PRELIMINARY PREPRINT VERSION: DO NOT CITE
The AAAI Digital Library will contain the published
version some time after the conference.

Solving Large-Scale Pursuit-Evasion Games Using Pre-Trained Strategies

Shuxin Li', Xinrun Wang'*, Youzhi Zhang?*, Wanqi Xue', Jakub Cerny', Bo An'

I School of Computer Science and Engineering, Nanyang Technological University, Singapore
2 Centre for Artificial Intelligence and Robotics, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences
{shuxin.li, xinrun.wang, wanqiO01, boan} @ntu.edu.sg, youzhi.zhang @cair-cas.org.hk, cerny @disroot.org

Abstract

Pursuit-evasion games on graphs model coordination of po-
lice forces chasing a fleeing felon in real-world urban set-
tings, using the standard framework of imperfect-information
extensive-form games (EFGs). In recent years, solving EFGs
has been largely dominated by the Policy-Space Response
Oracle (PSRO) methods due to their modularity, scalability,
and favorable convergence properties. However, even these
methods quickly reach their limits when facing large com-
binatorial strategy spaces of the pursuit-evasion games. To
improve their efficiency, we integrate the pre-training and
fine-tuning paradigm into the core module of PSRO — the re-
peated computation of the best response. First, we pre-train
the pursuer’s policy base model against many different strate-
gies of the evader. Then we proceed with the PSRO loop and
fine-tune the pre-trained policy to attain the pursuer’s best re-
sponses. The empirical evaluation shows that our approach
significantly outperforms the baselines in terms of speed and
scalability, and can solve even games on street maps of mega-
lopolises with tens of thousands of crossroads — a scale be-
yond the effective reach of previous methods.

1 Introduction

Preventing, deterring, and detecting crime to ensure the
safety and security of the population is an immensely seri-
ous task entrusted to various governmental law enforcement
forces. Because of its importance, many game-theoretic
models have been developed for safeguarding not just the
general public, but also critical infrastructure, using only
limited resources (Sinha et al. 2018). Among these problems
studied, one stands out due to its unflattering statistic: police
pursuits probably “injure or kill more innocent bystanders
than any other kind of force” (Rivara and Mack 2004). It
is hence of extreme importance to devise scalable methods
to efficiently coordinate multiple police to capture a fleeing
criminal as soon as possible to minimize casualties and prop-
erty damages. In the literature, this scenario is commonly re-
ferred to as a pursuit-evasion game, and it is modeled via a
two-player zero-sum imperfect-information extensive-form
game. The extensive-form games provide a versatile frame-
work capable of representing multiple agents, imperfect in-
formation, and stochastic events, and they have a delineated
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solution in the form of Nash equilibrium. Many methods
have been formulated for solving this type of games, in-
cluding linear programs (Shoham and Leyton-Brown 2008),
double-oracle algorithms (McMahan, Gordon, and Blum
2003), counterfactual regret minimization (CFR) (Zinkevich
et al. 2008), or policy-space response oracles (PSRO) (Lanc-
tot et al. 2017). These algorithms are domain-agnostic and
were successfully applied to security problems as well. For
example, the double-oracle algorithms constitute the cores
of several solvers of attacker-defender scenarios deployed in
the real world (Jain et al. 2011), and there exist even CFR or
PSRO variants able to solve shallow pursuit-evasion games
with many pursuers (Li et al. 2021), or deep pursuit-evasion
games with a smaller space of legal actions (Xue et al. 2021;
Xue, An, and Yeo 2022).

The contemporary state-of-the-art algorithms for solv-
ing extensive-form games may be roughly divided into two
groups: no-regret methods derived from CFR, and incremen-
tal strategy-space generation methods of the PSRO frame-
work. Both groups have their advantages and disadvantages.
The no-regret methods have strong convergence guarantees,
but they run out of memory soon or fail to converge when
solving games with deep game trees since computing the re-
gret values therein is excessively time-consuming. Because
large-scale pursuit-evasion games inevitably involve very
long time steps and have extremely large combinatorial ac-
tion spaces due to the need to coordinate multiple law en-
forcement units!, we focus on the second group, the PSRO
methods. PSRO is a generalization of the double-oracle
algorithm, embedded with reinforcement learning (RL) to
handle large strategy spaces. In case the learning is suffi-
ciently precise, the PSRO methods inherit the guarantees
of convergence to Nash equilibrium of the double-oracle.
PSRO works in iterations, computing best responses to equi-
libria of meta-games gradually increasing in size. Find-
ing the best responses constitutes the PSRO’s key bottle-
neck, and several recent adaptations attempted to mitigate it
through parallelization (Balduzzi et al. 2019; McAleer et al.
2020). However, these methods still compute the responses
from scratch, restarting the computation in each iteration,

