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Abstract

Partial-label learning is a popular weakly supervised learn-
ing setting that allows each training example to be annotated
with a set of candidate labels. Previous studies on partial-
label learning only focused on the classification setting where
candidate labels are all discrete, which cannot handle con-
tinuous labels with real values. In this paper, we provide
the first attempt to investigate partial-label regression, where
each training example is annotated with a set of real-valued
candidate labels. To solve this problem, we first propose a
simple baseline method that takes the average loss incurred
by candidate labels as the predictive loss. The drawback of
this method lies in that the loss incurred by the true label
may be overwhelmed by other false labels. To overcome this
drawback, we propose an identification method that takes the
least loss incurred by candidate labels as the predictive loss.
We further improve it by proposing a progressive identifica-
tion method to differentiate candidate labels using progres-
sively updated weights for incurred losses. We prove that
the latter two methods are model-consistent and provide con-
vergence analyses. Our proposed methods are theoretically
grounded and can be compatible with any models, optimiz-
ers, and losses. Experiments validate the effectiveness of our
proposed methods.

Introduction
Due to the difficulty of collecting strong supervision in-
formation (i.e., fully labeled datasets) in some real-world
scenarios, many weakly supervised learning settings were
investigated to deal with weak supervision information.
Typical weakly supervised learning settings include semi-
supervised learning (Chapelle, Scholkopf, and Zien 2006;
Sohn et al. 2020), noisy-label learning (Liu and Tao 2015;
Malach and Shalev-Shwartz 2017; Patrini et al. 2017), and
positive-unlabeled learning (Elkan and Noto 2008; Niu et al.
2016; Kiryo et al. 2017), and multiple-instance learning
(Maron and Lozano-Pérez 1997; Andrews, Tsochantaridis,
and Hofmann 2002).

In recent years, another weakly supervised learning set-
ting called partial-label learning (PLL) (Cour, Sapp, and
Taskar 2011) has received much attention from the machine
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learning and data mining communities. In PLL, each train-
ing example is annotated with a set of candidate labels, only
one of which is the true label. Due to the massive label am-
biguity and noise in data annotation tasks, PLL has been
increasingly used in many real-world applications, such as
web mining (Luo and Orabona 2010), multimedia content
analysis (Zeng et al. 2013), and automatic image annota-
tions (Chen, Patel, and Chellappa 2018).

The major challenge of PLL lies in label ambiguity, as
the true label is concealed in the candidate label set and not
directly accessible to the learning algorithm. To tackle this
problem, many PLL methods have been proposed. These
methods achieved satisfactory performance by using appro-
priate techniques, such as the expectation-maximization al-
gorithm (Jin and Ghahramani 2003; Wang et al. 2022), the
maximum margin criterion (Nguyen and Caruana 2008),
metric learning (Gong, Yuan, and Bao 2021a; Liu et al.
2018), the manifold regularization (Zhang and Yu 2015;
Zhang, Zhou, and Liu 2016; Gong et al. 2018; Wang, Li,
and Zhang 2019), and the self-training strategy (Feng and
An 2019; Lv et al. 2020; Feng et al. 2020; Wen et al. 2021).

Despite the effectiveness of previous PLL methods, they
only focused on the classification setting where candidate la-
bels are all discrete, which cannot handle continuous labels
with real values. In many real-world scenarios, regression
tasks that learn with real-valued labels can be commonly
encountered. However, how to learn an effective regression
model with a set of real-valued candidate labels is an open
problem that still remains unexplored.

In this paper, we provide the first attempt to investigate
partial-label regression (PLR), where each training exam-
ple is annotated with a set of real-valued candidate labels.
In order to solve the PLR problem, we make the following
contributions:

• We propose a simple baseline method that takes the av-
erage loss incurred by candidate labels as the predictive
loss to be minimized for model training.

• We propose an identification method that takes the least
loss incurred by candidate labels as the predictive loss to
be minimized for model training.

• We propose a progressive identification method that dif-
ferentiates candidate labels by associating their incurred
losses with progressively updated weights.
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• We theoretically show that the identification method
and the progressive identification method are model-
consistent, which indicates that the learned model con-
verges to the optimal model.

Preliminaries
In this section, we briefly introduce preliminary knowledge
and studies that are related to our PLR problem.

