
Online Collective Multiagent Planning by Offline Policy Reuse
with Applications to City-Scale Mobility-on-Demand Systems

Wanyuan Wang

Southeast University

Nanjing, China

wywang@seu.edu.cn

Gerong Wu

Southeast University

Nanjing, China

grwu@seu.edu.cn

Weiwei Wu

Southeast University

Nanjing, China

weiweiwu@seu.edu.cn

Yichuan Jiang

Southeast University

Nanjing, China

yjiang@seu.edu.cn

Bo An

Nanyang Technological University

Singapore

boan@ntu.edu.sg

ABSTRACT

The popularity of mobility-on-demand (MoD) systems boosts the

need for online collective multiagent planning, where spatially dis-

tributed servicing agents are planned to meet dynamically arriving

demands. For city-scale MoDs with a population of agents, it is

necessary to find a balance between computation time (i.e., real-

time) and solution quality (i.e., the number of demands served).

Directly using an offline policy can guarantee real-time, but cannot

be dynamically adjusted to real agent and demand distributions. On

the other hand, search-based online planning methods are adaptive.

However, they are computationally expensive and cannot scale up.

In this paper, we propose a principled online multiagent planning

method, which reuses and improves the offline policy in an anytime

manner. We first model MoDs as a collective Markov Decision

Process (C-MDP) where the history collective behavior of agents

affects the joint reward. We propose a novel state value function to

evaluate the policy, and a gradient ascent (GA) technique to improve

the policy. We show that GA-based policy iteration (GA-PI) on local

policy can converge. Finally, given real-time information, the offline

policy is used as the default plan and GA-PI is used to improve it and

generate an online plan. Experimentally, the proposed offline policy

reuse method significantly outperforms standard online multiagent

planning methods on MoD systems like ride-sharing and security

traffic patrolling in terms of computation time and solution quality.

KEYWORDS

Multiagent Planning; Markov Decision Process; Policy Reuse

ACM Reference Format:

Wanyuan Wang, Gerong Wu, Weiwei Wu, Yichuan Jiang, and Bo An. 2022.

Online Collective Multiagent Planning by Offline Policy Reuse with Ap-

plications to City-Scale Mobility-on-Demand Systems. In Proc. of the 21st
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), Online, May 9–13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION

Mobility-on-demand (MoD) systems are transforming urban mo-

bility by providing convenient and timely service to demands [2].

Such MoD systems include ride-sharing where vehicles drive to

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

meet passengers’ requirements [22] and security traffic patrolling

where police officers patrol to respond to emergencies [25]. In MoD

systems, a population of agents (e.g., vehicles and police officers)

are aggregated and planned to meet customer demands (e.g., pas-

sengers and emergencies). Due to the uncertainty in demand arrival,

online collective multiagent planning (Online_CMP) has attracted

lots of attention [10, 11, 34]. A key characteristic of Online_CMP

problems is that agents should be sequentially planned for dispatch-

ing and repositioning, and the planning in one period has direct

impact on following periods’ decision making.

Many existing approaches have attempted to find a balance be-

tween computation time (i.e., real-time) and solution quality (i.e.,

the number of demands served) for Online_CMP. To guarantee real-

time, the offline policy can be used as a guide to online planning.

For example, using historical data to construct the offline model,

efficient offline solutions can be achieved by linear programming

(LP) [7, 12, 18, 35]. Directly using the offline policy, however, can-

not be adapted to real agent and demand distributions. Multiagent

reinforcement learning (MARL) can learn how to take actions by

observing the real environment [8, 19, 26–29]. Since the MoD envi-

ronment will be non-stationary with thousands of agents learning

concurrently, MARL methods are not stable and may trap into sub-

optimal solutions. Online adaptive methods proceed with a rolling

horizon and attempt to search a good planning sequence for the

current observation at each period [10, 22]. However, searching

is time-consuming, online adaptive methods for multiagent sys-

tems often have difficulty in computing policies in real-time with a

sufficiently long look-ahead horizon [9].

In general, most existing offline learning and online search poli-

cies are separately used, an exception is the recently proposed two-

stage offline learning online planning (OLOP) framework [33, 39].

In the offline stage, given the historical data, MARL is employed

to learn the state value function. In the online stage, agents are

always matched with demands that have larger advantage values.

Unfortunately, in the OLOP framework, MARL is used to learn the

state value function, which might be sub-optimal and can reduce

the online planning efficiency. Moreover, online one-step looka-

head planning again traps into the dilemma of serving current real

demands or anticipated future demands (i.e., state value).

In this paper, we trade computation time with solution quality by

proposing an anytime policy iteration (PI) algorithm. We adopt the

representation for a collective Markov Decision Process (C-MDP)

[26, 35] in which the collective behavior of agents affects the joint

reward. By examining how local policy of each state influences

successive state-action reward, we first design a version of state

value function for policy evaluation. We propose a gradient ascent
(GA) technique to improve the policy. We show that the GA-based

PI (GA-PI) can converge within finite iterations. Given real-time

observations, we use the optimal offline policy of C-MDP as the

default online plan. GA-PI is used to restart from the current plan

and improve it in the new iteration, thereby an efficient online

plan can be generated. Finally, we validate our GA-PI algorithm

on a synthetic dataset and two real-world datasets on ride-sharing

and security traffic patrolling. Experimental results show that 1)

GA-PI is guaranteed to solve the C-MDP problem and find offline

optimal solutions, 2) GA-PI-based offline policy reuse significantly

outperforms the state-of-the-art online planning methods that use

offline policy directly or online policy search.