'For example, we solve games on a graph with degree 13 and 6
law enforcement units. The pursuer may hence choose from up to
13% ~ 4.8 - 10° actions in each single information set.



which is the main obstacle of scaling the algorithms to the
real-world-sized problems. In this work, we show that by
pre-training the best responses, and later fine-tuning them,
we can solve pursuit-evasion games which are both deep and
have a large branching factor.

Pre-training and fine-tuning is a celebrated approach from
the area of natural language processing (NLP). For exam-
ple, BERT (Devlin et al. 2019) is a pre-training method
that can learn a general-purpose “language-understanding”
model on a large text corpus and then use this model for
downstream NLP tasks through fine-tuning it. Pre-training
is also a key component of the GPT model (Radford et al.
2018), and was used in AlphaGo (Silver et al. 2016) and
AlphaStar (Vinyals et al. 2019) to imitate the behaviors in
high-quality human behavioral data. Despite the huge im-
pact of the pre-training/fine-tuning approach on NLP and
partially also on computer vision (Szegedy et al. 2015; He
et al. 2016), it is still rarely used outside these areas (Han
etal. 2021). Especially in the context of general game theory
when human behavioral data is not available, the question of
whether this approach can be used to improve the efficiency
of equilibrium-finding methods remains unanswered.

To fill this gap, we propose a two-stage method for solv-
ing large-scale pursuit-evasion games by integrating the pre-
training and fine-tuning paradigm into the PSRO framework.
Our contributions are threefold: i) we modify the graph em-
bedding algorithm LINE to learn a better game state rep-
resentation that can retain both the structure information of
the graph and the node information related to the exit nodes;
ii) we show how to pre-train a pursuer’s policy base model
against vastly different strategies of the evader with multi-
task reinforcement learning; and iii) we formulate a novel
best-response oracle in PSRO that fine-tunes the pre-trained
pursuer’s policy. We perform extensive empirical analysis in
large-scale pursuit-evasion games with both synthetic and
real-world graphs to show that our two-stage algorithm out-
performs other baselines in both solution quality and scala-
bility, which demonstrates the effectiveness of pre-training
and fine-tuning. To the best of our knowledge, we are the
first to introduce the pre-training and fine-tuning paradigm
into an equilibrium-finding algorithm without using human
behavioral data.

2 Background and Related Work
2.1 Two-Player Extensive-Form Games

A two-player zero-sum imperfect-information extensive-
form game (EFG) (Shoham and Leyton-Brown 2008) can be
represented as a tuple (N, H, A, P,Z,u). Here, N = {1, 2}
is a set of players, and H is a set of game’s histories. We
use the empty sequence () to represent the root node (i.e.,
the start point) of the game tree, included in H. Note that
every prefix of a sequence in H is also in H. Z refers to
a set of terminal histories, and it is a subset of H. A is a
set of available actions for every non-terminal history. More
specifically, A(h) = {a : (h,a) € H} refers to a set of
available actions at a non-terminal history h € H. P is a
player function identifying a player who takes an action at
history h. Z denotes a set of information sets of both play-

ers, such that Z; forms a partition over histories i where
player ¢ takes action. It means that player ¢ cannot distin-
guish between the histories in the same information set and
P(hl) = P(hg) and A(hl) = A(hg) for any hi,he € I;. u
represents a utility function, a mapping from the set of termi-
nal histories to real numbers, i.e., v : Z — R. We consider
only zero-sum games, hence u1(z) = —ug(z),Vz € Z.

