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Abstract

High-frequency trading (HFT) uses computer algorithms to
make trading decisions in short time scales (e.g., second-
level), which is widely used in the Cryptocurrency (Crypto)
market (e.g., Bitcoin). Reinforcement learning (RL) in finan-
cial research has shown stellar performance on many quan-
titative trading tasks. However, most methods focus on low-
frequency trading, e.g., day-level, which cannot be directly
applied to HFT because of two challenges. First, RL for
HFT involves dealing with extremely long trajectories (e.g.,
2.4 million steps per month), which is hard to optimize and
evaluate. Second, the dramatic price fluctuations and mar-
ket trend changes of Crypto make existing algorithms fail
to maintain satisfactory performance. To tackle these chal-
lenges, we propose an Efficient hieArchical Reinforcement
learNing method for High Frequency Trading (EarnHFT),
a novel three-stage hierarchical RL framework for HFT. In
stage I, we compute a Q-teacher, i.e., the optimal action-value
based on dynamic programming, for enhancing the perfor-
mance and training efficiency of second-level RL agents. In
stage II, we construct a pool of diverse RL agents for different
market trends, distinguished by return rates, where hundreds
of RL agents are trained with different preferences of return
rates and only a tiny fraction of them will be selected into
the pool based on their profitability. In stage III, we train a
minute-level router which dynamically picks a second-level
agent from the pool to achieve stable performance across
different markets. Through extensive experiments in various
market trends on Crypto markets in a high-fidelity simulation
trading environment, we demonstrate that EarnHFT signifi-
cantly outperforms 6 state-of-art baselines in 3 popular finan-
cial criteria, exceeding the runner-up by 30% in profitability.

1 Introduction
High-frequency trading (HFT), taking up more than 73%
volume in the fincial market, refers to leveraging compli-
cated computer algorithms or mathematical models to place
or cancel orders at incredibly short time scales (Almeida
and Gonçalves 2023). A good HFT strategy enables in-
vestors to make more profit than a low-frequency strat-
egy and is therefore pursued by many radical traders. It
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has been widely used in Cryptocurrency (Crypto) market
due to Crypto’s 24/7 non-stop trading time, which prevents
Crypto holders from overnight risk, and dramatic price fluc-
tuations, which provides more profitable trading opportuni-
ties for HFT. Although reinforcement learning (RL) algo-
rithms (Sun et al. 2022; Théate and Ernst 2021; Cumming,
Alrajeh, and Dickens 2015) have achieved outstanding re-
sults in low-frequency trading in traditional financial mar-
kets like stock or futures, few maintain robust performance
under the setting of HFT due to two challenges:

• An extremely large time horizon induces low data ef-
ficiency for RL training. Compared with Atari games
where the time horizon is 6000 (Mnih et al. 2013), the
time horizon of HFT is around 1 million, because second-
level agents need to be evaluated in dozens of days. Large
time horizons need more data to converge (Zhang et al.
2023a), demanding more computational resources.

• The dramatic market changes cause agents trained on his-
tory data to fail in maintaining performance over long
periods. In a traditional RL setting, the training and test-
ing environments remain consistent. However, changes
in the crypto market trend cause a significant difference
between the training and testing environments. An agent
trained on one market trend tends to cause tremendous
losses once the trend changes dramatically in the market.

To tackle the challenges, we propose an Efficient
hieArchical Reinforcement learNing method for High
Frequency Trading (EarnHFT) as shown in Figure 1. In
stage I, we build a Q-teacher indicating the optimal action
value based on dynamic programming and future price in-
formation, which is used as a regularizer to train RL agents
delivering a target position every second for better perfor-
mance and faster training speed. In stage II, we first train
hundreds of second-level RL agents following the stage I
process under different market trend preferences, where buy
and hold (Shiryaev 2008) return rates are used as the pref-
erence indicators. We further label each market based on
DTW (Muda, Begam, and Elamvazuthi 2010) as different
categories and use the profitability performance under each
market category to select a tiny fraction of trained second-
level RL agents to construct a strategy pool. In stage III,
we train a router which dynamically picks a second-level
agent from the pool per minute to achieve stable perfor-



mance across different markets. Through extensive experi-
ments in various market trends in the Crypto market under
a high-fidelity simulation trading environment, we demon-
strate that EarnHFT significantly outperforms 6 state-of-art
baselines in terms of 3 popular financial criteria, exceeds the
runner-up by at least 30% in terms of profitability.

