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Abstract

Stackelberg security games have been applied to ad-
dress challenges in security resource allocation of real-
world infrastructure protection tasks. The key to such an
application is to efficiently compute the defender’s op-
timal strategy in consideration of the attacker’s surveil-
lance capability and best response. Experimental results
show that the defender’s optimal strategy often uses on-
ly a small subset of pure strategies, as compared with
the entire pure strategy set which can be exponential-
ly large. A number of algorithms in the literature have
already exploited this small support size observation.
This paper analyzes a number of widely studied securi-
ty games and provides bounds on the minimum support
size of the defender’s Strong Stackelberg Equilibrium
(SSE) strategies in security games.

Introduction
Stackelberg security games have been used to model many
real-world scenarios where a defender commits to a strategy
and an attacker makes its attacking decision with knowledge
of the defender’s commitment. Systems applying Stackel-
berg game models to assist with randomized resource allo-
cation decisions have been developed and are currently in
use, such as: ARMOR, developed at the Los Angeles In-
ternational Airport (LAX) to randomize checkpoints on the
roadways entering the airport and canine patrol routes with-
in the airport terminals (Pita et al. 2008); IRIS, used by the
Federal Air Marshals Service (FAMS) as a scheduler for ran-
domized deployment (Tsai et al. 2009); PROTECT, used by
the US Coast Guard (USCG) to randomize patrolling at the
port of Boston (Shieh et al. 2012); and GUARDS, used by
the United States Transportation Security Administration (T-
SA) to scheduling resources to protect airports in the USA
(An et al. 2011b; Pita et al. 2011).

The core of the above applications is computing of the
defender’s optimal strategy, where difficulty lies in the large
scale of the defender’s strategy space. Specifically, a de-
fender plays a mixed strategy which is a probabilistic dis-
tribution over a set of pure strategies. The pure strategy set
can be very large due to combinatorial explosion. For exam-
ple, in a security game where the defender allocates securi-
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ty resources to cover a set of n targets, the defender could
have 2n pure strategies. How to optimize the defender’s s-
trategy over such a large scale pure strategy space is thus a
big challenge. Although algorithms have been designed to
speed up the computing process or to scale up the model
(Paruchuri et al. 2008; Kiekintveld et al. 2009; Jain et al.
2010; Korzhyk, Conitzer, and Parr 2010; An et al. 2011c;
Jain et al. 2011) it still remains as an open research area
to design more efficient algorithms to deal with scalability
and uncertainty (An et al. 2011a; 2012; Brown et al. 2012;
Yang, Ordonez, and Tambe 2012; Yin and Tambe 2012;
An et al. 2013).

It has been noticed that only pure strategies with non-zero
probabilities in a mixed strategy contribute to the implemen-
tation of the mixed strategy while the others are unused.
We call the set of pure strategies with non-zero probabili-
ties the support of the mixed strategy. Experimental results
show that the defender’s optimal strategy often has a small
support, as compared with the entire pure strategy set which
can be exponentially large (Shieh et al. 2012). A number of
algorithms in the literature have already exploited this small
support size observation, and particularly avoided enumer-
ating the entire set of pure strategies while computing the
defender’s optimal strategy. For example, a column genera-
tion method adds one best pure strategy into the support each
time, until the solution cannot be improved (e.g., (Jain et al.
2010)); and a double-oracle based approach (Jain et al. 2011;
Jain, Conitzer, and Tambe 2013), where the players play
a series of games iteratively using a subset of pure strate-
gies until convergence. One interesting question lies behind
these applications that is yet not answered to the best of our
knowledge is how small the support of the defender’s opti-
mal strategy can be.

To answer the above question, this paper analyzes the
structure of the defender’s strategy in a number of widely s-
tudied security games and provides bounds on the minimum
support size of the defender’s Strong Stackelberg Equilibri-
um (SSE) strategies in security games. The rest of the paper
is organized as follows. We first introduce the Stackelberg
game and Stackelberg equilibria. Then starting with a typi-
cal Stackelberg security game which can be compactly rep-
resented, we present the bound of the minimum support size
of the defender’s SSE strategies for a general Stackelberg
game and, more generally, for a Bayesian Stackelberg game



which allows for multiple types of attackers. In the end, we
apply the bound to other types of specialized Stackelberg
security games.

