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Abstract

Backdoor attacks have posed a serious threat in machine
learning models, wherein adversaries can poison training
samples with maliciously crafted triggers to compromise the
victim model. Advanced backdoor attack methods have fo-
cused on selectively poisoning more vulnerable training sam-
ples, achieving a higher attack success rate (ASR). How-
ever, we found that when the manipulation strength of the
trigger is constrained to a very small value for impercep-
tible attacks, they suffer from extremely uneven class-wise
ASR due to the unequal selection of instances per class. To
solve this issue, we propose a novel backdoor attack method
based on Influence-based Fair Selection (IFS), including two
objectives: 1) selecting samples that contribute significantly
to ASR and 2) ensuring class balance during the selection
process. Specifically, we adapt Influence Functions, a clas-
sic technique in robust statistics, to evaluate the influence
of trigger-embedded training samples on ASR. In this case,
training samples contributing to reducing the backdoored test
risk could possess higher influence scores. Further, a group-
based pruning strategy is designed to avoid calculating the in-
fluence on ASR for all training samples, thereby significantly
reducing the computational cost. Then, based on the influence
score, we design an adaptive thresholding scheme to dynam-
ically select samples with higher influence while maintaining
class balance. Extensive experiments on four datasets verify
the effectiveness of IFS compared with advanced methods.

1 Introduction
Deep neural networks (DNNs) have achieved remarkable
success in various machine learning tasks such as image
classification, video understanding, and natural language
processing. However, recent works (Gu et al. 2019; Jia,
Liu, and Gong 2022; Xia et al. 2022) have revealed that
DNNs are vulnerable to backdoor attacks. Specifically, the
malicious adversary can elaborately craft backdoor samples
(with triggers) and effortlessly distribute them on the Inter-
net. Meanwhile, innocent users or companies might unwit-
tingly crawl these backdoor samples and collect them into a
dataset for model training. Once using the poisoned training
set for model training, the model will be injected with the
trigger. At ordinary times, the infected model would produce
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Blended Patched

Figure 1: Visualization of backdoored samples with different ma-
nipulation strength ϵ, which reflects the visibility of the trigger in a
sample. A smaller value of ϵ is preferred since it enhances stealth.

normal output, but when encountering the trigger, it would
uncontrollably produce adversary-desirable output.

The principle of current attack methods is improving the
stealthiness and effectiveness of backdoor attacks. There-
fore, they (Gu et al. 2019; Jia, Liu, and Gong 2022) com-
monly consider only poisoning a small proportion of train-
ing samples with visually invisible triggers (controlled by
a manipulation strength parameter as shown in Figure 1),
which can evade human and machine detection more easily.
Furthermore, instead of randomly selecting training samples
to be backdoored with heuristic strategies (Gu et al. 2019;
Jia, Liu, and Gong 2022), recent methods (Xia et al. 2022;
Wu et al. 2023; Xun et al. 2024) proposed to choose repre-
sentative samples via a pre-designed criterion such as for-
getting score (Xia et al. 2022) and representational distance
score (Wu et al. 2023), which further improves the effective-
ness of backdoor attacks.

However, we found that the attack success rates (ASRs)
of these methods are highly sensitive to the visibility of the
trigger, i.e., the manipulation strength parameter ϵ. For ex-
ample, when reducing ϵ from 4 (a common setup in exist-
ing methods) to 2 (which makes the trigger more imper-
ceptible), current methods have a significant performance
degradation (e.g., on ImageNet-10 with a 1% poison rate,
the ASRs drops by more than 40% for attack methods FUS
(Xia et al. 2022) and RD (Wu et al. 2023)). This observation
indicates the limited effectiveness of these attack methods in
practical scenarios where high stealthiness is required.

