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ABSTRACT
The burgeoning area of security games has focused on real-world
domains where security agencies protect critical infrastructure from
a diverse set of adaptive adversaries. There are security domains
where the payoffs for preventing the different types of adversaries
may take different forms (seized money, reduced crime, saved lives,
etc) which are not readily comparable. Thus, it can be difficult to
know how to weigh the different payoffs when deciding on a secu-
rity strategy. To address the challenges of these domains, we pro-
pose a fundamentally different solution concept, multi-objective se-
curity games (MOSG), which combines security games and multi-
objective optimization. Instead of a single optimal solution, MOSGs
have a set of Pareto optimal (non-dominated) solutions referred
to as the Pareto frontier. The Pareto frontier can be generated
by solving a sequence of constrained single-objective optimiza-
tion problems (CSOP), where one objective is selected to be max-
imized while lower bounds are specified for the other objectives.
Our contributions include: (i) an algorithm, Iterative ε-Constraints,
for generating the sequence of CSOPs; (ii) an exact approach for
solving an MILP formulation of a CSOP (which also applies to
multi-objective optimization in more general Stackelberg games);
(iii) heuristics that achieve speedup by exploiting the structure of
security games to further constrain a CSOP; (iv) an approximate
approach for solving an algorithmic formulation of a CSOP, in-
creasing the scalability of our approach with quality guarantees.
Additional contributions of this paper include proofs on the level
of approximation and detailed experimental evaluation of the pro-
posed approaches.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed artificial intelligence—
Intelligent agents

General Terms
Algorithms, Performance, Security
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Game Theory, Security, Multi-objective Optimization

1. INTRODUCTION
Game theory is an increasingly important paradigm for model-

ing security domains which feature complex resource allocation [5,
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2]. Security games, a special class of attacker-defender Stackel-
berg games, are at the heart of several major deployed decision-
support applications. Such systems include ARMOR at LAX air-
port [8], IRIS deployed by the US Federal Air Marshals Service [8],
GUARDS developed for the US Transportation Security Adminis-
tration [1], and PROTECT used in the Port of Boston by the US
Coast Guard [1].

In these applications, the defender is trying to maximize a single
objective. However, there are domains where the defender has to
consider multiple objectives simultaneously. For example, the Los
Angeles Sheriff’s Department (LASD) needs to protect the city’s
metro system from ticketless travelers, common criminals, and ter-
rorists.1 From the perspective of LASD, each one of these attacker
types provides a unique threat (lost revenue, property theft, and
loss of life). Given this diverse set of threats, selecting a security
strategy is a significant challenge as no single strategy can mini-
mize the threat for all attacker types. Thus, tradeoffs must be made
and protecting more against one threat may increase the vulnera-
bility to another threat. However, it is not clear how LASD should
weigh these threats when determining the security strategy to use.
One could attempt to establish methods for converting the different
threats into a single metric. However, this process can become con-
voluted when attempting to compare abstract notions such as safety
and security with concrete concepts such as ticket revenue.

Bayesian security games have been used to model domains where
the defender is facing multiple attacker types. The threats posed by
the different attacker types are weighted according to the relative
likelihood of encountering that attacker type. There are three po-
tential factors limiting the use of Bayesian security games: (1) the
defender may not have information on the probability distribution
over attacker types, (2) it may be impossible or undesirable to di-
rectly compare and combine the defender rewards of different secu-
rity games, and (3) only one solution is given, hiding the trade-offs
between the objectives from the end user.

Thus, for many domains, including the LASD metro system,
we propose a new game model, multi-objective security games
(MOSG), which combines game theory and multi-objective opti-
mization. The threats posed by the attacker types are treated as
different objective functions which are not aggregated, thus elim-
inating the need for a probability distribution over attacker types.
Unlike Bayesian security games which have a single optimal solu-
tion, MOSGs have a set of Pareto optimal (non-dominated) solu-
tions which is referred to as the Pareto frontier. By presenting the
Pareto frontier to the end user, they are able to better understand the
structure of their problem as well as the tradeoffs between different
security strategies. As a result, end users are able to make a more
informed decision on which strategy to enact. For instance, LASD

1http://sheriff.lacounty.gov
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has provided explicit feedback that rather than having a single op-
tion handed to them, they would prefer to be presented with a set of
alternative strategies from which they can make a final selection.

In this paper, we describe the new MOSG solution concept and
provide a set of algorithms for computing Pareto optimal solu-
tions for MOSGs. Our key contributions include (i) Iterative ε-
Constraints, an algorithm for generating the Pareto frontier for MOSGs
by producing and solving a sequence of constrained single-objective
optimization problems (CSOP); (ii) an exact approach for solving
a mixed-integer linear program (MILP) formulation of a CSOP
(which also applies to multi-objective optimization in more gen-
eral Stackelberg games); (iii) heuristics that exploit the structure of
security games to speedup solving CSOPs; and (iv) an approximate
approach for solving CSOPs, which greatly increases the scalabil-
ity of our approach while maintaining quality guarantees. Addi-
tionally, we provide analysis of the complexity and completeness
for all of our algorithms as well as experimental results.

2. MOTIVATING DOMAINS
As mentioned earlier, LASD must protect the Los Angeles metro

system from ticketless travelers, criminals, and terrorists. Each
type of perpetrator is distinct and presents a unique set of chal-
lenges. Thus, LASD may have different payoffs for preventing the
various perpetrators. Targeting ticketless travelers will increase the
revenue generated by the metro system as it will encourage passen-
gers to purchase tickets. Pursuing criminals will reduce the amount
of vandalism and property thefts, increasing the overall sense of
passenger safety. Focusing on terrorists could help to prevent or
mitigate the effect of a future terrorist attack, potentially saving
lives. LASD has finite resources with which to protect all of the
stations in the city. Thus, it is not possible to protect all stations
against all perpetrators at all times. Therefore, strategic decisions
must be made such as where to allocate security resources and for
how long. These allocations should be determined by the amount
of benefit they provide to LASD. However, if preventing different
perpetrators provides different, incomparable benefits to LASD, it
may be unclear how to decide on a strategy. In such situations, a
multi-objective security game model could be of use, since the set
of Pareto optimal solutions can explore the trade-offs between the
different objectives. LASD can then select the solution they feel
most comfortable with based on the information they have.