Stackelbeg Games and Equilibria
A Stackelberg game is played by two players: a leader and a
follower. The leader acts first and the follower observes the
leader’s strategy before taking an action. Each player has a
set of pure strategies, denoted as S and T for the leader and
the follower, respectively. Let sj be the jth pure strategy in
S and ti be the ith pure strategy in T . When the leader plays
sj and the follower plays ti, they receive payoffs U j,il and
U j,if , respectively. Furthermore, the leader commits a mixed
strategy x = 〈xj〉 which is a probabilistic distribution over
the set S of pure strategies. Similarly, the attacker commits
a mixed strategy y = 〈yi〉. In this case, the expected payoff
for the leader and the follower are defined respectively as
follows:

Ul(x,y) =

|T |∑
i=1

yi

|S|∑
j=1

xjU
j,i
l (1)

Uf (x,y) =

|T |∑
i=1

yi

|S|∑
j=1

xjU
j,i
f (2)

Stackelberg Equilibria In a Stackelberg equilibrium, the
follower observes the leader’s strategy x and responds with
strategy f(x) : x → y that is optimal with respect to his
expected payoff, i.e., Uf (x, f(x)) ≥ Uf (x,y) for all other
feasible strategies y; the leader, knowing the payoff-driven
behavior of the follower, chooses an optimal strategy x∗ that
maximizes his payoff, i.e., Ul(x∗, f(x∗)) ≥ Ul(x, f(x))
for all other feasible strategies x. Typically, there might be
more than one optimal strategy for the follower, and each of
these strategies may induce a different payoff for the leader.
Two types of Stackelberg equilibrium, the Strong Stackel-
berg Equilibrium (SSE) and the Weak Stackelberg Equilib-
rium (WSE), were introduced (Leitmann 1978; Breton, Alj,
and Haurie 1988), where SSE assumes the follower break-
s ties in favor of the defender and chooses the one that is
optimal for the leader, while WSE assumes that the fol-
lower chooses the worst one for the leader. Most exiting
work takes SSE as the solution concept as most literatures
in this research filed did, since 1) SSE exists in all Stack-
elberg games, while WSE may not (Basar et al. 1995); 2)
SSE can always be induced by the leader through deviating
infinitesimal from the optimal strategy (Von Stengel and Za-
mir 2004).

Definition 1. A pair of strategies (x, f(x)) forms a Strong
Stackelberg Equilibrium (SSE) if it satisfies the following:

1. The leader plays a best-response:
Ul
(
x, f(x)

)
≥ Ul

(
x′, f(x′)

)
, for all the leader strate-

gies x′.
2. The follower plays a best-response:
Uf
(
x, f(x)

)
≥ Uf (x,y′), for all the follower strategies

y′.

3. The follower breaks ties in favor of the leader:
Ul
(
x, f(x)

)
≥ Ul(x,y

′), for all optimal follower strate-
gies y′.

Specially, we restrict the attacker’s strategy to pure strate-
gies, i.e., f(x) : x → t, t ∈ T , because according to E-
q. (2) if one mixed strategy is optimal for the attacker, then
all the pure strategies with non-zero probabilities should be
optimal, so that the attacker always has a best pure-strategy
response. It follows that the payoff functions defined in E-
qs. (1) and (2) can be rewritten as (assuming the attacker
attacks ti):

Ul(x, ti) =

|S|∑
j=1

xjU
ji
l , (3)

Uf (x, ti) =

|S|∑
j=1

xjU
ji
f . (4)

Bound the Minimum Support Size of the
Leader’s SSE Strategies

In this section, we exploit the structure of a leader strategy
and presents an upper bound on the size of the minimum
support (defined below) of the leader’s SSE strategies. For
ease of description, we use Φ to represent the upper bound
on the minimum support size of the leader’s SSE strategies.
Denote ‖x‖ as the support size of a mixed strategy x, we
have

min
x∈X∗

‖x‖ ≤ Φ,

whereX ∗ is the set of leader’s SSE strategies. In other word-
s, the leader always has an SSE strategy that can be imple-
mented by no more than Φ pure strategies.
Definition 2. A pure strategy is a support strategy of a
mixed strategy if it is assigned with a non-zero probability
by this mixed strategy. The set of all support strategies is
called the support of the mixed strategy.

We start from a special Stackelberg security game model
presented below, where a leader’s strategy can be represent-
ed compactly as a coverage vector, since it provides an easy-
to-follow example of how large the pure strategy set could
be and how tight the support could be bounded. We call
this game model compact game model so as to distinguish it
from other types of Stackelberg security games. Then with a
similar idea that Φ for a compact game is obtained, we gen-
eralize it and present Φ for a general Stackelberg game and
furthermore a Bayesian Stackelberg game.

