
Mis-spoke or mis-lead: Achieving Robustness in Multi-Agent
Communicative Reinforcement Learning

Wanqi Xue

Nanyang Technological University

Singapore

wanqi001@e.ntu.edu.sg

Wei Qiu
∗

Nanyang Technological University

Singapore

qiuw0008@e.ntu.edu.sg

Bo An

Nanyang Technological University

Singapore

boan@ntu.edu.sg

Zinovi Rabinovich

Nanyang Technological University

Singapore

zinovi@ntu.edu.sg

Svetlana Obraztsova

Nanyang Technological University

Singapore

lana@ntu.edu.sg

Chai Kiat Yeo

Nanyang Technological University

Singapore

asckyeo@ntu.edu.sg

ABSTRACT
Recent studies in multi-agent communicative reinforcement learn-

ing (MACRL) have demonstrated that multi-agent coordination can

be greatly improved by allowing communication between agents.

Meanwhile, adversarial machine learning (ML) has shown that ML

models are vulnerable to attacks. Despite the increasing concern

about the robustness of ML algorithms, how to achieve robust com-

munication in multi-agent reinforcement learning has been largely

neglected. In this paper, we systematically explore the problem

of adversarial communication in MACRL. Our main contributions

are threefold. First, we propose an effective method to perform

attacks in MACRL, by learning a model to generate optimal ma-

licious messages. Second, we develop a defence method based on

message reconstruction, to maintain multi-agent coordination un-

der message attacks. Third, we formulate the adversarial commu-

nication problem as a two-player zero-sum game and propose a

game-theoretical method ℜ-MACRL to improve the worst-case

defending performance. Empirical results demonstrate that many

state-of-the-art MACRL methods are vulnerable to message attacks,

and our method can significantly improve their robustness.

KEYWORDS
Multi-Agent Reinforcement Learning; Robust Reinforcement Learn-

ing; Adversarial Reinforcement Learning

ACM Reference Format:
Wanqi Xue, Wei Qiu

∗
, Bo An, Zinovi Rabinovich, Svetlana Obraztsova,

and Chai Kiat Yeo. 2022. Mis-spoke or mis-lead: Achieving Robustness in

Multi-Agent Communicative Reinforcement Learning. In Proc. of the 21st
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), Online, May 9–13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION
Cooperativemulti-agent reinforcement learning (MARL) has achieved

remarkable success in a variety of challenging problems, such as ur-

ban systems [29], coordination of robot swarms [11] and real-time

strategy video games [36]. To tackle the problems of scalability and

non-stationarity in MARL, the framework of centralized training

∗
Corresponding author.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

with decentralized execution (CTDE) is proposed [17, 24], where de-

centralized policies are learned in a centralized manner so that they

can share experiences, parameters, etc., during training. Despite

the advantages, CTDE-based methods still perform unsatisfactorily

in scenarios where multi-agent coordination is necessary, mainly

due to partial observability in decentralized execution. To mitigate

partial observability, many multi-agent communicative reinforce-

ment learning (MACRL) methods have been proposed, which allow

agents to exchange information such as private observations, inten-

tions during the execution phase. MACRL greatly improves multi-

agent coordination in a wide range of tasks [6, 7, 13, 15, 30, 37, 38].

Meanwhile, adversarial machine learning has received extensive

attention [2, 10]. Adversarial machine learning demonstrates that

machine learning (ML) models are vulnerable to manipulation [8, 9].

As a result, ML models often suffer from performance degradation

when under attack. For the same reason, many practical applications

of ML models are at high risk. For instance, researchers have shown

that, by placing a few small stickers on the ground at an intersection,

self-driving cars can be tricked into making abnormal judgements

and driving into the opposite lane [32]. Maliciously designed attacks

on ML models can have serious consequences.

Unfortunately, despite great importance, adversarial problems,

especially adversarial inter-agent communication problems, remain

largely uninvestigated in MACRL. Blumenkamp et al. show that,

by introducing random noise in communication, agents are able

to deceive their opponents in competitive games [3]. However,

the attacks are not artificially designed and therefore inefficient.

Besides, cooperative cases, where communication is more crucial,

are neglected. They also fail to propose an effective defence, but

merely retrain the models to adapt to the attacks. Mitchell et al.

propose to generate weights of Attention models [35] through

Gaussian process for defending against random attacks in attention-

based MACRL [21]. However, the applicability of this approach is

unsatisfactory, being limited to attention-based MACRL, and its

performance on maliciously designed attacks is unclear.

In this paper, we systematically explore the problem of adversar-

ial communication in MACRL, where there are malicious agents

that attempt to disrupt multi-agent cooperation by manipulating

messages. Our contributions are in three aspects. First, we pro-

pose an effective learning approach to model the optimal attacking

scheme in MACRL. Second, to defend against the adversary, we

propose a two-stage message filter which works by first detecting

the malicious message and then recovering the message. The de-

fending scheme can greatly maintain the coordination of agents

under message attacks. Third, to address the problem that the mes-

sage filter can be exploited by learnable attackers, we formulate the

attack-defense problem as a two-player zero-sum game and propose

ℜ-MACRL, based on a game-theoretical framework Policy-Space

Response Oracle (PSRO) [18, 22], to approximate a Nash equilib-

rium policy in the adversarial communication game. ℜ-MACRL

improves the defensive performance under the worst case and thus

improves the robustness. Empirical experiments demonstrate that

many state-of-the-art MACRL algorithms are vulnerable to attacks

and our method can significantly improve their robustness.

2 PRELIMINARIES AND RELATEDWORK
Multi-Agent Communicative Reinforcement Learning. There
has been extensive research on encouraging communication be-

tween agents to improve performance on cooperative or compet-

itive tasks. Among the recent advances, some design communi-

cation mechanisms to address the problem of when to commu-

nicate [13, 14, 28]; other lines of works, e.g., TarMac [6], focus

on who to communicate. These works determine the two funda-

mental elements in communication, i.e., the message sender and

the receiver. Apart from the two elements, the message itself is

another element which is crucial in communication, i.e., what to

communicate: Jaques et al. propose to maximize the social influ-

ence of messages [12]. Kim et al. encode messages such that they

contain the intention of agents [15]. Some other works learn to

send succinct messages to meet the limitations of communication

bandwidth [37, 38, 42]. Despite significant progress in MACRL, if

some agents are adversarial and send maliciously designed mes-

sages, multi-agent coordination will rapidly disintegrate as these

messages propagate.