3. MULTI-OBJECTIVE SECURITY GAMES
A multi-objective security game is a multi-player game between

a defender and n attackers.2 The defender tries to prevent attacks
by covering targets T = {t1, t2, . . . , t|T |} using m identical re-
sources which can be distributed in a continuous fashion amongst
the targets. The defender’s strategy can be represented as a cover-
age vector c∈C where ct is the amount of coverage placed on tar-
get t and represents the probability of the defender successfully pre-
venting any attack on t [9]. C={〈ct〉|0 ≤ ct ≤ 1,

∑
t∈T ct ≤ m}

is the defender’s strategy space. The attacker i’s mixed strategy
ai=〈ati〉 is a vector where ati is the probability of attacking t.
U defines the payoff structure for an MOSG, with Ui defining

the payoffs for the security game played between the defender and
attacker i. Uc,di (t) is the defender’s utility if t is chosen by attacker
i and is fully covered by a defender resource. If t is not covered,
the defender’s penalty is Uu,di (t). The attacker’s utility is denoted
similarly by Uc,ai (t) and Uu,ai (t). A property of security games
2The defender does actually face multiple attackers of different
types, however, these attackers are not coordinated and hence the
problem we address is different than in [10].

is that Uc,di (t) > Uu,di (t) and Uu,ai (t) > Uc,ai (t) which means
that placing more coverage on a target is always beneficial for the
defender and disadvantageous for the attacker [9]. For a strategy
profile 〈c,ai〉 for the game between the defender and attacker i,
the expected utilities for both agents are given by:

Udi (c,ai)=
∑

t∈T
atiU

d
i (ct, t), Uai (c,ai)=

∑

t∈T
atU

a
i (ct, t)

where Udi (ct, t) = ctU
c,d
i (t) + (1− ct)Uu,di (t) and Uai (ct, t) =

ctU
c,a
i (t)+(1−ct)Uu,di (t) are the payoff received by the defender

and attacker i, respectively, if target t is attacked and is covered
with ct resources.

The standard solution concept for a two-player Stackelberg game
is Strong Stackelberg Equilibrium (SSE) [14], in which the de-
fender selects an optimal strategy based on the assumption that the
attacker will choose an optimal response, breaking ties in favor of
the defender. We denote Udi (c) and Uai (c) as the payoff received
by the defender and attacker i, respectively, when the defender uses
the coverage vector c and attacker i attacks the best target while
breaking ties in favor of the defender.

With multiple attackers, the defender’s utility (objective) space
can be represented as a vector Ud(c) = 〈Udi (c)〉. An MOSG de-
fines a multi-objective optimization problem:

max
c∈C

(
Ud1 (c), . . . , Udn(c)

)

Solving such multi-objective optimization problems is a funda-
mentally different task than solving a single-objective optimization
problem. With multiple objectives functions there exist tradeoffs
between the different objectives such that increasing the value of
one objective decreases the value of at least one other objective.
Thus for multi-objective optimization, the traditional concept of
optimality is replaced by Pareto optimality.

DEFINITION 1. (Dominance). A coverage vector c ∈ C is said
to dominate c′ ∈ C if Udi (c) ≥ Udi (c′) for all i= 1, . . . , n and
Udi (c) > Udi (c′) for at least one index i.

DEFINITION 2. (Pareto Optimality) A coverage vector c ∈ C
is Pareto optimal if there is no other c′ ∈ C that dominates c.
The set of non-dominated coverage vectors is called Pareto optimal
solutions C∗ and the corresponding set of objective vectors Ω =
{Ud(c)|c ∈ C∗} is called the Pareto frontier.

This paper gives algorithms to find Pareto optimal solutions in
MOSGs. If there are a finite number of Pareto optimal solutions, it
is preferable to generate all of them for the end-user. If there are an
infinite number of Pareto optimal solutions, it is impossible to gen-
erate all the Pareto optimal solutions. In this case, it is necessary to
generate a subset of Pareto optimal solutions that can approximate
the true Pareto frontier with quality guarantees. The methods we
present in this paper are a starting point for further analysis and ad-
ditional preference elicitation from end users, all of which depends
on fast approaches for generating the Pareto frontier.

4. RELATED WORK
MOSGs build on security games and multi-objective optimiza-

tion. We have already reviewed (in Section 1) the relationship
of MOSGs to previous work in security games and in particular
Bayesian security games. In this section, we primarily review the
research on multi-objective optimization. There are three repre-
sentative approaches for generating the Pareto frontier in multi-
objective optimization problems. Weighted summation [4], where
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the objective functions are assigned weights and aggregated, pro-
ducing a single Pareto optimal solution. The Pareto frontier can
then be explored by sampling different weights. Another approach
is multi-objective evolutionary algorithms (MOEA) [6]. Evolu-
tionary approaches such as NSGA-II [7] are capable of generat-
ing multiple approximate solutions in each iteration. However, due
to their stochastic nature, both weighted summation and MOEA
cannot bound the level of approximation for the generated Pareto
frontier. This lack of solution quality guarantees is unacceptable
for security domains on which we are focused.