To investigate this phenomenon, we further introduce a
new metric, i.e., the variance of class-level ASR, indicating
the discrepancy in ASR among different classes, and track
the variance of class-level ASR and the number of backdoor
samples in each class during the training stage under various
values of ϵ. The results in Figure 2 show that when the value
of ϵ becomes small, the variance in class-wise ASR is greatly
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Figure 2: Comparison of the variance of class-wise ASR under the patched backdoor with the poisoning rate r = 1% on two datasets. The
(backdoor) targeted label is class 6 in (a) and class 4 in (b). The baseline is FUS (Xia et al. 2022). The variance is computed by the formula
Var = 1

C

∑C
c=1(ac− ā)2, where C denotes the number of classes, ac is the ASR on class c and ā is the overall ASR. A large variance means

that backdoor attacks on some categories are successful, while attacks on other categories are less effective. We can observe that as the value
of ϵ decreases, the number of selected samples in each category becomes more imbalanced, leading to a greater variance in class-level ASR.
More results concerning different backdoor types can be found in Appx. B.

large, while the number of backdoor samples in each class is
highly imbalanced. This observation reveals that unfair se-
lection for backdoor samples in each class leads to degraded
performance on ASR under a small value of ϵ.

Motivated by this observation, in this paper, we propose
a novel backdoor attack method based on Influence-based
Fair Selection (IFS) that adapts Influence Function (IF)
(Cook and Weisberg 1980; Cook 2000; Koh and Liang 2017)
for fair sample selection. The intuition of using IF is a sam-
ple with a trigger that contributed to decreasing the back-
doored test risk would possess a (positively) greater influ-
ence on ASR. Based on this point, we can calculate influence
values for all training samples with a trigger on ASR and se-
lect those with large influence values to construct the back-
door sample set. However, this procedure is highly computa-
tional (Koh and Liang 2017). To alleviate this issue, inspired
by the discovery that backdooring representative samples
with more distinctive features will contribute more signifi-
cantly to ASR, we propose a group-based pruning strategy
that splits the overall training samples into different groups
and then computes the influence of the group closest to the
class prototype. Furthermore, to ensure fair selection across
all classes, we introduce a simple yet effective mechanism:
customizing class-aware influence thresholds for different
classes rather than using a single global threshold. Specif-
ically, in each round of selection, the class-level thresholds
are dynamically adjusted to ensure an equal number of in-
stances are selected from each class. In this way, we can
achieve fair sample selection for effective backdoor attacks.
Extensive experiments on four benchmarks validate the su-
periority of IFS compared with state-of-the-art counterparts.

Our contribution can be summarized as three-fold:
• A meaningful observation. We reveal that the unfair back-

door sample selection leads to significant performance
degradation on ASR under a small value of the manipu-
lation strength.

• A novel selection strategy for backdoor attacks. We pro-
pose a novel backdoor attack method based on influence-
based fair selection that provides data-efficient influence
computation and fair backdoor sample selection.

• Superior performances. We conduct comprehensive ex-
periments on four benchmarks to validate the superiority

of the proposed attack method.

2 Related Work
Backdoor Attacks aim to inject an implicit Trojan into the
deep model, inducing the model to generate the attacker-
prefer target (Chen et al. 2017; Gu et al. 2019). Specifi-
cally, suppose a benign training set, the attacker can fulfill
the backdoor attack by manipulating the training samples
and implanting the trigger into partial samples. When this
poisoned training set is released to downstream consumers,
any model trained on this set would be infected (Chen et al.
2017). The risk of backdoor attacks has been demonstrated
to be significant across many domains, including face recog-
nition (Wenger et al. 2021; Liang et al. 2024), 3D point cloud
classification (Li et al. 2021; Xiang et al. 2021), and others.
Threat Model. We follow the principle of poisoning-based
backdoor attacks (Xia et al. 2022; Wu et al. 2023; Bag-
dasaryan et al. 2020; Jiang et al. 2023), indicating a scenario
where the victim trains their DNN model on a dataset pro-
vided by the adversary and implicitly includes the backdoor.
In the inference phase, the adversary injects the trigger into
test samples and evaluates the attack success rate. In this
paper, we focus only on the black-box backdoor attack, in
which the adversary has no access to any training informa-
tion (e.g., model structure, training strategies, and so on).
Backdooring Sample Selection Strategy. Recently, many
works in backdoor attacks propose selecting attack samples
more efficiently, given a poison ratio (Nguyen et al. 2024;
Zhu et al. 2023). Early works mainly focus on randomly
choosing a small faction of samples and adding the trigger
(Gu et al. 2019; Jia, Liu, and Gong 2022). However, this
strategy overlooks the fact that different samples in the train-
ing set have varying sensitivity to the trigger and, therefore,
should be treated discriminately. To address this issue, recent
works propose a selective framework that chooses the sam-
ples significantly contributing to ASR (Li et al. 2023b; Zhu
et al. 2023; Li et al. 2023a; He et al. 2023; Li et al. 2024). For
instance, Xia et al. (2022) proposed a framework that selects
samples by detecting forgetting events and measuring their
significance to backdoor attacks. This forgetting event, mo-
tivated by catastrophic forgetting (Kirkpatrick et al. 2017),
is defined as a scenario where a sample is correctly classi-