2 Related Works
In this section, we introduce the related works on traditional
methods used in HFT and RL for quantitative trading. More
discussion can be found in Appendix.

2.1 High-Frequency Trading in Crypto
HFT, aiming to profit from slight price fluctuation in a short
period of time in the market, has been widely used in com-
panies (Zhou et al. 2021). Crypto traders invest differently
from those in stock markets because of the high volatil-
ity (Delfabbro, King, and Williams 2021). In the Crypto
market, there are many high-frequency technical indica-
tors (Huang, Huang, and Ni 2019), such as imbalance vol-
ume (IV) (Chordia, Roll, and Subrahmanyam 2002) and
moving average convergence divergence (MACD) (Krug,
Dobaj, and Macher 2022), to capture buying and selling
pressures among different time scales. However, these tech-
nical indicators also have limitations. In the volatile Crypto
market, technical indicators may produce false signals. The
result is sensitive to hyper-parameters like the take profit
point, the stop loss or the length of the rolling windows.

2.2 RL for Quantitative Trading
Many deep reinforcement learning methods for quantita-
tive trading have been proposed. DeepScalper (Sun et al.
2022) uses a hindsight bonus and auxiliary task to im-
prove the model’s generalization ability in intraday trad-
ing. DRA (Briola et al. 2021) uses LSTM and PPO.
CDQNRP (Zhu and Zhu 2022) uses a random perturbation
to increase the stability of training a DQN. However, these
algorithms focus mainly on designing only one RL agent to
conduct profitable trading in short-term scenarios, neglect-
ing its failure to maintain performance over long periods.

Hierarchical Reinforcement Learning (HRL), which de-
composes a long-horizon task into a hierarchy of sub-
problems, has been studied for decades. There are
some hierarchical RL frameworks for quantitative trading.
HRPM (Wang et al. 2021) utilizes a hierarchical frame-
work to simulate portfolio management and order execution.
MetaTrader (Niu, Li, and Li 2022) proposes a router to pick
the most suitable strategy for the current market situation.(Li
et al. 2022) uses an adaptive method to retrain the model in
a few shot fashion. However, these hierarchical frameworks
are all utilized in portfolio management. Its application re-
mains unexplored in HFT where only one asset is traded.

3 Problem Formulation
In this section, we present some basic finance concepts used
in simulating the trading process and propose a hierarchical
Markov decision process (MDP) framework for HFT1.

1More detailed discussions are described in Appendix.

3.1 Financial Foundations for HFT
We first introduce some basic financial concepts used to de-
scribe state, reward, and action in the following hierarchical
Markov Decision Process (MDP) framework and present the
objective of HFT.
Limit Order Book (LOB) records unfilled orders. It is
widely used to describe the market micro-structure (Mad-
havan 2000) in finance. We denote an m-level LOB at time
t as bt = (pb1t , pa1

t , qb1t , qa1
t , ..., pbmt , pam

t , qbmt , qam
t ), where

pbit (pai
t ) is the level i bid (ask) price, qbit (qai

t ) is the quantity.
OHLC is aggregated information of executed orders. OHLC
vector at time t is denoted as xt = (pot , p

h
t , p

l
t, p

c
t), where

pot , p
h
t , p

l
t, p

c
t indicate the open, high, low and close price.

Technical Indicators indicate features calculated by a for-
mulaic combination of the original OHLC or LOB to
uncover the underlying pattern of the financial market.
We denote the technical indicator vector at time t yt =
ϕ(bt, xt, ..., bt−h, xt−h), where ϕ is the function that maps
OHLC and LOB to technical indicators.
Market Order is a trade to buy or sell a financial asset in-
stantly. The executed price is calculated as Equation 1.

