
Commission Fee is not Enough: A Hierarchical Reinforced Framework for
Portfolio Management

Rundong Wang1∗, Hongxin Wei1∗, Bo An1, Zhouyan Feng2, Jun Yao2

1School of Computer Science and Engineering, Nanyang Technological University, Singapore
2 WeBank Co. Ltd., China

{rundong001, hongxin001}@e.ntu.edu.sg, boan@ntu.edu.sg, {yanisfeng, junyao}@webank.com

Abstract

Portfolio management via reinforcement learning is at the
forefront of fintech research, which explores how to opti-
mally reallocate a fund into different financial assets over the
long term by trial-and-error. Existing methods are impractical
since they usually assume each reallocation can be finished
immediately and thus ignoring the price slippage as part of
the trading cost. To address these issues, we propose a hierar-
chical reinforced stock trading system for portfolio manage-
ment (HRPM). Concretely, we decompose the trading process
into a hierarchy of portfolio management over trade execu-
tion and train the corresponding policies. The high-level pol-
icy gives portfolio weights at a lower frequency to maximize
the long term profit and invokes the low-level policy to sell
or buy the corresponding shares within a short time window
at a higher frequency to minimize the trading cost. We train
two levels of policies via pre-training scheme and iterative
training scheme for data efficiency. Extensive experimental
results in the U.S. market and the China market demonstrate
that HRPM achieves significant improvement against many
state-of-the-art approaches.

Introduction
The problem of portfolio management is widely studied in
the area of algorithmic trading. It aims to maximize the ex-
pected returns of multiple risky assets. Recently, reinforce-
ment learning (RL) models are gaining popularity in the fin-
tech community (Mosavi et al. 2020), with its great perfor-
mance in different fields, including playing games (Silver
et al. 2016; Mnih et al. 2013), controlling robots (Lillicrap
et al. 2015), and the Internet of things (Zhang and Tao 2020).

Due to the dynamic nature of markets and noisy finan-
cial data, RL has been proposed as a suitable candidate by
its own nature (Almahdi and Yang 2017; Jiang and Liang
2017). That is, RL can directly output trade positions, by-
passing the explicit forecasting step by the trial-and-error
interaction with the financial environment. Many existing
RL methods get promising results by focusing on various
technologies to extract richer representation, e.g., by model-
based learning (Tang 2018; Yu et al. 2019), by adversarial
learning (Liang et al. 2018), or by state augmentation (Ye
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et al. 2020). However, these RL algorithms assume that port-
folio weights can change immediately at the last price once
an order is placed. This assumption leads to a non-negligible
trading cost, that is, the price slippage – the relative devia-
tion of the expected price of a trade and the price actually
achieved. In a more realistic trading environment, the trad-
ing cost should be taken into consideration. Moreover, due to
the need of balancing the long-term profit maximization and
short-term trade execution, it is challenge for a single/flat RL
algorithm to operate on different levels of temporal tasks.

As our motivation, we observe that there is a hierarchy of
portfolio managers and traders in real-world trading. Portfo-
lio managers assign a percentage weighting to every stock in
the portfolio periodically for a long-term profit, while traders
care about the best execution at the favorable price to min-
imize the trading cost. This paper gives the first attempt to
leverage a similar idea to algorithmic trading. Concretely,
we develop a Hierarchical Reinforced trading system for
Portfolio Management (HRPM). Our system consists of a
hierarchy of two decision processes. The high-level policy
changes portfolio weights at a lower frequency, while the
low-level policy decides at which price and what quantity to
place the bid or ask orders within a short time window to
fulfill goals from the high-level policy.

Our contributions are four-fold. First, we formulate the
portfolio management problem with trading cost as a hierar-
chical MDP, and combine portfolio management and trade
execution by utilizing the hierarchical RL (HRL) framework
to address the issues of non-zero slippage. Second, as tradi-
tional HRL performs poorly in this problem, we propose the
entropy bonus in the high-level policy to avoid risk, and use
action branching to handle multi-dimensional action space.
Third, to make full use of the stock data, we pre-train multi-
ple low-level execution policies with an iterative scheme for
different stocks in the limit order book environment to min-
imize the trading cost, and then train a high-level policy on
the top of the low-level policies. Fourth, we compare HRPM
with baselines based on the historical price data and limit
order data from the U.S. market as well as the China mar-
ket. Extensive experimental results demonstrate that HRPM
achieves significant improvement against many state-of-the-
art approaches. Furthermore, the ablation studies demon-
strate the effectiveness of entropy bonuses and the trading
cost is a non-negligible part in portfolio management.