The third approach is the ε-constraint method in which the Pareto
frontier is generated by solving a sequence of CSOPs. One ob-
jective is selected as the primary objective to be maximized while
lower bound constraints are added for the secondary objectives.
The original ε-constraint method [4] discretizes the objective space
and solves a CSOP for each grid point. This approach is computa-
tionally expensive since it exhaustively searches the objective space
of secondary objectives. There has been work to improve upon the
original ε-constraint method. [11] proposes an adaptive technique
for constraint variation that leverages information from solutions of
previous CSOPs. However, this method requires solving O(kn−1)
CSOPs, where k is the number of solutions in the Pareto fron-
tier. Another approach, the augmented ε-constraint method [12]
reduces computation by using infeasibility information from pre-
vious CSOPs. However, this approach only returns a predefined
number of points and thus cannot bound the level of approximation
for the Pareto frontier. Our approach for solving an MOSG builds
upon the basic idea of the ε-constraint method. Security domains
demand both efficiency as well as quality guarantees when pro-
viding decision support. Our approach only needs to solve O(nk)
CSOPs and can provide approximation bounds.

5. ITERATIVE ε-CONSTRAINTS
The ε-constraint method formulates a CSOP for a given set of

constraints b, producing a single Pareto optimal solution. The
Pareto frontier is then generated by solving multiple CSOPs pro-
duced by modifying the constraints in b. This section presents
Iterative ε-Constraints, an algorithm for systematically generating
a sequence of CSOPs for an MOSG. These CSOPs can then be
passed to a solver Φ to return solutions to the MOSG. The next
two sections present 1) an exact MILP approach (Section 6) which
can guarantee that each solution is Pareto optimal and 2) a faster
approximate approach (Section 7) for solving CSOPs.

5.1 Algorithm for Generating CSOPs
Iterative ε-Constraints uses the following four key ideas: 1) The

Pareto frontier for an MOSG can be found by solving a sequence
of CSOPs. For each CSOP, Ud1 (c) is selected as the primary ob-
jective, which will be maximized. Lower bound constraints b are
then added for the secondary objectives Ud2 (c), . . . , Udn(c). 2) The
sequence of CSOPs are iteratively generated by exploiting previ-
ous Pareto optimal solutions and applying Pareto dominance. 3)
It is possible for a CSOP to have multiple coverage vectors c that
maximize Ud1 (c) and satisfy b. Thus, lexicographic maximization
is used to ensure that CSOP solver Φ only returns Pareto optimal
solutions. 4) It may be impractical (even impossible) to generate
all Pareto optimal points if the frontier contains a large number of
points, e.g., the frontier is continuous. Therefore, a parameter ε is
used to discretize the objective space, trading off solution efficiency
versus the degree of approximation in the generated Pareto frontier.

We now present a simple MOSG example with two objectives
and ε = 5. Figure 5.1 shows the objective space for the prob-
lem as well as several points representing the objective vectors for

Figure 1: Pareto Frontier for a Bi-Objective MOSG

different defender coverage vectors. In this problem, Ud1 will be
maximized while b2 constrains Ud2 . The initial CSOP is uncon-
strained (i.e., b2 = −∞), thus the solver Φ will maximize Ud1 and
return solution A = (100,10). Based on this result, we know that any
point v = {v1, v2} (e.g., B) is not Pareto optimal if v2 < 10, as it
would be dominated by A. We then generate a new CSOP, updating
the bound to b2 = 10 + ε. Solving this CSOP with Φ produces
solution C=(80, 25) which can be used to generate another CSOP
with b2 = 25 + ε. Both D=(60,40) and E=(60,60) satisfy b2 but
only E is Pareto optimal. Lexicographic maximization ensures that
only E is returned and dominated solutions are avoided (details in
Section 6). The method then updates b2 = 60 + ε and Φ returns
F=(30,70), which is part of a continuous region of the Pareto fron-
tier from Ud2 = 70 toUd2 = 78. The parameter ε causes the method
to select a subset of the Pareto optimal points in this continuous re-
gion. In particular this example returns G=(10,75) and in the next
iteration (b2 = 80) finds that the CSOP is infeasible and terminates.
The algorithm returns a Pareto frontier of A, C, E, F, and G.

Algorithm 1 systematically updates a set of lower bound con-
straints b to generate the sequence of CSOPs. Each time we solve
a CSOP, a portion of the n − 1 dimensional space formed by the
secondary objectives is marked as searched with the rest divided
into n − 1 subregions (by updating b for each secondary objec-
tive). These n − 1 subregions are then recursively searched by
solving CSOPs with updated bounds. This systematic search forms
a branch and bound search tree with a branching factor of n − 1.
As the depth of the tree increases, the CSOPs are more constrained,
eventually becoming infeasible. If a CSOP is found to be infeasi-
ble, no child CSOPs are generated because they are guaranteed to
be infeasible as well. The algorithm terminates when the entire
secondary objective space has been searched.

Algorithm 1: Iterative-ε-Constraints(b={b2, . . . , bn})
1 if b /∈ previousBoundsList then
2 append(previousBoundsList,b) ;
3 c← Φ(b) ;
4 if c is a feasible solution then
5 v← {Ud1 (c), . . . , Udn(c)};
6 for 2 ≤ i ≤ n do
7 b′ ← b;
8 b′i ← vi + ε ;
9 if b′ 6≥ s, ∀s ∈ infeasibleBoundsList then

10 Iterative-ε-Constraints(b′) ;

11 else append(infeasibleBoundsList,b) ;

Two modifications are made to improve the efficiency of the al-
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gorithm. 1) Prevent redundant computation resulting from multiple
nodes having an identical set of lower bound constraints by record-
ing the lower bound constraints for all previous CSOPs in a list
called previousBoundsList. 2) Prevent the solving of CSOPs
which are known to be infeasible based on previous CSOPs by
recording the lower bound constraints for all infeasible CSOPs in a
list called infeasibleBoundsList.