Et(M) =
∑
i

(pit ×min(qit, Ri−1))(1 + σ) (1)

where E is the execution price, Ri−1 is the remaining quan-
tity after level i in LOB, σ is the commission fee rate, and
qit, p

i
t are the level i price and quantity in LOB respectively.

Position is the amount of a financial asset traders hold. Po-
sition at time t is denoted as Pt and Pt ≥ 0, indicating only
a long position is permitted in this formulation.
Net Value Vt is the sum of cash and value of the position,
calculated as Vt = Vct + Pt × pb1t , where Vct is the cash.

We aim to maximize the net value by conducting market
orders on a single asset based on market information (e.g.,
LOB and OHLC) at a second-level time scale.

3.2 Hierarchical MDP Framework
In this subsection, we formulate HFT as a hierarchical MDP.
An MDP is defined by the tuple: (S, A, P , r, γ, T ), where S
is the state space and A is the action space. P : S×A×S →
[0, 1] is the transition function, r : S × A × S → R is the
reward function, γ ∈ (0, 1] is the discount factor and T is
the time horizon. In an MDP, the agent receives the current
state st ∈ S from the environment, performs an action at ∈
A, and gets the next state st+1 ∈ S and a reward rt. An
agent’s policy is defined by πθ : S × A → [0, 1], which is
parameterized by θ. The objective of the agent is to learn an
optimal policy π∗ = argmaxθ Eπθ

[
∑T

t=0 γ
trt|S0] where

s0 is the initial state of the MDP.
In RL for HFT, data drifting of the micro-level market in-

formation prevents a single agent from maintaining its per-
formance over long periods and it is difficult to train a prof-
itable agent under all trends because of the conflict in ef-
fective strategies under different market conditions. Macro-
level information, as an aggregation of micro-level mar-
ket information, provides insight into the dynamics of the
micro-level market. Therefore, we formulate HFT as a hi-
erarchical MDP, where the low-level MDP operating on a



S Action Value

𝜒 p 𝐴0 𝐴1
𝜒1 𝑝0 521.3 522

𝑝1 520 522.6

… … … …
Second-level 

Price Data Optimal Action Value

Optimal Actor

RL Agent

KL Update for Efficient Training

MLP

Segments of  Multi-Variate Time Series 

with a Total Length of 3 Million

Bear Market

Train

Volatile Market Bull Market

Train Train

Diverse Strategy Pool

Specific Trend 

Profitability Based 

Model Selection

Router

Minute-level Market Information

Input

Selected Agent

Target 

Position

Deliver Every 

Second

Net Value Difference 

of the Minute

Update

Stage I: Efficient RL with Q-Teacher

Different Sampling Preference

over Return Rates

Stage II: Construction of Diverse Agent Pool

Pick an Agent 

Every Minute

Stage III: Dynamic Routing Optimization

Conduct 

Market Order
Data-Driven 

Environment

Interact

Interact

TD Update

Generate

Figure 1: The overview of EarnHFT. First, we compute a Q-teacher for enhancing the performance and training efficiency of
second-level RL agents. Then, we efficiently train diverse RL agents under various market trends and select a small fraction of
them to form an agent pool based on profitability. Finally, we train a minute-level router which dynamically picks a second-level
agent from the pool to achieve stable performance across different markets.

second-level time scale formulates the process of micro-
level market dynamics and trading execution and the high-
level MDP operating on a minute-level time scale formulates
the process of the macro-level market trends and strategy ad-
justment. It is defined by (MDPh, MDPl), where

MDPh = (Sh, Ah, Ph, Rh, γh, Th)

MDPl = (Sl, Al, Pl, Rl, γl, Tl)