Problem Formulation
In this section, we introduce some definitions and the ob-
jective. Portfolio management is a fundamental financial
task, where investors hold a number of financial assets, e.g.,
stocks, bonds, as well as cash, and reallocate them period-
ically to maximize future profit. We split the time into two
types of periods: holding period and trading period as Fig. 1.
During the holding period, the agent holds the pre-selected
assets without making any purchase or selling. With the fluc-
tuations of the market, the assets’ prices would change dur-
ing the holding period. At the end of the holding period, the
agent will decide the new portfolio weights of the next hold-
ing period. In the trading period, the agent buys or sells some
shares of assets to achieve the new portfolio weights. The
lengths of the holding period and trading period are based
on specific settings and can change over time.
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Figure 1: Illustration of the portfolio management process.

Definition 1. (Portfolio) A portfolio can be represented as:

wt = [w0,t, w1,t, w2,t, . . . , wM,t]
T ∈ RM+1 and

M∑
i=0

wi,t = 1

(1)
where M + 1 is the number of portfolio’s constituents, in-
cluding one risk-free asset, i.e., cash, and M risky assets,
i.e., stock1. wi,t represents the ratio of the total portfolio
value (money) invested at the beginning of the holding pe-
riod t on asset i. Specifically, w0,t represents the cash in
hand. Also, we define w′

t as the portfolio weights at the end
of the holding period t.

Definition 2. (Asset Price) The opening prices pt and the
closing prices p′t of all assets for the holding period t are
defined respectively as pt = [p0,t, p1,t, p2,t, . . . , pM,t]

T and
p′t =

[
p′0,t, p

′
1,t, p

′
2,t, . . . , p

′
M,t

]T
. Note that the price of cash

is constant, i.e., p0,t = p′0,t = p0,t+1 for t ≥ 0.

Definition 3. (Portfolio Value) We define vt and v′t as port-
folio value at the beginning and end of the holding period
t. So we can get the change of portfolio value during the
holding period t and the change of portfolio weights:

v′t = vt

M∑
i=0

wi,tp
′
i,t

pi,t
and w′i,t =

wi,tp
′
i,t

pi,t∑M
i=0

wi,tp
′
i,t

pi,t

for i ∈ [0,M ]

(2)

1In this paper, we focus on the stocks for ease of explanation.
This framework is applicable to other kinds of assets.

Definition 4. (Market order) A market order refers to an
attempt to buy or sell a stock at the current market price,
expressing the desire to buy (or sell) at the best available
price.

Definition 5. (Limit Order) A limit order is an order placed
to buy or sell a number of shares at a specified price dur-
ing a specified time frame. It can be modeled as a tuple
(ptarget,±qtarget), where qtarget represents the submitted
target price, qtarget represents the submitted target quantity,
and ± represents trading direction (buy/sell).

Definition 6. (Limit Order Book) A limit order book (LOB)
is a list containing all the information about the current limit
orders.

We observe that a strategy pursuing a better selling
price is always associated with a longer (expected) time-
to-execution. However, the long time-to-execution could be
very costly, since a strategy might have to trade at a bad price
at the end of the trading period, especially when the market
price moves downward.

Definition 7. (Trading Cost) Trading cost consists of com-
mission fee and slippage: ctrade = ccom + cslippage. Com-
missions are fees that brokers charge to implement trades
and computed as ccom = λ

∑M
i=1 (qi,target × pi,avg), where

λ is the constant commission rate for both selling and buy-
ing. Slippage is the difference between the expected price of
a trade and the price actually achieved. Here we define the
slippage as the average execution price pavg achieved by the
strategy relative to the price at the end of the trading period
t: cslippage = (pavg − pt+1)× (±qtarget).