A behavior strategy o; of player ¢ assigns one probabil-
ity distribution over A(I;) for every information set of the
player. A strategy profile ¢ is then a tuple of one strat-
egy for each player, i.e., 0 = (01, 02). When both players
play according to o, we may compute the reaching proba-
bility for every history h, and we denote it as 77 (h). The
expected utility of player i given a strategy profile o is
ui(0) = Y ez ™ (h)u;(h). We consider the canonical so-
lution concept Nash equilibrium (NE) (Nash 1950), which is
a strategy profile such that no player can increase their utility
by unilaterally deviating. Formally, a strategy profile o is an
NE if it satisfies Vi € N, u;(0) > max,es~ ui(0f, 0-),
where o_; refers to all the strategies in o except ¢;. Given
€ > 0, a strategy profile o is said to be an e-Nash equilib-
rium if it is not possible for any player to gain more than € in
expected payoff by unilaterally deviating from their strategy,
ie, Vi€ N,max, ex ui(o],0-;) —u;i(0) <e

2.2 Policy-Space Response Oracles

Double oracle is an incremental strategy-space generating
algorithm that is guaranteed to converge to Nash equilibrium
in two-player zero-sum games. The idea of the algorithm is
to gradually expand a small meta-game consisting of only
a subset of all possible actions of the players by including
their best responses (from the entire action space) against the
equilibrium of the meta-game. Once all the best responses
are already present in the meta-game, which means that the
current solution cannot be improved, the algorithm termi-
nates. The PSRO is a generalization of the double oracle,
but instead of actions, PSRO uses policies as choices in the
meta-game. Due to its favorable scalability, PSRO achieved
state-of-the-art performance in large-scale two-player zero-
sum games (Lanctot et al. 2017). In PSRO, every player
starts with a random policy, and this profile constitutes the
initial meta-game. Then it proceeds as in double-oracle: it
computes the best response policies of all players and adds
them to the meta-game. For computing the best responses
we may employ any RL algorithm. The meta-game in PSRO
is represented as an empirical game matrix, generated by
having each policy of the first player interact with each pol-
icy of the second player and recording the average utilities
as entries. The solution (i.e., the meta-strategy) is computed
from the empirical game matrix using any meta-solver. Once
PSRO converges, it outputs the final distribution over pop-
ulation policies which approximates an NE of the original
game. Neural Fictious Self-Player (NFSP) (Heinrich and
Silver 2016) can be seen as a special case of PSRO with
uniform distributions as meta-strategies.

A notable disadvantage of PSRO is the fact that training
the best response reinforcement-learning policy is compu-
tationally demanding, making it too slow for large games.
Several recent works were dedicated to ameliorating this is-



sue. For example, McAleer et al. introduced the Pipeline
PSRO (P2SRO) that parallelizes the computation while
maintaining the convergence guarantees through a hierar-
chical pipeline of reinforcement-learning workers (McAleer
et al. 2020). Through various speedup techniques, contem-
porary PSRO-based methods mastered some large games
like Stratego (in the case of P2SRO) or Starcraft (Vinyals
et al. 2019). Yet, even these breakthroughs still require com-
puting the best response from scratch in each iteration.

2.3 Multi-Task Reinforcement Learning

Multi-task learning is an area of machine learning largely
applied to problems in natural language processing or com-
puter vision due to its ability to significantly improve the
learning efficiency and prediction accuracy through joint
learning (Zhang and Yang 2017). Its subfield applied to
reinforcement-learning (RL) tasks have recently drawn the
attention of the RL community as well, motivated by the
idea that similar decision-making policies may be applied to
different tasks in similar environments (Ruder 2017).

Each RL task is modeled as a Markov decision process
(MDP), and the goal of RL is to choose actions maximizing
the cumulative reward. Wilson et al. suggest that to model
a distribution over MDPs, we may employ a hierarchical
Bayesian infinite mixture model (Wilson et al. 2007). In this
approach, the previously learned distributions are used as an
informative prior for model-based Bayesian RL when solv-
ing a new MDP. Multiple tasks may be trained simultane-
ously using a framework of shared experiences (Vuong et al.
2019). This framework uses task-specific rewards to identify
similar parts defined as shared regions which can guide the
experience-sharing of task policies. Recent work has shown
that multi-task pre-training with fine-tuning on new tasks
performs equally or better than meta-learning pre-training
with meta adaptation in RL tasks (Mandi, Abbeel, and James
2022). This motivates the adoption of multi-task learning as
the pre-training algorithm in this work.

3 Problem Statement

Now we move to introduce the class of the game we are
interested in: the pursuit-evasion games. A pursuit-evasion
game is an imperfect-information EFG with two players —
the pursuer and the evader, hence N = {p,e}. We assume
the pursuer has control over n law enforcement units, i.e.,
p = (p1,p2,...,Pn), equipped with tracking devices capa-
ble of monitoring the real-time location of the evader?. Be-
cause in reality both players act at the same time, a pursuit-
evasion game is a simultaneous-move EFG in which the
evader moves first, followed by the pursuer who makes deci-
sions without being aware of the current action of the evader.