Low-level State Slt at time t consists of two parts: the latent
representation ylt, which is the micro-level market technical
indicators and private state Pt. Xlt consists of 54 features
and is calculated as Xlt = ϕl(Clt) where Clt is a rolling
window of second-level OHLC and the snapshot of LOB
with length 60. Pt indicates the current position of the agent.
Low-level Action alt at time t is the target position. It is cho-
sen from a predefined position pool Al with finite elements
defined as {0, H

|A|−1 , ...,H} where |A| represents the num-
ber of the action choices and H is the maximum position. If
alt ̸= Pt, then we instantly take a market order Et(alt−Pt),
making the current position to alt.
Low-level Reward rlt at time t is the net value differen-
tial in the second-level time scale, referring to money made
through one second. It is calculated as rlt = Pt+1 × pb1t+1 −
(Pt×pb1t +Et(Pt+1−Pt)), where we use the best bid price
to calculate the value of the current position.
High-level State Sht at time t also consists of two parts: the
latent representation yht, which is the macro-level market
technical indicators and private state Pt. yht consists of 19
features and is calculated as yht = ϕh(Cht) where Cht is
a rolling window of minute-level OHLC length 60. Pt indi-
cates the current position of the agent.
High-level Action aht is the selected agent at time t. It is
chosen from a pre-trained agent pool Ah, each of which is
trained under a low-level MDP.

High-level Reward rlt at time t is the net value differen-
tial in the minute-level time scale, referring to money made
through one minute. It is also the return of the selected low-
level agent makes under low-level MDP in one minute and
is calculated as rhT =

∑T+τ
t=T rlt.

In this bilevel hierarchical MDP framework, for every
minute, our high-level agent picks a low-level agent, which
will adjust its position every second to make profit. We aim
to find a set of low-level agents (traders) and a high-level
agent (router) to maximize our total profit.

4 EarnHFT
In this section, we demonstrate three stages of EarnHFT as
shown in Figure 1. In stage I, we present RL with Q-teacher,
which improves the training efficiency, to train low-level
agents. In stage II, agents are trained and evaluated in dif-
ferent market trends, forming a diverse pool for hierarchical
constructions. In stage III, we train a router to pick a proper
agent to maintain profitability in the non-stationary market.

4.1 Stage I: Efficient RL with Q-Teacher
A long trajectory causes extra computational cost in tradi-
tional RL settings. However, in our low-level MDP, the price
information is not influenced by our policy. By using future
price information and dynamic programming, we can easily
construct the optimal action value (Sutton and Barto 2018)
to help train RL agents more efficiently. Here, we use an op-
timal value supervisor and an optimal actor to aid training.
Optimal Value Supervisor. Although using RL to conduct
HFT suffers from drawbacks such as overfitting stated in
(Zhang et al. 2023b), it can compute the optimal action value
for any state, unlike traditional RL where even expert tra-
jectories are hard to acquire. Since our position choice is
finite, we can backward calculate the optimal action value.



Algorithm 1: Construction of Optimal Action Value
Input: Multivariate Time Series D with Length N , Com-
mission Fee Rate δ, Action Space A
Output: A Table Q∗ Indicating Optimal Action Value at
Time t, Position p and Action a.

1: Initialize Q∗ with shape (N,|A|,|A|) and all elements 0.
2: for t← N − 1 to 1 do
3: for p← 1 to |A| do
4: for a← 1 to |A| do
5: Q∗[t, p, a]← maxa′ Q∗[t+1, a, a′]+a×pb1t+1−

(p× pb1t + Et(p− a)).
6: end for
7: end for
8: end for
9: return Q∗

By calculating the market order costing and the value of po-
sition fluctuations, we can get the reward and calculate the
action value for the previous state as shown in Algorithm 1.
Adding optimal action value as a supervision signal can help
the agent to explore faster and get positive rewards more
quickly. During the training of the DDQN (Van Hasselt,
Guez, and Silver 2016) agent, we can add a supervision term
which is the Kullback–Leibler (KL) divergence between the
agent’s action values and the optimal action value picked
from the same state. Let Qt(χ, p, a) denote the action-value
from evaluate network for latent representation χ, position p
and action a at time t, and let Q∗(χ, p, a) denote the optimal
action-value function, which we have calculated by Algo-
rithm 1. The loss function could be described as follows:

L(θi) = Ltd + αKL(Qt(χ, p, ·; θi)||Q∗(χ, p, ·)) (2)

where

Ltd = (r + γmaxQt(χ
′, a, ·; θ′i)−Qt(χ, p, a; θi))