Considering the trading cost, the change of portfolio value
during a holding period and a trading period t satisfies:

vt+1 = vtw0,t −
M∑
i=1

[±qi,target × pi,avg + λqi,target × pi,avg]︸ ︷︷ ︸
Cash

+

M∑
i=1

[
(
vtwi,t
pi,t

± qi,target)× pi,t+1

]
︸ ︷︷ ︸

Assets Value

=
M∑
i=0

vtwi,tpi,t+1

pi,t
− ctrade,t

(3)
Our objective is to maximize the final portfolio value

given a long time horizon by taking into account the trad-
ing cost.

Hierarchical MDP Framework
In this section, we propose a hierarchical MDP framework
to handle the real-world trading scenarios with slippage. We
start by introducing the Markov decision process (MDP),
which is defined by the tuple: MDP = (S,A,P, r, γ, T ),
where S is a state space, A is an action space, P : S ×A×
S → R+ is a transition probability function, r : S → R is
a bounded reward function, γ ∈ (0, 1] is a discount factor
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Figure 2: Overview of HRPM

and T is a time horizon. In an MDP, an agent at state st ∈ S
performs an action at ∈ A. The agent’s actions are often de-
fined by a policy πθ : S → A parameterized by θ. A Q-value
function gives expected accumulated reward when execut-
ing action at in state st and following policy π in the future,
which isQπ(st, at) = E(st+1,···∼π)

[∑T
i=t γ

ir(si, ai)
]
. The

objective of the agent is to learn an optimal policy: πθ∗ =

argmaxπθ Eπθ
[∑T

i=0 γ
irt+i|st = s

]
.

A key challenge to the real-world portfolio management
is to balance the multifaceted and sometimes conflicting ob-
jectives of different decision processes. Portfolio managers’
main concerns are about longer-term profit. They typically
think of execution as a chore to fulfill the clients’ profit re-
quirements and risk preferences. While traders care about
best execution at the most favorable price to minimize the
trading cost, but might not always be aware of managers’
sources of profit and urgency of trade. Moreover, flat RL
cannot handle complex tasks with long time horizons. Port-
folio managers take many hours (sometimes days) while
agents need to make decisions every few seconds or faster.
The sampling frequency is limited by this time horizon is-
sue so that all available information about market dynamics
is not fully utilized. Consequently, electronic trading algo-
rithms are supposed to operate on multiple levels of granu-
larity.

Formally, we model the portfolio management with trad-
ing cost as two hierarchical MDPs, respectively for portfolio
management and trade execution:

MDPh = (Sh,Ah,Ph, rh, γ, Th)

MDPl = (Sl,Al,P l, rl, γ, T l)
where the detailed definitions are given in the following sub-
sections. The high-level policy and the low-level policy are
executed in different timescales. Concretely, the time hori-
zon for the high-level MDP is the total holding time of
the portfolio, and the timestep of the high-level MDP is
the holding period, which might consist of several trading
days. On the other hand, the time horizon for the low-level
MDP is a small trading window, e.g., a trading day. The
timestep of the low-level MDP could be several minutes for
the low-level policy to take actions. We use t as the high-
level timestep, and t′ as the low-level timestep.

The High-level MDP for Portfolio Management
The high-level MDP is modeled for the portfolio manage-
ment problem. That is, the trading agent gives new portfolio
weights for reallocating the fund into a number of financial
assets at the beginning of each holding period.

State. We describe the state sht = {Xt,wt} ∈ Sh with
historical stock basic features Xt, and the current portfo-
lio weights wt. For the M non-cash assets, the features
Xi,t for asset i are built by a time window k: Xi,t =
{xi,t−k+1,xi,t−k+2, · · · ,xi,t}, where xi,t presents the ba-
sic information of asset i at trading day t, including open-
ing, closing, highest, lowest prices and volume. Note that the
state can be enriched by adding more factors for better per-
formance. We only use basic daily information to describe
high-level state in this work for simplification and fair com-
parison.

Action. At the end of the holding period t, the agent will
give a high-level action aht based on the state sht to redis-
tribute the wealth among the assets as a subtask. The subtask
is determined by the difference between portfolio weights
w′

t and wt+1. Since w′
t has already been determined in the

holding period t according to Eq. (2), the action of the agent
in holding period t can be represented solely by the port-
folio vector wt+1. Consequently, we define the action as
aht = wt+1 in the continuous action space, and the action
at holds the properties in Eq. (1).