fied by the model and then misclassified in the subsequent
training round. Further, the sample with a larger amount of
forgetting events would be selected. Wu et al. (2023) pro-
posed a criterion called RD score, which distinguishes the
sample with a larger gradient in training from all samples
and regards them as the most effective.

Notably, the primary advantage of our method lies in its
interpretability compared to other empirical selection meth-
ods like FUS and RD. IFS can more effectively identify sam-
ples for backdooring by assessing the influence of trigger-
embedded samples on the ASR.
Influence Functions (IF), which are widely used for sample
selection in various tasks. For example, Wang et al. (2020)
propose a data subsampling framework that leverages IF to
identify and retain the most influential samples in the train-
ing dataset. Similarly, Yang et al. (2022) selectively prune
the dataset based on the calculated influence, removing data
points that harm the model’s generalization. Recently, IF
has been adopted in backdoor attacks to analyze how back-
doored samples influence model learning. For instance, Cinà
et al. (2021) utilize IF and incremental learning to demon-
strate that models exhibit abnormal learning curves when
trained with backdoored samples, indicating that detecting
such curves could help identify potential backdoor attacks.

Compared with current IF-based selection frameworks,
our proposed IFS is computationally efficient, which is cru-
cial in backdoor attacks where only around 1% of training
samples need to be selected. Typically, IFS only requires cal-
culating the influence scores for less than 10% of the training
samples, significantly reducing the computational cost.

3 Preliminaries
Problem definition. Given a benign set DN = {(x,y)}N
with size N , we aim to select fewer training samples that
can greatly contribute to the attack success rate (ASR) if in-
jected with the backdoor. Suppose a poison rate r, the se-
lected set is written as DM with size M , where r = M

N ,
and the poisoned set is P = {(x′,y′)|x′ =M(x, t, ϵ)}M .
Note that y′ is the adversary-preferred label, and the exam-
ple x′ was implanted with a trigger t via the formulation
x′ =M(x, t, ϵ) = x⊙ (1− ϵ)+ t⊙ ϵ, where ϵ denotes the
manipulation strength. Eventually, the backdoored training
set is {DN\DM} ∪ P .

Once this set is utilized for downstream tasks, the victim
model fθ will update the learnable parameters θ via optimiz-
ing the following empirical loss:

L = E (x,y)
∈DN\DM

[ℓ(fθ(x),y)] + E(x′,y′)
∈P

[ℓ(fθ(x
′),y′)] (1)

by stochastic gradient descent, where ℓ(·) is a classification
loss function (e.g., the cross-entropy loss).

Previous methods demonstrated that a very small percent-
age of poisoned samples could achieve considerable ASR
and mainly focus on reducing the poisoned rate r for stealth-
iness. However, we found another parameter, the manipula-
tion strength ϵ, which is also critical to stealthiness, is always
ignored. The issue of unfair selection with a small value of ϵ
(illustrated in Introduction) urgently needs to be addressed.

3.1 Influence Functions
We first briefly review Influence Functions (IF) to help mo-
tivate and present our algorithm. IF (Cook and Weisberg
1980; Cook 2000; Koh and Liang 2017) provides a fast
yet accurate framework for measuring the parameter change
when weighting or perturbing an example z during training.
Suppose a training set {(xi,yi)}Ni=1 with a size of n and a
model with learnable parameters θ. Considering a training
example zδ = (xδ,y) was perturbed by a small value δ in
model training, the new model parameters θ̂δ can be written
as θ̂δ = argminθ∈Θ

1
n

∑n
i=1 ℓ(zi, θ) + δℓ(zδ, θ).