2 (3)

representing the TD error in DDQN and α is a coefficient
that decays along time. The second term in Equation 2 en-
ables low-level agents to acquire the advantage function of
other actions under the same state without exploration, en-
hancing the efficiency of RL training. It can be proven that
with this supervisor, the action value still converges to the
optimal action value, as shown in Appendix.
Optimal Actor. Although we have improved the training ef-
ficiency using the optimal value supervisor, it is still very
hard for the agent to learn the optimal policy. The reason
is that our optimal action value is based on the current po-
sition. It is often the case that once our RL agents deviate
from the optimal policy, the supervision term also changes,
which leads to a more significant deviation. Therefore, in-
stead of just training from the transitions the agent explores
using ϵ-greedy policy, we further train the agent using the
transitions generated by the optimal policy where the action
with the highest optimal action value is chosen. The optimal
transitions provide extra experience and prevent the agents
from falling into the local trap.

In Algorithm 2, the agents first collect experience from
both ϵ-greedy policy and the optimal actor, then update the
network using both TD errors and KL divergence.

Algorithm 2: Efficient RL with Q-Teacher
Input: Multivariate Time Series D with Length N , Com-
mission Fee Rate δ, Action Space A
Output: Network Parameter θ

1: Initialize experience replay R, network Qθ, target net-
work Qθ′ and construct the optimal action value using
Algorithm 1 and trading environment Env.

2: Initialize trading environment Env
3: for t = 1 to N − 1 do
4: Choose action aϵ using ϵ-greedy policy.
5: Store transition (s, aϵ, r, s

′, Q∗) in D
6: end for
7: Reinitialize trading environment Env
8: for t = 1 to N − 1 do
9: Choose action ao that argmaxa Q

∗[t, p, a].
10: Store transition (s, ao, r, s

′, Q∗) in R
11: end for
12: Sample transitions (sj , aj , rj , s′j , Q

∗
j )

13: Calculate L following Equation 2, do its gradient de-
scent on θ and update θ′ = τθ + (1− τ)θ′.

14: return Qθ

4.2 Stage II: Construction of Agent Pool
The micro-level market information in the Crypto market
changes rapidly, causing models’ failure in maintaining their
performance over a long period. According to our prelim-
inary experiments where training among different market
trends is incompatible, we decide to decompose the whole
market as different trends and develop a suitable trading
strategy for each market trend.

Algorithm 3: Market Segmentation & Labelling
Input: A Time Series D with Length N
Parameter: Risk threshold θ, Label number M
Output: Labels indicating the trend they belong to for every
point in time series D

1: D′ ← denoising high frequency noise D.
2: Divide D′ according to its extrema into segments S.
3: Merge adjacent segments in S if DTW (Muda, Begam,

and Elamvazuthi 2010) and slop difference are small
enough until S is stable.

4: Calculate threshold H = Q1− θ
2
(R), L = Q θ

2
(R)

5: Calculate the upper bond and lower bonds of slopes for
each label based on the quantile and the threshold.

6: Label each segment based on the bonds.
7: Return the label corresponding to each segment.

Generating Diverse Agents. Previous works on generating
diverse agents mainly focus on the different random seed
initialization of the neural network or RL training’s hyper-
parameter search (Sun et al. 2023), which is mainly unstruc-
tured and can be seen as a byproduct of algorithmic stochas-
ticity rather than an intentional design. Here we propose to
train diverse agents following Algorithm 2 with different
preferences over time series D, i.e., market trends. We first
separate the training dataset (a multivariate time series with



a length of over 3 million) into data chunks with length L,
where each data chunk represents a continuous market trend,
to reduce the time horizon for training. The preference is de-
fined by β, where a corresponding priority proportional to
the probability of a data chunk with buy and hold return rate
r being sampled is calculated as Equation 4.

f(x) =

{
eβr

pdf(r) if Q θ
2
(R) ≤ r ≤ Q1− θ

2
(R)

eβr if r ≥ Q1− θ
2
(R) ∨ r ≤ Q θ

2
(R)

(4)