Reward. For each state-action pair, i.e., (sht , a
h
t ) at hold-

ing period t, according to Eq. (3), rt = vt+1 − vt.

The Low-level MDP for Trade Execution
The high-level policy assigns subtasks for the low-level pol-
icy. The subtasks are represented by an allowed time win-
dow with length of Twindow and the target trading quan-
tity qtarget. Twindow is based on manual configurations, and
qtarget,t of trading period t can be computed by qtarget,t =
v′t|wt+1 − w′t| � 1

p′t
, with assumption of a continuous mar-

ket. The subtasks can be considered as the trade execution,
where the trading agent places many small-sized limit or-
ders at different times at corresponding desired prices. As a
result, we model the subtask as the low-level MDP.

State. We maintain a state slt′ at each low-level time step
t′, considering the private states and the market states. The
private states of trade execution are remaining trading time



Twindow − Telapsed and the remaining quantity qtarget,t −
qfinished, where Telapsed is the used time and qfinished is
the finished quantity. The market states consist of the histori-
cal limit order books and multiple technical factors as shown
in Fig. 2b. Specifically, we collect historical LOBs in a time
window k′: LOBt′ = {lobt′−k, lobt′−k+1, · · · , lobt′−1},
where lobt′ is the limit order book at time step t′, including
price and volume.

Action. Each low-level action corresponds to a limit order
decision with the target price ptarget and the target quantity
±qtarget. Note that a zero quantity indicates that we skip
the current trading time step with no order placement, and
if an action at′ fails to be executed in the low-level time
step t′ due to an inappropriate price, the action will expire at
the next low-level time step (t′ + 1) without actual trading.
Any quantity remaining at the end of the trading period must
be cleaned up by using a market order, walking through the
lower prices on the bid side of the order book until all re-
maining volumes are sold.

Reward. Once receiving a limit order decision, the en-
vironment will match this order and feedback an executed
price ppaid. We define the low-level reward as: rlt′ =
− [λ(±qtarget × ppaid) + (ppaid − pt+1)× (±qtarget)]. So
the cumulative trading cost in a low-level episode will be
reported to the high-level policy to compute the high-level
reward ctrade,t = −

∑T l

t′ r
l
t′ .

Optimizing via Deep Hierarchical
Reinforcement Learning

In this section, we first present our solution for learning hi-
erarchical policies, then propose our solution algorithms re-
spectively for the two levels of MDPs. Finally, we introduce
two schemes: pre-training and iterative training for better fi-
nancial data usage.

Hierarchy of Two Policies
Our environment has two dynamics: the price dynamic and
the limit order book dynamic. We extend the standard RL
setup to a hierarchical two-layer structure, with a high-level
policy πh and a low-level policy πl. Different from the exist-
ing HRL algorithms, our high-level policy and the low-level
policy run in different timescales. As shown in Fig. 2a, each
high-level time step t consists of three steps:

1. The higher-level policy observes the high-level state sht
and produces a high-level action aht , which corresponds
to the new portfolio for the next step.

2. The high-level action aht would generate subtasks for the
low-level policy according to the gap between the current
portfolio and the new one.

3. The low-level policy produces the low-level action alt′
based on the low-level states slt′ . These actions would be
applied to the limit order dynamic for updating the current
portfolio.

High-level RL with Entropy Bonus
We consider the high-level problem as a continuous control
problem, since the high-level policy is supposed to gener-

ate a continuous vector according to Eq. (1). Previous works
utilize DDPG (Lillicrap et al. 2015) to generate portfolio
weights. Unfortunately, DDPG faces challenges in solving
our problem. First, DDPG highly relies on a well-trained
critic. However, the critic also needs lots of data, which is
limited in the financial area (Liang et al. 2018). Addition-
ally, the exploration in DDPG is dependant on the Gaussian
noise when applying actions into the environment. This ex-
ploration might fail due to choosing specific sequences of
portfolio weights and excluding other possible sequences of
portfolio weights. Also, we find that the portfolio weights
will converge to a few assets. That is, the agent only holds
few assets.