Adversarial Training. Adversarial training is a prevalent para-

digm for training robust models to defend against potential at-

tacks [9, 31]. Recent literature has considered two types of at-

tacks [5, 25, 33]: black-box attack andwhite-box attack. In black-box

attack, the attacker does not have access to information about the

attacked deep neural network (DNN) model; whereas in white-box

attack, the attacker has complete knowledge, e.g., the architecture,

the parameters and potential defense mechanisms, about the DNN

model. We consider the black-box attack in our problem formula-

tion, because the setting of the white-box attack is too idealistic

and may not be applicable to many realistic adversarial scenar-

ios. In adversarial training, the attacker tries to attack a DNN by

corrupting the input via ℓ𝑝 -norm (𝑝 ∈ {1, 2,∞}) attack [9]. The

attacker carefully generates artificial perturbations to manipulate

the input of the model. In doing so, the DNN will be fooled into

making incorrect predictions or decisions. The attacker finds the

optimal perturbation 𝛿 by optimizing:

max

𝛿
L
predict

(𝑓 (𝒙), 𝑓 (𝒙 + 𝛿)) s.t. minLnorm (𝒙, 𝒙 + 𝛿)

where 𝒙 is the input, 𝑓 is the DNN model, L
predict

is a metric to

measure the distance between the outputs of the DNNmodel w/ and

w/o being attacked, Lnorm is used to measure that for the inputs.

Adversarial Reinforcement Learning (RL). Recent advances in
adversarial machine learning motivate researchers to investigate

the adversarial problem in RL [8, 19, 39]. SA-MDP [41] character-

izes the problem of decision making under adversarial attacks on

state observations. Lin et al. propose two tactics of attacks, i.e., the

strategically-timed attack and the enchanting attack, which attack

by injecting noise to states and luring the agent to a designated

target [19]. Gleave et al. consider the problem of taking adver-

sarial actions that change the environment and consequentially

change the observation of agents [8]. ATLA [40] propose to train

the optimal adversary to perturb state observations and improve

the worst-case agent reward. The settings of these works are differ-

ent from ours: we consider the multi-agent scenario and restrict the

attacking approach to adversarial messages, which makes the detec-

tion of anomalies difficult. Tu et al. propose to attack on multi-agent

communication [34]. However, their focus is on the representation-

level, whereas we focus on the policy-level. Recently, there are

some works considering a similar setting as ours [3, 21]. However,

they either focus on random attacks in specific competitive games

or the defence of specific communication methods.

3 ACHIEVING ROBUSTNESS IN MACRL
In this section, we propose our method for achieving robustness in

MACRL. We begin by proposing the problem formulation for adver-

sarial communication in MACRL. Then, we introduce the method to

build the optimal attacking scheme in MACRL. Next, we propose a

learnable two-stagemessage filter to defend against possible attacks.

Finally, we propose to formulate the attack-defense problem as a

two-player zero-sum game, and design a game-theoretic method

ℜ-MACRL to approximate a Nash equilibrium policy for the de-

fender. In this way, we can improve the worst-case performance of

the defender and thus enhance robustness.

3.1 Problem Formulation: Adversarial
Communication in MACRL

An MACRL problem can be modeled by Decentralised Partially Ob-
servable Markov Decision Process with Communication (Dec-POMDP-
Com) [23], which is defined by a tuple ⟨S,M,A,P, 𝑅, Υ,𝑂,𝐶,N , 𝛾⟩.
S denotes the state of the environment and M is the message

space. Each agent 𝑖 ∈ N := {1, ..., 𝑁 } chooses an action 𝑎𝑖 ∈ A at

a state 𝒔 ∈ S, giving rise to a joint action vector, 𝒂 := [𝑎𝑖]𝑁𝑖=1 ∈
A𝑁

. P(𝒔 ′ |𝒔, 𝒂) : S × A𝑁 × S ↦→ P(S) is a Markovian tran-

sition function. Every agent shares the same joint reward func-

tion 𝑅(𝒔, 𝒂) : S × A𝑁 ↦→ R, and 𝛾 ∈ [0, 1) is the discount fac-

tor. Due to partial observability, each agent has individual par-

tial observation 𝜐 ∈ Υ, according to the observation function

𝑂 (𝒔, 𝑖) : S × N ↦→ Υ. Each agent holds two policies, i.e., action

policy 𝑝𝑖 (𝑎𝑖 |𝜏𝑖 ,𝑚𝑖𝑛
𝑖
) : T × M × A ↦→ [0, 1] and message policy

𝑣𝑖 (𝑚𝑜𝑢𝑡
𝑖

|𝜏𝑖 ,𝑚𝑖𝑛
𝑖
) : T ×M ×M ↦→ [0, 1], both of which are condi-

tioned on the action-observation history 𝜏𝑖 ∈ T := (Υ × A) and
incoming messages𝑚𝑖𝑛

𝑖
aggregated by the communication protocol

𝐶 (𝑚𝑖𝑛
𝑖
|𝒎𝑜𝑢𝑡 , 𝑖) : M |N | × N ×M ↦→ [0, 1].

In adversarial communication where there are 𝑁𝑎𝑑𝑣 malicious

agents, we assume that each malicious agent holds the third private

adversarial policy, b (𝛿𝑎𝑑𝑣
𝑖

|𝜏𝑖 ,𝑚𝑖𝑛
𝑖
,𝑚𝑜𝑢𝑡

𝑖
) : T×M×M×M ↦→ [0, 1],

which generates adversarial message 𝛿𝑎𝑑𝑣
𝑖

based on its action-

observation history 𝜏𝑖 , received messages 𝑚𝑖𝑛
𝑖

and the message

!"
#"

Msg $

Comm
Protocol

#%

Attacker
Loss

Attacker &%
'()*%+,-

&%
%. /0 /1 /2

0.1 0.9 0.93

/0 /1 /2
0.1 0.9 0.76

Without attack

With attack

!"Msg $

Comm
Protocol

#%

&"%.

Attacker
Loss

Attacker &%
'()*%+,-

&%
%. /0 /1 /2

0.1 0.9 0.85

/0 /1 /2
0.1 0.9 0.76

Without attack

With defense

/0 /1 /2
0.1 0.9 0.93

With attack

Defender/" 3&"%.

Defender
Loss

(a) (b)

/"

&"%.

45%
'() 45%

'()

#"

&%
+,- &%

+,-

Figure 1: General framework of attack (left) and defence (right) in MACRL. Attack: The agent 𝑖, taken over by the attacker,
generates malicious message𝑚𝑎𝑑𝑣

𝑖
to disrupt multi-agent cooperation. The incoming message𝑚𝑖𝑛

𝑗
and estimated Q-values of

the benign agent 𝑗 will be affected due to𝑚𝑎𝑑𝑣
𝑖

, which may lead to incorrect decisions. Defence: A learnable defender is cascaded
to the communication protocol module, which is used to reconstruct the contaminated message (𝑚𝑖𝑛

𝑗
to �̂�𝑖𝑛

𝑗
). The benign agent

𝑗 estimates Q-values based on �̂�𝑖𝑛
𝑗
, which can reduce the probability of selecting sub-optimal actions.