Every game is played on an urban road map, which can
be represented as a graph G = (V, E), where V is a vertex
set, and F is an edge set. A subset FE C E denotes the set
of exit nodes from which the evader can escape. For a ver-
tex v € V, let N'(v) define the set of neighborhood vertices

2This version of pursuit-evasion games is also called the NEt-
work purSuiT games (NEST) (Zhang et al. 2019) or the Network
Security Games (NSGs) (Xue et al. 2021; Xue, An, and Yeo 2022)

of v. Let [§, IF be the initial locations of evader and pursuer.
Note that I = (I5*,15?, ...,15"). By T we denote the number
of steps in which the game terminates. At time step ¢ < 7',
the history of the game is a sequence of past locations of
both players, h = (15,15, ...,15_,1?_). Because the evader
cannot know the pursuer’s location, evader’s information set
can be defined as I, = {h|h = (1§, 15,15, %, ..., 15_1,%)},
where * is any possible location of pursuer. The actions
available to the evader are the neighboring vertices of the
evader’s current location, i.e., A.(h) = N (I{_, ). The evader
makes their decision I§ € A.(h) based on the informa-
tion available in set I.. When the evader moves from I;_;
to ¢, the history becomes h = (I, 15, ..., 15 1,17 |, 1%).
Then it is up to the pursuer to act in the information set
defined as I, = {h|h = (I§,1},...,1¢_1,1¥_,,%)}. The ac-
tion set of the pursuer at the current history h is a Carte-
sian product of the sets of neighboring vertices of each
unit, ie., Ap(h) = {(IP*,1P2,..,1P»)|I" € N(li_,),Vi €
{p1,p2, .-y Pn}}. When the pursuer moves from ¥ _; to I¥
after choosing an action from Ap(h), it is up to the evader
to act again. This process repeats until a termination condi-
tion is met. The game ends (i) when the pursuer catches the
evader, i.e., [f € lf; (i1) when the evader escapes; or (iii)
when the game reaches the time step 7. In cases (i) and (iii)
the pursuer obtains a single reward (1), and the evader gets
a single penalty (-1). Otherwise, if the evader successfully
escapes to the outside world, the pursuer obtains a single
penalty (-1), and the evader gets a single reward (1).

Because a pursuit-evasion game is an EFG, we may
leverage the standard methods for finding its NE. How-
ever, applying these methods directly is not possible because
of the large combinatorial action space of pursuit-evasion
games. Some adaptations hence consider various (and often
domain-specific) incremental generation strategies (Bosan-
sky et al. 2014, 2015; Zhang et al. 2019), or introduce new
strategy representations in attempt to avoid the curse of di-
mensionality associated with the game’s strategy space (Li
et al. 2021). However, neither of these approaches scale to
deep games with high number of time steps. In order to solve
such games, in this work, we develop a PSRO-based algo-
rithm embedded with pre-training and fine-tuning of pur-
suer’s strategies to accommodate both the high branching
factor and the long interactions between the players.

4 Pre-Training and Fine-Tuning in PSRO

In this section, we describe our algorithm for solving large
pursuit-evasion games. The algorithm may be divided into
two stages, as shown in Figure 1: the pre-training stage and
the fine-tuning stage. In the pre-training stage, we first learn
a good representation for the state and then train the policy
base model of the pursuer against different evader strategies
using multi-task learning. In the fine-tuning stage, we use
the learned base model in the pursuer’s best response oracle
in PSRO to arrive at the game’s equilibrium.

