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Abstract

This paper studies a weakly supervised domain adaptation
(WSDA) problem, where we only have access to the source
domain with noisy labels, from which we need to transfer use-
ful information to the unlabeled target domain. Although there
have been a few studies on this problem, most of them only
exploit unidirectional relationships from the source domain
to the target domain. In this paper, we propose a universal
paradigm called GearNet to exploit bilateral relationships
between the two domains. Specifically, we take the two do-
mains as different inputs to train two models alternately, and
a symmetrical Kullback-Leibler loss is used for selectively
matching the predictions of the two models in the same do-
main. This interactive learning schema enables implicit label
noise canceling and exploit correlations between the source
and target domains. Therefore, our GearNet has the great po-
tential to boost the performance of a wide range of existing
WSDA methods. Comprehensive experimental results show
that the performance of existing methods can be significantly
improved by equipping with our GearNet.

Introduction
In the problem of domain adaptation, we aim to train clas-
sifiers for data from the target domain by leveraging auxil-
iary data sampled from related but different source domains
(Combes et al. 2020; Zhang et al. 2013; Pan and Yang 2009;
Dong et al. 2021a, 2020). Most of the existing domain adapta-
tion studies assume that the source domains are clean datasets
with accurate annotations. However, it is usually expensive
and time-consuming to collect such large-scale and correctly
labeled datasets in some real-world scenarios (Frénay and
Verleysen 2013; Ghosh, Kumar, and Sastry 2017). To al-
leviate this problem, an increasing number of researchers
started to investigate weakly supervised domain adaptation
(WSDA), where only source domain data with noisy labels
and unlabeled target domain data are available.

To improve the model robustness against label noise from
the source domain, some WSDA algorithms (Shu et al. 2019;
Liu et al. 2019; Yu et al. 2020) were developed to specially
reduce the negative impact of label noise while minimizing
the distribution discrepancy of two domains. For example,
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TCL (Shu et al. 2019) selects clean and transferable samples
from the source domain guided by a transferable curricu-
lum and Butterfly (Liu et al. 2019) picks small-loss samples
from both the source domain and target domain. Similarly,
DCIC (Yu et al. 2020) emphasizes clean and transferable
source samples by an estimated transition matrix. Although
these methods achieve acceptable performance, they only
exploit the supervision information from the source domain
to prevent the model from overfitting to label noise, and then
transfer the learned information from the source domain to
the target domain. In other words, these methods only ex-
ploit unidirectional relationships from the source domain to
the target domain. However, if we further consider exploit-
ing the pseudo supervision information from the unlabeled
target domain, the relationships between the two domains
are exploited in a bilateral way. Consequently, richer super-
vision information could be discovered for combating the
label noise and the gap between the two domains would be
narrowed. To the best of our knowledge, we are the first to
explore the benefit of utilizing pseudo supervision knowledge
from the target domain in improving the robustness against
noisy labels from the source domain.

This paper proposes the first universal paradigm to exploit
bilateral relationships between the source domain and the
target domain. Specifically, we train two models on the two
domains respectively in an alternate manner, and the whole
training process consists of four main steps: 1) training model
A on source domain data with noisy labels, 2) using model A
to generate pseudo labels for target domain data, 3) training
model B on pseudo-labeled target domain data with regular-
ization on the consistency of source-domain class posteriors
of model B and model A, 4) training model A on labeled
source domain data with regularization on the consistency of
target-domain class posteriors of model A and model B. We
iterate from step 2 to step 4 multiple times until the training
process stops. In this way, the pseudo supervision informa-
tion in the target domain can be discovered and leveraged to
improve the model robustness against label noise from source
domain. It is worth noting that our proposed paradigm is a
general WSDA framework to enhance the model robustness.
Therefore, it can be easily incorporated into existing WSDA
algorithms for further improving the performance of those
methods.

To verify the effectiveness of our proposed GearNet, we



conduct extensive experiments on widely used benchmark
datasets, and experimental results demonstrate that our Gear-
Net can significantly improve the performance of existing
robust methods.