𝑚𝑜𝑢𝑡
𝑖

intended to be sent. Malicious agents could send messages

by convexly combining their original messages with adversarial

messages, i.e.,𝑚𝑎𝑑𝑣
𝑖

= (1 − 𝜔) ×𝑚𝑜𝑢𝑡
𝑖

+ 𝜔 × 𝛿𝑎𝑑𝑣
𝑖

, or simply sum-

ming up the messages, i.e., 𝑚𝑎𝑑𝑣
𝑖

= 𝑚𝑜𝑢𝑡
𝑖

+ 𝛿𝑎𝑑𝑣
𝑖

. To reduce the

likelihood of being detected, apart from the adversarial policy b ,

malicious agents strictly follow their former action policy and mes-

sage policy, trying to behave like benign agents. Fig. 1(a) presents

the overall attacking procedure. The agent 𝑖 (attacker) is malicious

and tries to generate adversarial message𝑚𝑎𝑑𝑣
𝑖

to disrupt coopera-

tion. The adversarial message sent by agent 𝑖 together with normal

messages sent by other agents (denoted by 𝒎𝑜𝑢𝑡
−𝑖) are processed

by the communication protocol (algorithm-related), generating a

contaminated incoming message𝑚𝑖𝑛
𝑗
for a benign agent 𝑗 . From

agent 𝑗 ’s perspective, under such attack, the estimated Q-values

will change. If the action with the highest Q-value shifts, agent

𝑗 will make incorrect decisions, leading to suboptimality. To per-

form an effective attack in MACRL, we propose to optimize the

adversarial policy b by minimizing the joint accumulated rewards,

i.e., minb E
[∑∞

𝑡=0 𝛾
𝑡𝑟𝑡

]
. We make two assumptions to make the

adversarial communication problem both practical and tractable.

Assumption 1. (Byzantine Failure [16]) Agents have imperfect
information on who are malicious.

Assumption 2. (Concealment) Malicious agents do not communi-
cate or cooperate with each other when performing attacks in order
to be covert.

To defend against the attacker, as in Fig. 1(b), we propose to

cascade a learnable defender to the communication protocol mod-

ule. The defender performs a transformation from𝑚𝑖𝑛
𝑗
to �̂�𝑖𝑛

𝑗
to

reconstruct the contaminated messages, to avoid distributing the

contaminated message𝑚𝑖𝑛
𝑗
directly to agent 𝑗 . With such transfor-

mation, the benign agent 𝑗 can estimate the Q-value for each action

more properly and reduce the probability of selecting sub-optimal

actions.

3.2 Learning the Attacking Scheme
To model the attack scheme in adversarial communication, we use

a deep neural network (DNN) 𝑓` , parameterized by \` , to generate

adversarial messages for a malicious agent. The adversarial pol-

icy b is a multivariate Gaussian distribution whose parameters are

determined by the DNN 𝑓` , i.e., b = N(𝑓` (·|𝜏,𝑚𝑖𝑛,𝑚𝑜𝑢𝑡
;\𝑑),Λ)

where Λ is a fixed covariance matrix. The reason of using Gaussian

distribution as the prior is that it is the maximum entropy distribu-

tion under constraints of mean and variance. Each malicious agent

generates adversarial messages by sampling from its adversarial

policy. The optimization objective of the adversarial policy is to

minimize the accumulated team rewards subject to a constraint

on the distance between𝑚𝑜𝑢𝑡
and𝑚𝑎𝑑𝑣

. We utilize Proximal Pol-

icy Optimization (PPO) [27] to optimize the adversarial policy by

maximizing the following objective:

Jb (\`) = E(𝜏,𝑚𝑖𝑛 ,𝑚𝑜𝑢𝑡 ,𝛿𝑎𝑑𝑣) [min(𝜌 · 𝐴b , clip (𝜌, 1 ± 𝜖) · 𝐴b)]

− 𝛼 · E(𝑚𝑜𝑢𝑡 ,𝛿𝑎𝑑𝑣) [(𝑚
𝑜𝑢𝑡 −𝑚𝑎𝑑𝑣)2] (1)

where 𝜌 = b (𝛿𝑎𝑑𝑣 |𝜏,𝑚𝑖𝑛,𝑚𝑜𝑢𝑡)/b𝑜𝑙𝑑 (𝛿𝑎𝑑𝑣 |𝜏,𝑚𝑖𝑛,𝑚𝑜𝑢𝑡), b𝑜𝑙𝑑 is the

policy in the previous learning step, 𝜖 is the clipping ratio, and

𝐴b (𝛿𝑎𝑑𝑣, 𝜏,𝑚𝑖𝑛,𝑚𝑜𝑢𝑡) is the advantage function. Let 𝑒 = ⟨𝜏,𝑚𝑖𝑛,𝑚𝑜𝑢𝑡 ⟩
denotes the input of the value function and we define the reward

of the attacker to be negative team reward, then 𝐴b (𝛿𝑎𝑑𝑣, 𝑒) =

−𝑟 + 𝑉 (𝑒 ′) − 𝑉 (𝑒) where 𝑉 is the value function, 𝑒 ′ denotes the
next step state, and 𝑟 is the immediate reward. We learn the value

function 𝑉 (𝑒) by minimizing E[(𝑉 (𝑒) +∑
𝑡 𝛾

𝑡𝑟𝑡)2].

3.3 Defending against Adversarial
Communication

We can train a DNN to model the attack scheme in adversarial

communication. However, the defence of that is non-trivial because

i) benign agents have no prior knowledge on which agents are

malicious; ii) the malicious agents can inconsistently pretend to

be cooperative or non-cooperative to avoid being detected; and iii)

Anomaly Detector

𝑚"
#$% 𝑚&

#$%𝑚&'(
#$%

…

Reconstructor

Message Aggregator

𝑚&
)&𝑚"

)& 𝑚&'(
)&

…

Comm Protocol

Figure 2: Structure of the communication protocol with the
message filter (defender). The anomaly detector and the re-
constructor are designed to determine and recover the poten-
tial malicious messages, respectively.