4.1 Learning the Game State Representation

First, we consider the computation of the pursuer’s best re-
sponse during the first stage. As described in the previous
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Figure 1: Structure of our PSRO-based method embedded with the pre-training and fine-tuning stages.

section, the information set of the pursuer is determined by
the past locations of both players, (1§, 15, ..., 1¢_;, 1% ;). This
history may be considered as the state in the best response
computation task. If we use only the vertex index in the
graph to represent the state, this representation would not
retain the graph’s structural information as the index is ba-
sically meaningless. To obtain a better state representation
used for learning, we adopt a graph embedding algorithm to
learn the representation of the graph vertex and replace the
vertex index with the vertex’s representation. The embed-
dings need to preserve not only the structure information of
the graph but also the node information proximity. We mod-
ify an existing graph embedding algorithm to achieve it.
Large-scale information network embedding (LINE) is
a graph embedding algorithm which aims to embed
large information networks into low-dimensional vector
spaces (Tang et al. 2015). This method can preserve both
the first-order and second-order proximities. The first-order
proximity refers to the local pairwise proximity between the
vertices. The second-order proximity assumes that vertices
sharing many connections to other vertices are similar.
Note that in pursuit-evasion games, the exit nodes are im-
portant for both players. We hence use the information re-
lated to the exit nodes as a “node information”, and we re-
quire the nodes with similar node information to have sim-
ilar embeddings, whether they are connected or not. There-
fore, except for the above two proximities, we also intend
the preserve this so-called node information proximity.
Node Information. Formally, we define the node informa-
tion of a vertex as the shortest distances between the vertex
and the exit nodes. We use D%, ; to denote the node informa-
tion vector for vertex v; € V.
Node Information Proximity. For any pair of vertices
(vi,vj), we use the cosine similarity as a node information
metric, defined as follows:

Dy (1)
1Dl < [1 Dy,
Objective Function. For any pair of vertices (v;, v;), we de-

fine the node similarity between v; and v; as a joint proba-
bility between the two vertices:

Ini(Diy, Dip) =

1
1 +exp(—ul -uj;)’

(@)

pNI(Uiyvj) =

where u; € R? is the low-dimensional vector representation
of vertex v;. Moreover, we denote the empirical probability
of the above distribution px(-,-) over the space V' x V as
pn1(i,j) = fni(Dl g, D), where fn is the cosine sim-
ilarity function. Therefore, to preserve the node information
proximity, we minimize the following objective function:

Oa =d(pn1( ), pN1(s-)), 3)

where d(-,-) is a distance between the two distributions. In
case of the KL-divergence, the function reduces to:

fNI(Dj\fI?Dg\U).

Oxr = Divp, Dyy,)1
KL Z Ini(Dyp, Dyy)log pN1(vi,v5)

V(Ui yUj )
After eliminating the constants, we finally arrive at:

Z Ini(Dip, D) logpi(vi,vg).  (4)
Y (vi,v5)

Okr = —

To preserve the structure information of the graph and node
information at the same time, we add O, to the objective
function of the LINE algorithm.

State Representation. After obtaining the embedding for
all vertices in the graph, we can replace the vertex index with
its corresponding embedding in the information set repre-
sentation (1§, 15, ..., 1§_ 1,l 1)- However, the size of the state
representation qulckly increases with time step. For this rea-
son, we represent a state using only the locations of both
players and the number of remaining time steps. Note that
such simplification still carries the entire information as the
locations of both players in the next time step depend only
on their current positions and their actions. In the experi-
mental section, we show that this new state representation
performs equally or better than the traditional state repre-
sentation using historical locations.

4.2 Learning the Pursuer’s Policy Base Model

The computation of the pursuer’s best response strategy
against a fixed evader’s strategy can be regarded as an RL
task. The environment of this task depends mainly on the
game’s rules and the fixed evader’s policy. More specifi-
cally, the task changes in accordance with the strategy of
the evader. In PSRO, the pursuer’s best response strategy
is computed in each iteration, each characterizing a specific



Algorithm 1: Pre-train Policy Model

Algorithm 2: PSRO with Pre-trained Policy Model

1: Initialize a policy network 6 and policy buffer B;
2: for train epoch in {1, 2, ..., n} do
3:  for number of tasks sampled do
4: Generate an evader’s strategy o, randomly;
5: Sample training data using o, and 6;
6 Add sampled training data into buffer B;
7:  end for
8:  Train policy 6 using training data in B;
9:  Clear buffer B;
10: end for
11: return policy network 6.

RL task identified by a different strategy of the evader. Our
assumption here is that these RL tasks may be seen as sim-
ilar, following the same distribution, and determined by the
evader’s strategy space.

We use this similarity in practice to speed up the computa-
tion of the pursuer’s best response in PSRO. To this end, we
pre-train the policy base model of the pursuer and quickly
fine-tune it to adapt to a new, similar RL task. In order to
do so, we need to solve two problems: how to generate the
tasks, and how to learn the policy base model.