Related Work
Unsupervised Domain Adaptation. Unsupervised do-
main adaptation (UDA) has gained considerable interests in
many practical applications recently (Shao, Zhu, and Li 2014;
Hoffman et al. 2018, 2014; Ghafoorian et al. 2017; Kamnitsas
et al. 2017; Wang and Zheng 2015; Blitzer, McDonald, and
Pereira 2006; Fang et al. 2021b; Dong et al. 2021b), which
aims to learn a model on data from the labeled source do-
main and transfer the learned information to a new unlabeled
domain with distribution shift (Pan and Yang 2009). The key
to the success of UDA is to learn a latent domain-invariant
representation by minimizing the difference between the two
domains (i.e., domain discrepancy) with certain criteria, such
as maximum mean discrepancy (Pan et al. 2010), Kullback-
Leibler divergence (Zhuang et al. 2015), central moment
discrepancy (Zellinger et al. 2017), and Wasserstein distance
(Lee and Raginsky 2017). Besides, some studies utilized
the domain discriminator in an adversarial manner to mini-
mize the domain discrepancy, like domain-adversarial neural
network (Ganin et al. 2016) and Adversarial discriminative
domain adaptation (Tzeng et al. 2017). More recently, self-
training based methods (Chen et al. 2020; Zou et al. 2019)
have been proposed for UDA, which are based on the mo-
tivation that the domain adaptation process uses the target
label information estimated by the source-domain-training
model to enhance itself. However, those methods require the
assumption that all labels in the source domain are correct,
which is difficult to satisfy in the real world. Therefore, it
is of great significance for us to develop specially designed
learning methods for UDA with label noise in the source
domain (i.e., weakly supervised domain adaptation).
Weakly Supervised Domain Adaptation. WSDA consid-
ers both the UDA problem and the label noise issue, which is
more common in practical scenarios. There have been several
studies (Shu et al. 2019; Tzeng et al. 2017; Liu et al. 2019)
to address the WSDA problem by training domain adapta-
tion models with sample reweighting. For example, TCL
(Shu et al. 2019) selects clean and transferable source sam-
ples to train a neural network that has the same structure as
DANN (Tzeng et al. 2017); Butterfly (Liu et al. 2019) picks
clean samples from both the source domain and the target
domain while sharing the shallow layers of two Co-teaching
models (Han et al. 2018) for domain adaptation. DCIC (Yu
et al. 2020) emphasizes clean and transferable source data
to construct a denoising maximum mean discrepancy (Pan
et al. 2010) loss. Despite the effectiveness of these methods,
they only exploit the supervision information from the source
domain and regrettably ignore the potential supervision in-
formation in the target domain.
Learning with Noisy Labels. A wide range of algorithms
have been proposed to improve the model robustness against
label noise in the training data (Zhang et al. 2016; Han, Luo,
and Wang 2019; Menon et al. 2015; Fang et al. 2021a).
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Figure 1: GearNet schematic. The forward step and the back-
ward step are conducted iteratively. Each model is trained
with a supervised learning loss on one domain, and a symmet-
ric Kullback Leibler divergence loss to mimic the predictions
of its dual model on the other domain, where z∗∗ is the logit
coming from the last layer of the corresponding model, and
p∗
∗ is the probability of classes calculated by the softmax

function on z∗∗ . Every time when the forward step stops, the
pseudo labels of the target domain should be updated.

Early studies (Goldberger and Ben-Reuven 2016; Patrini
et al. 2017) learn a robust model by estimating the label tran-
sition matrix to fit the noisy labels. However, They can only
achieve mediocre performance, as it is non-trivial to obtain
a high-quality estimation of noise rates. Recently, training
with sample reweighting has became a popular research di-
rection to handle label noise (Jiang et al. 2018; Ren et al.
2018), where reliable and noiseless data are emphasized dur-
ing the training process. Another promising direction is to
design noise-robust loss functions, such as mean absolute
error (Ghosh, Kumar, and Sastry 2017), generalized cross
entropy loss (Zhang and Sabuncu 2018), and Taylor cross en-
tropy loss (Feng et al. 2020). The above methods for learning
with noisy labels have provided many inspirations for WSDA
methods to combat label noise.

The Proposed GearNet
Problem statement. Throughout this paper, we consider
the classification task under the setting of WSDA. We assume
that we have a source domain with noisy labels corrupted
from ground-truth labels Ŝ = {(xsi , ŷsi )}

ns
i=1 and an unla-

beled target domain T = {(xti)}
nt
i=1, where ns and nt denote

the number of instances from the source domain and the tar-
get domain respectively, and ŷsi denotes the noisy (corrupted)
label. Our goal is to train a classifier fθ : X → Y based on Ŝ
and T to accurately annotate samples from the target domain.

As label noise will degenerate both the domain adaptation
process (Yu et al. 2020) and the classification process (Zhang



et al. 2016), existing methods (Shu et al. 2019; Liu et al.
2019; Yu et al. 2020) for WSDA focus on emphasizing useful
samples by utilizing the supervision information from the
source domain to reduce the negative impact of label noise.
Considering the source domain could provide useful informa-
tion to the target domain as mentioned above, we claim the
target domain could also contain valuable information that is
beneficial to the learning on the source domain. Therefore,
inspired by the mutual learning (Zhang et al. 2018) and dual
learning (Luo et al. 2019), we address the issue of WSDA by
exploring the bilateral relationship that the two domains offer
useful information to each other to handle domain shifts and
label noise.