5.2 Approximation Analysis
Assume the full Pareto frontier is Ω and the objective space of

the solutions found by the Iterative ε-Constraints method is Ωε.

THEOREM 3. Solutions in Ωε are non-dominated, i.e., Ωε⊆Ω.

PROOF. Let c∗ be the coverage vector such that Ud(c∗) ∈ Ωε
and assume that it is dominated by a solution from a coverage vec-
tor c̄. That means Udi (c̄) ≥ Udi (c∗) for all i = 1, . . . , n and
for some j, Udj (c̄) > Udj (c∗). This means that c̄ was a feasible
solution for the CSOP for which c∗ was found to be optimal. Fur-
thermore, the first time the objectives differ, the solution c̄ is better
and should have been selected in the lexicographic maximization
process. Therefore c∗ 6∈ Ωε which is a contradiction.

Given the approximation introduced by ε, one immediate ques-
tion is to characterize the efficiency loss. Here we define a bound
to measure the largest efficiency loss:

ρ(ε) = max
v∈Ω\Ωε

min
v′∈Ωε

max
1≤i≤n

(vi − v′i)

This approximation measure is widely used in multi-objective
optimization (e.g. [3]). It computes the maximum distance between
any point v ∈ Ω \Ωε on the frontier to its “closest” point v′ ∈ Ωε
computed by our algorithm. The distance between two points is the
maximum difference of different objectives.

THEOREM 4. ρ(ε) ≤ ε.
PROOF. It suffices to prove this theorem by showing that for any

v ∈ Ω \ Ωε, there is at least one point v′ ∈ Ωε such that v′1 ≥ v1

and v′i ≥ vi − ε for i > 1.
Algorithm 2 recreates the sequence of CSOP problems gener-

ated by Iterative ε-Constraints but ensuring that the bound b ≤ v
throughout. Since Algorithm 2 terminates when we do not update
b, this means that v′i+ ε > vi for all i > 1. Summarizing, the final
solution b and v′ = Ud(Φ(b)) satisfy b ≤ v and v′i > vi − ε
for all i > 1. Since v is feasible for the CSOP with bound b, but
Φ(b) = v′ 6= v then v′1 ≥ v1.

Given Theorem 4, the maximum distance for every objective be-
tween any missed Pareto optimal point and the closest computed
Pareto optimal point is bounded by ε. Therefore, as ε approaches 0,
the generated Pareto frontier approaches the complete Pareto fron-
tier in the measure ρ(ε). For example if there are k discrete solu-
tions in the Pareto frontier and the smallest distance between any
two is δ then setting ε = δ/2 will make Ωε = Ω. In this case, since
each solution corresponds to a non-leaf node in our search tree, the
number of leaf nodes is no more than (n−1)k. Thus our algorithm
will solve at most O(nk) CSOPs.

6. MILP APPROACH
In Section 5, we introduced a high level search algorithm for

generating the Pareto frontier by producing a sequence of CSOPs.
In this section we present an exact approach for defining and solv-
ing a mixed-integer linear program (MILP) formulation of a CSOP
for MOSGs. We then go on to show how heuristics that exploit the
structure and properties of security games can be used to improve
the efficiency of our MILP formulation.

Algorithm 2: For v ∈ Ω\Ωε, find v′ ∈ Ωε satisfying v′1 ≥ v1

and v′i ≥ vi − ε for i > 1

1 Let b be the constraints in the root node, i.e., bi = −∞ for i > 1 ;
2 repeat
3 c← Φ(b), v′ ← Ud(c), b′ ← b;
4 for each objective i > 1 do
5 if v′i + ε ≤ vi then
6 bi ← v′i + ε ;
7 break;

8 until b = b′;
9 return Φ(b) ;

max dλ (1)
1 ≤ j ≤ n, ∀t ∈ T : dj − Udj (ct, t) ≤M(1− atj) (2)

1 ≤ j ≤ n, ∀t ∈ T : 0 ≤ kj − Uaj (ct, t) ≤M(1− atj) (3)

1 ≤ j < λ : dj = d∗j (4)

λ < j ≤ n : dj ≥ bj (5)
1 ≤ j ≤ n, ∀t ∈ T : atj ∈ {0, 1} (6)

∀j ∈ A :
∑
t∈T a

t
j = 1 (7)

∀t ∈ T : 0 ≤ ct ≤ 1 (8)∑
t∈T ct ≤ m (9)

Figure 2: Lexicographic MILP Formulation for a CSOP

6.1 Exact MILP Method
As stated in Section 5, to ensure Pareto optimality of solutions

lexicographic maximization is required to sequentially maximizing
all the objective functions. Thus, for each CSOP we must solve
n MILPs in the worst case where each MILP is used to maximize
one objective. For the λth MILP in the sequence, the objective is to
maximize the variable dλ, which represents the defender’s payoff
for security game λ. This MILP is constrained by having to main-
tain the previously maximized values d∗j for 1 ≤ j < λ as well as
satisfy lower bound constraints bk for λ < k ≤ n.

We present our MILP formulation for a CSOP for MOSGs in
Figure 2. This is similar to the MILP formulations for security
games presented in [9] and elsewhere with the exceptions of Equa-
tions (4) and (5). Equation (1) is the objective function, which
maximizes the defender’s payoff for objective λ, dλ. Equation (2)
defines the defender’s payoff. Equation (3) defines the optimal re-
sponse for attacker j. Equation (4) constrains the feasible region to
solutions that maintain the values of objectives maximized in pre-
vious iterations of lexicographic maximization. Equation (5) guar-
antees that the lower bound constraints in b will be satisfied for all
objectives which have yet to be optimized.

If a mixed strategy is optimal for the attacker, then so are all the
pure strategies in the support of that mixed strategy. Thus, we only
consider the pure strategies of the attacker [13]. Equations (6) and
(7) constrain attackers to pure strategies that attack a single target.
Equations (8) and (9) specify the feasible defender strategy space.