Compact Game Model
The compact game model applies to many security domains
(e.g., Pita et al. 2008; Tsai et al. 2009). In this game mod-
el, the leader is a defender who protects a set of targets, and
the follower is an attacker who wants to attack a target. Let
the set of targets be 1, . . . , n. The defender allocates securi-
ty resources to protect the targets, and his pure strategy is an
allocation of the recourses. Typically, in the compact game
model, a target is either covered or uncovered by security
resources, and when it is covered, adding more resources to



it makes no difference. In this case, a rational defender as-
signs at most one resource to a target, and a pure strategy
of the defender can thus be defined as a 0/1 coverage vec-
tor with the jth pure strategy sj = 〈sji〉 ∈ {0, 1}n, where
sji = 1 represents that target i is covered and sji = 0 un-
covered. Correspondingly, the attacker’s pure strategy is to
choose one target to attack. Let ti be the attacker’s pure s-
trategy of attacking target i. When the attacker plays ti and
target i is uncovered, he receives utility U0

a (ti), and the de-
fender receives utility U0

d (ti). Similarly, when the attacker
plays ti and target i is covered, he receives utility U1

a (ti),
and the defender receives U1

d (ti). It follows that when the
defender plays a mixed strategy x, the targets are covered
with probabilities c(x) = 〈ci〉 =

∑
sj∈S xjsj with ci for

target i, and are uncovered with 1 − c. We refer to c as the
coverage vector. For a strategy profile 〈x, ti〉, the expected
utility for the defender and the attacker can be defined re-
spectively as follows:

Ud
(
c, ti

)
= ciU

1
d (ti) +

(
1− ci

)
U0
d (ti), (5)

Ua
(
c, ti

)
= ciU

1
a (ti) +

(
1− ci

)
U0
a (ti). (6)

Generally, some resource restrictions, such as scheduling
constraints, can be enforced on the defender’s pure strategy
set S. However, even if in the presence of such restrictions,
the size of S may still be exponentially large in terms of the
number of targets. For example, when there are m available
resources, the size of S is at least

(
n
m

)
.

Φ for a Compact Game According to Eqs. (5) and (6), t-
wo defender strategies x1 and x2 results in the same attack-
er response and moreover the same utility for each player, if
they induce the same coverage vector, i.e., c(x1) = c(x2).
We utilize this observation to seek equivalent defender s-
trategies with smaller supports. For example, when there are
three targets and the defender plays a mixed strategy where
pure strategies (1, 0, 0), (1, 1, 0), (0, 1, 0) and (0, 1, 1) are
assigned with probabilities 0.25 for each, a coverage vector
(0.5, 0.5, 0.5) is induced. In this case, it is also possible to
use only pure strategies (1, 0, 0) and (0, 1, 1) with probabil-
ity 0.5 for each and all the others with probability 0, which
induces the same coverage vector. In fact, a defender strate-
gy first induces a coverage vector and then affects the game
through this coverage vector. Therefore, rather than specify-
ing an exact mixed strategy, the defender could first calcu-
late an optimal coverage vector that is implementable by his
feasible mixed strategies, i.e.,

c∗ ∈ P =

∑
sj∈S

xjsj

∣∣∣∣∣∣ x � 0,1Tx = 1

 ,

such that

Ud
(
c∗, f(c∗)

)
≥ Ud

(
c′, f(c∗)

)
,∀c′ ∈ P,

and then implement c∗ with a mixed strategy which is op-
timal for the defender in this case. Note that the imple-
mentable coverage vector set P is a convex hull in an n-
dimensional space defined by points in S. According to
the Carathéodory’s theorem (Danninger-Uchida 2001), any

x

Figure 1: Carathéodory’s theorem: in a plane (i.e., a 2-
dimensional space), any point x in a convex hull also lies
in a 2-simplex.

point, in particular c∗, in the convex hull lies in an r-simplex
with vertices in S, where r ≤ n, and any point in the r-
simplex can be represented as a convex combination of the
r + 1 vertices of the simplex. Therefore, c∗ can always be
implemented by no more than n + 1 pure strategies corre-
sponding to the vertices of the simplex where c∗ lies in, and
an upper bound Φ = n+1 is obtained for the compact game
model (Corollary 2).
Theorem 1 (Carathéodory’s theorem (Danninger-Uchida
2001)). If a point x ∈ Rd lies in the convex hull of a point
set P , there is a subset P ′ of P consisting of d+ 1 or fewer
points such that x lies in the convex hull of P ′, i.e., x lies in
an r-simplex with vertices in P , where r ≤ d (Figure 1).