The intuition for exploring bilateral relationships in WSDA
is briefly explained as follows. Similar to learning with label
noise, existing WSDA methods would encounter the error
accumulation issue: the error that comes from the biased se-
lection of training instances in the previous iterations would
be directly learnt again in the following training (Han et al.
2018). In WSDA, the accumulated error from learning with
source domain examples would be amplified, causing a sig-
nificant increase in the target domain error (Liu et al. 2019;
Han et al. 2020). Co-teaching (Han et al. 2018) and Butterfly
(Liu et al. 2019) alleviate this issue by training two networks
with different initialization to exchange the biased selections
with each other. In this work, our method introduce addi-
tional model diversity derived from the distinct supervision
information by training two networks with opposite transfer
directions. In this manner, the accumulated error would be
further attenuated during the training stage.
Algorithm design. Inspired by the above motivation, we
propose a universal paradigm called "GearNet" that can be
employed to various backbone methods (i.e., existing WSDA
methods). Before the introduction, we need to clarify at first
that we omit the technical details of those backbone methods
to simplify the introduction of GearNet, and assume that we
build GearNet on the top of a basic backbone model that
is composed of a feed-forward neural network. With this
basic model, we can introduce GearNet in a more convenient
way. After the introduction, we will further introduce how to
employ GearNet to different backbone methods.

Our GearNet compromises two basic models: fθ and f̃θ̃.
Our model learning strategy includes three parts: the pre-
trained process aiming to annotate the target domain data by
fθ , the forward step aiming to transfer knowledge from the
source domain to the target domain by fθ, and the backward
step aiming to transfer knowledge from the target domain to
the source domain by f̃θ̃. The forward step and the backward
step are iteratively conducted until the whole training process
ends.

In the pretrained process, we train fθ on the source domain
data with noisy labels D̂s (i.e., Eq. (1)), and then use the
model to generate the hard pseudo labels for the target domain
instances (i.e., Eq. (2)).

θ = argmin
θ

1

ms

∑ms

i=1
`(ŷsi , f(xsi , θ)), (1)

ŷti = argmax
c

fc(x
t
i, θ),∀i = 1, 2, ..., nt, (2)

Algorithm 1: GearNet’s Learning Strategy

input :Source dataset with noisy labels Ŝ, target
dataset with pseudo labels T̂ , max steps M ,
max epochs N , learning rate η, the pretrained
basic model fθ and its dual model f̃θ̃

output :fθ and f̃θ̃
1 for t = 0 to M do
2 Shuffle: Ŝ and T̂ ;
3 Initialize: f̃θ̃ ; // Start the backward step
4 for i = 0 to N do
5 Fetch: {xti, ŷti}

mt
i=1 from T̂ , {xsi}

ms
i=1 from Ŝ;

6 Calculate: ˜̀
super = 1

mt

∑mt

i=1 `(ŷ
t
i , f̃(xti, θ̃));

7 Forward: ps1 = f(xsi , θ), ps2 = f̃(xsi , θ̃);
8 Calculate: ˜̀

guide by (7) using ps1 and ps2;
9 Obtain: ˜̀

total by (3) ;
10 Update: θ̃ = θ̃ − η∆˜̀

total;
11 end
12 Initialize: fθ ; // Start the forward step
13 for i = 0 to N do
14 Fetch: {xsi , ŷsi }

ms
i=1 from Ŝ, {xti}

mt
i=1 from T̂ ;

15 Calculate: `super = 1
ms

∑ms

i=1 `(ŷ
s
i , f(xsi , θ));

16 Forward: pt1 = f(xti, θ), pt2 = f̃(xti, θ̃);
17 Calculate: `guide by (6) using pt1 and pt2;
18 Obtain: `total by (3);
19 Update: θ = θ − η∆`total;
20 end
21 Update: {ŷti}

nt
i=1 by fθ;

22 end

where c denotes the c’th label, and fc is the network output
for the c’th label.

Then the forward step and the backward step can be con-
ducted in an opposite manner. In detail, both the forward
and the backward step train their models with two losses: a
conventional supervised learning loss (i.e., `super or ˜̀

super)
on one domain and a mimicry loss that aligns predictions of
the two models (i.e., `guide or ˜̀

guide) on the other domain.
So their overall losses could be expressed as follows:

`total = `super + β`guide; ˜̀total = ˜̀super + β ˜̀guide, (3)

where β is the trade-off hyperparameter, and its value is
set as 0.1 in general. Besides, `total is for training fθ during
the forward step, while ˜̀total is for training f̃θ̃ during the
backward step.