In Equation 4, Q θ
2
(R) represents the θ

2 -th quantile of the
samples’ return rate R. pdf represents probability density
functions estimated by kernel density estimation and are cal-
culated as Equation 5:

pdf(x) =
1

nh

∑
r∈R

K

(
x− r

h

)
(5)

where h is obtained by searching around Silverman’s band-
width (Silverman 1984) and K is the kernel function as
which we use the normal distribution N(0, 1). The ker-
nel density term erases the influence of the distribution of
the training dataset and therefore provides a more robust
sampling outcome. We sample the data chunk based on
the priority to construct our low-level MDP and train the
agents following the process in stage I. Different agents are
trained under different preference parameters β. This sam-
pling method ensures the agent can access all of the data
chunks yet is trained with a preference over all the market
trends and prevents the agent from being trapped in those
extreme conditions, which may cause agents’ performances
on all other trends to plummet.
Agent Selection. Although we have generated diverse
agents, it is inefficient to put all of them into the agent
pool because it will vastly increase the action space for the
router. Therefore we only select a small fraction of generated
agents to form the pool based on their profitability on vari-
ous market trends. First, we precisely label each point in the
valid dataset using Algorithm 3, which, unlike previous al-
gorithms (Purkayastha, Manolova, and Edelman 2012), can
label different datasets without tunning the hyperparameters.
A more detailed version of the algorithm is described in Ap-
pendix. We evaluate agents with different market trends and
initial positions and further select the agents with the best
profitability (averaged return on various market segments)
under each label with each initial position to construct a two-
dimensional agent pool (m,n), where m is the number of
market trends and n is the initial position.

4.3 Stage III: Dynamic Routing Optimization
We apply DDQN (Van Hasselt, Guez, and Silver 2016) to
train the router for the high-level MDP. However, the num-
ber of agents in the pool is still too large. Even though the
trajectory length has been significantly reduced (by 98.33%
2) because we use the router to select the agent in a minute-
level timescale, it is still computational-burdensome for the

21− 59
60

= 0.9833

high-level agent to explore all the low-level agents. There-
fore we use the priory knowledge of the agent pool to re-
fine our options during trading. More specifically, before we
choose the low-level agent, we will secure the chosen model
whose initial positions are the same as the current posi-
tion. Therefore, we reduce the number of possible low-level
agents to m. Here, we choose not to compute a Q-teacher
to aid the learning process for two reasons: i) the time hori-
zon is largely reduced, therefore the computational burden
for RL to self-explore is reduced. ii) the high-level action is
a low-level agent, i.e., a trading strategy instead of a target
position, causing the extra computation for the position at
the end of the trading session of the selected agent and the
reward during the trading session. The decreasing computa-
tion for RL and increasing computation for computing the
optimal action value make pure DDQN more efficient.

5 Experiment Setup
5.1 Datasets
To comprehensively evaluate the algorithm, testing is con-
ducted on four Crypto, encompassing both mainstream and
niche options, over a period exceeding a week, covering both
bull and bear market conditions. We summarize statistics of
the 4 datasets in Table 1 and further elaborate them in Ap-
pendix. For dataset split, we use data from the last 9 days
for testing, the penultimate 9 days for validation and the re-
maining for training on all 4 datasets. We first train multiple
low-level agents on the training dataset, and segment and
label the valid dataset for model selection. We further train
the router on the training dataset again and evaluate it on
the whole valid dataset to pick the best router, which will be
tested in the testing dataset. Experimental results in Table 2
show the great performance of that EarnHFT under differ-
ent market statuses despite the difference between the valid
dataset and the test dataset as shown in Appendix.

Dataset Dynamics Seconds From To
BTC/TUSD Sideways 4057140 23/03/30 23/05/15
BTC/USDT Sideways 3884400 22/09/01 22/10/15
ETH/USDT Bear 3970800 22/05/01 22/06/15
GALA/USDT Bull 3970740 22/07/01 22/08/15

Table 1: Dataset statistics detailing market, data frequency,
number of stocks, trading days and chronological period.