Here we utilized the REINFORCE algorithm (Sutton et al.
2000). One approach to address these issues is to introduce
an entropy bonus. In order to encourage the high-level policy
not to “put all the eggs in one basket”, we aim to find a high-
level policy that maximizes the maximum entropy objective:

πh
∗
= argmax

πh

Th∑
t=0

Esh0∼β0,sht+1∼p
h,aht ∼πh

[γhr̃h(sht , a
h
t )]

= argmax
πh

Th∑
t=0

Esh0 ,sht+1,a
h
t

[
γh
(
rh(sht , a

h
t ) + ηH(aht )

)]
(4)

where β0 is the intial high-level state distribution, sht+1 ∼ ph
is an abbreviation of sht+1 ∼ ph(·|sht , aht ), aht ∼ πh is an
abbreviation of aht ∼ πh(·|sht ), η determines the relative
importance of the entropy term versus the reward, H(aht )
is the entropy of the portfolio weights, which is calculated
as H(aht ) = H(wh

t+1) = −
∑
i w

h
i,t+1 logw

h
i,t+1, and r̃h is

an abbreviation of the summation of the high-level reward
and entropy bonus.

We use the softmax policy as the high-level policy

πh(sh, ah; θ) = eθ
T ·φ(sh,ah)∑
b e
θT ·φ(sh,b) for all sh ∈ Sh, ah ∈ Ah.

Let J(πhθ ) = Eπh
[∑T

t=0 γ
ttt

]
denote the expected finite-

horizon discounted return of the policy. According to the
policy gradient theorem (Sutton et al. 2000), we compute the
gradient ∇θJ

(
πhθ
)

= E
τ∼πθ

[∑T
t=0∇θ log πhθ (at|st)Gt

]
,

where Gt =
∑T−t
j=0 γ

j r̃h. Thus we update the high-level
policy parameters by θ ← θ + αγt∇θ log πhθ (at|st)Gt.

Low-level RL with Action Branching
The low-level problem is considered as a discrete control
problem with two action dimensions: price and quantity. We
utilize the Branching Dueling Q-Network (Tavakoli, Pardo,
and Kormushev 2018). Formally, we have two action di-
mensions with |pl| = np discrete relative price levels and
|ql| = nq discrete quantity proportions. The action value
Qld at state sl ∈ Sl and the action ald ∈ Ald are expressed
in terms of the common state value V l(s) and the corre-
sponding (state-dependent) action advantage Advld

(
s, ald

)
for d ∈ {p, q}:



Qld(s
l, ald) = V (sl) + (Advd(s

l, ald)−
1

n

∑
al
d
′∈Ad

Advd(s
l, ald

′
))

We train our Q-value function based on the one-step
temporal-difference learning:

yd = r + γQ−d (s
l′, argmax

al
d
′∈Ad

Qd(s
l′, ald

′
)), d ∈ {p, q} (5)

L = E(s,a,r,s′)∼D[
1

N

∑
d∈{P,I}

(yd −Qd(sl, ald))2] (6)

whereD denotes a (prioritized) experience replay buffer and
a denotes the joint-action tuple

(
pl, ql

)
.

Training Scheme
The financial data, including price information, multiple fac-
tors, and limit order book, is complex and high-dimensional.
In order to use the available data more efficiently, we utilize
the pre-training scheme and the iterative training.
Pre-training. In this work, we pre-train the low-level policy
in the limit order book environment. Specifically, we first
pre-select several assets, i.e., stocks, as our pre-trained data
sources. By individually training the corresponding buy-
ing/selling policy of each asset, we derive multiple low-level
policy parameters for these assets. In the general setting
of hierarchical reinforcement learning, the high-level pol-
icy and the low-level policy are only trained together in a
single environment. However, this training scheme suffers
from data insufficiency, since the agent’s interactions with
the environment are severely restricted due to the joint train-
ing, especially for the low-level policy training. By intro-
ducing the pre-training scheme, the low-level policy would
be trained with more and diverse interactions, thereby hav-
ing better generalization and robustness.
Iterative training. Following the iterative training scheme
in (Nevmyvaka, Feng, and Kearns 2006), we augment the
private state repeatedly in the low-level pre-training. Specif-
ically, we traverse the target quantity from (0, 0) to a max
target quantity qmax and the remaining time from 0 to a max
trading time window T ′max. In this way, the low-level policy
is trained with the augmented private states, thus can gener-
alize different subtasks assigned by the high-level policy.