The supervised learning loss of the forward step is based
on the noisy source domain:

`super =
1

ms

∑ms

i=1
`(ŷsi , f(xsi , θ)), (4)

while that of the backward step is based on the pseudo-labeled



target domain:

˜̀
super =

1

mt

∑mt

i=1
`(ŷti , f̃(xti, θ̃)). (5)

Although the model can perform well on the domain with
supervision information due to the optimization of the su-
pervised learning loss, there would be a significant accuracy
drop on the test data from the other domain because of do-
main shifts. To generalize the model for better performance
on the other domain, we introduce a consistency regulariza-
tion, the symmetric Kullback-Leibler (KL) divergence loss
(i.e., `guide or ˜̀

guide), which can enforce the model to mimic
the predictions of its dual model for every sample from the
other domain. So for the forward step, the loss is based on
the target domain:

`guide = DKL

(
pt1‖pt2

)
+DKL

(
pt2‖pt1

)
, (6)

For the backward step, the loss is calculated by the data
from the source domain:

˜̀guide = DKL (ps1‖ps2) +DKL (ps2‖ps1) . (7)

DKL denotes the Kullback-Leibler (KL) divergence that
measures the probability difference (Kullback and Leibler
1951):

DKL (p‖q) =

n∑
i=1

p(xi)log
p(xi)

q(xi)
, (8)

where p and q denote the probability to be measured for the
probability difference, and n is the number of samples.

In the forward step, the consistency regularization is ob-
tained by inputting pt1 and pt2 into Eq. (8), where pt1 and pt2
denotes class label distributions which are outputs from fθ
and f̃θ̃, respectively. In the backward step, the consistency
regularization is calculated by inputting ps1 and ps2, where ps1
and ps2 denote the class label distributions which are outputs
from fθ and f̃θ̃, respectively. Every factor in those probability
metrics is computed by the softmax function based on the
corresponding logits. For example, the probability of class c
for the sample xsi from fθ (i.e., pc1(xsi )) is calculated as:

pc1(xsi ) =
exp(zc1)∑C

c′=1 exp(z
c′

1 )
, (9)

where zc1 denotes the logit of class c from fθ for xsi .
Optimisation of GearNet. After the pretrained process
to provide pseudo labels to the target domain, the whole
algorithm is run as Algorithm 1 and Figure 1. We first conduct
the backward step by computing the total loss ˜̀

total as Eq.
(3) for training f̃θ̃, where the second loss ˜̀

guide is between
f̃θ̃ and the pre-trained fθ on the source domain. Then we can
continue to update the parameters of fθ in the forward step
by the total loss `total also as Eq. (3), where the mimicry loss
`guide is between the initialized fθ and f̃θ̃ trained during the
backward step on the target domain, after which we update
the pseudo labels of the target domain by the trained fθ. We
repeat the forward and the backward steps until this algorithm
stops. It is worthy to note that the training model should be

initialized before its training process to avoid overfitting to
the noisy samples.
Realizations of GearNet. In this subsection, we incorpo-
rate three backbone methods with GearNet as examples. They
are Co-teaching (Han et al. 2018) that belongs to the approach
to improve model robustness against label noise, DANN
(Ganin et al. 2016) that belongs to the domain adaptation ap-
proach and TCL (Shu et al. 2019) that belongs to the WSDA
approach, respectively. All the three algorithms are repre-
sentative approaches, which could spotlight the universal
capability of GearNet.

First of all, we also need to initialize two models fθ and
f̃θ̃ with the backbone algorithm. Although these backbone
methods have different learning strategies, we generally ex-
press their loss functions as follows to highlight the structure
of GearNet:

`bone = Eps(xs,ŷs),pt(xt)(`(x
s, ŷs, xt; fθ)), (10)

˜̀
bone = Ept(xt,ŷt),ps(xs)(`(x

t, ŷt, xs; f̃θ̃)), (11)

where `bone denotes the loss of the backbone method for
training fθ, while ˜̀

bone denotes the same meaning for train-
ing f̃θ̃. Besides, ps(∗) and pt(∗) denote the distribution from
the source domain, and the target domain, respectively.

The two losses above take the place of `super and ˜̀
super

in Eq. (3) when we chose those backbone methods. They
represent different meanings under various backbone algo-
rithms. For the Co-teaching backbone method, they reduce
the impact of noise by cross-updating two peer networks.
As for DANN, they decrease the domain discrepancy using
a domain discriminator in an adversarial manner. For TCL,
they address both the label noise problem and the domain
shift problem by selecting noiseless and transferable samples
from the source domain to train the DANN-shape model.