Task Generation. Because the RL tasks are determined by
the evader’s strategy, to obtain enough tasks for training
the policy base model of the pursuer, we need to generate
as many different evader strategies as possible. Recall that
the goal of the evader is to escape from exit nodes in the
graph. We hence focus on so-called High-Level Actions of
the evader, which proved useful in earlier work (Xue et al.
2021; Xue, An, and Yeo 2022). In this action representation,
the evader chooses which exit node to escape from and then
samples one path from the initial location to this exit node,
rather than deciding where to go in the next step as in regular
strategies. In the PSRO algorithm, when computing the best
response strategy for the pursuer, the fixed evader strategy
is a mixed strategy produced by the meta distribution and
previous best response strategies. Without loss of generality,
we generate the mixed strategy for the evader randomly. In
practice, it means that if there are n exit nodes, we randomly
generate a distribution o, over n exit nodes. This way we can
obtain enough RL tasks for pre-training across a wide range
of meaningful evader’s strategies.

Policy Learning. After obtaining enough RL tasks, we
move to the pre-training phase of the pursuer’s policy base
model. Our priority is that the model generalizes well, in
other words, it needs to be able to fine-tune quickly to de-
liver acceptable performance when faced with a new task de-
termined by a previously unseen evader’s strategy. For this
purpose, we adopt a multi-task reinforcement learning ap-
proach to guide the pre-training process. By doing so, we
complete all the training tasks simultaneously with a single
RL policy network. When adapting to a new task, we fine-
tune the policy network using the same algorithm as in train-
ing. The framework of multi-task reinforcement learning is
agnostic to the underlying base RL algorithm. We opt for a
popular on-policy method called proximal policy optimiza-

Require: pre-trained policy 6, of the pursuer
1: Initialize policy 6° of the evader, IT, = {0°};
2: Initialize policy ¢ = 6, of the pursuer, 11, = {92};
3: while epoch i in {1, 2, ..., n} do
Compute best response 0° of the evader against o;
0;, = 0,
for few episodes do
Sample 0, ~ o;
Train oracle 6, over ¢ ~ (6, 0});
9: end for
10 Il =TI U {0}, 11, = 11, U {67 };
11:  Compute the missing entries in U from IT;
12:  Compute a meta-strategy o from U'L;
13: end while
Ensure: current solution strategy ¢ and II.

AN AN

tion (PPO) (Schulman et al. 2017), that is known to perform
extremely well across a wide range of tasks. The diagram
and the entire procedure of pre-training are depicted in Fig-
ure 1 and Algorithm 1.

First, we initialize a policy network # and a buffer B. In
the pre-training process, we use the experience-sharing ap-
proach to conduct multi-task learning. We begin the train-
ing by obtaining some tasks from several generated evader’s
strategies. Then we use the current policy 6 to sample the
training data from these tasks and add the data into the buffer
B. We train the policy 6 based on the data in the buffer us-
ing the base RL algorithm (e.g., PPO). We finish the epoch
by emptying the buffer. This whole process is repeated for a
given number of training epochs.

Since the pursuer controls several law enforcement units,
their joint action space grows exponentially in the number
of units. As a consequence, training the joint action strategy
over the large joint action space using PPO would be highly
ineffective. To mitigate this issue, we replace the vanilla
PPO with the Multi-Agent PPO (MAPPO) (Yu et al. 2021),
which is variant of PPO with centralized value function in-
puts. The motivation for choosing a multi-agent RL algo-
rithm is that all units need to cooperate to capture the escap-
ing evader. Computing the best response of the pursuer with
many units may hence be regarded as a multi-agent coop-
erative RL problem. To use the MAPPO as the base RL al-
gorithm for multi-task reinforcement learning, we only need
to change the training pattern in Line 8 of Algorithm 1. We
note that any multi-agent cooperative RL algorithm may be
used in the pre-training stage we devised.