Once the MILP has been formulated, it can be solved using an
optimization software package such as CPLEX. It is possible to
increase the efficiency of the MILP formulation by using heuristics
to constrain the decision variables. A simple example of a general
heuristic which can be used to achieve speedup is placing an upper
bound on the defender’s payoff for the primary objective. Assume
d1 is the defender’s payoff for the primary objective in the parent
CSOP and d′1 is the defender’s payoff for the primary objective in
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Variable Definition Dimension
λ Current Objective −
m Number of Defender Resources −
n Number of Attacker Types −
Z Huge Positive Constant −
T Set of Targets |T |
a Attacker Coverage atj n× |T |
b Objective Bounds bj (n− 1)× 1
c Defender Coverage ct |T | × 1
d Defender Payoff dj n× 1
d∗ Maximized Defender Payoff d∗j n× 1

k Attacker Payoff kj n× 1
Ud Defender Payoff Structure Udj (ct, t) n× |T |
Ua Attacker Payoff Structure Uaj (ct, t) n× |T |

Figure 3: MILP Formulation Definitions

the child CSOP. As each CSOP is a maximization problem, it must
hold that d1 ≥ d′1 because the child CSOP is more constrained than
the parent CSOP. Thus, the value of d1 can be passed to the child
CSOP to be used as an upper bound on the objective function.

As noted earlier, this MILP is a slight variation of the optimiza-
tion problem formulated in [9] for security games. The same varia-
tions can be made to more generic Stackelberg games, such as those
used for DOBSS [13], giving a formulation for multi-objective Stacke-
berg games in general.

6.2 Exploiting Game Structures
In addition to placing bounds on the defender payoff, it is possi-

ble to constrain the defender coverage in order to improve the effi-
ciency of our MILP formulation. Thus, we introduce an approach
for translating constraints on defender payoff into constraints on
defender coverage. This approach, ORIGAMI-M, achieves this
translation by computing the minimum coverage needed to sat-
isfy a set of lower bound constraints b such that Udi (c) ≥ bi for
1 ≤ i ≤ n. This minimum coverage is then added to the MILP in
Figure 2 as constraints on the variable c, reducing the feasible re-
gion and leading to significant speedup as verified in experiments.

ORIGAMI-M is a modified version of the ORIGAMI algorithm [9]
and borrows many of its key concepts. At a high level, ORIGAMI-
M starts off with an empty defender coverage vector c, a set of
lower bound constraints b, and m defender resources. We try
to compute a coverage c which uses the minimum defender re-
sources to satisfy constraints b. If a constraint bi is violated, i.e.,
Udi (c) < bi, ORIGAMI-M updates c by computing the minimum
additional coverage necessary to satisfy bi. Since we focus on sat-
isfying the constraint on one objective at a time, the constraints
for objectives that were satisfied in previous iterations may become
unsatisfied again. The reason is that additional coverage may be
added to the target that was attacked by this attacker type, caus-
ing it to become less attractive relative to other alternatives for the
attacker, and possibly reducing the defender’s payoff by changing
the target that is attacked. Therefore, the constraints in b must be
checked repeatedly until quiescence (no chances are made to c for
any bi). If all m resources are exhausted before b is satisfied, then
the CSOP is infeasible.

The process for calculating minimum coverage for a single con-
straint bi is built on two properties of security games [9]: (1) the
attacker chooses the optimal target; (2) the attacker breaks ties in
favor of the defender. The set of optimal targets for attacker i for
coverage c is referred to as the attack set, Γi(c). Accordingly,
adding coverage on target t /∈ Γi does not affect the attacker i’s
strategy or payoff. Thus, if c does not satisfy bi, we only consider
adding coverage to targets in Γi. Γi can be expanded by increasing
coverage such that the payoff for each target in Γi is equivalent to
the payoff for the next most optimal target. Adding an additional

target to the attack set cannot hurt the defender since the defender
receives the optimal payoff among targets in the attack set.

Algorithm 3: ORIGAMI-M(b)

1 c← empty coverage vector ;
2 while bi > Udi (c) for some bound bi do
3 sort targets T in decreasing order of value by Uai (ct, t);
4 left←m−∑t∈T ct, next← 2;
5 while next ≤ |T | do
6 addedCov[t]← empty coverage vector;
7 if max1≤t<next U

c,a
i (t) > Uai (cnext, tnext) then

8 x← max1≤t<next U
c,a
i (t);

9 noninducibleNextTarget← true;
10 else
11 x← Uai (cnext, tnext);

12 for 1 ≤ t < next do
13 addedCov[t]← x−Uu,ai (t)

U
c,a
i (t)−Uu,ai (t)

− ct;

14 if
∑
t∈T addedCov[t] > left then

15 resourcesExceeded← true;
16 ratio[t]← 1

U
u,a
i (t)−Uc,ai (t)

, ∀1 ≤ t < next;

17 addedCov[t] =
ratio[t]·left∑

1≤t≤next ratio[t]
,∀1 ≤ t < next;

18 if Udi (c + addedCov) ≥ bi then
19 c′ ←MIN-COV(i, c,b);
20 if c′ 6= null then
21 c← c′

22 break;

23 else if resourcesExceeded ∨ noninducibleNextTarget then
24 return infeasible;

25 else
26 ct += addedCov[t],∀t ∈ T ;
27 left −=

∑
t∈T addedCov[t];

28 next++;

29 if next = |T |+ 1 then
30 if left > 0 then
31 c←MIN-COV(i, c,b);
32 if c = null then
33 return infeasible;

34 else
35 return infeasible;

36 return c ;