Partial-Label Learning. PLL is a popular weakly super-
vised classification problem (Gong, Yuan, and Bao 2021b,
2022), where each training example is annotated with a set
of discrete candidate labels, only one of which is the true la-
bel. Given such training data, PLL aims to construct a multi-
class classifier that predicts the label of unseen test data as
accurately as possible. The key challenge of PLL is that
the false labels in the candidate label set would mislead the
model training process. To tackle this problem, many efforts
have been made to disambiguate the ambiguous candidate
label set. For example, some methods aim at identifying the
true label from the candidate label set by using appropriate
techniques such as the maximum margin criterion (Nguyen
and Caruana 2008; Yu and Zhang 2016) or class activation
value (Zhang et al. 2022). Some iterative methods (Feng and
An 2019; Lv et al. 2020; Feng et al. 2020) characterize the
different contributions of different candidate labels by us-
ing confidence scores and iteratively update the confidence
score of each candidate label. Although these PLL methods
have achieved satisfactory performance, they only focused
on the classification setting where candidate labels are all
discrete, which cannot handle continuous labels with real
values. To solve this problem, our work focuses on learning
a regression model with real-valued candidate labels, which
would be more challenging than PLL because the label space
becomes infinite when candidate labels are real-valued.

Regression. For the ordinary regression problem, let the
feature space be X ∈ Rd and the label space be Y ∈ R. Let
us denote by (x, y) an example including an instance x and
a real-valued label y. Each example (x, y) ∈ X × Y is as-
sumed to be independently sampled from an unknown data
distribution with probability density p(x, y). For the regres-
sion task, we aim to learn a regression model f : X 7→ R
that minimizes the following expected risk:

R(f) = Ep(x,y)[ℓ(f(x), y)], (1)

where Ep(x,y) denotes the expectation over the data distribu-
tion p(x, y) and ℓ : R×R 7→ R+ is a conventional loss func-
tion (such as mean squared error and mean absolute error)
for regression, which measures how well a model estimates
a given real-valued label. As p(x, y) is not available and we
are given only a number of training examples {xi, yi}ni=1
that are independently drawn from p(x, y), a common strat-
egy is to minimize the empirical risk

R̂(f) =
1

n

∑n

i=1
ℓ(f(xi), yi), (2)

which is called empirical risk minimization (Vapnik 1999). It
can be clearly seen that such a supervised regression method

can only deal with fully labeled data where true labels are
provided. In our work, we provide the first attempt to inves-
tigate a novel weakly supervised regression problem called
partial-label regression, where each training example is an-
notated with a set of real-valued candidate labels.

The Proposed Methods
In this section, we present effective methods to train a re-
gression model from data with a set of real-valued candidate
labels. We first propose a simple baseline method that aver-
ages the contributions of all the candidate labels. However,
this intuitive method does not differentiate the true label for
model training, and thus may cause the training process to
be misled by false labels in the candidate label set. To over-
come this drawback, we further propose two theoretically
grounded methods, where one directly identifies the true la-
bel with the least loss for model training and the other pro-
gressively identifies the true label by associating the loss of
each candidate label with properly updated weights.

Notations. Suppose the training set for PLR is denoted by
{(xi, Si)}ni=1 where Si represents the set of real-valued can-
didate labels assigned to the instance xi ∈ X , and each
training example (xi, Si) is assumed to be sampled from an
unknown data distribution with probability density p(x, S).
In the PLR setting, the true label yi ∈ Y of the instance xi is
always contained in its candidate label set Si, i.e., yi ∈ Si.
In addition, we also assume that the PLR setting satisfies the
condition that the ambiguity degree (Cour, Sapp, and Taskar
2011) is less than 1, which is defined as

γ = sup
(x,y)∼p(x,y),(x,S)∼p(x,S),y′∈Y,y′ ̸=y

p(y′ ∈ S).

As shown in the above equation, the ambiguity degree γ is
the maximum probability of an incorrect label y′ being con-
tained in the candidate label set S (co-occurring with the
true label y). If γ = 1, we cannot differentiate the true la-
bel y from the false label y′, since they always appear in the
same candidate label set.

The Average Method
An intuitive method to solve the PLR problem is to treat
each candidate label equally and average the incurred loss
of each candidate label:

ℓavg(f(x), S) =
1

|S|
∑

y∈S
ℓ(f(x), y). (3)

In the above equation, ℓavg(x, S) can be taken as a loss func-
tion specially designed for the PLR problem. In Eq. (3), we
take into account the influence of each candidate label and
regard the averaged loss as the predictive loss on the PLR
example (x, S). The average method is intuitive, while the
major drawback of this method lies in that the loss incurred
by the true label may be overwhelmed by other false labels
in the candidate label set.

The Identification Method
We can find that the drawback of the average method comes
from that it does not differentiate the true label from the set



Algorithm 1: The Identification Algorithm

Input: Model f , epoch Tmax, iteration Imax, training set D̃ =
{(xi, Si)}ni=1.