To obtain `guide and ˜̀
guide, the training model should

align its predictions with corresponding class posteriors of
its dual model. Note that only classification predictions need
to be aligned. Besides, for multi-classifier models, like Co-
teaching, these losses should be computed for every classifier
with the dual model, so that all of them can have the profes-
sional guidance on the domain that they are not good at.
Relation to CycleGAN. CyCADA (Hoffman et al. 2018)
and Bi-Directional Generation domain adaptation model
(BGD) (Yang et al. 2020) also propose the idea that trans-
fers knowledge from the target domain to the the source
domain, which are inspired by CycleGAN (Zhu et al. 2017).
They transfer the instances of the target domain to that of the
source domain by a feature generator, which aim is to obtain
a feature space that is close to the source domain. However,
there are fundamental differences between them and GearNet.
(i) CyCADA and BGD obtain a feature generator that can
convert the target-style feature to the source-style feature,
but GearNet trains a model that leverages the target domain
to predict labels of the source domain. (ii) The reason why
CyCADA and BGD transfer the feature style is to predict
the labels of the target domain using the classifier trained by
the source domain. But GearNet aims to exploit information
from the target domain which could enhance both the domain



Tasks A→W A→ D W → A W → D D → A D →W Average

Standard 46.61± 0.32 51.46± 0.53 44.21± 0.12 73.13± 0.26 43.43± 0.32 65.63± 0.41 54.06± 0.33
Co-teaching 49.87± 1.42 55.00± 0.89 42.18± 0.71 75.63± 0.85 44.85± 1.01 64.06± 2.01 55.98± 1.15
JoCoR 50.53± 1.67 55.42± 2.33 47.19± 1.71 74.79± 1.28 44.50± 1.01 61.72± 0.98 55.69± 1.50
DAN 54.39± 2.11 54.79± 1.32 36.65± 2.62 67.08± 1.79 35.09± 1.58 60.94± 2.06 51.32± 1.91
DANN 50.91± 1.88 54.17± 0.87 44.57± 0.74 74.79± 1.08 45.35± 1.41 67.58± 0.48 56.23± 1.08
TCL 56.46± 0.67 63.13± 1.14 45.31± 0.31 76.87± 0.85 44.78± 0.60 71.22± 0.58 59.63± 0.69

GearNetCo-teaching 53.12± 1.88 58.12± 1.11 44.49± 0.57 76.87± 1.94 49.28±1.37 69.14± 1.81 56.75± 1.44
GearNetDANN 60.68 ± 0.26 63.54± 1.03 47.19± 0.96 76.88± 1.68 47.90 ± 0.66 72.39± 0.79 61.43± 0.90
GearNetTCL 58.84± 0.57 65.63 ± 0.93 48.37 ± 1.04 78.54 ± 0.75 47.80± 0.58 73.44 ± 0.56 62.10 ± 0.74

Table 1: Target accuracy (%) on Office-31 datasets with Unif-20% noise. Bold numbers are superior results
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Figure 2: Universal capability of GearNet on D →W with
Unif-20% noise under WSDA (TCL), de-noise (Co-teaching)
and UDA (DANN) backbone methods. (a) Trend of target
accuracy across training steps. (b) Best target accuracy across
training steps

adaptation process and the noise reduction process for the
source domain. (iii) CyCADA and BGD address the issue
of unsupervised domain adaptation, but GearNet handles the
issue of weakly-supervised domain adaptation.
Relation to multi-task learning. In the problem of multi-
task learning, there is also an idea that a noisy task can re-
duce its noise under the assistance of another noisy task
(Wu, Zhang, and Ré 2020). However, the crucial difference
between multi-task learning and GearNet is that multi-task
learning aims at good performance for all the tasks, but Gear-
Net only needs to achieve good performance for the target
domain. In addition, the above idea for multi-task learning
proposes that more noisy tasks can reduce the impact of noise
and get better performance by up weighting less noisy tasks,
but GearNet proposes that both the target domain and the
source domain contain useful knowledge for each other.

Experiments
Experimental setup
We compare GearNet1 with 6 state-of-the-art baselines, im-
plement all methods by PyTorch, and conduct all the exper-
iments on NVIDIA Tesla V100 GPU. Their details are as
follows: Standard (He et al. 2016), which is a neural network
classifier constructed by the pre-trained ResNet-50. Note that

1The code is published on https://github.com/Renchunzi-Xie/
GearNet.git
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Figure 3: Universal capability of GearNet on W → D with
Unif-20% noise for three different WSDA (TCL, RDA, But-
terfly) backbone methods. (a) Trend of target accuracy across
training steps. (b) Best target accuracy across training steps.

ResNet-50 is also used as the feature extractor of the fol-
lowing benchmarks for comparability. DANN (Ganin et al.
2016), which is constructed by a feature extractor, a classifi-
cation layer and a domain discriminator. The feature extractor
generates a feature space that can confuse the domain discrim-
inator, so that it can decrease the domain discrepancy. DAN
(Long et al. 2015), which proposes MK-MMD as the domain
discrepancy measure to reduce the difference between the
two domains. Co-teaching (Han et al. 2018), which trains
and cross-updates two peer networks simultaneously to com-
bat label noise. JoCoR (Wei et al. 2020), which trains two
neural networks simultaneously and calculates a joint loss
with Co-regularization to merge their outputs between the
two neural networks in order to improve the model robust-
ness against label noise. TCL (Shu et al. 2019), which selects
transferable and noiseless samples from the source domain
to train a model with the same structure as DANN to handle
the WSDA issue. RDA (Han et al. 2020), which proposes an
offline curriculum learning to select clean samples from the
source domain and a proxy margin discrepancy to eliminate
the negative impact of label noise. Butterfly (Liu et al. 2019),
which picks clean samples from both of the two domains to
train two Co-teaching models simultaneously.