4.3 Designing an Oracle using the Base Model

Here, we describe how to integrate the pre-trained model
of the pursuer’s policy into the PSRO framework. The dia-
gram of the integration and its method are shown in Figure 1
and Algorithm 2. At the beginning, we initialize the evader’s
strategy randomly and the pursuer’s strategy by using the
pre-trained policy base model. Then we follow the standard
PSRO loop: in each iteration we compute the best responses



of both players using their appropriate oracles, we update the
meta-game matrix, and compute the meta-strategy. Without
a doubt, the key component of PSRO is the computations of
best responses, which we derive in the next two paragraphs.
Best Response Oracle for Evader. Since the goal of the
evader is to escape through the exit nodes in the graph,
and they cannot obtain additional information about the pur-
suer’s location during the game, their best strategy should be
to follow a path from their initial location to one exit node.
However, evaluating every path to select the best strategy is
inefficient because the number of paths grows exponentially
with the number of time steps. Therefore, we employ the
High-Level Actions we described earlier in the task gener-
ation part. The evader only needs to select which exit node
to escape from and sample one path from the initial location
to the exit node. Then we estimate the value of each exit
node through simulations. The best response strategy of the
evader is selected according to these values.

Best Response Oracle for Pursuer. The primary difference
between vanilla PSRO and our version of PSRO with the in-
tegrated pre-training and fine-tuning lies in the best response
computation for the pursuer. Instead of training the best re-
sponse strategy from scratch, we fine-tune the pre-trained
policy base model to arrive at the best response strategy.
As shown in Algorithm 2, we start with the pre-trained pol-
icy model (Line 5) and sample the training data against the
evader’s mixed strategy. Then we fine-tune the pre-trained
model on the sampled data using the same RL algorithm as
in pre-training, but with a smaller learning rate (Lines 6-9).

S Empirical Evaluation

To evaluate the effectiveness of our two-stage algorithm, we
compare it against the vanilla PSRO and NSGZero (Xue,
An, and Yeo 2022), which is the state-of-the-art algorithm
for solving pursuit-evasion games, in games with different
sizes of graphs®. Furthermore, we perform several ablation
studies to identify the effects of each component of our al-
gorithm we introduced.

5.1 Experimental Setting

Pursuit-evasion games are played on graphs which sizes in
part determine the games’ sizes. In the experiments, we use
different sizes of synthetic graphs and a real-world map.
For the synthetic graphs, we generate different sizes of grid
worlds, and for the real-world graph, we extract the graph
from the Singapore map via OSMnx (Boeing 2017). Since
we focus more on the quality of the pursuer’s strategy, the
measurement we plot is the worst-case utility for the pursuer,
which is their utility against the evader’s best response strat-
egy. The values of all parameters can be found in the Ap-
pendix. To increase the robustness, we run every experiment
with three seeds and plot the average values and variances
in every figure. Experiments are performed on a workstation
with a ten-core 3.3GHz Intel 19-9820X CPU and NVIDIA
RTX 2080 Ti GPU.

3 As we mentioned in the introduction, CFR variants cannot ef-
fectively solve games with such long time horizons, so we do not
include them in the experimental comparison.
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Figure 2: Qualitative results on games with different graphs.

5.2 Experimental Results

Synthetic Graphs. First, we use games that play on syn-
thetic graphs as testbeds. Figure 2(a) shows the results in
the game on a 20*20 grid graph. Since the number of units
is only two in this game, we use PPO as the base RL algo-
rithm of the multi-task reinforcement learning to pre-train
the pursuer’s policy base model (PPO-PSRO). From the fig-
ure, we can find that PPO-PSRO and NSGZero show similar
performance, while both perform worse than our algorithm
(PPO-PSRO with Pre-train). When performing PSRO to get
the NE strategy, although it takes some time in pre-training,
our algorithm can start with a high worst-case utility and be
improved by fine-tuning, which shows the effectiveness of
pre-training and the necessity of fine-tuning.

Next, we consider games with more units controlled by
the pursuer. Figure 2(b) shows the results in the game with
four units played on a 10*10 grid graph. In this game, we
use multi-agent RL algorithm (i.e., MAPPO) as the best
response computation strategy to avoid the exponentially
growing action space. The results show that MAPPO-PSRO
and MAPPO-PSRO with Pre-train perform better than PPO-
PSRO and NSGZero, which indicates the large joint action
space hampers the performance of PPO. Although NSGZero
tries to mitigate the issue produced by large action space by
only considering legal actions and taking the legal action as
the input, NSGZero still suffers from the issue of combina-
torial action space when the graph is compact. Figures 2(b)-
2(d) show the results in games with four units played on
different sizes of graphs. It shows our algorithm (MAPPO-