1: Initialize model f ;
2: for t = 1, 2, . . . , Tmax do
3: Shuffle D̃ = {(xi, Si)}ni=1;
4: for j = 1, . . . , Imax do
5: Fetch mini-batch D̃j from D̃;
6: Update model f with R̂min in Eq. (5);
7: end for
8: end for
Output: f .

of real-valued candidate labels. Apart from the true label,
there are normally multiple false labels in the candidate la-
bel set, hence these false labels may dominate the model
training process and thus have huge negative impacts on
the learned model. To overcome this drawback, we propose
an identification method, which regards the candidate label
with the least loss as the true label and only considers the
least loss of the identified pseudo label as the predictive loss:

ℓmin(f(x), S) = miny∈S ℓ(f(x), y). (4)

Then, the expected risk and the empirical risk with our pro-
posed identification method (i.e., ℓmin) can be represented
as follows:

Rmin(f) = Ep(x,S)[ℓmin(f(x), S)],

R̂min(f) =
1

n

∑n

i=1
[ℓmin(f(xi), Si)]. (5)

By directly minimizing the derived empirical risk R̂min(f),
we can learn an effective regression model from training
data with only real-valued candidate labels. The key idea
of the identification method lies in that the model has its
own ability to identify the true label through the training
process. This idea is quite similar to the small-loss selection
strategy used in the noisy-label learning problem (Han et al.
2018; Wei et al. 2020). The pseudo code of the identification
method is provided in Algorithm 1.

Model Consistency. We demonstrate that the identifica-
tion method is model-consistent. That is, the model learned
by the identification method from data with real-valued can-
didate labels converges to the optimal model learned from
fully supervised data. It is noteworthy that the hypothe-
sis space F is commonly assumed to be powerful enough
(Lv et al. 2020), hence the optimal model in the hypothesis
space (i.e., f⋆ = argminf∈F R(f)) makes the optimal risk
equal to 0 (i.e., R(f⋆) = 0). We also adopt this assumption
throughout this paper.
Theorem 1. The model f⋆

min = argminf∈F Rmin(f)
learned by the identification method is equivalent to the op-
timal model f⋆ = argminf∈F R(f).

Theorem 1 shows that the optimal model learned from
fully labeled data can be identified by our identification
method given only data with real-valued candidate labels.

Algorithm 2: The Progressive Identification Algorithm

Input: model f , epoch Tmax, iteration Imax, training set D̃ =
{(xi, Si)}ni=1.

1: Initialize model f and w(x, y) = 1
|S| , ∀j ∈ S;

2: for t = 1, 2, . . . , Tmax do
3: Shuffle D̃ = {(xi, Si)}ni=1;
4: for j = 1, . . . , Imax do
5: Fetch mini-batch D̃j from D̃;
6: Update model f with R̂wet(f) in Eq. (7);
7: end for
8: Update w(x, y) by Eq. (8);
9: end for
Output: f .

Convergence Analysis. Here, we provide a convergence
analysis for the above identification method, which shows
that the model f̂min = argminf∈F R̂min(f) (empirically
learned from only data with real-valued candidate labels by
using our identification method) can converge to the opti-
mal model f⋆. Given such a convergence analysis, we can
observe that the identification method could benefit from
the increasing number of training data with real-valued can-
didate labels. To ensure that f̂min converges to f⋆, we
can show that Rmin(f̂min) converges to Rmin(f

⋆). Since
we have proved the model consistency of the identifica-
tion method (i.e., f⋆ = f⋆

min), we can turn to show that
Rmin(f̂min) converges to Rmin(f

⋆
min).

Theorem 2. Suppose the pseudo-dimensions of {x 7→
ℓ(f(x), y) | f ∈ F , y ∈ Y} is finite and there exists
a constant M ≤ ∞ such that |ℓ(f(x), y)| ≤ M for all
(x, y) ∈ X × Y and f ∈ F . Then, the estimation error
Rmin(f̂min)−Rmin(f

⋆) would decrease to zero in the order
O(1/

√
n), where n is the number of data with real-valued

candidate labels.

Theorem 2 demonstrates that the optimal model can be
learned by the identification method when the number of
training data for PLR approaches infinity.

The Progressive Identification Method
We have introduced the average method and the identifica-
tion method earlier in this section. The first one treats all
the candidate targets equally and the second one focuses too
much on a single candidate label, hence both of them fail
consider different contributions of candidate labels. To rem-
edy this issue, we further propose a progressive identifica-
tion method that takes the weighted loss incurred by candi-
date labels as the predictive loss:

ℓwet(f(x), S) =
∑

y∈S
w(x, y)ℓ(f(x), y),

where w(x, y) is a weighting function that describes the im-
portance degree of the label y to the instance x. Hence in the
PLR task, for each training instance x, w(x, y) is expected



to satisfy the following conditions:

∀y ∈ S,w(x, y) ≥ 0 and
∑

y∈S
w(x, y) = 1. (6)

Eq. (6) implies that every candidate label may have an im-
pact on model training, since each of them has the proba-
bility of being the true label while only one of them is the
true label. It is noteworthy that by manually setting w(x, y)
to different values, the progressive identification method can
recover the average method and the identification method.