recovering useful information from the contaminated messages is

difficult. To address these challenges, we design a two-stage mes-

sage filter for the communication protocol to perform defence. The

message filter works by first determining the messages that are

likely to be malicious and then recovering the potential malicious

messages before distributing them to the corresponding agents. As

in Fig. 2, the message filter Z (ℎ𝑑 , 𝑔𝑟) consists of an anomaly detector

ℎ𝑑 and a message reconstructor 𝑔𝑟 . The anomaly detector, parame-

terized by \𝑑 , outputs the probability that each incoming message

needs to be recovered, i.e., ℎ𝑑 (·|𝑚𝑜𝑢𝑡
𝑖

;\𝑑) : M ↦→ Ψ, where Ψ de-

notes a binomial distribution,𝑚𝑜𝑢𝑡
𝑖

denotes the message sent by

agent 𝑖 . We perform sampling from the generated distributions to

determine the anomaly messages 𝒙 ∼ ℎ𝑑 (·|𝒎𝑜𝑢𝑡
;\𝑑) 1

. Here, 𝒙 is

an indicator that records whether a message is predicted to be mali-

cious or not. The predicted malicious messages ¤𝒎 are recovered by

the reconstructor 𝑔𝑟 (·| ¤𝑚𝑖 ;\𝑟) : M ↦→ M separately. The recovered

message and other normal messages are aggregated and determine

the messages that each agent will receive.

The optimization objective of the message filter is to maximize

the joint accumulated rewards under attack, i.e.,maxZ E
[∑∞

𝑡=0 𝛾
𝑡𝑟𝑡 |b

]
,

where 𝑟𝑡 is the team reward after performing the defending strat-

egy. We utilize PPO to optimize the strategy. To mitigate the local

optima induced by unguided exploration in large message space,

we introduce a regularizer which is optimized under the guidance

of the ground-truth labels of messages (whether they are malicious).

For the reconstructor, we train it by minimizing the distance be-

tween the messages before and after being attacked. To improve the

tolerance of the reconstructor to errors made by the detector, apart

from malicious messages, we also use benign messages as training

data, in which case the reconstructor is an identical mapping. For-

mally, the two-stage message filter is optimized by maximizing the

following function:

JZ (\𝑑 , \𝑟) = E(𝒎,𝒙)

|𝒎 |∑︁
𝑖

min

(
𝜌𝑖 · 𝐴ℎ𝑑

𝑖
, clip (𝜌𝑖 , 1 ± 𝜖) · 𝐴ℎ𝑑

𝑖

)
+ 𝛽1 · E𝒎 [�̂� · log(ℎ𝑑 (· |𝒎;\𝑑))]

− 𝛽2 · E𝒎
[
(�̂� − 𝑔𝑟 (· |𝒎;\𝑟))2

]
(2)

where 𝜌𝑖 = ℎ𝑑 (𝑥𝑖 |𝑚𝑖 ;\𝑑)/ℎ𝑜𝑙𝑑𝑑
(𝑥𝑖 |𝑚𝑖 ;\𝑑),𝐴

ℎ𝑑
𝑖

(𝑥𝑖 ,𝑚𝑖) is the advan-
tages which are estimated similarly as in the attack, �̂� is the one-hot

1
We abuse ℎ𝑑 (· |𝒎𝑜𝑢𝑡

;\𝑑) to represent that messages𝑚𝑜𝑢𝑡
𝑖

∈ 𝒎𝑜𝑢𝑡
are fed into ℎ𝑑

in batch.

Attacker

De
fe
nd

er

𝜋!! 2 -3

1 2𝜋!"

𝜋"! 𝜋"" 𝜋"#

𝜋!#

-3

-1

101

. . .

Figure 3: Workflow of ℜ-MACRL.

ground-truth labels of messages, �̂� is the messages that have not

been attacked. 𝛽1, 𝛽2 and 𝜖 are hyperparameters.

3.4 Achieving Robust MACRL
Despite the defensive message filter, the effectiveness of the defence

system can rapidly decrease if malicious agents are aware of the

defender and adjust their attack schemes. To mitigate this, we

formulate the attack-defence problem as a two-player zero-sum

game (malicious agents are controlled by the attacker) and improve

the performance of the defender in the worst case. We define the

adversarial communication game by a tuple ⟨Π, 𝑈 ⟩, where Π =

⟨Πb ,ΠZ ⟩ is the joint policy space of the players (Πb and ΠZ denote

the policy space of the defender and the attacker respectively),

𝑈 : Π ↦→ R2 is the utility function which is used to calculate

utilities for the attacker and the defender given their joint policy

𝜋 = ⟨𝜋b , 𝜋Z ⟩ ∈ Π. The utility of the defender is defined as the

expected team return. The adversarial communication game is zero-

sum, i.e., the utility of the defender𝑈Z (𝜋) must be the negative of

the utility of the attacker𝑈b (𝜋) for ∀𝜋 ∈ Π. The solution concept

of the adversarial communication game is Nash equilibrium (NE)

and we can approach an NE by optimizing the following MaxMin

objective:

Jb,Z = max

𝜋Z ∈ΠZ
𝑈Z (Br(𝜋Z), 𝜋Z) = max

𝜋Z ∈ΠZ
min

𝜋b ∈Πb

E
[∑︁∞

𝑡=0
𝛾𝑡𝑟𝑡 |𝜋b , 𝜋Z

]
(3)

whereBr(𝜋Z) is the best response policy of the defender, i.e.,Br(𝜋Z) =
argmin𝜋b 𝑈Z (𝜋b , 𝜋Z).

We propose ℜ-MACRL to optimize the objective in the adversar-

ial communication game. ℜ-MACRL is developed based on Policy-

Space Response Oracle (PSRO) [18], a deep learning-based exten-

sion of the classic Double Oracle algorithm [20]. The workflow of

ℜ-MACRL is depicted in Fig. 3. At each iteration, ℜ-MACRL keeps

a population (set) of policies Π𝑡 ⊂ Π, e.g., Π𝑡
Z
= (𝜋11, 𝜋12) and Π𝑡

b
=

(𝜋21, 𝜋22). We can evaluate the utility table 𝑈 (Π𝑡) for the current
iteration and calculate a Nash equilibrium 𝜋𝑡∗ = ⟨Δ(Π𝑡

b
),Δ(Π𝑡

Z
)⟩

for the game restricted to policies in Π𝑡
by, for example, linear pro-

gramming, replicator dynamics, etc. Δ denotes the meta-strategy

which is an arbitrary categorical distribution. Next, we calculate

the best response policy Br(𝜋𝑡∗,−𝑖) to the NE in this restricted

game for each player 𝑖 (player −𝑖 denotes the opponent of player 𝑖 ,
𝑖 ∈ {b, Z }), e.g., 𝜋13 = Br(𝜋𝑡∗,b) and 𝜋23 = Br(𝜋𝑡∗,Z). We extend the

population by adding the best response policies to the policy set:

Algorithm 1: ℜ-MACRL

1 Input: initial policy sets for both players Π0
, maximum

number of iterations 𝑇 ;