The idea for ORIGAMI-M is to expand the attack set Γi un-
til bi is satisfied. The order in which the targets are added to Γi
is by decreasing value of Uai (ct, t). Sorting these values, so that
Uai (c1, t1) ≥ Uai (c2, t2) ≥ · · · ≥ Uai (c|T |, t|T |), we have that
Γi(c) starts only with target t1. Assume that the attack set includes
the first q targets. To add the next target, the attacker’s payoff for all
targets in Γi must be reduced to Uai (cq+1, tq+1) (Line 11). How-
ever, it might not be possible to do this. Once a target t is fully cov-
ered by the defender, there is no way to decrease the attacker’s pay-
off below Uc,ai (t). Thus, if max1≤t≤q U

c,a
i (t) > Uai (cq+1, tq+1)

(Line 7), then it is impossible to induce the adversary i to attack
target tq+1. In that case, we must reduce the attacker’s payoff for
targets in the attack set to max1≤t≤q U

c,a
i (t) (Line 8). Then for

each target t ∈ Γi, we compute the amount of additional coverage,
addCov[t], necessary to reach the required attacker payoff (Line
13). If the total amount of additional coverage exceeds the amount
of remaining coverage, then addedCov is recomputed and each
target in the attack set is assigned ratio of the remaining coverage
so to maintain the attack set (Line 17). There is then a check to see
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if c + addedCov satisfies bi (Line 18). If bi is still not satisfied,
then the coverage c is updated to include addedCov (Line 26) and
the process is repeated for the next target (Line 28).

Algorithm 4: MIN-COV(i, c,b)

1 Input: Game index i, initial coverage c, lower bound b;
2 c∗ ← null;
3 minResources← m;
4 foreach t′ ∈ Γi(c) do
5 c′ ← c ;

6 c′
t′ =

bi−Uu,ai (t′)
U
c,a
i (t′)−Uu,ai (t′) ;

7 foreach t ∈ T \ {t′} do
8 if Uai (c′t, t) > Uai (c′

t′ , t
′) then

9 c′t =
Uai (c′

t′ ,t
′)−Uu,ai (t)

U
c,a
i (t)−Uu,ai (t)

;

10 if Udi (c′) ≥ bi and
∑
t∈T c

′
t ≤ minResources then

11 c∗ ← c′;
12 minResources←∑

t∈T c
′
t ;

13 return c∗

Then if c + addedCov expands Γi and exceeds bi, it may be
possible to use less defender resources and still satisfy bi. Thus we
use the algorithm MIN-COV to compute, ∀t′ ∈ Γi, the amount of
coverage needed to induce an attack on t′ which yields a defender
payoff of bi. For each t′, MIN-COV generates a defender coverage
vector c′, which is initialized to the current coverage c. Coverage
c′t′ is updated such that the defender payoff for t′ is bi, yielding an
attacker payoff Uai (c′t′ , t

′) (Line 6). The coverage for every other
target t ∈ T \ {t′} is updated, if needed, to ensure that t′ remains
in Γi, i.e. Uai (c′t′ , t

′) ≥ Uai (c′t, t) (Line 9). After this process,
c′ is guaranteed to satisfy bi. From the set of defender coverage
vectors, MIN-COV returns the c′ which uses the least amount of
defender resources. If while computing the additional coverage to
added, either Γi is the set of all targets or all m security resources
are exhausted, then both bi and the CSOP are infeasible.

If b is satisfiable, ORIGAMI-M will return the minimum cover-
age vector c∗ that satisfies b. This coverage vector can be used to
replace Equation (8) with c∗t ≤ ct ≤ 1.

7. ORIGAMI-A
In the previous section, we showed heuristics to improve the ef-

ficiency of our MILP approach. However, solving MILPs, even
when constrained, is computationally expensive. Thus, we present
ORIGAMI-A, an extension to ORIGAMI-M which eliminates the
computational overhead of MILPs for solving CSOPs. The key
idea of ORIGAMI-A is to translate a CSOP into a feasibility prob-
lem which can be solved using ORIGAMI-M. We then generate
a series of these feasibility problems using binary search in order
to approximate the optimal solution to the CSOP. As a result, this
algorithmic approach is much more efficient.

ORIGAMI-M computes the minimum coverage vector necessary
to satisfy a set of lower bound constraints b. As our MILP approach
is an optimization problem, lower bounds are specified for the sec-
ondary objectives but not the primary objective. We can convert
this optimization problem into a feasibility problem by creating a
new set of lower bounds constraints b+ by adding a lower bound
constraint b+1 for the primary objective to the constraints b. We
set b+1 = mint∈T U

u,d
1 (t), the lowest defender payoff for leaving

a target uncovered. Now instead of finding the coverage c which
maximizes Ud1 (c) and satisfies b, we can use ORIGAMI-M to de-
termine if there exists a coverage vector c such that b+ is satisfied.

Algorithm 5: ORIGAMI-A(b, α)

1 c← empty coverage vector;
2 b+1 ← mint∈T U

u,d
1 (t);

3 b+ ← {b+1 } ∪ b ;
4 for 1 ≤ i ≤ n do
5 lower ← b+i ;
6 upper ← maxt∈T U

c,d
i (t);

7 while upper − lower > α do
8 b+i ←

upper+lower
2

;
9 c′ ← ORIGAMI-M(b+);

10 if c′ = violated then
11 upper ← b+i ;

12 else
13 c← c′, lower ← b+i ;

14 b+i ← Udi (c);

15 return c ;

ORIGAMI-A finds an approximately optimal coverage vector c
by using ORIGAMI-M to solve a series of feasibility problems.
This series is generated by sequentially performing binary search
on the objectives starting with initial lower bounds defined in b+.
For objective i, the lower and upper bounds for the binary search
are, respectively, b+i and maxt∈T U

c,d
1 (t), the highest defender

payoff for covering a target. At each iteration, b+ is updated by
setting b+i = (upper + lower)/2 and then passed as input to
ORIGAMI-M. If b+ is found to be feasible, then the lower bound is
updated to b+i and c is updated to the output of ORIGAMI-M, oth-
erwise the upper bound is updated to b+i . This process is repeated
until the difference between the upper and lower bounds reaches the
termination threshold, α. Before proceeding to the next objective,
b+i is set to Udi (c) in case the binary search terminated on an infea-
sible problem. After searching over each objective, ORIGAMI-A
will return a coverage vector c such that Ud1 (c∗) − Ud1 (c) ≤ α,
where c∗ is the optimal coverage vector for a CSOP defined by b.