Then, the expected risk and the empirical risk with our
proposed progressive identification method (i.e., ℓwet) can
be represented as follows:

Rwet(f) = Ep(x,S)[ℓwet(f(x), S)],

R̂wet(f) =
1

n

∑n

i=1
[ℓwet(f(xi), Si)], (7)

By directly minimizing the derived empirical risk R̂wet(f),
we can learn an effective model from training data with only
real-valued candidate labels. The pseudo code of the identi-
fication method is provided in Algorithm 2.

Model Consistency. We show that the progressive identi-
fication method is also model-consistent.

Theorem 3. The model f⋆
wet = argminf∈F Rwet(f) is

equivalent to the optimal model f⋆ = argminf∈F R(f).

Theorem 3 shows that the optimal regression model
learned from fully labeled data can be identified by the pro-
gressive identification method given only data with real-
valued candidate labels.

Convergence Analysis. Here, we also provide a conver-
gence analysis for the identification method. We aim to show
that the model f̂wet = argminf∈F R̂wet(f) (empirically
learned from only data with real-valued candidate labels by
using our progressive identification method ℓwet) can con-
verge to the optimal model f⋆.

Theorem 4. With the same conditions in Theorem 2, the
estimation error Rwet(f̂wet)− Rwet(f

⋆) would decrease to
zero in the order O(1/

√
n), where n is the number of data

with real-valued candidate labels.

Theorem 4 shows that the optimal model can also be
learned by the progressive identification method when the
number of training data for PLR approaches infinity.

Weighting Function Design. Here, we provide the dis-
cussion on the specific choice of the weighting function
w(x, y). Motivated by the key idea of the identification
method, we also consider that the importance degrees of can-
didate labels can be reflected by the incurred losses. Specifi-
cally, if a candidate label has a smaller loss than other candi-
date labels, then a larger weight (importance degree) should
be assigned to this candidate label. Besides, if the loss of
a candidate label approaches 0, we consider this candidate
label to be the true label, hence the weight assigned to this
candidate label would approach 1, and the weights of other

Table 1: Characteristics of the used benchmark datasets.

Dataset # Train # Test # Validation # Features
Abalone 2507 835 835 8
Airfoil 903 300 300 5

Auto-mpg 236 78 78 7
Housing 304 101 101 13
Concrete 618 206 206 8

Power-plant 5742 1913 1913 4
Cpu-act 4916 1638 1638 21

labels would approach 0. Based on this perspective, we de-
sign the weighting function as follows:

w(x, y) =

{
exp(β2·ℓ(f(x),y)−β1 )∑

y′∈S exp(β2·ℓ(f(x),y′)−β1 )
, if y ∈ S,

0, otherwise,
(8)

where β1 and β2 are two hyper-parameters. For the design of
w(x, y) in Eq. (8), we first compute a score of the candidate
label y by β2 · ℓ(f(x), y)−β1 , which implies that candidate
labels with smaller losses would have larger weights. Then,
we use the softmax function to normalize the scores of can-
didate labels and set the weights of non-candidate labels to
zero. In this way, the design of w(x, y) in Eq. (8) satisfies all
the conditions in Eq. (6). It is noteworthy that such a design
is not unique, and there may exist better designs. We leave
the exploration of other designs of the weighting function
w(x, y) for future work.

Experiments
Experimental Setup
Datasets. We use seven widely used benchmark regres-
sion datasets including Abalone, Airfoil, Auto-mpg, Hous-
ing, Concrete, Power-plant, and Cpu-act. All of these
datasets can be downloaded from the UCI Machine Learn-
ing Repository1. For each dataset, we randomly split the
original dataset into training, validation, and test sets by
the proportions of 60%, 20%, and 20%, respectively. For
each instance (feature vector) x, the min-max normaliza-
tion is used for dimensions with a fixed range of values (i.e.,
(x−min(x))/(max(x)−min(x)), and the one-hot encod-
ing is used to encode dimensions of the discrete type. The
remaining continuous dimensions are standardized to have
mean 0 and standard deviation 1. The characteristics of these
datasets are reported in Table 1. We repeat the sampling-
and-training process 10 times on these datasets and record
the mean squared error with standard deviation.

