− Lτj (θ)||

= ||∂Lτi
∂θ

α(hi)∇θLτi(θ)−
∂Lτj
∂θ

α(hj)∇θLτj (θ)||+ ||Lτi(θ)− Lτj (θ)||

≤ ||∂Lτi
∂θ

α(hi)∇θLτi(θ)−
∂Lτj
∂θ

α(hj)∇θLτj (θ)||+ ||hi||+ ||hj ||,

7With a little abuse of the notation, we use
∂Lτi
∂θ

to replace
∂LT

τi
∂θ

.



For the first term, we have:

||∂Lτi
∂θ

α(hj)∇θLτi(θ)−
∂Lτj
∂θ

α(hi)∇θLτj (θ)||

= ||(∂Lτi
∂θ

)2α(hi)− (
∂Lτj
∂θ

)2α(hj)||

≤ ||∂Lτi
∂θ
||2||α(hi)||+ ||

∂Lτj
∂θ
||2||α(hj)||

The last inequality is obtained by the Cauchy–Schwarz inequality and the triangle inequality. The inequality above is the upper
bound of the distance of losses for any two users.

Now, we use the same approach to the multi-user case:
∑
ui,uj∈U ;i>j ||Lτi (θi)− Lτj (θj) ||,

Following the same approach, the upper bound for multi-user case is∑
i
(|U| − 1)||∂Li

∂θ
||2||α(hi)||+ |U|(|U| − 1)max

i
||hi||.

This inequality is drawn by the sum of the inequality for all users. The coefficient (|U| − 1) is obtained by the fact that for each
loss Lτi , we need to compute (|U| − 1) times. The coefficient |U| ∗ (|U| − 1) is by the fact that there are 2 ∗

(|U|
2

)
number of

maxi ||hi|| in the whole calculation. Moreover, for each θ, the right term maxi ||hi|| is a constant. Therefore, we only need to
focus on the left term

∑
i(|U| − 1)||∂L∂θ ||

2||α(hi)||. Setting |U| ∗ (|U| − 1)maxi ||hi|| = C, for the gradient descent methods,
the loss function and its upper bound can be written as:∑

ui,uj∈U ;i>j
||Lτi (θi)− Lτj (θj) || ≤

∑
i

(
(|U| − 1)||∂Li

∂θ
||2||α(hi)||

)
+ C.

This completes the proof.

Remark 1. REG-PAML can be explained as an approximated proximal regularization.

Recall the optimizer in (Rajeswaran et al. 2019):

Li(θi) +
λ

2
||θi − θ||2,

where λ is a constant parameter ( the regularization strength). If we expnad the last term ||θi − θ||2 by the Taylor series, we have

||θi − θ||2 = ||∂Li
∂θ

α(hi)||2 ≤ ||
∂Li
∂θ
||2||α(hi)||2, (2)

The last term is similar to our regularizer. Therefore, our method can be also explained as an approximated proximal regularization.

B Kernel-based PAML
This section we discuss how kernel-based method can calculate similarity. Formally speaking, when a new user ui with
embedding hi ∈ H comes, our goal is to find the users with the most similar interest to ui. We first define a (oracle) classifier as
g(h) : H→ R, which maps the embedding to a certain group (e.g., the fishing enthusiast group). That is, the classifier g(h) gives
the same output for the users with similar interest. Then, the model can find which users are similar to the new user ui. However,
finding this classifier is not an easy task. Inspired by the Maximum Mean Discrepancy (MMD) approach (Gretton et al. 2012),
which converts the problem of finding the classifier into calculating the distance of probability, we build the objective as:

s := infj∈U || supg∈G
∑

l
g(hli)− g(hlj)||2, (3)

where G = {g : ||g||H ≤ 1} is the set of classified functions (|| · ||H is the norm function in Hilbert space H). hl is the value
for l-th basis (h = (hl)Ml=1 ∈ RM , M is the embedding size). || supg∈G

∑
l g(h

l
i)− g(hlj)|| is exactly the MMD (Gretton et al.

2012), revealing the disparity between two distributions. In our setting, Eq. (3) can be explained as finding users with similar
interest to the user i in the embedding space if we regard each embedding component as random variable.