Experiment
In this section, we introduce our data processing, baselines,
and metrics. Then we evaluate our algorithm with baselines
in different markets. Lastly, we analyze the impact of en-
tropy in reward and the trading cost by ablation study.

Dataset setting and Preprosessing
Our experiments are conducted on stock data from the U.S.
stock market and China stock market. The stock data are
collected from wind2. We evaluate our algorithm on differ-
ent stock markets to demonstrate robustness and practical-
ity. We choose stocks with large volumes so that our trading

2https://www.wind.com.cn/

action would not affect the market price. Specifically, we
choose 23 stocks from Dow Jones Industrial Average Index
(DJIA) and 23 stocks from SSE 50 Index for the U.S. stock
market and China stock market respectively. In addition, we
introduce 1 cash asset as a risk-free choice for both of the
two markets. Moreover, the period of stock data used in the
experiments is shown in Table 1.

the U.S. Market the China Market
Training 2000/01/03-2014/01/03 2007/02/08-2015/07/03
Evaluate 2014/01/06-2015/12/31 2015/07/06-2017/07/03

Test 2016/01/04-2018/05/22 2017/07/04-2018/07/04

Table 1: Period of stock data used in the experiments.

For the high-level setting, we set the holding period to 5
days and set the trading period to one day. We set the time
window of the high-level state as 10 days. We normalize
the stock data to derive a general agent for different stocks
in data pre-processing. Specifically, we divide the opening
price, closing price, high price, and low price by the close
price on the first day of the period to avoid the leakage of
future information. Similarly, we use the volume on the first
day to normalize the volume. For missing data which occurs
during weekends and holidays, we fill the empty price data
with the close price on the previous day and set zero volume
to maintain the consistency of time series . For the constant
commission rate, we set it to 0.2% on both two markets.

For the low-level setting, we set the time interval to 30
seconds. We set the time window of the low-level state as
opening hours of one day. Similarly, we also normalize the
prices in limit order books by dividing the first price at the
beginning of the period, as well as the volume. For missing
data which occurs during weekends and holidays, we fill the
empty price data with the previous price and set zero volume
to maintain the consistency of time series.

Baseline and Metrics
Baselines. We compare our methods with the baselines:
• Uniform Constant Rebalanced Portfolios (UCRP) (Cover

2011) keeps the same distribution of wealth among a set
of assets from day to day.

• On-Line Moving Average Reversion (OLMAR) (Li and
Hoi 2012) exploits moving average reversion to overcome
the limitation of single period mean reversion assumption.

• Weighted Moving Average Mean Reversion (WMAMR)
(Gao and Zhang 2013) exploits historical price informa-
tion by using equal weighted moving averages and then
learns portfolios by online learning techniques.

• Follow the Winner (Winner) (Gaivoronski and Stella
2000) always focus on the outperforming asset and trans-
fers all portfolio weights to it.

• Follow the Loser (Loser) (Borodin, El-Yaniv, and Gogan
2004) moves portfolio weights from the outperforming
assets to the underperforming assets.

• Deep Portfolio Management(DPM) (Jiang, Xu, and Liang
2017) is based on Ensemble of Identical Independent
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Figure 3: The portfolio value in the U.S. market.

ARR(%) ASR MDD DDR
UCRP 13.827 1.24 0.124 1.348
Winner -6.773 -0.474 0.454 -0.455
Loser -8.961 -0.911 0.371 -0.723

OLMAR 15.428 1.252 0.123 1.503
WMAMR 1.503 0.468 0.138 0.143

DPM 19.864 1.263 0.121 1.815
HRPM 27.089 1.246 0.117 2.403
DJIA 20.823 1.206 0.116 2.547

Table 2: Performance comparison in the U.S. market

Evaluators (EIIE) topology. DPM uses asset prices as
state and trains an agent with a Deep Neural Network
(DNN) approximated policy function to evaluate each as-
set’s potential growth in the immediate future and it is the
state-of-the-art RL algorithm for PM.