Base Models. Since our proposed methods do not rely on
a specific model, we train two types of base models includ-
ing the linear model and three-layer multilayer perceptron
(MLP) on the above benchmark datasets, to support the flex-
ibility of our method on the choice of base models. The
MLP model is a five-layer (d-20-30-10-1) neural network
with the ReLU activation function. For both the linear model
and the MLP model, we use the Adam optimization method
(Kingma and Ba 2015) with the batch size set to 256 and the
number of training epochs set to 1000.

1https://archive.ics.uci.edu/



Table 2: Test performance (mean squared error with standard deviation) of each method on the seven benchmark datasets
training with the MLP model. The best performance is highlighted in bold.

Datasets |S̄| Supervised AVGL-MSE AVGL-MAE AVGL-Huber AVGV-MSE AVGV-MAE AVGV-Huber IDent PIDent

Abalone

2 9.72 4.66 4.68 9.72 7.36 7.52 4.62 4.55
(0.77) (0.30) (0.29) (0.78) (0.92) (1.05) (0.33) (0.21)

4 14.42 5.04 5.22 14.08 14.08 14.04 4.66 4.58
4.66 (0.55) (0.30) (0.31) (0.93) (0.93) (0.61) (0.20) (0.22)

8 (0.54) 20.63 7.76 7.94 22.68 22.68 21.28 4.70 4.71
(2.13) (0.82) (0.85) (3.88) (3.88) (2.94) (0.26) (0.29)

16 25.11 13.77 14.03 26.71 26.71 26.61 4.90 4.90
(0.65) (0.71) (0.77) (1.37) (1.37) (2.63) (0.27) (0.35)

Airfoil

2 23.72 16.66 16.17 23.73 23.27 22.99 15.58 14.99
(2.71) (2.55) (2.21) (2.78) (3.11) (2.44) (2.65) (3.45)

4 30.79 18.47 18.56 30.83 30.67 30.22 16.23 16.10
13.77 (3.99) (3.08) (3.04) (3.94) (2.68) (2.92) (3.71) (2.97)

8 (3.27) 37.19 24.67 24.40 37.16 39.24 38.19 17.81 17.86
(4.25) (3.33) (1.97) (4.27) (3.44) (3.75) (3.49) (3.13)

16 42.90 31.43 30.81 43.00 45.38 44.19 23.41 24.11
(3.86) (4.50) (3.78) (3.76) (3.84) (4.81) (5.08) (2.98)

Auto-mpg

2 21.69 21.69 10.03 21.69 17.73 16.74 9.07 8.64
(3.50) (3.50) (2.57) (3.50) (4.35) (4.93) (1.74) (1.84)

4 31.66 31.66 13.35 31.67 31.41 30.40 9.10 9.09
8.77 (4.74) (4.74) (3.49) (4.74) (4.22) (5.24) (2.32) (2.43)

8 (1.95) 41.57 17.85 18.13 41.57 45.74 43.65 9.69 10.10
(3.62) (1.97) (2.24) (3.62) (6.16) (4.93) (2.18) (2.81)

16 51.27 32.11 32.23 51.27 55.06 54.42 12.54 12.14
(6.95) (6.14) (3.20) (6.95) (7.65) (6.82) (2.27) (2.44)

Housing

2 33.82 18.69 17.37 33.82 32.79 34.03 16.18 15.55
(6.96) (4.64) (4.63) (6.93) (8.45) (8.14) (3.30) (3.89)

4 48.82 26.78 26.82 48.80 51.87 53.67 21.59 20.53
14.48 (10.97) (7.32) (8.18) (10.96) (9.88) (8.75) (8.78) (6.97)

8 (3.99) 60.87 38.18 39.19 60.90 64.02 62.23 29.82 26.87
(7.95) (6.81) (7.03) (7.97) (8.21) (7.86) (13.33) (6.83)

16 75.30 52.24 53.06 75.29 84.18 77.00 39.88 41.09
(9.38) (8.96) (8.73) (9.40) (14.38) (9.25) (19.69) (15.24)

Concrete

2 108.08 46.66 48.62 108.23 107.46 106.00 42.14 40.48
(9.93) (9.09) (6.07) (9.76) (16.31) (16.96) (7.68) (10.68)

4 151.05 75.49 80.38 151.05 172.01 167.53 45.61 44.87
36.49 (15.19) (22.58) (17.05) (15.17) (20.88) (21.83) (5.10) (7.30)

8 (3.08) 195.40 116.18 118.65 195.32 216.01 213.59 72.09 63.79
(14.12) (25.99) (10.85) (14.06) (26.26) (18.63) (22.53) (14.13)

16 239.26 186.94 183.64 239.64 268.56 259.05 114.35 112.02
(17.05) (20.89) (19.76) (17.47) (25.83) (20.40) (37.81) (39.59)