In (Koh and Liang 2017), IF is utilized to estimate the
change of the model’s prediction on a test point zj , which is
sampled from a distribution Q, via the formula:

ϕij = ϕ(zi, zj ∼ Q)

≜
dℓj(θ̂δ)

dδ

∣∣∣
δ=0

= −∇θℓ(zj , θ̂)
⊤H−1

θ̂
∇θℓ(zi, θ̂), (2)

where the Hessian matrix Hθ̂ = 1
n

∑n
i=1∇2

θℓ(zi, θ̂) and
∇2

θℓ(zi, θ̂) is the second derivative of the loss at training
point zi with respect to θ.

4 Methodology
Adopting the IF framework to calculate the impact of a
training sample with a trigger on the backdoored test risk
is feasible since the small value δ in Eq. (2) can be repre-
sented as δ = t ⊙ ϵ if ϵ → 0, which aims to add an invis-
ible trigger t to the example. However, a direct application
is computationally expensive, requiring approximating the
Hessian inversion for each pair of training and test samples.

To solve this issue, we propose an Influence-based Fair
poison sample Selection framework, termed IFS, for back-
door attacks. The main idea behind IFS is to select sam-
ples with the greatest influence on the backdoored test risk,
i.e., those that contribute the most to ASR. This framework
contains two advantages: 1) higher computation efficiency,
which does not need to calculate the influence score between
each pair of training and test samples, and 2) class-fair se-
lection, mitigating the issue of unfairness in class-wise ASR
under a small value of ϵ.

In what follows, we first give an overview of the IFS
framework. Then, we describe the major steps in IFS in de-
tail and provide complexity analyses eventually.
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Figure 3: The overview of IFS.



4.1 Overview of IFS
Figure 3 illustrates the overview of IFS, where the frame-
work begins with a phase of model initialization. Given a
poison rate, a subset DM is randomly sampled from the
training set DN and subsequently constructed as the poi-
soned set P . The model is initialized on a combined dataset
comprising P and {DN\DM}.

Then, fair sample searching, which obeys a greedy search
paradigm, alternatively conducts sample search and model
training, consisting of data-efficient influence computation,
influence-based fair sample selection, and model retaining.
Step 1: Data-efficient influence computation is to calculate
the influence score for a subset of training samples that are
most likely to contribute significantly to ASR. We denote the
pruned training set as Dsub, satisfying M < ∥Dsub∥ < N ,
where ∥Dsub∥ denotes the counts of samples in the set Dsub.
To achieve this, we propose a group-based data pruning
strategy to obtain the subset Dsub, which avoids computing
the influence for each training sample.
Step 2: Influence-based fair sample selection aims to fairly
select the backdoor samples from the pruned set Dsub.
Based on a set of generated influence scores in Step 1, we
design class-aware thresholds to dynamically select an equal
number of samples from each class.
Step 3: Model retaining is to retrain the model on the up-
dated backdoored training set {DN\DM} ∪ P till conver-
gence to obtain the optimal parameters θ∗.

The pseudocode of IFS can be found in Algorithm 1.

4.2 Data-Efficient Influence Computation
In step 1, we propose, from a data perspective, pruning the
scale of training samples to reduce the search space, i.e.,
switching from searching for DM within DN to searching
within a subset Dsub, which reduces the substantial compu-
tation costs caused by the IF framework.

To achieve this, we design a strategy dubbed group-based
pruning, motivated by the observation that backdooring
samples with more distinctive features will contribute more
significantly to ASR. As shown in Figure 4 (a), we split all
samples based on their distance from the class prototype,
where samples closer to the prototype better represent the
characteristics of that class. We can observe that in the sec-
ond plot, backdooring the sample in group 1 (the group clos-
est to the class prototype) probably causes a bigger value of
influence, demonstrating that adding the backdoor to these
samples will more effectively enhance ASR. Therefore, for
lower computation costs, we only need to search the back-
door samples from the group closest to the prototypes.