In addition, SSE 50 Index and Dow Jones Industrial Aver-
age Index (DJIA) are introduced as baselines in the compar-
ison of performance to demonstrate whether these portfolio
strategies are able to outperform the market.
Metrics. we use the following performance metrics for eval-
uations: Annual Rate of Return (ARR), Annualized Sharpe
Ratio (ASR), Maximum DrawDown (MDD) and Downside
Deviation Ratio (DDR).

• Annual Rate of Return (ARR) is an annualized average of
return rate. It is defined as ARR =

Vf−Vi
Vi
× Tyear

Tall
, where

Vf is final portfolio value, Vi is initial portfolio value, Tall
is the total number of trading days, Tyear is the number of
trading days in one year.

• Annualized Sharpe Ratio (ASR) is defined as Annual Rate
of Return divided by the standard deviation of the invest-
ment. It represents the additional amount of return that an
investor receives per unit of increase in risk.

• Maximum DrawDown (MDD) is the maximum observed
loss from a peak to a bottom of a portfolio, before a new
peak is attained. It is an indicator of downside risk over a
specified time period.

• Downside Deviation Ratio (DDR) measures the downside
risk of a strategy as the average of returns when it falls
below a minimum acceptable return (MAR). It is the risk-
adjusted ARR based on Downside Deviation. In our ex-
periment, the MAR is set to zero.
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Figure 4: The portfolio value in the China market.

ARR(%) ASR MDD DDR
UCRP 23.202 2.917 0.136 1.863
Winner -13.6 -1.201 0.368 -0.705
Loser -17.645 -2.1 0.293 -1.045

OLMAR 24.947 3.252 0.122 1.961
WMAMR 15.873 2.485 0.137 2.775

DPM 35.81 3.126 0.153 2.404
HRPM 48.742 3.813 0.131 3.325
SSE50 6.081 1.1 0.172 0.641

Table 3: Performance comparison in the China market

Comparison with Baselines
Backtest Results in the U.S. Market. Figure 3 shows the
cumulative wealth vs. trading days in the U.S. market. From
the plots of DJIA index, we can see this period is in a bull
market generally, although the market edges down several
times. While simple methods like Following the Winner and
Following the Loser fail, the portfolio values conducted by
most of the strategies keep climbing but still underperform
the market. Particularly, our HRPM is the only strategy that
outperforms the DJIA index, when DPM keeps almost the
same as the trend of the market.

We can compare the metrics of different strategies in de-
tail in Table 4. On ARR, HRPM performs much better than
the other methods and outperforms the market with 6.2%.
On ASR, most of methods get higher scores than DJIA index
and HRPM is the best. That is, our strategy could gain more
profit under the same risk. When it goes to MDD and DDR,
the results show that HRPM bears the least risk, even lower
than UCRP. The risk of our method is acceptable, although
a little higher than the DJIA index.
Backtest Results in the China Market. Figure 4 shows
cumulative wealth vs. trading days in the China market. As
we can see, SSE50 index first rises slowly, but from then on
it falls back to the starting point. During the rising stage,
HRPM keeps the best performance and the longest time.
When the portfolio values of other methods decline, our
strategy still hovers at the peak. This phenomenon demon-
strates that HRPM is not only superior to all the baselines, it
is also robust under different market conditions relatively.

Table 3 compares all metrics of different strategies in de-
tail. On all the four metrics, our HRPM achieves the best
among all the strategies. Specifically, HRPM outperforms
DPM by 13% and outperforms market by 42% on ARR.
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Figure 5: Trading cost during the trading periods.
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Figure 6: The effect of the entropy bonus in the U.S. Market.

ARR(%) ASR MDD DDR
HRPM, η = 0 17.092 1.207 0.191 1.631

HRPM, η = 0.01 25.172 1.201 0.183 2.275
HRPM, η = 0.05 27.089 1.246 0.117 2.403
HRPM, η = 0.1 20.33 1.346 0.124 1.754

DJIA 20.823 1.206 0.116 2.547

Table 4: Ablation on the effect of entropy in the U.S. market

Even considering return with risk by the ASR metric, our
strategies work better than others. Different from the perfor-
mance in the U.S. market, HRPM not only reaches the least
risk among these strategies but also performs better than the
market on MDD and DDR. It means that our strategy is able
to adapt to volatile markets with low risk.