2 Empirically estimate utilities𝑈 (Π0) for each joint policy

𝜋 ∈ Π0
;

3 Initialize mixed strategies for both players

𝜋0∗,𝑖 = Uniform(Π0

𝑖
) for 𝑖 ∈ {b, Z };

4 Initialize number of iterations 𝑡 = 0;

5 while not converge and 𝑡 ≤ 𝑇 do
6 for player 𝑖 ∈ {b, Z } do
7 Train 𝜋𝑡+1

𝑖
by letting it exploit 𝜋𝑡∗,−𝑖 ;

8 Extend policy set Π𝑡+1
𝑖

= Π𝑡
𝑖
∪ {𝜋𝑡+1

𝑖
};

9 Check convergence and 𝑡 = 𝑡 + 1;

10 Estimate missing entries in𝑈 (Π𝑡+1) ;
11 Compute mixed strategies 𝜋𝑡+1∗ by solving the matrix

game defined by𝑈 (Π𝑡+1) ;
12 Output: mixed strategies 𝜋∗ for both players ;

Π𝑡+1
𝑖

= Π𝑡
𝑖
∪ Br(𝜋𝑡∗,−𝑖) for 𝑖 ∈ {b, Z }. After extending the popula-

tion, we complete the utility table 𝑈 (Π𝑡+1) and perform the next

iteration. The algorithm converges if the best response policies are

already in the population. Practically, ℜ-MACRL approximates the

utility function 𝑈 (·) by having each policy in the population Π𝑡
𝑖

playing with each other policy in Π𝑡
−𝑖 and tracking the average util-

ities. The approximation of the best response policies is performed

by maximizing Jb (\` |𝜋𝑡∗,Z) and JZ (\𝑑 , \𝑟 |𝜋
𝑡
∗,b) for the attacker and

the defender, where the full expressions of the two objectives are

described in Eq. 1 and Eq. 2, respectively.

The overall algorithm of ℜ-MACRL is presented in Algorithm 1.

We first initialize themeta-game and themixed strategies (line 2 and

line 3). Then, at each step, we train the attacker and the defender

alternately by letting them best respond to their corresponding

opponent (line 7). Next, the learned new policy 𝜋𝑡+1
𝑖

is added to

the policy set Π𝑡+1
𝑖

for the two players respectively (line 8). After

extending the policy set, we can check the convergence (line 9) and

calculate the missing entries in𝑈 (Π𝑡+1) (line 10). Finally, we solve
the new meta-game (line 11) and repeat the iteration.

4 EXPERIMENTS
We conduct extensive experiments on a variety of state-of-the-art

MACRL algorithms to answer: Q1: Are MACRL methods vulnerable
to message attacks and whether the two-stage message filter is able
to consistently recover multi-agent coordination? Q2: Whether ℜ-
MACRL is able to improve the robustness of MACRL algorithms under
message attacks? Q3:Whether our method is able to scale to scenarios
where there are multiple attackers? Q4:Which components contribute
to the performance of the method and how does the proposed method
work? We first categorize existing MACRL algorithms and then

select representative algorithms to perform the evaluation. All ex-

periments are conducted on a server with 8 NVIDIA Tesla V100

GPUs and a 44-core 2.20GHz Intel(R) Xeon(R) E5-2699 v4 CPU.

Table 1: The chosen algorithms and environments.

Categories Methods Environments

CD CommNet [30] Predator Prey (PP) [4]

LC TarMAC [6] Traffic Junction (TJ) [30]

CC NDQ [38] StarCraft II (SCII) [26]

4.1 Experimental Setting
MACRL methods are commonly categorized by whether they are

implicit or explicit [1, 23]. In implicit communication, the actions

of agents influence the observations of the other agents. Whereas

in explicit communication, agents have a separate set of commu-

nication actions and exchange information via communication

actions. In this paper, we focus on explicit communication because

in implicit communication, to carry out an attack, the attacker’s

behaviour is often bizarre, making the attack trivial and easily de-

tectable. We consider the following three realistic types of explicit

communication:

• Communication with delay (CD): Communication in real

world is usually not real-time. We can model this by assum-

ing that it takes one or a few time steps for the messages

being received by the targeted agents [30].

• Local communication (LC): Messages sometimes cannot

be broadcast to all agents due to communication distance

limitations or privacy concerns. Therefore, agents need to

learn to communicate locally, affecting only those agents

within the same communication group [4, 6].

• Communication with cost or limited bandwidth (CC):
Agents should avoid sending redundant messages because

communication in real world is costly and communication

channels often have a limited bandwidth [38, 42].

Following the above taxonomy, we select some representative state-

of-the-art algorithms to perform evaluation
2
. As in Table 1, we

select CommNet [30], TarMAC [6] and NDQ [38] for CD, LC and

CC respectively. A brief introduction to each of the chosen algo-

rithms is provided in Appendix A. We evaluate in the following

environments, which are similar to those in the paper that first

introduced the algorithms:

Predator Prey (PP). There are 3 predators, trying to catch 6 prey

in a 7 × 7 grid. Each predator has local observation of a 3 × 3 sub-

grid centered around it and can move in one of the 4 compass

directions, remain still, or perform catch action. The prey moves

randomly and is caught if at least two nearby predators try to catch

it simultaneously. The predator will obtain a team reward at 10 for

each successful catch and will be punished 𝑝 for each losing catch

action. There are two tasks with 𝑝 = 0 and 𝑝 = −0.5, respectively. A
prey will be removed from the grid after it being caught. An episode

ends after 60 steps or all preys have been caught.

Traffic Junction (TJ). In TJ, there are 𝑁𝑚𝑎𝑥 cars and the aim of

each car is to complete its pre-assigned route. Each car can observe

of a 3 × 3 region around it, but is free to communicate with other

cars. The action space for each car at every time step is {gas, brake}.
The reward function is −0.01𝜏 + 𝑟

collision
, where 𝜏 is the number of

time steps since the activation of the car, and 𝑟
collision

= −10 is a
2
Sweeping the whole list of algorithms for each category is impossible and unnecessary

since there have been a lot of algorithms proposed and algorithms in each category

usually share common characteristics.

Figure 4: Attack and defence on CommNet.

collision penalty. Cars become available to be sampled and put back

to the environment with new assigned routes once they complete

their routes.

StarCraft II (SCII). We consider SMAC [26] combat scenarios

where the enemy units are controlled by StarCraft II built-in AI

(difficulty level is set to hard), and each of the ally units is con-

trolled by a learning agent. The units of the two groups can be

asymmetric. The action space contains no-op, move[direction],
attack[enemy id], and stop. Agents receive a globally shared

reward which calculates the total damage made to the enemy units

at each time step. We conduct experiments on four SMAC tasks:

3bane_vs_hM, 4bane_vs_hM, 1o_2r_vs_4r and 1o_3r_vs_4r. More

details about the tasks are in Appendix B.