5.2 Evaluation Metrics
We evaluate EarnHFT on 6 different financial metrics in-
cluding one profit criterion, one risk criteria, and one risk-
adjusted profit criteria listed below.
• Total Return (TR) is the overall return rate of the whole

trading period. It is defined as TR = Vt−V1

V1
, where Vt is

the final net value and V1 is the initial net value.
• Drawdown (MDD) measures the largest loss from any

peak to show the worst case.
• Annual Sharpe Ratio (ASR) considers the amount of

extra return that a trader receives per unit of increase in



Prof↑ RAP↑ Risk↓ Prof↑ RAP↑ Risk↓
Market Model TR(%) SR MDD(%) Market Model TR(%) SR MDD(%)

BTCU

DRA -4.56 -4.28 9.24

BTCT

DRA -2.65 -4.82 5.84
PPO -3.61 -5.25 6.41 PPO -0.60 -14.74 0.65

CDQNRP -2.83 -2.91 7.38 CDQNRP -0.60 -19.52 0.61
DQN -3.48 -12.37 4.09 DQN 0.47 4.21 0.66

MACD -6.07 -10.11 9.98 MACD -4.02 -5.80 6.44
IV -2.99 -3.78 8.32 IV -12.01 -17.83 12.66

EarnHFT 0.72 1.22 3.07 EarnHFT 0.99 1.34 5.61

ETH

DRA -33.37 -9.06 45.88

GALA

DRA 10.56 4.77 10.60
PPO -22.61 -10.11 31.17 PPO 10.56 4.77 10.60

CDQNRP -6.82 -24.41 6.96 CDQNRP 5.22 4.51 5.41
DQN -11.02 -9.47 13.79 DQN 2.94 3.55 3.78

MACD -4.29 -1.78 16.35 MACD 2.37 1.79 9.84
IV -27.42 -12.27 33.96 IV 13.95 6.74 9.91

EarnHFT 4.52 2.92 13.89 EarnHFT 19.41 9.77 9.26

Table 2: Performance comparison on 4 Crypto markets with 6 baselines including 2 policy-based algorithms, 2 value-based
algorithms, and 2 rule-based methods. Bold, italic, and underlined results represent the first, second, and third-best outcomes.

risk. It is defined axs: SR = E[ret]/σ[ret]×
√
m, where

E[.] is the expected value.

5.3 Training Setup
We conduct all experiments on a 4090 GPU. For the trading
setting, the commission fee rate is 0 for BTCT and 0.02%
for the remaining datasets following the policy of Binance.
For the training setting, we choose β in Equaition 4 in list
[−90,−10, 30, 100] and run each β for 50 epochs, gener-
ating a total of 200 agents. Adam is used as the optimizer
for DDQN. As for other baselines, there are two conditions:
i) there are authors’ official or open-source library (Huang
et al. 2022) implementations, we apply the same hyperpa-
rameters for a fair comparison3. ii) if there are no publicly
available implementations4, we reimplement the algorithms
and try our best to maintain consistency based on the origi-
nal papers. It takes about 10 hours to run all experiments in
4 datasets. Descriptions of other parameter settings (e.g., the
trading setting) are in Appendix.

5.4 Baselines
To provide a comprehensive comparison of EarnHFT, we
select 6 baselines including 4 SOTA RL algorithms and 2
widely-used rule base methods.

• PPO (Schulman et al. 2017) applies importance sam-
pling to enhance the experience efficiency.

• DRA (Briola et al. 2021) uses an LSTM (Hochreiter and
Schmidhuber 1997) network to enhance the state repre-
sentation to gain a better result using PPO.

• DQN (Mnih et al. 2015) applies experience replay and
multi-layer perceptrons to Q-learning.

3PPO and DQN.
4DRA and CDQNRP

• CDQNRP (Zhu and Zhu 2022) uses a random per-
turbed target frequency to enhance the stability during
training.

• MACD (Krug, Dobaj, and Macher 2022) is an up-
graded method based on the traditional moving average
method. Not only does it show the rise or fall of the cur-
rent price, but also indicates the speed of rising or falling.

• IV (Chordia, Roll, and Subrahmanyam 2002) is a
micro-market indicator widely used in HFT.