The solutions found by ORIGAMI-A are no longer Pareto op-
timal. Let Ωα be the objective space of the solutions found by
ORIGAMI-A. We can bound its efficiency loss using the approxi-
mation measure ρ(ε, α)=maxv∈Ω minv′∈Ωα max1≤i≤n(vi−v′i).

THEOREM 5. ρ(ε, α) ≤ max{ε, α}.
PROOF. Similar to the proof of Theorem 4, for each point v ∈

Ω, we can use Algorithm 2 to find a CSOP with constraints b which
is solved using ORIGAMI-A with coverage c such that 1) bi ≤ vi
for i > 1 and 2) v′i ≥ vi − ε for i > 1 where v′ = Ud(c).

Assume that the optimal coverage is c∗ for the CSOP with con-
straints b. It follows that Ud1 (c∗) ≥ v1 since the coverage resulting
in point v is a feasible solution to the CSOP with constraints b.
ORIGAMI-A will terminate if the difference between lower bound
and upper bound is no more than α. Therefore, v′1 ≥ Ud1 (c∗)− α.
Combining the two results, it follows that v′1 ≥ v1 − α.

Therefore, for any point missing in the frontier v ∈ Ω, we can
find a point v′ ∈ Ωα such that 1) v′1 ≥ v1 − α and v′i ≥ vi − ε for
i > 1. It then follows that ρ(ε, α) ≤ max{ε, α}.
8. EVALUATION

We perform our evaluation by running the full algorithm in or-
der to generate the Pareto frontier for randomly-generated MOSGs.
For our experiments, the defender’s covered payoff Uc,di (t) and at-
tacker’s uncovered payoff Uu,ai (t) are uniformly distributed inte-
gers between 1 and 10 for all targets. Conversely, the defender’s
uncovered payoff Uu,di (t) and attacker’s covered payoff Uc,ai (t)
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Figure 4: Scaling up targets
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Figure 5: More target scale up
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Figure 7: Scaling down epsilon

are uniformly distributed integers between -1 and -10. Unless oth-
erwise mentioned, the setup for each experiment is 3 objectives, 25
targets, ε = 1.0, andα = 0.001. The amount of defender resources
m is fixed at 20% of the number of targets. For experiments com-
paring multiple formulations, all formulations were tested on the
same set of MOSGs. A maximum cap on runtime for each sample
is set at 1800 seconds. We solved our MILP formulations using
CPLEX version 12.1. The results were averaged over 30 trials.

8.1 Runtime Analysis
We evaluted five MOSG formulations. We refer to the baseline

MILP formulation as MILP-B. The MILP formulation adding a
bound on the defender’s payoff for the primary objective is MILP-P.
MILP-M uses ORIGAMI-M to compute bounds on defender cov-
erage. MILP-P can be combined with MILP-M to form MILP-PM.
The algorithmic approach using ORIGAMI-A will be referred to by
name. For the number of targets, we evaluate all five formulations
for solving CSOPs. We then select ORIGAMI-A and the fastest
MILP formulation, MILP-PM, to evaluate the remaining factors.

Effect of the Number of Targets:This section presents results
showing the efficiency of our different formulations as the num-
ber of targets is increased. In Figure 4, the x-axis represents the
number of the targets in the MOSG. The y-axis is the number of
seconds needed by Iterative ε-Constraints to generate the Pareto
frontier using the different formulations for solving CSOPs. Our
baseline MILP formulation, MILP-B, has the highest runtime for
each number of targets we tested. By adding an upper bound on
the defender payoff for the primary objective, MILP-P yields a run-
time savings of 36% averaged over all numbers of targets compared
to MILP-B. MILP-M uses ORIGAMI-M to compute lower bounds
for defender coverage, resulting in a reduction of 70% compared
to MILP-B. Combining the insights from MILP-P and MILP-M,
MILP-PM achieves an even greater reduction of 82%. Remov-
ing the computational overhead of solving MILPs, ORIGAMI-A
is the most efficient formulation with a 97% reduction. For 100
targets, ORIGAMI-A requires 4.53 seconds to generate the Pareto
frontier, whereas the MILP-B takes 229.61 seconds, a speedup of
>50 times. Even compared to fastest MILP formulation, MILP-PM
at 27.36 seconds, ORIGAMI-A still achieves a 6 times speedup.
T-test yields p-value<0.001 for all comparison of different formu-
lations when there are 75 or 100 targets.

We conducted an additional set of experiments to determine how
MILP-PM and ORIGAMI-A scale up for an order of magnitude in-
crease in the number of targets by testing on MOSGs with between
200 and 1000 targets. Based on the trends seen in the data, we can
concluded that ORIGAMI-A significantly outperforms MILP-PM
for MOSGs with large number of targets. Therefore, the number of
targets in an MOSG is not a prohibitive bottleneck for generating
the Pareto frontier using ORIGAMI-A.