For each of the tasks, we first train the chosen MACRL methods

to obtain the action policy and the message policy for each agent.

After that, we randomly select an agent to be malicious and train its

adversarial policy to examine whether MACRL methods are vulner-

able to message attacks. Then we perform defence by training the

message filter, during which the adversarial policy of the malicious

agent is fixed but keeps working. To show that a single message

filter is brittle and can be easily exploited if the attacker adapts to

it, we freeze the learned message filter and retrain the adversarial

policy. Finally, we integrate the message filter into the framework

of ℜ-MACRL and justify if ℜ-MACRL is helpful to improve the

robustness. All experiments are carried out with five random seeds

and results are shown with a 95% confidence interval.

4.2 Recovering Multi-Agent Coordination
We first evaluate the performance of our attacking method on the

three selected MACRL algorithms. Then we try to recover multi-

agent coordination for the attacked algorithms by applying the

message filter.

CommNet. The experiments for CommNet are conducted on preda-

tor prey (PP) [4]. We set the punishment as 𝑝 = 0 and 𝑝 = −0.5 to
create two PP tasks with different difficulties. As in Fig. 4, at the

beginning of the attack, the performance of CommNet does not

have obvious decrease, indicating that injecting random noise into

the message is hard to disrupt agent coordination. As we gradually

train the adversarial policy, there is a significant drop in the test re-

turn, with 40% and 33% decreases in the task of 𝑝 = 0 and 𝑝 = −0.5,
respectively. Multi-agent cooperation has been severely affected

due to the malicious messages. When the test return decreases to

preset thresholds, i.e., 23 for 𝑝 = 0 and 20 for 𝑝 = −0.5, we freeze
the adversarial policy network and start to train the message fil-

ter. As shown in the blue curves in Fig 4, with the message filter,

Table 2: Attack and defence on TarMAC.

Easy Hard

TarMAC 99.9 ± 0.1% 94.9 ± 0.2%

TarMAC w/ 𝜋b 87.2 ± 4.68% 88.75 ± 7.29%
TarMAC w/ 𝜋Z 96.41 ± 1.38% 93.23 ± 8.11%

Figure 5: Attack and defence on NDQ.

Figure 6: Exploiting the message filter in CommNet.

test return steadily approaches the converged value of CommNet

(red line), indicating that the message filter can effectively recover

multi-agent coordination under attack.

TarMAC.We conduct message attack and defence on the Traffic

Junction (TJ) environment [30]. There are two modes in TJ, i.e.,

easy and hard. The easy task has one junction of two one-way

roads on a 7 × 7 grid with 𝑁𝑚𝑎𝑥 = 5. In the hard task, its map has

four junctions of two-way roads on a 18 × 18 grid and 𝑁𝑚𝑎𝑥 = 20.

As shown in Table 2, under attack, the success rate of TarMAC

decreases in both the easy and the hard scenarios, demonstrating

the vulnerability of TarMAC under malicious messages. After that,

we equip TarMACwith the defender, then its performance improves

considerably, demonstrating the merit of the message filter.

NDQ. We further examine the adversarial communication prob-

lem in NDQ. We perform evaluation on two StarCraft II Multi-

Agent Challenge (SMAC) [26] scenarios, i.e., 3bane_vs_hM and

1o_2r_vs_4r, in which the communication between cooperative

agents is necessary [38]. As presented in Fig. 5, under attack, the

test win rate of NDQ decreases dramatically, demonstrating that

NDQ is also vulnerable to message attacks. After applying the mes-

sage filter as the defender, we can find the test win rate quickly

reaches to around 60% in 3bane_vs_hM and 55% in 1o_2r_vs_4r,

demonstrating that, once again, our defence methods succeed in

restoring multi-agent coordination under message attacks.

4.3 Improving Robustness with ℜ-MACRL
We have demonstrated that many state-of-the-art MACRL algo-

rithms are vulnerable to message attacks, and after applying the

Table 3: Expected utilities for the defender trained with ℜ-
MACRL and the vanilla approach.

Methods Scenarios 𝑢ℜ
Z

𝑢𝑣𝑛
Z

CommNet

𝑝 = 0 41.75 ± 0.00 40.74 ± 0.23

𝑝 = −0.5 35.38 ± 1.28 31.91 ± 0.94

TarMAC

Easy −4.08 ± 0.04 −4.24 ± 0.08

Hard −9.33 ± 0.29 −9.80 ± 0.08

NDQ

3bane_vs_hM 12.36 ± 0.26 11.32 ± 0.15

1o_2r_vs_4r 17.70 ± 0.16 16.33 ± 0.54

message filter, multi-agent coordination can be recovered. In this

part, we integrate the message filter into the framework of ℜ-

MACRL and show that the robustness of MACRL algorithms can

be significantly improved with ℜ-MACRL.

Exploiting themessage filter.Wefirst show that a single message

filter is brittle and can be easily exploited if the attacker adapts to

it. We perform experiments on CommNet by freezing the message

filter and retraining the adversarial policy. As depicted in Fig. 6, the

test return of the team gradually decreases as the training proceeds,

with around 30% and 20% decreases in the task of 𝑝 = 0 and 𝑝 = −0.5
respectively. We also conduct experiments on NDQ and similar

phenomenon is observed (see Appendix D). We conclude that even

though the designed message filter is able to recover multi-agent

cooperation under message attacks, its performance can degrade if

faced with an adaptive attacker.

Improving robustness. To illustrate the improvement in robust-

ness, we make comparisons between the defender trained by ℜ-

MACRL and the vanilla defending method. For the defender trained

withℜ-MACRL, a population of attack policies are learned together

with the defender, whose policy is also a mixture of sub-policies.

In the vanilla training method, only a single defending policy is

trained for the defender. We use the expected utility value (the ac-

cumulated team return) as the metric to compare the performance

of the defender. Specifically, the larger the expected utility, the bet-

ter the robustness. We denote the expected utility of the defender

trained by ℜ-MACRL as 𝑢ℜ
Z
and the result for the vanilla one as

𝑢vn
Z
. As shown in Table 3, ℜ-MACRL consistently outperforms the

vanilla method over all the algorithms and environments. The im-

provement of expected utilities indicates that the defender trained

byℜ-MACRL is more robust. Intuitively, the defender benefits from

exploring a wider range of the policy space with ℜ-MACRL, which

enables the defender to maintain multi-agent coordination when

faced with attacks.