We simulate experiments based on Office-31 (Saenko et al.
2010) and Office-Home (Venkateswara et al. 2017). The first
dataset is a classical dataset for domain adaptation, which
contains 4,652 images with 31 classes. Three various do-
mains are contained in the dataset: Amazon (A), Webcam
(W) and DSLR (D). They represent that images are collected

https://github.com/Renchunzi-Xie/GearNet.git
https://github.com/Renchunzi-Xie/GearNet.git


Tasks A→W A→ D W → A W → D D → A D →W Average

Standard 34.37± 0.78 36.45± 0.43 29.26± 0.52 54.79± 0.72 30.79± 0.95 48.31± 0.69 40.00± 0.68
Co-teaching 36.20± 2.45 41.04± 1.42 31.11± 1.64 53.13± 1.91 23.08± 1.63 38.93± 2.63 37.25± 1.95
JoCoR 37.11± 1.27 42.29± 2.24 28.98± 1.78 47.50± 1.89 23.40± 2.09 36.85± 2.74 36.02± 2.00
DAN 34.24± 1.73 35.83± 2.42 23.97± 2.89 47.71± 1.99 24.96± 2.07 41.02± 1.79 34.62± 2.15
DANN 36.20± 1.62 40.20± 1.27 30.22± 1.53 54.38± 1.59 32.71± 2.06 49.74± 1.82 40.57± 1.65
TCL 42.06± 1.86 46.04± 2.68 29.55± 0.96 54.38± 1.74 30.43± 1.83 49.09± 2.62 41.95± 1.95

GearNetCo-teaching 39.32± 1.07 43.33± 0.97 33.94 ± 1.07 56.04± 1.31 25.74± 1.58 38.41± 1.30 39.46± 1.21
GearNetDANN 43.48± 1.45 48.54 ± 1.72 30.45± 1.37 58.54 ± 1.86 35.51 ± 0.83 54.17 ± 1.06 45.12 ± 1.38
GearNetTCL 46.61 ± 0.89 47.50± 1.28 30.39± 2.01 55.83± 1.92 28.91± 1.47 52.47± 1.39 43.62± 1.49

Table 2: Target accuracy (%) on Office-31 datasets with Unif-40% noise. Bold numbers are superior results.

Tasks A→W A→ D W → A W → D D → A D →W Average

Standard 46.61± 0.92 46.67± 1.83 41.41± 0.94 69.17± 1.03 40.23± 1.06 64.19± 0.74 51.38± 1.08
Co-teaching 48.31± 2.01 50.21± 1.37 42.19± 1.87 69.17± 2.40 39.20± 1.82 58.59± 2.72 51.28± 2.03
JoCoR 49.74± 0.98 51.46± 1.52 41.94± 1.83 67.92± 2.07 37.71± 1.68 55.86± 0.93 50.77± 1.50
DAN 56.64± 1.73 53.54± 2.04 40.20± 2.13 70.21± 1.57 35.80± 1.78 64.84± 1.84 53.54± 1.85
DANN 47.66± 1.46 50.63± 1.76 39.17± 0.63 69.58± 1.05 41.55± 0.77 65.49± 0.86 52.35± 1.09
TCL 55.99± 1.79 61.04± 1.53 42.37± 2.51 72.92± 0.62 42.29± 1.33 70.96± 2.52 57.60± 1.72

GearNetCo-teaching 51.95± 1.33 54.37± 1.13 44.49± 1.80 71.87± 0.93 41.79± 1.71 61.45± 0.97 54.32± 1.31
GearNetDANN 59.51 ± 1.58 61.25± 0.63 41.44± 1.96 72.08± 1.05 44.89± 1.58 69.27± 1.62 58.07± 1.40
GearNetTCL 58.85± 0.96 62.71 ± 0.73 44.28 ± 1.53 75.00 ± 1.67 45.03 ± 0.85 75.00 ± 1.09 60.15 ± 1.14

Table 3: Target accuracy (%) on Office-31 datasets with Flip-20% noise. The best results are highlighted in bold.

from amazon.com, web camera and digital SLR camera, re-
spectively. The second dataset consists of 4 domains: Artis-
tic (Ar), Clip Art (Cl), Product (Pr) and Real-World (Rw)
containing 15,500 images with 65 classes. They represent
different image styles that are artistic depictions, clipart im-
ages, images without background and pictures captured by
cameras, respectively. We manually inject two types of noisy
labels for the source domain: uniform noise (Zhang et al.
2020) and asymmetry flipping noise (Patrini et al. 2017), and
their details are in the supplemental document.