Ablation Study
In our ablation study, we mainly answer two questions: (1)
why the commission fee is not enough to account for the
actual trading cost? (2) Does the entropy bonus work?
Commission Fee is Not Enough. In Fig. 5, we show the
trading cost at each trading period of testing in the China
market. The x-axis is the index of each trading period in
testing, and the y-axis is the cost. Note that a negative trading
cost means gaining profit in the trading period. A negative
trading cost happens when the submitted orders are finished
at a better price than the target price. We can see that the
commission fee is only a small part of the total trading cost
in most transactions, especially in large transactions.
Entropy Bonus. We show the effect of the entropy bonus in

Fig. 6. As η in the entropy bonus term in reward gets higher,
the agent would tend to give portfolios with more diversity.
While η is small, the agent might be more likely to hold
only a few stocks. Consequently, we may get a balance be-
tween the risk-control and profit by controlling η. As Table
4 shows, HRPM with η = 0.05 reaches the maximum ARR.
Note that HRPM with η = 0.1 has the lowest MDD than
others. By increasing the effect of the entropy, we can gain
more profit relative to the risk.

Quantity Price
13:51:00 7600 24.40
13:56:00 10900 24.41
13:56:00 5500 24.40
14:03:00 16000 24.64

13:18:30
13:28:30

13:38:30
13:48:30

13:58:30
14:08:30

Trading Time

24.06

24.16

24.26

24.36

24.46

24.56

24.66

St
oc

k 
Pr

ice

Sell

(a) Selling 40,000 shares

Quantity Price
09:30:30 6000 24.24
09:39:30 4000 24.32

14:34:00
14:44:00

14:54:00
09:37:00

09:47:00
09:57:00

Trading Time

24.18
24.28
24.38
24.48
24.58
24.68
24.78

St
oc

k 
Pr

ice

Buy

(b) Buying 40,000 shares

Quantity Price
11:00:00 1800 72.51
11:00:00 2000 72.50
11:00:30 600 72.64
11:00:30 900 72.56
11:00:30 2700 72.54
11:20:00 2000 71.76

10:39:00
10:49:00

10:59:00
11:09:00

11:19:00
11:29:00

Trading Time

71.35
71.45
71.55
71.65
71.75
71.85
71.95
72.05
72.15
72.25
72.35
72.45
72.55
72.65
72.75

St
oc

k 
Pr

ice

Sell

(c) Selling 10,000 shares

Quantity Price
10:00:00 2500 72.53
10:00:00 1700 72.55
10:00:00 3400 72.56
10:00:00 400 72.58
10:07:30 2000 72.48

09:39:30
09:49:30

09:59:30
10:09:30

10:19:30
10:29:30

Trading Time

71.2571.3571.4571.5571.6571.7571.8571.9572.0572.1572.2572.3572.4572.5572.6572.7572.8572.95

St
oc

k 
Pr

ice

Buy

(d) Buying 10,000 shares

Figure 7: The interpretation of the low-level policy. The line is the
mid-price of the market. The dark blue part is the trading window,
and the light blue part shows the price before and after. The table
inside the figure shows the finished trades.

Trading Strategy Interpretation
Here, we try to interpret the underlying investment strategies
of the low-level policy. We show the trades that happened in
the trading period in Fig. 7. Fig. 7(a)(c) shows that the low-
level policy tries to sell orders at a relatively high position. It
first sells part of the quantity at the beginning of the trading
period. Then it sells the rest at the following local maximum.
In this way, the low-level policy can avoid missing potential
growth and decline. We can get the same conclusion for buy-
ing in Fig. 7(b)(d).

Conclusion
In this paper, we focus on the problem of portfolio man-
agement with trading cost via deep reinforcement learning.
We propose a hierarchical reinforced stock trading system
(HRPM). Concretely, we build a hierarchy of portfolio man-
agement over trade execution and train the corresponding
policies. The high-level policy gives portfolio weights and
invokes the low-level policy to sell or buy the correspond-
ing shares within a short time window. Extensive experimen-
tal results in the U.S. market and China market demonstrate
that HRPM achieves significant improvement against many
state-of-the-art approaches.
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