Power-plant

2 64.99 23.67 23.43 64.99 42.56 42.68 21.09 21.07
(3.45) (1.06) (1.20) (3.45) (2.76) (2.67) (0.96) (1.01)

4 104.61 29.24 29.47 104.61 98.36 98.41 21.29 21.28
21.00 (6.27) (1.43) (1.17) (6.27) (5.64) (5.79) (1.13) (1.19)

8 (1.06) 153.07 153.07 48.49 153.07 167.96 166.21 21.21 21.36
(8.47) (8.47) (2.48) (8.47) (11.37) (6.88) (1.06) (0.89)

16 204.32 204.32 105.45 204.31 225.97 221.17 21.31 22.34
(6.74) (6.74) (4.79) (6.74) (5.39) (8.00) (0.89) (1.99)

Cpu-act

2 246.38 9.84 9.62 245.68 172.38 169.26 6.64 6.91
(15.60) (1.04) (0.79) (15.12) (18.19) (18.16) (0.54) (0.69)

4 461.69 33.15 34.58 461.05 525.78 520.64 7.00 7.38
6.56 (13.66) (5.75) (7.32) (12.63) (17.09) (14.98) (1.06) (0.41)

8 (0.86) 730.38 335.04 333.92 730.93 858.55 852.76 7.48 7.90
(16.90) (20.47) (18.43) (17.05) (11.33) (9.78) (1.32) (0.64)

16 972.73 738.42 735.89 996.21 1107.80 1106.00 9.48 9.11
(29.53) (26.71) (24.00) (46.98) (54.23) (25.97) (2.77) (1.93)

Candidate Label Set Generation. Since this is the first
work on PLR, there is no real-world PLR dataset where each
instance is assigned a real-valued candidate label set. Hence
we need to artificially generate candidate label sets by using
the standard datasets in Table 1. We assume that the gener-
ation of candidate label sets is instance-independent, which
is a widely used data generation assumption in the weakly
supervised learning field (Patrini et al. 2017; Ghosh, Kumar,
and Sastry 2017; Ishida et al. 2019; Feng et al. 2020). We fix
the size of the candidate label set and independently sam-
ple the false label multiple times to form the candidate label
set. Formally speaking, let us denote by ỹ a false label in the
non-candidate label, then ỹ is uniformly sampled from the
empirically estimated span of label space in the training set
(i.e., ỹ ∼ U(mini∈[n] yi,maxi∈[n] yi)). We adopt this uni-

form distribution because a larger candidate label set means
more distractors, making the model more difficult to find the
true label. For all the datasets, we denote by |S̄| the number
of false labels in the candidate label set and set |S̄| to dif-
ferent values (including 2, 4, 8, and 16) for generating the
candidate label set.

Compared Methods. In addition to the average method
in Eq. (3) that can serve as a baseline method, we also
consider a variant of this method. Specifically, for each in-
stance, we take the averaged value of all candidate labels as
the true label, and minimize a conventional regression loss
function to train the desired model. We name this variant of
the average method AVGV and rename the average method
AVGL. It is worth noting that the methods mentioned in this



Table 3: Test performance (mean squared error with standard deviation) of each method on the seven benchmark datasets
training with the Linear model. The best performance is highlighted in bold.

Datasets |S̄| Supervised AVGL-MSE AVGL-MAE AVGL-Huber AVGV-MSE AVGV-MAE AVGV-Huber IDent PIDent

Abalone

2 9.78 5.05 5.07 9.78 7.16 7.23 5.02 5.02
(0.57) (0.30) (0.29) (0.57) (0.55) (0.56) (0.32) (0.30)

4 14.57 5.44 5.57 14.57 14.10 14.05 5.10 5.05
5.02 (0.43) (0.28) (0.28) (0.43) (0.99) (0.73) (0.32) (0.33)

8 0.33) 20.09 7.91 8.03 20.09 21.55 20.43 5.13 5.09
(0.84) (0.46) (0.48) (0.84) (0.93) (0.87) (0.36) (0.33)

16 25.12 13.78 13.94 25.12 27.21 25.88 5.25 5.16
(0.67) (0.96) (0.70) (0.67) (0.87) (0.68) (0.34) (0.35)

Airfoil

2 29.22 23.78 23.84 29.22 27.57 27.74 23.36 23.38
(2.47) (1.98) (2.05) (2.47) (2.30) (2.43) (1.91) (1.91)

4 33.63 25.10 25.12 33.63 33.04 33.28 23.47 23.43
23.22 (2.86) (2.16) (2.22) (2.86) (2.31) (2.31) (2.02) (2.04)

8 (1.95) 39.45 29.13 29.11 39.45 41.17 40.62 24.17 24.16
(3.47) (2.61) (2.47) (3.47) (3.95) (3.81) (2.16) (2.05)