PSRO with Pre-train) performs best in all these games, al-
though it spends much time on pre-training. To further eval-
uate the scalability of our algorithm, we test our algorithm
on the game played on a 100*100 grid graph, which involves
10000 nodes and 39600 edges. The number of units is set to
be eight, and the time horizon is 51. Figure 2(e) shows only
the results of our two-stage algorithm (PSRO with Pre-train)
since PSRO and NSGZero cannot converge to a satisfactory
result in the limited time. It indicates that only our algorithm
can solve such large games within an acceptable time.
Real-world Graphs. Finally, we evaluate our algorithm in a
real-world graph extracted from the Singapore map, which
involves 372 nodes and 1098 edges, and its max degree is
13. Figure 2(f) shows the results which exhibit the our two-
stage algorithm can still perform better and faster than the
vanilla PSRO. It indicates that our algorithm can perform
well in large-scale games regardless of the graph structure.

5.3 Ablation Study

To evaluate the effectiveness of each component in our algo-
rithm — especially whether the state representation and the
multi-task learning improve the performance — we ran sev-
eral ablation experiments in a game played on a 20¥20 grid
graph. The pursuer in this game controls two units and the
time horizon is set to be 10. We employ the PPO as the al-
gorithm for computing the best response strategy.

Different State Representation. As described in Section
4.1, instead of using the historical locations of both players,
we only use the current positions of both players and the re-
maining time as the state representation. To compare these
two state representations, we perform the pre-training pro-
cess and PSRO using these two state representations. Both
two state representations use the same node embeddings.
Figures 3(a)-3(b) show the results. We found that the perfor-
mances of these two state representations are similar, and the
new state representation performs even better. It means that
new state representation can perform equally or even better
than the state representation using historical locations.

To evaluate the effectiveness of the graph embedding al-
gorithm, we take state representation without graph embed-
ding (only use the vertex index) as the baseline, and the
LINE algorithm is also taken as another baseline to test the
effect of node information. Figure 3(c) shows the results. It
indicates that PSRO with LINE+Information converges to
the highest worst-case utility, and PSRO without embed-
ding cannot converge to a high worst-case utility. PSRO
with LINE and PSRO with LINE+Information perform
much better than PSRO without embedding, which means
that the node embeddings can improve the performance of
PSRO. Although PSRO with LINE performs better than
PSRO with LINE+Information at the beginning, PSRO with
LINE+Information seems to converge to a higher worst-case
utility and runs more stable than PSRO with LINE. It means
that the node information can provide some help for solving
games and make the learning phase stable.

Different Pre-training Algorithms. Meta-learning aims to
bootstrap from a set of tasks to learn faster on a new task.
Therefore, the meta-learning algorithm also can be used to
replace the multi-task reinforcement learning algorithm in
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Figure 3: Results of the ablation studies.

our framework to pre-train the policy base model of the pur-
suer. Model-Agnostic Meta-Learning Algorithm (MAML)
(Finn, Abbeel, and Levine 2017) is one of the popular
meta-learning algorithms. It is compatible with any model
trained with gradient descent and applicable to different
learning problems, including RL tasks.More details about
meta-learning can be found in the Appendix.

To test the performance of our algorithm when using dif-
ferent pre-training algorithms, we pre-train the policy base
models using multi-task learning and meta-learning algo-
rithms, respectively. Then we fine-tune these two pre-trained
models under the PSRO framework. Figure 3(d) shows the
results. It demonstrates that both methods can start with a
high worst-case utility which means both pre-trained policy
models are well trained. From the figure, we can also find
that the meta-learning algorithm needs more time to pre-
train the policy base model than multi-task learning. Fur-
thermore, the pre-trained model using multi-task learning
seems to be better fine-tuned than the pre-trained model us-
ing meta-learning. It indicated that multi-task learning tends
to be computationally cheaper than meta-learning though
both algorithms can get good pre-trained models.

6 Conclusion

In this paper, we propose a two-stage method for solving
large-scale pursuit-evasion games by introducing the pre-
training and fine-tuning paradigm under the PSRO frame-
work. Instead of training the pursuer’s best response strat-
egy from scratch, we fine-tune a pre-trained policy model to
speed up the computation of the best response in the PSRO
algorithm. To get a pre-trained policy model, we employ the
graph embedding algorithm to get a good state representa-
tion and adopt the multi-task reinforcement learning algo-
rithm to train the policy base model. Finally, extensive ex-
perimental results in games on both synthetic and real-world
graphs show that our two-stage algorithm outperforms other
baselines in terms of speed and scalability.
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