APPENDIX
A. PROOF OF LEMMA 3

LEMMA 3. The formulation (4) is equivalent with its re-
lazed formulation as follows, where the variable x is contin-

uous:
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An auxiliary Proposition is provided for proving Lemma 3
as follows:

PROPOSITION 1. For any feasible solution x of MILP (11),
Tk is non-zero only if the induced subgraph of Ci is a con-
nected component itself or consists of several connected com-
ponents of graph G(B) (i.e., the remaining graph after de-
fender’s blocking).

ProoF orF ProposITION 1. To prove Proposition 1, we
show that for a feasible solution x with an z; > 0 corre-
sponding to coalition C;, if a vertex i € C}, then all vertices
connected to ¢ in G(B) is also in C},. Considering the con-
trary, given a solution x with x; > 0 for C}, if there exists
an edge (,7) not blocked by the defender (i.e., B;; = 0),
such that i € O while j ¢ C;, ie., a;; = 1 and ap; =
0, then according to Eq.(11c), we have: », a:oy;78 =
Zk:k;&fc Q;0u5xk > 1 since a; = 0. Therefore, we have
Do) QkiTh = Zk:k;éfc QiTh + Tp > Zk:k;ﬁfc OO Tk + T 2>
1+ x; > 1, which is a contradiction since Ek apiTEr = 1
according to Eq.(11b). O

Proor oF LEMMA 3. We will prove Lemma 3 by showing
that for any binary solution B, the optimal solution x for
the formulation (11) is always binary.

Let K be the set of connected components of G(B), and
let C' be the set of coalitions whose induced subgraphs are
connected components themselves or consist of several con-
nected components of G(B). Let K; denote the I-th connect-
ed component in K, and for a coalition C' € C', let 8° =1 if
the induced subgraph of C' is K itself or consists of K;, and
BF = 0 otherwise. According to Proposition 1, a feasible
x can only take positive values on coalitions in C’. There-
fore, we can treat the connected components as the basic
elements of forming coalitions, and reformulate the solution
x as X defined on C’. Thus, we have that every connected
component K; has a total coverage of 1,

S Blic=1 VK ek (12)

cec’

and the minimized objective becomes: > ... v(C)Tc +
Z(m)EE BijXij. For any fixed defender strategy B, since
the coalition’s value is superadditive, we have that v(C) >
YoKex B 9(K,;) where §(K;) is the value of coalition whose
induced subgraph is K;. In this case, for any x, we have:
ZCEC’ v(C)Zc 2 leeic (K1) ECEC’ 5lci'0 = leeic o(K1)
according to Eq.(12), which means that the binary solution

x, which takes value of 1 for those coalitions whose induced
subgraphs are connected components of G(B) and 0 other-
wise, is optimal to relaxed formulation (11). [

B. INTERIOR POINT STABILIZATION

Algorithm 2: Interior Point Stabilization (IPS)
Input: M _ _
Output: an interior point (£**,g"*) of D
1 Counter =0, f"*=0, g""*'= 0;
2 while Counter < M do

3 Counter = Counter + 1;

4 randomly generate objective coefficient (u, w);

5 solve the (D**) and (D™"'~%) to get two extreme
ppints (f;,w,gzyw) and (fip.,—uﬂg*—p,,—w);

6 | =" (f L+, ) /2M;

7| g =8""+ (8wt 8 u—w)/2M;

8 return (f**, g™*);

Stabilization is a critical issue of column generation, as
the standard procedure returns the optimal dual solution
of RMP, an extreme point of the dual polyhedron, which
is characterized by very large values for some weights f;
and g;; while others are zero, and thus far away from the
optimal dual solution of the unrestricted master problem.
Much better approximations of the optimal dual solution
would be obtained if the dual variables would take values
in the center (or at least the interior) of the optimal dual
polyhedron of master problem [3].

_ Once the master problem is solved to optimality, let C and

E be defined as the set of coalitions and edges for which
zr > 0 and B;; > 0 (i.e., some of the basic columns), and
let £ be the set of edges for which the constraint (5c) is
not tight. Using complementary slackness conditions, the
optimal dual polyhedron D of master problem containing
all optimal values for f and g is defined by
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To obtain an extreme point of D, we can define a random
objective function puTf + wTg where p,w ~ U(0,1), i.e.,
each element of p and w is uniformly distributed between 0
and 1, and solve the following LP, denoted by (D*'*), with
a simplex based method:

r?in Z wifi + Z WijGij (14a)
€ en (i,))EE
s.t. Eqgs.(13a)—(13g) (14b)

Different instances of (D*“) can be generated by defin-
ing multiple objective coefficients (u,w) and thus several



extreme points of D can be obtained. Since D is a convex
set, any convex combination of its extreme points will lie
within it. In particular, if we take the average of all ob-
tained extreme points, we should obtain an interior point
of D that gives much more centered dual values. The corre-
sponding method is called Interior Point Stabilization (IPS),
as shown in Algorithm 2. Noticed that in Algorithm 2, for
each objective coefficient (p,w) generated randomly, both
problems (D**) and (D~#*'~%) are solved in order to favor
the identification of distant extreme points.

C. GENETIC ALGORITHM

Genetic algorithm (GA) is a popular probabilistic search
algorithm applied in complex optimization problem [2]. The
idea of GAs is based on an evolutionary process, where pop-
ulations evolve according to natural selection and survival of
the fittest. A GA simulates these process by creating an ini-
tial population of solutions and applying genetic operators
on it iteratively.

We provide a GA method to solve larger coalitional se-
curity games. Here each defender strategy is encoded into
a binary string of length |E|, where 1 represents “blocking”
and 0 represent “not blocking”. The fitness of each solu-
tion is the defender utility Us(B). Each generation consists
of a fixed number g of defender strategies. There are four
genetic operators: selection, crossover, mutation and repro-
duction. During the selection processes, since the fitness
is negative, we use the tournament selection framework [1]
instead of fitness proportionate selection. 2-point crossover
is used to recombine the selected two defender strategies
and produce the “offspring” strategies. A bitwise mutation
procedure with mutation probability ¢ is applied after the
crossover is finished. The new generation is reproduced by
copying g strategies with the highest utilities among parent
and child generations.

The selection-crossover-mutation-reproduction cycle is re-
peated until the terminal criterion is met: the gap of average
fitness between parent generation and child generation is s-
maller than a fixed constant ¢.

The parameters of GA tested in our experiments are set as
follows: the size of each generation is 100, and the mutation
probability ¢ = 1/|E|. Once the difference of fitness between
the child generation and current generation is smaller than
5 =105, GA terminates.
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