16 44.36 34.62 34.75 44.36 45.91 45.74 24.74 24.59
(3.99) (3.41) (3.48) (3.99) (4.41) (4.11) (2.33) (2.26)

Auto-mpg

2 21.44 11.67 11.37 21.38 16.58 16.13 10.16 10.09
(3.57) (2.93) (2.91) (3.59) (3.97) (3.96) (2.30) (2.39)

4 31.57 13.78 13.64 31.57 31.01 30.48 11.04 11.18
10.05 (5.60) (3.55) (3.45) (5.00) (5.00) (5.65) (3.36) (3.33)

8 (2.26) 41.46 18.45 18.33 41.46 45.65 43.81 11.45 11.44
(3.46) (2.21) (3.95) (3.46) (6.24) (4.90) (2.63) (2.35)

16 51.06 31.72 32.06 51.06 56.10 54.16 12.73 12.59
(6.86) (6.24) (6.09) (6.86) (5.94) (6.74) (3.16) (2.88)

Housing

2 37.93 26.30 26.10 37.93 36.24 35.28 28.49 28.11
(8.58) (5.74) (5.79) (8.58) (8.61) (8.31) (6.88) (6.35)

4 50.52 31.17 31.40 50.52 53.05 51.51 27.64 27.38
27.30 (11.99) (9.42) 31.40 (11.99) (13.48) (12.87) (7.15) (6.53)

8 (5.99) 60.85 38.85 38.67 60.85 63.91 62.04 32.15 31.78
(9.83) (8.77) (8.91) (9.83) (8.79) (9.23) (10.11) (10.37)

16 76.78 52.62 52.62 76.78 82.46 80.25 36.56 35.35
(11.28) (11.59) (11.31) (11.28) (11.58) (11.60) (9.76) (9.76)

Concrete

2 142.29 115.93 115.25 142.29 139.24 138.41 112.38 112.37
(8.35) (6.92) (7.03) (8.35) (9.83) (9.43) (5.64) (5.55)

4 175.40 126.60 126.32 175.40 182.35 182.02 112.18 112.11
110.63 (11.53) (6.53) (6.70) (11.53) (14.66) (14.35) (7.22) (7.33)

8 (5.36) 209.66 143.17 143.40 209.66 222.84 222.35 115.23 114.77
(16.07) (8.05) (7.91) (16.07) (16.14) (15.76) (6.78) (7.39)

16 249.88 196.43 196.07 249.88 269.93 268.21 124.35 133.28
(15.87) (11.66) (11.83) (15.87) (15.50) (16.46) (6.75) (27.76)

Power-plant

2 64.88 23.91 23.95 64.88 43.56 43.85 21.64 21.62
(4.91) (1.54) (1.61) (4.91) (3.51) (3.68) (0.73) (0.69)

4 104.63 29.70 29.66 104.63 99.26 98.74 21.60 21.53
21.41 (4.34) (1.71) (1.73) (4.34) (7.38) (6.36) (0.95) (0.95)

8 (0.64) 154.75 48.75 48.99 154.75 169.72 166.76 21.55 21.85
(7.57) (3.32) (3.41) (7.57) (7.12) (7.51) (0.70) (0.77)

16 202.64 106.68 106.91 202.64 225.97 223.18 22.02 22.85
(5.41) (6.69) (7.33) (5.41) (5.15) (5.83) (0.79) (2.09)

Cpu-act

2 304.66 139.01 135.64 304.66 238.93 238.35 107.41 106.11
(22.88) 19.56 (17.08) (22.88) (13.04) (12.48) (10.86) (9.55)

4 514.33 143.62 144.06 514.33 565.37 561.82 116.93 116.34
98.24 (15.03) (13.46) (12.78) (15.03) (13.75) (11.68) (12.25) (11.46)

8 (10.69) 760.87 371.09 359.52 774.19 884.87 858.18 132.07 130.64
(57.62) (35.76) (40.87) (21.32) (19.49) 71.00 (15.29) (15.35)

16 1000.14 737.14 762.46 1000.14 1125.31 1131.31 141.10 143.12
(18.04) (43.63) (15.87) (18.04) (19.19) (28.16) (12.60) (15.92)

work can be equipped with arbitrary loss functions. Hence
we substitute three regression losses into the AVGL method
and the AVGV method, including the mean squared error
(MSE), the mean absolute error (MAE), and the Huber loss.
In this way, we can collect six baseline methods, includ-
ing AVGL-MSE, AVGL-MAE, AVGL-Huber, AVGV-MSE,
AVGV-MAE, and AVGV-Huber. We also compare with the
supervised regression method that directly trains the model
with MSE from fully labeled data (i.e., the true label is pro-
vided for each training instance). For the proposed identifi-
cation method and progressive identification method, we re-
name them IDent and PIDent, and they are equipped with the
commonly used MSE. For AVGL-Huber and AVGV-Huber,
the threshold value of the Huber loss is selected from {1, 5}.
For our PIDent method, β1 is fixed at 0.5 and β2 is selected

from {10, 100, 500, 1000, 10000}. For all the methods, the
learning rate is selected from {0.01, 0.001}.