Corollary 2. The minimum support size of the defender’s
SSE strategies in a compact game is n + 1, where n is the
number of targets.

Φ for a General Stackelberg Game
The compact game model is a special case of Stackelberg
security games. In other application of Stackelberg game
models, the defender’s strategies over the targets may be
more complex than being simply either covering or not cov-
ering. For example, in some real-world scenarios, it makes
a difference when different number or different types of se-
curity resources are assigned to a target (Pita et al. 2011;
Shieh et al. 2012); and in a network-based game (Wash-
burn and Wood 1995; Tsai et al. 2010; Jain et al. 2011;
Jain, Conitzer, and Tambe 2013), the defender places secu-
rity resources on the edges (e.g., streets, roads) that lead to
the target, instead of directly on the targets (more concrete
examples are presented following the definitions of the mod-
els in the next section). In these cases, the defender strate-
gy cannot be represented as coverage over the targets, and
Corollary 2 is thus not applicable. In this section, we present
Φ for a general Stackelberg game using a similar idea that Φ
for a compact game is obtained. This general Φ applies to all
security games derived from Stackelberg games, which we
exemplify in the next section.

According to Eqs. (3) and (4), if two leader strategies x1

and x2 satisfy Uf (x1, ti) = Uf (x2, ti) and Ul(x1, ti) =
Ul(x2, ti), ∀ i = 1, . . . , |T |, the follower would respond
with the same pure strategy according to Uf when they are
played (in particular, when there are multiple optimal pure



strategies for the follower, he refers to Ul and also has the
same response) and receive the same payoff according to
Ul; and the follower’s response would induce the same lead-
er payoff; x1 and x2 are thus equivalent for both players in
terms of the payoffs induced. We write the above conditions
as follows:

|S|∑
j=1

x1juj =

|S|∑
j=1

x2juj ,

where uj = (U j1l , . . . , U
j|T |
l , U j1f , . . . , U

j|T |
f )

T
is a 2|T |-

dimensional vector. Therefore, if some strategy profile
〈x∗, ti∗〉 forms SSE, another strategy profile 〈x′, ti∗〉, such
that

∑|S|
j=1 x

′
juj =

∑|S|
j=1 x

∗
juj , also forms SSE. This

is equivalent to implementing the 2|T |-dimensional vector∑|S|
j=1 x

∗
juj with the set of points {u1, . . . ,u|S|} as their

convex combination. Similar to the analysis in the last sec-
tion, according to the Carathéodory’s theorem, there is al-
ways an implementation where no more than 2|T |+1 points
have non-zero weights, which corresponds to an SSE strat-
egy for the leader with a support of less than 2|T | + 1 pure
strategies, namely, Φ = 2|T | + 1 for a general Stackelberg
game.

A Tighter Φ Deeper analysis indicates that Φ = 2|T |+ 1
can be even tighter. To present the tighter Φ, we first as-
sume that there is only one optimal strategy for the follow-
er, and we relax this assumption later. In this case, for t-
wo leader strategies x1 and x2, the follower responds with
the same optimal strategy if Uf (x1, ti) = Uf (x2, ti), ∀ i =
1, . . . , |T | (note that the condition Ul(x1, ti) = Ul(x2, ti),
∀ i = 1, . . . , |T | is not necessary since there is no tie by
assumption); and the leader receives the same payoff if
Ul(x1, t

∗) = Ul(x2, t
∗), where t∗ is the follower’s optimal

strategy. Now given the SSE strategy profile 〈x∗, ti∗〉, any
strategy profile 〈x′, ti∗〉, such that

|S|∑
j=1

x′ju
�
j =

|S|∑
j=1

x∗ju
�
j , (7)

also forms SSE, where u�j = (U j1f , . . . , U
j|T |
f , U ji

∗

l )
T

. The
rest is the same with the proof of the previous Φ, so that
Φ = |T | + 2 given the assumption that there is only one
optimal strategy for the follower.