Specifically, our group-based pruning strategy can be di-
vided into two steps. i) Class prototypes computation. In a
classification task with C classes, we have C class proto-
types for the training set. For the c-th class, its correspond-
ing prototype vector vc is obtained by averaging all feature
vectors within the class, as follows:

vc =
1

∥Dc∥
∑∥Dc∥

i=1
g(xi), (3)

where g(·) denotes the feature extractor and Dc represents
the set that contains all samples labeled as class c in DN .
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Figure 4: (a) Illustration of different groups in one class. Given
the class prototype, we split the samples into five equal parts based
on the distance between each sample vector and the prototype. (b)
Influence of backdooring different groups on ASR. We build a
3-layer full-connected model for a binary classification task con-
taining 5,000 positive and 5,000 negative samples, with each ex-
ample represented as a 768-dimensional vector. The last 10 dimen-
sions are replaced with a specific vector to construct the trigger.
We show the influence of samples in class 0 with a trigger on back-
doored test risk. The index of the sample represents its distance to
the class prototype - the greater the distance, the larger the index.

ii) Distance-aware group split. We compute the distance
between each sample and its prototype vector and split all
samples into different groups with the distance. Formally,
for each sample zi = (xi,yi) and zi ∈ Dc, the distance
between this sample and the prototype can be written as

di = Fdis(vc, g(xi)), (4)

where Fdis(·) denotes a distance metric function, specifi-
cally the Euclidean distance, in this paper. Thus, for all sam-
ples belonging to Dc, the distance set of them is written as
Sc = {d1,d2, ...,d∥Dc∥}. Next, given a hyper-parameter η,
we divide Dc into η equal groups. The samples closest to
the prototype are designated as Group 1, while those farthest
from the prototype are designated as Group η. Since no more
than 2% of the samples are always selected for backdoor at-
tacks, we only need to search within Group 1, denoted by

Gc
1 = {(xi,yi)|i ∈ Cut

(
Sort↑(Sc),

1

η

)
}, (5)

where Cut(·, a) is a function that returns indices of the top
a proportion of samples, and Sort↑(·) denotes arranging the
values in the input set in ascending order. Applying Eq.
(5) over all classes, we have a pruned subset Dsub ⊂ DN

(∥Dsub∥ = N
η ), represented as Dsub = {G1

1, G
2
1, ..., G

C
1 }.

Then, we calculate the influence of each sample in Dsub.
Suppose a benign validation set DV with size U , we can
add the backdoor and get its backdoored version D′

V =
{z′

u}u∈[U ]. The influence of backdooring the i-th sample in
Dsub on the average validation loss (or ASR) is computed
by aggregating the influence over all examples in D′

V :

ϕi,D′
val
≈ − 1

U

∑U

u=1
∇θℓ(z

′
u, θ̂)

⊤H−1

θ̂
∇θℓ(zi, θ̂)

= −
[
∇θ

1

U

∑U

u=1
ℓ(z′

u, θ̂)
]⊤

H−1

θ̂
∇θℓ(zi, θ̂).

(6)

In practice, we resort to the inverse Hessian vector product
(IHVP) technique to approximate H−1

θ ∇θ

∑U
u=1 ℓ(z

′
u, θ̂)



Algorithm 1: Pseudocode of our proposal IFS
(Line 1-2: Model Initialization; Line 3-16: Fair sample searching)
Input: A training set DN and validation set Dval, the search round

T , the backdoor rate r, the trigger t, the manipulation
strength ϵ, the group number η, the deep model fθ .

Output: A backdoored training set D′
N .

P ← DM ⊙ ϵt // Build the backdoor set on DM which is drawn from DN

Initialize fθ on {DN\DM} ∪ P .
while search interation t ∈ {1, ..., T} do

DM ← ∅, Dsub ← ∅
for class index c ∈ {1, ..., C} do
{Gc

1, ..., G
c
η} ← Dc // Split Dc to η groups, Eq. (3) (4) (5)

Dsub ← Gc
1 // Add group 1 of class c to Dsub

I ← ⟨Dsub, Dval⟩ // Compute influence of samples in Dsub, Eq. (6)
{τ c}[C] ← ⟨{Ic}[C], r⟩ // Compute class-level thresholds, Eq. (7)

DM ← ⟨Dsub, {Ic, τ c}[C]⟩ // Selection via thresholds, Eq. (8)
for training epoch e ∈ {1, ..., E} do
P ← DM ⊙ ϵt // Implant the trigger into the selected set
Retrain fθ on {DN\DM} ∪ P // with Eq. (1)

return the backdoored training set {DN\DM} ∪ P

and avoid direct computation of H−1

θ̂
. In addition, we

adopt the Linear-time Stochastic Second-Order Algorithm
(LiSSA) (Agarwal and Bullins 2017) to fast the IHVP.