Experimental Performance
Table 2 and Table 3 show the mean squared error with stan-
dard deviation on the test set using the MLP model and the
linear model, respectively. From the two tables, we have
the following observations: 1) Our proposed methods IDent
and PIDent outperform all the baseline methods, which
demonstrates the effectiveness of the two methods. Besides,
they could even be on a par with the supervised regression
method in some cases, which verifies the ability of the two
methods on identifying the true real-valued label. 2) As |S̄|
increases, there exists a trend of degraded performance for
all the PLR methods. This is because when the number of
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Figure 1: The test performance on the Concrete and Housing datasets for the IDent method and the PIDent method when the
number of training examples for partial-label regression increases.

false labels in the candidate label set increases, more dis-
tracters will be included, and thus the PLR task will become
more difficult. It is worth noting that with the increasing
of |S̄|, the test performance of all the baseline methods de-
grades dramatically while our proposed methods IDent and
PIDent get worse only slightly. 3) By comparing the experi-
mental results reported in Table 2 and 3, we can observe that
training with the MLP model is generally better than training
with the linear model. This observation is in accordance with
the common knowledge that the MLP model is more pow-
erful than the linear model. 4) The PIDent method shows
slightly better performance than the IDent method, which
implies that the progressive identification strategy (i.e., soft
weights) could be more promising than the direct identifi-
cation strategy (i.e., hard pseudo-labeling). We may expect
more significant improvements of the PIDent method over
the IDent method with a better designed weighting func-
tion. 5) The AVGL methods are generally better than the
AVGV methods, which implies that training with average
loss is generally better than average value. Besides, MAE
and Huber obviously outperform MSE, which shows that the
robustness of MAE and Huber still holds in the PLR task.

Performance of Increasing PLR Training Data. As we
showed in Theorem 2 and Theorem 4, the models learned by
our proposed IDent method and the PIDent method could
converge to the optimal model learned from fully labeled
data when the number of PLR training examples approaches
to infinity. Therefore, the performance of the two methods
is expected to be improved if more PLR training examples
are provided. To empirically validate such a theoretical find-
ing, we further conduct experiments on the Concrete and
Housing datasets by changing the fraction of PLR training
examples (100% means that we use all the PLR training ex-
amples in the training set). The experimental performance
of the IDent method and the PIDent method when we in-
crease the PLR training examples is provided in Figure 1.
As shown in Figure 1, the test loss of the two methods gen-
erally decreases when more PLR training examples are used
for model training. This observation is clearly in accordance
with our theoretical analyses in Theorem 2 and Theorem 4,
because the learned model would be closer to the optimal
model as more PLR training examples are provided.

Conclusion
In this paper, we investigated a novel weakly supervised
learning setting called partial-label regression, which is a
variant of partial-label learning focusing on the regression
task. To solve this problem, we first proposed a simple base-
line method that takes the average loss incurred by candi-
date labels as the predictive loss. To overcome the draw-
back of this baseline method, we proposed an identification
method that takes the least loss incurred by candidate la-
bels as the predictive loss. We further propose a progressive
identification method to differentiate candidate labels using
progressively updated weights. We proved the model consis-
tency of the latter two methods, which indicates that learned
model can converge to the optimal model learned with fully
labeled data. Finally, we conducted extensive experiments
to demonstrate the effectiveness of our proposed methods.
We expect that our first study with simple yet theoretically
grounded methods for partial-label regression could inspire
more research works on this new task.

We only used a uniform distribution to generate real-
valued candidate label sets due to the page limit in the exper-
iments. It would be interesting to further empirically inves-
tigate the performance of our proposed methods with other
types of generation distributions. Besides, since our pro-
posed methods can be compatible with any models, optimiz-
ers, and loss functions, they would be suited for dealing with
large-scale regression datasets. Therefore, another promis-
ing direction is to apply our proposed methods to solve
large-scale problems encountered in real-world application
domains such as computer vision (Szeliski 2010) and natu-
ral language processing (Chowdhary 2020). In addition, the
performance of the PIDent method heavily relies on the de-
signed weighting function. Hence how to properly design an
effective weighting function for the PIDent method would
be an interesting direction to further improve this method.
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