4.4 Scaling to Multiple Attackers
To examine the performance of the method in scenarios where

there is more than one attacker, we conduct experiments on NDQ

in two new challenge tasks: 4bane_vs_hM and 1o_3r_vs_4r. In the

former maps, i.e., 3bane_vs_hM and 1o_2r_vs_4r, there are only

three agents in the team, making multiple attackers unreasonable.

To mitigate this, we create 4bane_vs_hM and 1o_3r_vs_4r based on

3bane_vs_hM and 1o_2r_vs_4r by increasing one more agent to the

team. We randomly sample two agents to be malicious. According

to our assumptions (agents have no knowledge about who are

Figure 7:Multiple attackers: Attack and defence on NDQ.

Table 4:Multiple attackers: Expected utilities for the defender
trained with ℜ-MACRL and the vanilla approach.

Methods Scenarios 𝑢ℜ
Z

𝑢𝑣𝑛
Z

NDQ

4bane_vs_hM 15.86 ± 0.08 15.50 ± 0.29

1o_3r_vs_4r 18.39 ± 0.80 17.03 ± 0.53

malicious and malicious agents cannot communicate with each

other), we can directly apply the attacking method to each of the

malicious agents. As shown in Fig. 7, the attackers can quickly learn

effective adversarial policies with less learning steps. On the other

hand, the message filter can still successfully recover multi-agent

cooperation under multiple attackers, though it takes much more

learning steps to converge. We further evaluate the effectiveness

of ℜ-MACRL on the two tasks and consistent results are observed:

trained with ℜ-MACRL, the agents can obtain larger expected

utilities. More results on other algorithms and environments are

provided in Appendix D.

4.5 Ablation Study and Analysis
We have shown that by integrating the message filter into the

framework ofℜ-MACRL, the robustness of MACRL algorithms can

be improved. However, the performance of ℜ-MACRL directly is

affected by the message filter. In this part, we will take a deeper

look at how the message filter works.

Which components contribute to the performance? The mes-

sage filter consists of two components: the anomaly detector and

the message reconstructor. Here, we alternatively disable these two

components in the message filter to study how they contribute

to the performance. We run experiments on three scenarios, with

each scenario corresponding to an MACRL algorithm. Following

the former training procedure, we first train the original MACRL

algorithm to obtain the action policy and the message policy; then

we sample an attacker and train its adversarial policy by PPO; next

we freeze the policy of the attacker and train the message filter

(with the anomaly detector or the reconstructor disabled). As in Fig.

8, if we disable the message reconstructor in the message filter and

replace it with a random message generator, after being attacked,

multi-agent coordination is hard to be recovered, demonstrating the

importance of the reconstructor. We further disable the anomaly

detector and randomly choose an agent to reconstruct its message,

as in Fig. 9, the defending performance is also poor. The ablation

illustrates that both the anomaly detector and the reconstructor are

critical in the message filter.

How does the proposed method work? Now we take a deeper

look at how the message filter works. We conduct experiments

Figure 8: Defending by the message filter with the disabled message reconstructor.

Figure 9: Defending by the message filter with the disabled anomaly detector.

(a) Q values (w/o attack) (b) Q values (w/ attack) (c) Q values (w/ defence)

1.75

0.98

1.75

0.99

1.76

0.97

(d) Message attack (e) Reconstructed messages

=⨁

Figure 10: Q values and received messages under attack and defence. (a)-(c): Under attack, the optimal action of the benign
agent 1 shifts from 𝑎3 to 𝑎1. After applying the message filter, its optimal action is recovered. (d)-(e): The attacked messages
become quite different from the original messages, while the reconstructed messages are to similar the original.

on NDQ in the 3bane_vs_hM task. There are three agents in the

team, of which agent 0 is the attacker and the others, namely agent

1 and agent 2, are benign agents. As shown in Fig. 10 (a)-(c), the

action space of each agent contains eight elements. White cells

in Q values correspond to illegal actions at the current state, and

the action with red Q value is optimal, e.g., 𝑎5 of agent 2. When

attacked by the agent 0, the optimal action of agent 1 shifts from 𝑎3
to 𝑎1, leading to sub-optimality. After applying the message filter,

the decision of agent 1 is corrected to 𝑎3. We further examine the

messages received by agent 1 and agent 2. As in Fig. 10 (d)-(e), the

attacked messages are quite different from the original messages,

while after applying the message filter, the distance between the

original messages and the reconstructed messages becomes closer.

5 CONCLUSION
In this paper, we systematically examine the problem of adversarial

communication in MACRL. The problem is of importance but has

been largely neglected before. We first provide the formulation of

adversarial communication. Then we propose an effective method

to model message attacks in MACRL. Following that, we design a

two-stage message filter to defend against message attacks. Finally,

to improve robustness, we formulate the adversarial communication

problem as a two-player zero-sum game and propose ℜ-MACRL to

improve the robustness. Experiments on a wide range of algorithms

and tasks show that many state-of-the-art MACRL methods are

vulnerable to message attacks, while our algorithm can consistently

recover multi-agent cooperation and improve the robustness of

MACRL algorithms under message attacks.

ACKNOWLEDGMENTS
This research is partially supported by Singtel Cognitive and Ar-

tificial Intelligence Lab for Enterprises (SCALE@NTU), which is

a collaboration between Singapore Telecommunications Limited

(Singtel) and Nanyang Technological University (NTU) that is

funded by the Singapore Government through the Industry Align-

ment Fund – Industry Collaboration Projects Grant.

REFERENCES
[1] Sanjeevan Ahilan and Peter Dayan. 2021. Correcting Experience Replay for

Multi-Agent Communication. ICLR (2021).

[2] Marco Barreno, Blaine Nelson, Anthony D Joseph, and J Doug Tygar. 2010. The

security of machine learning. Machine Learning 81, 2 (2010), 121–148.

[3] Jan Blumenkamp and Amanda Prorok. 2020. The emergence of adversarial

communication in multi-agent reinforcement learning. CoRL (2020).

[4] Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. 2020. Deep coordination

graphs. In ICML. 980–991.
[5] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of

neural networks. In 2017 IEEE Symposium on Security and Privacy (SP). 39–57.
[6] Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Mike

Rabbat, and Joelle Pineau. 2019. Tarmac: Targeted multi-agent communication.

In ICML. 1538–1546.
[7] Jakob N Foerster, Yannis M Assael, Nando de Freitas, and Shimon Whiteson.

2016. Learning to communicate with Deep multi-agent reinforcement learning.

In NeurIPS. 2145–2153.
[8] Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, and Stuart

Russell. 2020. Adversarial Policies: Attacking Deep Reinforcement Learning. In

ICLR.
[9] Ian Goodfellow, Nicolas Papernot, Sandy Huang, Yan Duan, Pieter Abbeel, and

Jack Clark. 2017. Attacking machine learning with adversarial examples. OpenAI.
https://blog. openai. com/adversarial-example-research (2017).