Effect of the Number of Objectives: Another key factor on the
efficiency of Iterative ε-Constraints is the number of objectives
which determines the dimensionality of the objective space that It-
erative ε-Constraints must search. We ran experiments for MOSGs

with between 2 and 6 objectives. For these experiments, we fixed
the number of targets at 10. Figure 6 shows the effect of scaling
up the number of objectives. The x-axis represents the number of
objectives, whereas the y-axis indicates the average time needed to
generate the Pareto frontier. For both MILP-PM and ORIGAMI-A,
we observe an exponential increase in runtime as the number of ob-
jectives is scaled up. For both approaches, the Pareto frontier can be
computed in under 5 seconds for 2 and 3 objectives. Whereas, with
6 objectives neither approach is able to generate the Pareto frontier
before the runtime cap of 1800 seconds. These results show that
the number of objectives, and not the number of targets, is the key
limiting factor in solving MOSGs.

Effect of Epsilon: A third critical factor on the running time of
Iterative ε-Constraints is the value of the ε parameter which deter-
mines the granularity of the search process through the objective
space. In Figure 7, results are shown for ε values of 0.1, .25, .5,
and 1.0. Both MILP-PM and ORIGAMI-A see a sharp increase in
runtime as the value of ε is decreased due to the rise in the number
of CSOPs solved. For example, with ε = 1.0 the average Pareto
frontier consisted of 49 points, whereas for ε = 0.1 that number
increased to 8437. Due to the fact that ε is applied to the n − 1
dimensional objective space, the increase in the runtime resulting
from decreasing ε is exponential in the number of secondary objec-
tives. Thus, using small values of ε can be computationally expen-
sive, especially if the number of objectives is large.

Effect of the Similarity of Objectives: In previous experiments,
all payoffs were sampled from a uniform distribution resulting in
independent objective functions. However, it is possible that in
a security setting, the defender could face multiple attacker types
which share certain similarities, such as the same relative prefer-
ences over a subset of targets. To evaluate the effect of objective
similarity on runtime, we used a single security game to create a
Gaussian function with standard deviation σ from which all the
payoffs for an MOSG are sampled. Figure 8 shows the results for
using ORIGAMI-A to solve MOSGs with between 3 and 7 objec-
tives using σ values between 0 and 2.0 as well as for uniformly
distributed objectives. For σ = 0, the payoffs for all security
games are the same, resulting in Pareto frontier consisting of a sin-
gle point. In this extreme example, the number of objectives does
not impact the runtime. However, as the number of objectives in-
creases, less dissimilarity between the objectives is needed before
the runtime starts increasing dramatically. For 3 and 4 objectives,
the amount of similarity has negligible impact on runtime. The
experiments with 5 objectives time out after 1800 seconds for the
uniformly distributed objectives. Whereas, 6 objectives times out
at σ = 1.0 and 7 objectives at σ = 0.5. We conclude that it is
possible to scale to larger number of objectives if there is similarity
between the attacker types.

8.2 Solution Quality Analysis
Effect of Epsilon: If the Pareto frontier is continuous, only a

subset of that frontier can be generated. Thus, it is possible that one
of the Pareto optimal points not generated by Iterative ε-Constraints
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Figure 10: Comparison against uniformly
weighted Bayesian security games

would be the most preferred solution, were it presented to the end
user. In Section 5.2, we proved that the maximum utility loss for
each objective resulting from this situation could be bounded by ε.
We conducted experiments to empirically verify our bounds and to
determine if the actual maximum objective loss was less than ε.

Ideally, we would compare the Pareto frontier generated by It-
erative ε-Constraints to the true Pareto frontier. However, the true
Pareto frontier may be continuous and impossible for us to gener-
ate, thus we simulate the true frontier by using ε = 0.001. Due
to the computational complexity associated with such a value of ε,
we fix the number of objectives to 2. Figure 9 shows the results for
ε values of 0.1, .25, .5, and 1.0. The x-axis represent the value of
ε, whereas the y-axis represents the maximum objective loss when
comparing the generated Pareto frontier to the true Pareto frontier.
We observe that the maximum objective loss is less than ε for each
value of ε tested. At ε = 1.0, the average maximum objective
loss is only 0.63 for both MILP-PM and ORIGAMI-A. These re-
sults verify that the bounds for our algorithms are correct and that
in practice we are able to generate a better approximation of the
Pareto frontier than the bounds would suggest.

Comparison against Uniform Weighting: We introduced the
MOSG model, in part, because it eliminates the need to specify
a probability distribution over attacker types a priori. However,
even if the probability distribution is unknown it is still possible to
use the Bayesian security game model with a uniform distribution.
We conducted experiments to show the potential benefit of using
MOSG over Bayesian security games in such cases. We computed
the maximum objective loss sustained by using the Bayesian solu-
tion as opposed to a point in the Pareto frontier generated by Iter-
ative ε-Constraints. If v′ is the solution to a uniformly weighted
Bayesian security game then the equation for maximum objective
loss is maxv∈Ωε maxi(vi − v′i). Figure 10 shows the results for ε
values of 0.1, .25, .5, and 1.0. At ε = 1.0, the maximum objective
loss were 1.87 and 1.85 for MILP-PM and ORIGAMI-A. Decreas-
ing ε all the way to 0.1 increases the maximum objective loss by
less than 12% for both algorithms. These results suggests that ε
has limited impact on maximum objective loss, which is a positive
result as it implies that solving an MOSG with a large ε can still
yield benefits over a uniform weighted Bayesian security game.

9. CONCLUSION
We built upon insights from game theory and multi-objective

optimization to introduce a new model, multi-objective security
games (MOSG), for domains where security forces must balance
multiple objectives. Contributions include: 1) Iterative ε-Constraints,
a high-level approach for transforming MOSGs into a sequence of
CSOPs, 2) exact MILP formulations, both with and without heuris-
tics, for solving CSOPs, and 3) ORIGAMI-A, an approximate ap-
proach for solving CSOPs. We then provided bounds for both the
complexity as well as the solution quality of our approaches; addi-
tionally we provided detailed experimental comparison of the dif-
ferent approaches presented.
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