With Riesz’s representation theorem (Schölkopf et al. 2002), we have g(h) = 〈g, φ(h)〉, where φ(h) is the feature space map
from H to H . Applying similar approach from (Gretton et al. 2012), we obtain:

s = infj∈U || supg∈G〈g, φ(hi)− φ(hj)〉|| = infj∈U ||φ(hi)− φ(hj)||H,

where 〈·, ·〉 is the inner product. Here, ||φ(hi)−φ(hj)||H = 〈φ(hi)−φ(hj), φ(hi)−φ(hj)〉 = 〈φ(hi)−φ(hj)〉2H := κ (hi, hj).
Thus, we can calculate s = κ (hi, hj) without knowing the classifier, which can be used to estimate the similarity.



MovieLens-1M BookCrossing Taobao dataset

Number of the selected users 4832 7827 6591
Selected item numbers 3883 185973 45067

Selected features for items genre, direct, actor published year, publisher ctr, cvr, price, logctr, logcvr, logprice, ctrcvr, cvrprice, ctrcvrprice.
Features for users gender, age, occupation, zipcode state, country, age gender, age, occupation, zipcode, state, country

Table 6: Statistics of MovieLens-1M, BookCrossing, and Taobao dataset.

C Algorithms
The complete pseudo-code can be found in Algorithm 1. The searching and storing methods are in Algorithm 2. Recall the loss
functions and the gradient descents in the main text:

L =
∑

i
Lτi + γLri , (4)

θ = θ − β
∑

τi
∇θLτi(θi)

(
I − α(hi;ψ)∇2

θLτi(θ)

)
, (5)

ψ = ψ + β∇ψLτ (θ)∇ψα(hi;ψ)Lτi(θ). (6)

D MORE DETAILS ABOUT THE EXPERIMENTS
D.1 Data preprocessing step
The data pre-processing scheme is: 1) We rank the users with the number of their log data and choose the 80% users least log
data as the cold-start users (the value 80% is based on the Pareto Principle). 2) We randomly split the users by 7 : 1 : 2 for
training, validation, and testing. 3) We tick out the users when they either have blank or wrong features (including the ages are
less than 10 or larger than 100 as well as the location features with garble) or the items they viewed are less than a threshold (two
items for rating prediction and two clicked items for CTR prediction). 4) We separate the support and query sets for each user
with a ratio of 80%:20% randomly.

D.2 Hyper-parameters and Network Structures
The hyper-parameters for AT-PAML and REG-PAML can be found in Table 7.

For the network structures, we would like to discuss the embedding module and the learning-rate module. The embedding
layer is directly built from torch.nn.Embedding module8. we first use embedding layer for users’ features and item features
respectively and then we concatenate them together. Taking the MovieLens as an example, The code is as follows:

For the users’ features:

"""
user embedding.
"""

self.embedding_gender = torch.nn.Embedding(num_embeddings=self.num_gender,
embedding_dim=self.embedding_dim)

self.embedding_age = torch.nn.Embedding(num_embeddings=self.num_age,
embedding_dim=self.embedding_dim)

self.embedding_occupation = torch.nn.Embedding(num_embeddings=
self.num_occupation,

embedding_dim=self.embedding_dim)

self.embedding_area = torch.nn.Embedding(num_embeddings=self.num_zipcode,
embedding_dim=self.embedding_dim)

self.embedding_genre = torch.nn.Embedding(num_embeddings=self.num_genre,
embedding_dim=self.embedding_dim)

For the item’s features,

8https://pytorch.org/docs/master/generated/torch.nn.Embedding.html



"""
item embedding.
"""
self.embedding_genre = torch.nn.Embedding(num_embeddings=self.num_genre,
embedding_dim=self.embedding_dim)

Similar embedding layers are used for BookCrossing.

For the production dataset, due to the large corpus of items’ and users’ features of real-world dataset, it is better to extract
some useful features rather than putting them into the network together. Here, we use the based ranker to generate the item/user
features (Lin et al. 2019). Then, we directly leverage these features as the input of our models.