[10] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and

J Doug Tygar. 2011. Adversarial machine learning. In Proceedings of the 4th ACM
Workshop on Security and Artificial Intelligence. 43–58.

[11] Maximilian Hüttenrauch, Adrian Šošić, and Gerhard Neumann. 2017. Guided

deep reinforcement learning for swarm systems. arXiv preprint arXiv:1709.06011
(2017).

[12] Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro

Ortega, DJ Strouse, Joel Z Leibo, and Nando De Freitas. 2019. Social influence

as intrinsic motivation for multi-agent deep reinforcement learning. In ICML.
3040–3049.

[13] Jiechuan Jiang and Zongqing Lu. 2018. Learning attentional communication for

multi-agent cooperation. In NeurIPS. 7254–7264.
[14] Daewoo Kim, Sangwoo Moon, David Hostallero, Wan Ju Kang, Taeyoung Lee,

Kyunghwan Son, and Yung Yi. 2019. Learning to schedule communication in

multi-agent reinforcement learning. ICLR (2019).

[15] Woojun Kim, Jongeui Park, and Youngchul Sung. 2021. Communication in multi-

Agent reinforcement learning: Intention Sharing. ICLR (2021).

[16] Hubert Kirrmann. 2015. Fault Tolerant Computing in Industrial Automation.
Switzerland: ABB Research Center.

[17] Landon Kraemer and Bikramjit Banerjee. 2016. Multi-agent reinforcement learn-

ing as a rehearsal for decentralized planning. Neurocomputing 190 (2016), 82–94.

[18] Marc Lanctot, Vinicius Zambaldi, Audrūnas Gruslys, Angeliki Lazaridou, Karl

Tuyls, Julien Pérolat, David Silver, and Thore Graepel. 2017. A unified game-

theoretic approach to multiagent reinforcement learning. In NeurIPS. 4193–4206.
[19] Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu,

and Min Sun. 2017. Tactics of adversarial attack on deep reinforcement learning

agents. In IJCAI. 3756–3762.
[20] H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. 2003. Planning in

the presence of cost functions controlled by an adversary. In ICML. 536–543.
[21] Rupert Mitchell, Jan Blumenkamp, and Amanda Prorok. 2020. Gaussian Process

Based Message Filtering for Robust Multi-Agent Cooperation in the Presence of

Adversarial Communication. arXiv preprint arXiv:2012.00508 (2020).
[22] Paul Muller, Shayegan Omidshafiei, Mark Rowland, Karl Tuyls, Julien Perolat,

Siqi Liu, Daniel Hennes, Luke Marris, Marc Lanctot, Edward Hughes, et al. 2019.

A generalized training approach for multiagent learning. In ICLR.
[23] Frans A Oliehoek, Christopher Amato, et al. 2016. A Concise Introduction to

Decentralized POMDPs. Vol. 1. Springer.

[24] Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. 2008. Optimal and

approximate Q-value functions for decentralized POMDPs. JAIR 32 (2008), 289–

353.

[25] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay

Celik, and Ananthram Swami. 2017. Practical black-box attacks against machine

learning. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. 506–519.

[26] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Far-

quhar, Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr,

Jakob Foerster, and Shimon Whiteson. 2019. The StarCraft multi-agent challenge.

CoRR abs/1902.04043 (2019).

[27] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[28] Amanpreet Singh, Tushar Jain, and Sainbayar Sukhbaatar. 2018. Learning when

to communicate at scale in multiagent cooperative and competitive tasks. ICLR
(2018).

[29] Arambam James Singh, Akshat Kumar, and Hoong Chuin Lau. 2020. Hierarchical

Multiagent Reinforcement Learning forMaritime TrafficManagement. InAAMAS.
1278–1286.

[30] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. 2016. Learning multiagent

communication with backpropagation. In NeurIPS. 2252–2260.
[31] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks.

In ICLR.
[32] Keen Security Lab Tencent. 2019. Experimental Security Research of Tesla

Autopilot. (2019). https://keenlab.tencent.com/en/whitepapers/Experimental_

Security_Research_of_Tesla_Autopilot.pdf

[33] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,

and Patrick McDaniel. 2018. Ensemble adversarial training: attacks and defenses.

In ICLR.
[34] James Tu, Tsunhsuan Wang, Jingkang Wang, Sivabalan Manivasagam, Mengye

Ren, and Raquel Urtasun. 2021. Adversarial attacks on multi-agent communica-

tion. arXiv preprint arXiv:2101.06560 (2021).
[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In NeurIPS. 5998–6008.
[36] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, An-

drew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds,

Petko Georgiev, et al. 2019. Grandmaster level in StarCraft II using multi-agent

reinforcement learning. Nature 575, 7782 (2019), 350–354.
[37] Rundong Wang, Xu He, Runsheng Yu, Wei Qiu, Bo An, and Zinovi Rabinovich.

2020. Learning efficient multi-agent communication: An information bottleneck

approach. In ICML. 9908–9918.
[38] TonghanWang, JianhaoWang, Chongyi Zheng, and Chongjie Zhang. 2019. Learn-

ing Nearly Decomposable Value Functions Via Communication Minimization. In

ICLR.
[39] Hang Xu, Rundong Wang, Lev Raizman, and Zinovi Rabinovich. 2021. Transfer-

able environment poisoning: Training-time attack on reinforcement learning. In

AAMAS. 1398–1406.
[40] Huan Zhang, Hongge Chen, Duane S Boning, and Cho-Jui Hsieh. 2021. Robust

reinforcement learning on state observations with learned optimal adversary. In

ICLR.
[41] Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning,

and Cho-Jui Hsieh. 2020. Robust deep reinforcement learning against adversarial

perturbations on state observations. In NeurIPS. 21024–21037.
[42] Sai Qian Zhang, Jieyu Lin, and Qi Zhang. 2020. Succinct and robust multi-agent

communication with temporal message control. arXiv preprint arXiv:2010.14391
(2020), 17271–17282.

https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	3 Achieving Robustness in MACRL
	3.1 Problem Formulation: Adversarial Communication in MACRL
	3.2 Learning the Attacking Scheme
	3.3 Defending against Adversarial Communication
	3.4 Achieving Robust MACRL

	4 Experiments
	4.1 Experimental Setting
	4.2 Recovering Multi-Agent Coordination
	4.3 Improving Robustness with R-MACRL
	4.4 Scaling to Multiple Attackers
	4.5 Ablation Study and Analysis

	5 Conclusion
	Acknowledgments
	References