Eventually, we have a set containing the influence of all
samples in Dsub on ASR, written as I = {ϕ1, ϕ2, ..., ϕN

η
}.

4.3 Influence-Based Fair Sample Selection

Given a threshold τ , it is natural to select samples whose in-
fluence score in I exceeds τ , to identify those that contribute
more significantly to ASR. However, this approach still
causes unequal selection when the manipulation strength ϵ
is small. To tackle this issue, we provide a simple solution
that redesigns the fixed threshold τ to class-level thresholds
{τ1, τ2..., τC}, which directly selects the same quantity of
samples in each class.

Specifically, suppose a pre-given backdoor rate r, the
number of selected samples per class is N

C · r when fair se-
lection is required, which accounts for the percentage of η ·r
of an individual pruned group G1. For c-th class, the pruned
group is Gc

1 and the corresponding influence calculated on
Eq. (6) is Ic = {ϕ1, ϕ2, ..., ϕ N

η·C
}. Thus, for class c, we can

get the class-level dynamic threshold τ c via the equation:

τ c = Quantile
(
Sort↓(Ic), ηr

)
, (7)

where Quantile(·, a) is a function that returns the value at
the given quantile a of the set, and Sort↑(·) denotes arrang-
ing the values in the input set in decreasing order.

Subsequently, we can select samples in Gc
1 whose influ-

ence scores exceed the threshold τ c for backdooring. The
entirely searched set DM over all classes is written as

DM ← {(xi,yi)|ϕi > τ c}i∈∥Gc
1∥, ∀ c ∈ [C]. (8)

In this way, samples with a larger contribution to ASR are
selected for DM , while maintaining class balance.

4.4 Complexity Analysis
In this section, we provide the complexity of IFS. Let p de-
note the number of model parameters. Since the sample di-
mension is much smaller than the number of model param-
eters, we omit the sample dimension in the analysis below.

The main complexity arises from the Eq. (6), which in-
volves the computation of the second-order information.
In this equation, [∇θ

1
U

∑U
u=1 ℓ(z

′
u, θ̂)]

⊤H−1

θ̂
is fixed, so it

only needs to be computed once for different training sam-
ples, benefiting reduce the overall running time. Obtaining
influence of the sample in the pruned set Dsub requires
O(kp) for computing the loss of k training samples, and
O(Up+rjp) for the single computation of IHVP via LiSSA,
where r, j is two hyper-parameters represented as the re-
cursion depth and the number of recursions, respectively.
A larger value of r, j contributes to accurately estimating
IHVP. In sum, the computation cost for the influence score
is O(kp+ Up+ rjp).

Besides, the group pruning and class-fair influence-based
selection takes O(k log(k)), which denotes the complexity
of ordinary sorting algorithms. In Algorithm 1, we conduct
T times of influence computation and selection, and T × E
times of model training which takes O(Np).

Eventually, the total complexity of our IFS is O(Tp(k +
U + rj+EN))+O(k log(k)). Since k = N

η ,
1
η ≪ E ≪ p,

the complexity can be written as Õ(Tp(U+N+rj)), which
omits the item of O(log(k)).