For the LR modules. During the experiments, we build the FC layer as:

def forward(self, x):
user_emb, item_emb = x
user_emb_exp = user_emb.repeat(item_emb.shape[0],1)
x = torch.cat((item_emb.float(), user_emb_exp.float()), 1)

# for lr
lremb = self.fc1_1(user_emb_exp.float())
lremb = F.relu(lremb)
lremb = self.fc1_2(lremb)
lr_local_raw = 0.001 * torch.sigmoid(self.fc_lr(self.lremb))

which shrinks the learning rate.

For AT-PAML, we introduce the warm-up (one epoch) stage to let the model store some embeddings and value first, the LRs
in warm-up stage is 0.0005.

The network structures for MeLU, transfer-learning, Meta-SGD are similar to PAML except that PAML has an extra LR
module.

The hyper-parameters for MeLU, transfer-learning, Meta-SGD are also similar to PAML except that MeLU has an fixed
inner LR (10−5).

We provide the Python code for the search and calculate methods to help our reader better understand our model. Some of the
codes are from9.

from pyflann import FLANN
self.kdtree = FLANN()

def search_and_calculate(self, lookup_key):
"""
A brief description for search function and kernel calculating function.
"""
lookup_indexes = self.kdtree.nn_index(

lookup_key.data.cpu().numpy(), min(self.num_neighbors, len(self.keys)))[0][0]
output = 0
kernel_sum = 1e-5
for i, index in enumerate(lookup_indexes):
kernel_val = self.kernel(self.keys[int(index)], lookup_key[0])
output += kernel_val * self.values[int(index)]
kernel_sum += kernel_val

output = output / kernel_sum
return output

9https://github.com/mjacar/pytorch-nec



Table 7: Hyper-parameters for PAML, AT-PAML and REG-PAML. d is 5 for Movielens, 10 for BookCrossing, and 2 for
production dataset.

Hyper-paramter AT-PAML REG-PAML PAML
Embedding size for each feature 32 32 32

Decision layer size (from first to last) 320,192,d 320,192,d 320,192,d
Learning rate layer size (from input to output) 64,32,1 64,32,1 64,32,1

Outer learning rate β 5e-5 5e-5 5e-6
Epochs 20 20 20

Batch size 32 32 32
Tree Memory size 10000 None None
Warm up epoch 1 None None

Warm up LR 5e-6 None None
Number of neighbours for inference 5 None None

regularizer parameter γ0 None 1e-3 None
δ 2 None None

The number of nearest users K 20 None None

D.3 Details of datasets.
The details of different datasets can be found in Table 6.

D.4 Computational resources and platforms
We use Pytorch10 as the deep learning library and we use the ADAM as the optimizer (Kingma and Ba 2014). All the experiments
are done on a single GeForce GTX 1080 Ti. The production dataset is obtained by the company’s recommendation pipeline. The
package for the two-tailed student’s t-test is from11.

D.5 Loss function
For the rating prediction tasks, we leverage the mean squared loss Lτi = 1

|τi|
∑
j∈τi (yij − ŷij)

2, where yij is item j’s rating
score predicted by user i’s prediction model and ŷij is the user i’s actual rating score for item j. For the CTR prediction tasks, we
take advantage of the negative entropy loss Lτi = 1

|τi|
∑
j∈τi −ωj ŷij log yij , where ωj is the weight for each label to handle the

imbalance issue between negative (not click) and positive (click) samples. Furthermore, for CTR prediction, since the negative
samples are far more than positive samples in real-world dataset, a weighted negative entropy loss is introduced to guide the
model to pay more attention to the positive samples.

D.6 Evaluation Metrics
We introduce MSE, Average nDCG@K, AUC, and Average NEL as our evaluation metrics. Here are the details:

1. MSE. MSE is calculated by
1

|Dtest|
∑
i∈Dtest

1
|τi|
∑
j∈τi (yij − ŷij)

2,where Dtest is the test dataset.

2. Average nDCG@K. Average nDCG@K is calculated by
1

|Dtest|
∑
i∈Dtest

DCGiK
IDCGiK

,where DCGiK =
∑K
r=1

2Rir−1
log2(1+r)

, Rir are the true rating of the user i for the r-th ranked item and

IDCGiK is the best possible DCGiK for user i.