For comparability, all the experiments use Stochastic gra-
dient descent optimizer with an initial learning rate of 0.003
and a momentum of 0.9. The batch size is set as 32 and the
total number of epochs is 200. For GearNet, the total number
of steps is set as 10. To measure the performance, we evaluate
the target accuracy by all the samples from the target domain,
i.e., target accuracy = (# of correct target predictions)/(# of
target domain data). All the experiments are repeated 5 times
with different seeds, and we report the average accuracy and
their standard deviation on tables.

Numerical results
Results on Office-31. Table 1, Table 2, Table 3 and Table
4 report the target-domain accuracy in 6 digit tasks that are
combined in pairs by the three domains from Office-31 under
different types and levels of noise.

Table 1 and Table 3 represent two simpler cases, since their
noise rate is 20%. The two tables illustrate that our method
is able to improve existing backbone methods significantly
when the noise rate is low. Table 2 and Table 4 represent two

harder cases with 40% noise rate. The two tables show that
GearNet can enhance the performance of original algorithms
on most tasks when the noise rate is high. GearNet obtains
comparable results on the tasks of D → A and W → A.
The reason is that Webcam and DSLR are two small datasets
compared with Amazon, so that it is ineffective to transfer
knowledge from Webcam or DSLR to Amazon under 40%
noise rate. When we explore pseudo supervision information
from Amazon based on the pseudo labels provided by the two
small datasets, it is more likely to explore negative informa-
tion and transfer it back to Amazon. However, when the noise
rate becomes 20%, all the tasks can be improved by Gear-
Net, since all of the source domains are capable to provide
adequate transferable information to their target domains and
vise versa.

To show the universal capability of GearNet on backbone
methods from different fields, we draw Fig. 2. The left figure
illustrates the trend of target accuracy of GearNet across train-
ing steps under the three backbone methods. The step 0 refers
to the pretrained process, the even number step (i.e., step 2,
4, ...) refers the forward step from the source domain to the
target domain, and the odd number step (i.e., step 1, 3, 5, ...)
means the backward step from the target domain to the source
domain. Specifically, the value of the first point denotes the
target accuracy of the original backbone model. The right
figure illustrates the performance improvement before and
after we incorporate GearNet with the three methods. From
the figures, we can observe that GearNet can continuously
enhance the performance of the backbone methods. The fig-
ures on D →W with Unif-40% noise, Flip-20% noise and



Tasks A→W A→ D W → A W → D D → A D →W Average

Standard 35.93± 1.09 37.50± 1.14 30.39± 1.21 53.96± 1.04 29.83± 1.81 46.88± 1.35 39.08± 1.27
Co-teaching 35.94± 1.97 37.92± 2.48 28.13± 2.09 49.17± 1.35 26.03± 1.71 37.76± 1.95 35.82± 1.93
JoCoR 36.07± 1.85 37.29± 1.27 27.73± 1.88 48.12± 2.08 26.35± 1.11 38.28± 1.60 35.64± 1.63
DAN 43.49± 1.17 41.46± 2.14 30.61± 1.43 53.54± 2.01 28.94± 2.36 50.39± 2.35 41.41± 1.91
DANN 36.98± 1.84 40.42± 1.89 30.26± 2.04 53.33± 2.58 30.36± 1.52 44.66± 1.92 39.96± 1.96
TCL 44.79± 0.98 43.75± 1.57 30.82± 1.37 54.17± 1.90 29.97± 1.86 45.96± 1.37 41.58± 1.51

GearNetCo-teaching 40.36± 0.85 38.75± 1.14 30.39± 0.58 51.04± 1.17 27.37± 0.64 40.23± 1.36 38.02± 0.96
GearNetDANN 42.45± 1.33 42.08± 1.54 31.21 ± 1.73 54.38 ± 1.48 31.35 ± 0.79 45.96± 1.63 41.24± 1.42
GearNetTCL 48.69 ± 1.02 46.25 ± 1.46 30.64± 1.58 53.96± 1.24 31.00± 0.89 47.79 ± 1.24 43.06 ± 1.24

Table 4: Target accuracy (%) on Office-31 datasets with Flip-40% noise. Bold numbers are superior results.