Next, we relax the assumption on the follower’s optimal
strategies and show that the above conclusion still holds. We
show that a strategy profile 〈x′, ti∗〉 with x′ satisfying E-
q. (7) still forms SSE. When the assumption is relaxed and
the leader plays x′, the follower may choose another pure
strategy ti′ that is also optimal for him. There are follow-
ing cases: 1) 〈x′, ti′〉 gives the leader the same payoff as
〈x∗, ti∗〉, then it is also optimal for the leader and satisfies
the SSE condition; 2) 〈x′, ti′〉 gives the leader a different
payoff, which is after all impossible because if it gives the
leader a higher payoff, then it is better than 〈x∗, ti∗〉, which
contradicts that 〈x∗, ti∗〉 forms SSE; if it gives the leader
a lower payoff, then the follower should not choose it be-
cause he break ties in favor of the leader. Therefore, x′ is

the leader’s optimal strategy, a tighter Φ of |T | + 2 is ob-
tained (Corollary 3).
Corollary 3. The minimum support size of the leader’s SSE
strategies in a general Stackelberg game is |T | + 2, where
T is the set of follower’s pure strategies.

Generalize Attacker Types: Φ for a Bayesian
Stackelberg Game
A Bayesian Stackelberg game allows multiple types of lead-
ers and followers. Typically, the leader type is restricted to
one for the security game interest. The Bayesian Stackel-
berg games arise in scenarios where the leader has uncer-
tain knowledge about different types of followers she may
face (Paruchuri et al. 2008; Jain, Kiekintveld, and Tambe
2011). Although Corollary 3 can be applied to a Bayesian
Stackelberg game by using the Harsanyi transformation to
transform multiple followers to a single follower (Harsanyi
and Selten 1972), the single follower’s pure strategy space
is the cross product of each follower type’s pure strategy set,
which can be exponentially large. The Φ obtained may thus
be meaningless. In the follows we present a tighter Φ for a
Bayesian Stackelberg game, not applying Corollary 3 direct-
ly but using the same core idea.

Let there be Λ types of followers. A follower of type
λ occurs with probability pλ and has a set Tλ of pure s-
trategies indexed by Iλ = {1, . . . , |Tλ|}. Given a strategy
profile 〈x, I〉, where x is the leader’s mixed strategy, and
I = 〈iλ〉 ∈ I1 × · · · × IΛ represents the indices of the fol-
lowers’ pure strategies, the expected payoffs for follower λ
and the leader are defined respectively as follows:

Uλ(x, I) =

|S|∑
j=1

xjU
jiλ
λ , (8)

UΛ
l (x, I) =

∑
λ∈Λ

pλ

|S|∑
j=1

xjU
jiλ
l , (9)

whereU jiλλ andU jiλl are respectively the payoffs for follow-
er λ and the leader when they choose pure strategies sj ∈ S
and tiλ ∈ Tλ. Given an SSE strategy profile 〈x∗, I∗〉, where
I∗ = 〈i∗λ〉, 〈x′, I∗〉 also forms SSE if x′ satisfy the follow-
ing equation which is a variant of Eq. (10):

|S|∑
j=1

x′ju
�
λj =

|S|∑
j=1

x∗ju
�
λj , ∀λ ∈ Λ, (10)

where u�λj = (U j1λ , . . . , U
j|Tλ|
λ , U

ji∗λ
l )

T
is specified for each

type of followers. Obviously, each follower makes identical
responses under x∗ and x′ according to Eq. (8), and the lead-
er receives the same expected payoff according to Eq. (9).
Combining u�λj for all λ ∈ Λ makes a vector of dimension∑
λ∈Λ(|Tλ| + 1). By applying the Carathéodory’s theorem,

Φ =
∑
λ∈Λ(|Tλ| + 1) + 1 is then obtained for a Bayesian

Stackelberg game (Corollary 4).
Corollary 4. The minimum support size of the leader’s SSE
strategies in a Bayesian Stackelberg game is

∑
λ∈Λ(|Tλ| +

1) + 1, where Tλ is the pure strategy set of follower type λ.



Φ for Other Stackelberg Security Games
In this section, we review other types of Stackelberg securi-
ty game models discussed in the literature and apply Corol-
lary 3 to these security game models.

Multiple Protection Types for a Target
In some real-world scenarios, it makes a difference when d-
ifferent number or types of security resources are assigned to
a target. For example, an attacker would be more likely cap-
tured at a target protected by ten security guards than one
that is protected by only one guard. The defender is able to
execute a variety of security activities on each target. Each
activity π requires mπ security resources and provides d-
ifferent payoffs Uπd (ti) and Uπa (ti) when it is executed on
target i and the attacker attacks this target. For example, as
shown in Table 1, the defender can execute three activities
{π0, π1, π2}, where πk assigns k security guards on a tar-
get. Assigning more security guards on a target provides a
higher/lower payoff for the defender/attacker. The defend-
er’s pure strategy is thus an assignment of allm available se-
curity resources to execute activities on the n targets, which
is more complex than a 0/1 vector. Furthermore, we can con-
struct a counter example as follows, which implies that the
game cannot be represented through a coverage vector. Sup-
pose the attacker attacks target 1, and the defender executes
π0 and π2 on target 1 with probability 0.5 for each, the ex-
pected payoffs for both players are 10 and 5, respectively;
however, by executing π1 on target 1 with probability 1.0,
the same coverage rate can be attained, while the payoffs
for the players, being 20 and −15 respectively, are different
from the previous case.