5 Experiments
5.1 Experimental Settings
Datasets. Refer to Wu et al. (2023), we conduct experiments
on four datasets, including CIFAR-10 (Krizhevsky, Hinton
et al. 2009), ImageNet-10 (Deng et al. 2009), Raf-db (Li,
Deng, and Du 2017), and ModelNet40 (Wu et al. 2015),
which contains 10, 10, 7, and 40 classes, respectively. More
statistical information about datasets is shown in Appx. C.1.
Implementation details. We try varying attack types, in-
cluding blended (Chen et al. 2017) and patched (Gu
et al. 2019) attacks. For 2D classification tasks, we choose
VGG16 as the surrogate model and ResNet18 as the tar-
get model. We conduct 10 iterations for searching back-
door samples. After searching in each iteration, we train the
model for 70 epochs with a learning rate of 0.01 divided
by 10 at the 35, 50-th epoch. We set the training batch size
as 128 for both of these three tasks. For 3D point cloud
datasets, we adopt PointNet (Qi et al. 2017a) as the surro-
gate model and PointNet++ (Qi et al. 2017b) as the target
model. We conduct 10 iterations for searching. In each iter-
ation, we train the model 50 epochs with a batch size of 128
at a learning rate of 0.01 divided by 10 at the 30-th epoch.
All experiments are conducted three times on NVIDIA GTX
3090 GPUs and the average results are reported. More de-
tails can be found in Appx. C.1.

For the group number η, we set η to 30 for CIFAR-10,
5 for ImageNet-10 and Raf db, and 10 for ModelNet40. In
addition, we set class 0 as the targeted class for all datasets.
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Figure 5: Performance comparison of ASR with different manipulation strengths ϵ given a fixed poisoning rate r = 1%. Note that HFE is
not suitable for 3D point cloud tasks.
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Figure 6: Performance comparison of ASR with different backdoor rates r. For the blended attacks (three 2D image tasks), ϵ = 0.1. For
the patched attack (3D point cloud task), ϵ = 2.

Baselines. We compared our proposal IFS with the follow-
ing advancing methods. 1) Random search (RS), randomly
selecting samples from untargeted classes with a rate of r.
2) FUS (Xia et al. 2022), selecting with a criterion named
forgetting score, where the sample with a high forgetting
score is utilized to be injected the backdoor. 3) RD (Wu
et al. 2023), selecting with a criterion named distance score,
which chooses the sample away from the decision boundary.
4) HFE (Xun et al. 2024), introducing a selection criterion
based on high-frequency energy features to identify and en-
hance the effectiveness of backdoor triggers. Since the lack
of open-source code, we reimplemented it ourselves.

5.2 Main Results
We conduct experiments under two aspects of backdoor-
ing settings: 1) low poisoned ratio and 2) low manipulation
strength ϵ, which reduces the possibility of backdoored sam-
ples being detected in the real world.

In Figure 5, we compare IFS with four baseline methods
under varying values of manipulation strength ϵ. It can be
seen that, for varying values of ϵ, the ASR using our pro-
posal IFS always outperforms that of the other four methods.
The improvement brought by IFS is significant, especially in
the setting of the minimal ϵ. For example, on ImageNet-10
with the patched attack, the improvement of IFS is more than
5% with ϵ = 2, which provides better ASR while ensuring
great stealthiness for the backdoored training set.

(a) Training strategies (b) Models

Figure 7: Sensitivity analyses on CIFAR-10 with blended attack
(r = 1%, ϵ = 0.1). (a) We search for backdoor samples using
VGG16 with IFS, using different training strategies. Then, we train
a ResNet-18 with a fixed setting (optimizer: SGD, batch size: 256,
Lr: 0.01). (b) We fix the training strategy and evaluate the ASR of
IFS under different combinations of surrogate and victim models.
W: WideResNet28-10, V: VGG16, R: ResNet18, I: Inception-V3

In Figure 6, we evaluate the performance of IFS from an-
other aspect, i.e., the backdoor poison rate r, which is also
critical to guarantee stealthiness. It can be seen that on all
settings of different backdoor rates r, the performance of our
method IFS is consistently better than other methods except
on ImageNet-10 and on rad db with r = 0.005. The im-
provement of IFS is non-trivial. For example, under a very
small backdoor rate r = 0.005 on CIFAR-10, IFS achieves
more than 3% improvement compared with the counterpart
state-of-the-art methods.
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Figure 9: Hyper-parameter selection of η on CIFAR-10 with the
blended attack (r = 1%, ϵ = 0.1).

Overall, the significant performance under several set-
tings demonstrates that IFS can attain a high ASR while
maintaining high stealthiness (a small value of r and ϵ).