Tasks Standard Co-teaching JoCoR DAN DANN TCL GearNetCo-teaching GearNetDANN GearNetTCL

Ar → CI 24.51±1.82 26.49±1.40 26.60±1.93 23.12±0.90 26.41±1.51 26.48±0.93 27.82±0.42 27.30±1.07 28.01±0.75
Ar → Pr 42.41±1.59 45.15±1.79 45.08±2.02 33.94±0.95 41.13±1.20 42.75±1.06 52.15±0.73 47.01±1.05 46.58±0.93
Ar → Rw 48.75±1.89 51.51±1.67 51.56±2.28 50.33±1.10 49.60±1.66 49.63±1.12 54.71±0.70 51.12±1.15 52.33±1.50
CI → Ar 27.58±1.60 27.70±1.17 27.91±1.76 26.11±0.65 34.08±1.67 36.22±0.96 31.20±0.77 36.34±0.82 37.37±1.47
CI → Pr 34.60±1.09 35.39±1.63 34.98±1.48 31.61±1.18 38.22±2.21 41.89±1.30 42.77±0.75 43.09±0.98 43.22±0.91
CI → Rw 37.59±1.45 26.08±1.07 37.20±1.43 34.28±1.40 42.41±1.63 45.35±1.48 43.01±0.84 44.78±0.56 46.48±0.86
Pr → Ar 29.33±0.83 32.12±1.31 32.08±1.34 25.12±0.57 34.62±1.71 35.15±1.40 33.92±1.22 36.75±0.83 37.58±1.27
Pr → CI 23.18±1.68 23.92±0.60 24.11±1.59 23.47±1.78 24.00±1.70 25.79±0.69 23.72±1.13 24.11±1.10 28.46±1.42
Pr → Rw 46.07±1.91 48.32±1.07 48.80±1.39 40.92±1.00 49.65±1.56 52.68±1.55 50.22±0.69 50.89±1.05 54.84±1.11
Rw → Ar 41.37±1.58 43.20±1.35 44.03±1.84 35.48±1.09 43.66±2.14 44.98±0.84 44.37±0.91 44.61±0.56 46.54±1.49
Rw → CI 26.76±1.89 28.12±1.36 28.55±1.59 27.14±0.73 28.30±1.10 29.03±1.92 28.54±1.12 28.80±1.03 31.06±1.38
Rw → Pr 51.76±1.71 53.94±1.58 53.87±1.29 46.15±1.46 51.88±1.79 54.84±1.06 55.19±1.27 53.98±1.27 57.24±1.16

Average 36.16±1.59 36.83±1.34 37.90±1.65 33.14±1.05 38.66±1.20 40.40±1.19 40.64±0.87 40.73±0.96 42.48±1.19

Table 5: Target accuracy (%) on Office-Home datasets with Unif-20% noise. The best results are highlighted in bold.

Flip-40% noise are in the supplemental document. To illus-

GearNetCo-teaching GearNetDANN GearNetTCL

Tasks w/o w/ w/o w/ w/o w/

D →W Unif-20% 67.58 69.14 70.18 72.39 71.74 73.44
D →W Unif-40% 36.58 38.41 49.09 54.17 49.47 52.47
Ar → Cl Unif-20% 27.39 27.82 26.53 27.30 26.41 28.01
Ar → Cl Unif-40% 18.65 18.75 17.56 17.58 16.30 17.93

Table 6: Results of ablation study on various tasks with Uni-
form noise. The best results are highlighted in bold.

trate the universal capability of GearNet on different WSDA
methods, we incorporate three WSDA methods with GearNet
including TCL (Shu et al. 2019), Butterfly (Liu et al. 2019)
and RDA (Han et al. 2020) based on the Office-31 bench-
mark dataset (source: Webcam; target: DSLR). Their results
are shown in Fig. 3. The two figures illustrate that GearNet
can also significantly improve the prediction accuracy on the
target domain for various WSDA methods.
Results on Office-Home. Table 5 report the average target
accuracy on 12 tasks that are combined in pairs by the 4
domains from Office-Home when the uniform noise rate is
20%. This table shows that GearNet can significantly improve
the performance compared with original models. Especially,
in the case of Ar → Pr, the target accuracy is from 42% to
52% when the backbone method is Co-teaching, which is a
significant improvement.

Ablation study
To illustrate the importance of the consistency regularization
(i.e., `guide and ˜̀

guide), we conduct an ablation study on four
tasks, and the results are shown in Table 6. The backbone
algorithms are Co-teaching (Han et al. 2018), DANN (Ganin
et al. 2016) and TCL (Shu et al. 2019), which represent a
de-noise method, a domain adaptation method and a WSDA
method, respectively. From Table 6, it is clear to see that the
guidance on the testing domain from the other model could
significantly improve the performance of the classification
for most of the methods.

Conclusion
In this paper, we propose a universal paradigm called Gear-
Net that enhances many existing robust training methods to
address the issue of weakly-supervised domain adaptation.
To the best of our knowledge, our method is the first to ex-
plore the benefit of utilizing pseudo supervision knowledge
from the target domain in improving the robustness against
noisy labels from the source domain. We show that exploring
bilateral relationships would further improve the generaliza-
tion performance when the labels from the source domain
are noisy. Extensive experiments show that GearNet is easy
to be integrated into existing algorithms and these methods
equipped with GearNet can significantly outperform their
original performance. Overall, our method is an effective
and complementary approach for boosting robustness against
noisy labels in the setting of domain adaptation.
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