6 Results and Analysis
6.1 Comparison with Baselines
According to Table 2, our method achieves the highest profit
in all 4 datasets and the highest risk-adjusted profit in 3
datasets. Value-based methods (e.g., CDQRP and DQN) per-
form well when the gap between the valid and test datasets is
not large under a stable market trend. Policy-based methods
(e.g., PPO and DRA) are easy to converge to a dummy pol-
icy where the agents just deliver the target position the same
as their current position due to the existence of the com-
mission fee even if the learning rate is set to 1e−7 and there-
fore perform poorly on the bear market. Rule-based methods
are extremely sensitive to the take profit point and the stop
loss and only achieve moderate profit under volatile mar-
kets. Our method, EarnHFT, although it performs well on
profit-related metrics, is a very radical trader due to the opti-
mal value supervisor and optimal actor, which only delivers
profit-related experience, neglecting the risk-related infor-
mation, and therefore performs moderately in some datasets
in terms of risk. As shown in Figure 2, EarnHFT opens a
position and closes the position within 30 seconds and prof-
its from a market trend which is viewed as a pullback at
a minute-level timescale. More results can be found in the
Appendix.
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Figure 2: Trading process of EarnHFT in ETH

6.2 The Effectiveness of Hierarchical Framework

We examine the effectiveness of the hierarchical framework
by analyzing the router’s behaviors under different datasets
and conducting experiments to show the performance com-
parison of the EarHFT and each agent from its pool. From
Figure 3 we can see that bull and rally agent tends to buy
and hold and therefore perform well in the bull market (e.g.,
GALA). The sideways agent tends to trade less and hold still
its position. The pullback and bear market tends to close its
position and perform well in the bear market (e.g., ETH).
The router combines all the advantages of the agents and
performs the best on all 4 datasets in terms of profit. Fig-
ure 4 refers to the selection distribution for the router on 4
datasets. While datasets with high volatility (e.g., ETH and
GALA), the market dynamics change more frequently and
therefore the routing shows a more balanced distribution
across 5 market trends. While datasets with lower volatil-
ity (e.g., BTCT and BTCU), the router selection is more fo-
cused on two market dynamics.
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Figure 3: Comparison of the router and agent pool
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OA OS GALA ETH
CS RS AHL CS RS AHL

✓ ✓ 78848 4.43 448 102400 12.32 81.3
✓ 102400 0.24 38.7 102400 -1.40 4.15

✓ 4608 2.89 147 30720 4.87 35.8
30720 -0.01 284 30720 -29.6 39.1

Table 3: Ablation Study of OS and OT

6.3 The Effectiveness of Optimal Action Value
To demonstrate the effectiveness of the optimal value super-
visor (OS) and the optimal actor (OA), we conduct an ab-
lation study on two datasets, ETH and GALA. We evaluate
the training efficiency by the number of steps need to con-
verge (CS) and the converged reward sum (RS). We further
investigate their influence on agent trading behavior by av-
erage holding length (AHL). In Table 3. For GALA we can
see that compared with the original DDQN, the one with OS
only takes 15% of the steps to converge and gain a higher
return. OA can further improve the return in exchange for
more steps to converge. For ETH, since the market is bull,
the CS is not reduced by OS. However, the return is largely
increased. The reason why OS is more effective is that OS
provides more information for the agents and its instruc-
tions vary along the changes of the agents’ policy while OA
only provides demonstrations. These demonstrations, on the
other hand, prevent agents from falling into a local optimal
and, therefore, achieve a higher RS, requiring a higher CS.

7 Conclusion
In this paper, we propose EarnHFT, a novel three-stage hi-
erarchical RL framework for HFT to alleviate training ef-
ficiency and data shifting. First, we compute the optimal
action value to improve the performance and training effi-
ciency of second-level RL agents. Then we train a diverse
pool of agents excelling in various market trends. Finally,
we train a router to regularly pick an agent from the pool to
conduct trading to deal with the dynamic market. Extensive
experiments on Crypto markets demonstrate that EarnHFT
significantly outperforms many strong baselines. Ablation
studies show the effectiveness of the proposed components.
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