5.3 More Analyses
Sensitivity. Since black-box backdoor attacks are com-
mon in real-world applications, we conduct experiments to
widely assess the sensitivity of our algorithm in two key fac-
tors: different training strategies and different models.

1) In Figure 7a, we evaluate the performance of IFS un-
der different training strategies. We find that while differ-
ent training strategies slightly impact the ASR, IFS per-
forms best when the training setup matches that of the victim
model. This is because influence calculation is sensitive to
these factors: different optimizers can lead to convergence
at different local minima, and batch size and learning rate
can cause variations in training dynamics and convergence
rates. Consequently, there exists a slight bias when comput-
ing the influence.

2) In Figure 7b, we try the influence of different models
on ASR. When the surrogate model is aligned with the vic-
tim model, we observe that selected backdoor samples are
the most accurate, resulting in the highest ASR. This can
be seen as a white-box backdoor attack. Although the vic-
tim model is different from the surrogate model, IFS also
achieves promising performance, demonstrating the effec-
tiveness of IFS on real-world backdoor attacks.
Variance on class-wise ASR. In Figure 8, we compare IFS
with the counterpart FUS on the metric of Variance and vi-
sualize the class-wise ASR for further analysis. It can be
seen that our proposal significantly reduces the variance
on class-level ASR under all manipulation strength settings

Component ImageNet-10 Raf db

Group split Fair sel. ASR Cost ASR Cost

✗ ✗ 64.49±1.0 ×1 79.94±1.2 ×1
✗ ✓ 67.34±0.6 ×1 81.89±0.7 ×1

✓(η=10) ✗ 68.94±0.5 × 1
10

83.20±0.3 × 1
10

✓(η=10) ✓ 70.94±0.5 × 1
10

84.94±0.5 × 1
10

Table 1: Ablation studies about the effectiveness of each compo-
nent in IFS. We adopt the blended attack with r = 1%, ϵ = 0.1.

(see (a) vs. (b)). When ϵ ≥ 0.15 (the blue line), the vari-
ance is very close to 0, meaning that the ASR on almost all
classes achieved 100%. In contrast, there exists a variance
over class-level ASR for FUS. In subfigure (c), we can ob-
serve that IFS achieves more than 50% ASR on all classes.
However, in many classes (like the class 4, 8, 9), the ASR of
FUS is no more than 30%. Therefore, in a setting of minimal
value of ϵ, IFS can enhance the attack success rate on many
classes, promoting the real-world application of IFS.

5.4 Ablation Studies
Hyper-parameter. In Figure 9, we examine the sensitivity
of IFS to varying values of η, the sole hyper-parameter in
IFS, which significantly impacts computational cost. We ob-
serve that when η is set to 1 where Dsub = DN , the ASR is
at its lowest while the computational cost is the highest. As
η increases, the computational cost gradually decreases. For
instance, setting η = 10 reduces the computational cost to
just 1

10 of the original. When the value of η is in the interval
of [10, 40], our algorithm is insensitive to the variation of η.
Ultimately, we select η = 30 for CIFAR-10, as it provides
strong performance and minimal computational cost.
Effectiveness of each component. In Table 1, we investi-
gate the effectiveness of each component in IFS, including
the group split strategy and influence-based fair selection
strategy. We can see that when we compute the influence
over all training samples (w/o group split and class fair se-
lection), the performance of IFS is worst while the compu-
tation cost is highest. When we add these two components
into the base setting independently, IFS can achieve better
performance consistently. We can adjust the parameter η in
the group split to achieve a fast computation efficiency. The
best performance (70.94% on ImageNet-10 and 84.94% on
Raf db) is achieved when both two components are adopted.

6 Conclusion
In this paper, we investigate sample-discriminative back-
door sample selection and uncover the issue of unfair se-
lection across different classes under minimal manipulation
strength. To address this, we propose an influence-based
fair selection method (IFS), ensuring that an equal num-
ber of instances are selected from each class based on the
influence of training samples with triggers on ASR. IFS is
computation-efficient, utilizing a group-based pruning strat-
egy to avoid calculating influence across all samples. Exten-
sive experiments on varying black-box settings verify that
our proposal IFS consistently achieves the best performance,
highlighting its effectiveness in real-world applications.
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