π0 π1 π2

t1 -10, 30 20, -15 30, -20
t2 -15, 40 20, -10 30, -15

Table 1: Multiple protection types for each target (each entry
shows the defender’s/attacker’s payoff).

Despite of the more complex defender strategy, the num-
ber of attacker’s pure strategies, being equal to the number n
of targets, remains unchanged as compared with the compact
game model. Applying Corollary 3, we obtain Φ = n+ 2.

A Network-based Security Game
In a network-based game model (Washburn and Wood 1995;
Tsai et al. 2010; Jain et al. 2011; Jain, Conitzer, and Tambe
2013), a defender takes action on a graph G = (V, E) with
a set V of nodes and a set E of edges. The attacker is able to
start at a node s ∈ S ⊆ V and travels through a path P in an
attempt to reach one of the targets t ∈ T ⊆ V . The defend-
er places security resources on the edges, instead of directly
on the targets, to capture the attacker. If an edge is covered
by a resource, and the attacker travels through this edge, the
attacker is captured; otherwise, the attacker travels through
this edge successfully. Therefore, the defender’s pure strate-
gy is an allocation of resources on the edges denoted by the

s t
e1

e2

(a) Coverage over targets

s t
e1 e2

e3 e4

(b) Coverage over edges

Figure 2: Counter examples where coverage vectors do not
make sense.

set L of covered edges; the attacker’s pure strategy is an s-t
path P from a start node to a target node. Denote the set of
feasible defender and attacker pure strategies as L and P ,
respectively.

The network-based security game cannot be represented
through a coverage vector over the targets. A counter ex-
ample is shown in Figure 2(a). If the defender has one re-
source and plays a mixed strategy with 0.5 probability for
each of the pure strategies {0, 1} (i.e., placing one resource
on e1 and no resource on e2) and {1, 0}, then a coverage
of 0 is induced since the target is not covered by neither of
the pure strategies, but the attacker has 0.50 chance of be-
ing caught no matter which path he chooses. Furthermore,
a coverage vector over the edges does not make sense, ei-
ther. This is shown by a counter example in Figure 2(b).
If the defender has two resources and plays {1, 0, 1, 0} and
{0, 1, 0, 1} with 0.5 probability for each, a coverage vector
of (0.5, 0.5, 0.5, 0.5)T over the edges is induced, which is
the same with playing {1, 1, 0, 0} and {0, 0, 1, 1} with 0.50
probability for each. However, the attacker will always be
caught under the former defender strategy while he has 0.50
chance of not being caught under the latter one no matter
which path he chooses.

By applying Corollary 3, Φ = |P| + 2 is obtained for
a network-based security game. Specifically, in a network-
based security game, |P| can be very large, such that |P| +
2 > |L|, which corresponds to the case where the vertex
number (i.e., |L|) of a convex hull is even smaller than the
dimension (i.e., |P| + 2) of the space. Since obviously the
support size cannot be larger than the number of pure strate-
gies, a more accurate Φ is min{|P|+ 2, |L|}. Note that this
special case is not discussed when we obtain the previous Φs
because the pure strategy set of the defender is more likely
to be much larger than that of the attacker.

Conclusion
In this paper, we analyze the structure of the defender’s s-
trategy in a number of widely studied security games and
provides Φ for these games. Φ = |T | + 2 is obtained for a
general form two-player Stackberg game, and more gener-
ally Φ =

∑
λ∈Λ(|Tλ| + 1) + 1 for a Bayesian Stackelberg

game. Apparently, Φ depends only on the follower’s pure
strategy space, so that the support of the defender’s SSE s-
trategy can be bounded very tightly when the pure strategy
space of the attacker is drastically smaller than that of the
defender. This happens in the compact game model, and the
model with multiple protection types for each target. When



the attacker’s pure strategy space is even larger than the de-
fender’s, which may happen in a network-based game, Φ de-
generates to the total number of defender’s pure strategies.
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