3. AUC. AUC is a widely adopted metric to evaluate the performance of the classification task. We use it to validate our method
in the CTR prediction task.

4. Average NEL. Average NEL is defined as
∑
i∈Dtest
|Dtest|

1
|τi|
∑
j∈τi −ωj ŷij log yij . We set ωj as 0.1 for the non-clicked item and

0.9 for the clicked item. We also use it to validate our method in the CTR prediction task.

D.7 Extra Experiments and analysis
From Tab 3, the REG-PAML with γ = 10−2 performs better than REG-PAML with γ = 10−3 on average but we still choose
REG-PAML with γ = 10−3 as our standard method since it performs more robustly (lower variance values) than REG-PAML
with γ = 10−2 (0.021 v.s. 0.013).

10https://pytorch.org/
11https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest ind.html



(a) The local enlarged box plot for the distribution of MSE for
each user in the test dataset in BookCrossing with filter.

(b) The original box plot for the distribution of MSE for each user
in the test dataset in BookCrossing.

Figure 5: The Statistical analysis of different methods in BookCrossing.

From Fig. 5 and 6, we find that both the AT-PAML and the REG-PAML have lower first quantile, mean and third quantile in
MSE. Fig. 7 indicates that the bigger γ is, the more difference of LRs between the major and minor users is, revealing that the
regularizer does have the ability to let the model focus on both major and minor users. From Fig. 9, we discover that different
γ values and tree-based module affects the users with mean MSE rather than users with the best or the worst MSE values.
Moreover, from Fig. 10, we find that our methods still perform well in both the minor and major users comparing with SOTAs.

Moreover, from Fig. 11, we can find that our methods do have the ability to distinguish the minor users and the major users.
Although there are some mistakes, this is because the current criteria for finding the minor users may not be accurate enough.

Fig. 8 is a failure case, which reveals that when the model fails to perform well, it is also unable to distinguish the major and
minor users. This indicates that the adaptive learning rate does have a connection with the performance of both major and minor
users.



(a) The local enlarged box plot for the distribution of MSE for
each user in the test dataset in MovieLens.

(b) The original box plot for the distribution of MSE for each user
in the test dataset in MovieLens.

Figure 6: The Statistical analysis of different methods in MovieLens.



(a) The distribution of minor and major user LRs for REG-PAML
(γ = 10−3) in Movielen.

(b) The distribution of LRs for REG-PAML (γ = 10−3)
in MovieLens.

(c) The distribution of minor and major user LRs for REG-PAML
(γ = 10−5) in MovieLens.

(d) The distribution of LRs for REG-PAML (γ = 10−5) in
MovieLens.

(e) The distribution of minor and major user LRs for PAML in
MovieLens.

(f) The distribution of LRs for PAML in MovieLens.

Figure 7: The visualization of LRs for REG-PAML (γ = 10−3), REG-PAML (γ = 10−5), and PAML.



(a) The distribution of LRs for AT-PAML in Movielens. (b) The distribution of minor and major user LRs for AT-PAML
in MovieLens.

Figure 8: A failure case. In the failure case, except for the larger (outer) learning rate (5e− 4), other hyper-parameters are the
same as AT-PAML. The results are: MSE: 2.127, major MSE: 1.477, minor MSE: 3.148, nDCG@3: 0.782, nDCG@5: 0.792.

(a) The violin box of the MSEs for different methods in test
dataset.

(b) The local enlarged violin box of the MSEs for different meth-
ods in test dataset.

Figure 9: The performance and statistics of ablation methods in MovieLens. LT means the minor users, SH is the major users,
and TL is the abbreviation for transfer learning. Higher is better.



(a) The box plot of the MSEs for different methods in test dataset. (b) The local enlarged violin box of the MSEs for different meth-
ods in test dataset.

Figure 10: The performance and statistics of different methods in MovieLens. LT means the minor users, SH is the major users,
and TL is the abbreviation for transfer learning. Higher is better.

(a) The t-SNE visualization of REG-PAML (γ = 10−3). (b) The t-SNE visualization of PAML.

Figure 11: The t-SNE visualization of user embeddings in MovieLens. X and Y are different dimensions. The blue dots are for
major users while the orange dots are for minor users.