2 RELATEDWORK

In this section, we briefly summarize related offline learning, online

policy search, policy iteration methods and ridesharing .

Offline Learning Methods. Due to stochastic demand-supply

dynamics in MoD systems, offline learning methods can be fur-

ther grouped into model-based and model-free categories. In the

model-based category, the historical data is used to build the model,

such as traffic delay and demand distributions. Linear programming

[7, 35] and dynamic programming [36] techniques can be used to

solve the offline problem. A piecewise linear approximation is pre-

sented in [18] for the non-linear reward function. In the model-free

category, multi-agent reinforcement learning (MARL), which learns

a policy by interacting with the complex MoD systems, has been

proposed to find an approximate solution. To allow coordination

among agents, context constraints are utilized to align state values

[20], and the mean field approximation is used to model local in-

teractions [19]. To achieve trade-off between immediate and future

gains, a hierarchical RL is proposed [17], where the centralized

manager sets abstract goals and the worker takes actions to satisfy

the goals. Centralized training can balance the supply and demand

distributions by the KL divergence optimization [41]. The imbal-

ance between demand and supply in future periods can also be

integrated for reward design [8, 16]. By capturing the mixture of

agents distribution and policy, an expectation maximization-based

inference approach is proposed to optimize the policy [26]. How-

ever, these offline methods cannot be adaptive to real agent and

demand distributions [11, 21].

Online Policy SearchMethods.Online planning methods typ-

ically consider demands that are revealed incrementally over time

and making decisions based on these real demands. A greedy algo-

rithm is proposed to maximize the matching between the observed

demands and supplies [40]. To address the myopic inefficiency,

Lowalekar et al. [22] propose a multi-stage optimization frame-

work, where future demands can be sampled from historical data.

At each decision period, given the current observed and future antic-

ipated demands sampled from the historical data, integer program

(IP) can be formulated to search the optimal solution. To mitigate

the computation expense, the multi-sample multi-stage IP can be

approximated by the Lagrangian dual decomposition [21], network

flow average [38], andMonte-Carlo Tree Search [10]. Unfortunately,

due to inefficiency of searching in an exponential planning search

space, most existing online planning methods have difficulty in

computing policies in real-time with a sufficiently long look-ahead

horizon.

Online Adaptive Methods by Offline Policy Reuse. Guided

by the offline policy π (a |s) that determines the probability of taking

action a at state s , a straightforward online adaptive method is

allocating agents to each demand proportional to π [11, 12]. To

plan multiple agents to serve multiple demands, Xu et al. [39]

propose a bipartite matching between demands and agents, where

the weight of an edge is modeled by the state value learned offline.

The state-value function can be further improved periodically in an

online manner [33]. However, the MARL-based state value function

learned might be sub-optimal and inefficient for guiding online

planning. Moreover, online matching again traps in the dilemma

of serving current real demands or anticipated future demands.

Compared with these most related offline policy reuse methods,

our proposed GA-PI method can find optimal solutions on the

offline C-MDP, which can be used as an efficient baseline to the

online planning.

Policy Iteration Methods. Policy Iteration (PI) lies at the core

of RL and many planning methods [31]. The classic PI algorithm

repeats consecutive stages of policy evaluation and policy improve-

ment with respect to a value function. For a single agent MDP, Bell-

man equation [3] is efficient for value function evaluation. However,

due to the dependence of reward function on historical collective

behaviors of agents, Bellman equation cannot apply to C-MDP. For

RL with function approximation [37], policy gradient methods [27]

have been widely used to learn and improve the policy parameter.

Traditional parameterized policy approximation is only convergent

to a locally optimal policy [32]. We overcome such technical dif-

ficulties by examining how history collective behaviors influence

successive state-action reward and designing a novel state valuation

function without parameter approximation.

Ride-sharing. In multi-capacity ride-sharing applications, there

are a set of (known) requests to be serviced, and a set of available

vehicles. Each vehicle should be allocated to a group of requests

with the capacity and travel delay constraints, and the objective is

to maximize the number of requests serviced [2, 5]. When requests

arrive dynamically, they will be inserted into existing routes in a

real-time manner [23, 24]. Multi-capacity ride-sharing falls into the

vehicle routing literature that makes the best greedy allocations.

However, it does not consider vehicle routing in the context of

sequential decision problems. In contrast, our work focuses on se-

quential vehicle re-positioning that considers the impact of current

vehicle-request allocation on future allocations.

3 THE MODEL

In our motivating MoD problems of interest, a population of n
agents Q = {q1,q2, . . . ,qn } are available. The agents are planned
to serve demands in sequence forT periods. In ride-sharing, agents

represent vehicles and demands represent passenger orders [11, 12],

and in security traffic patrolling, agents represent police officers

and demands represent traffic/crime emergencies [25, 30]. Let V =
{v1,v2, . . . ,vm } be the set ofm regions in a city. Different regions

might have different demands and their demands vary over periods.

The decision of planning agents to demands at one period has an

impact on subsequent periods. MDP is an ideal model for sequential

MoD problems. To characterize how the collective behavior of

agents affects the joint reward, we adopt a collective MDP (C-MDP)

representation [27, 35]. Different from the single agent MDP, the

reward function in C-MDP depends on history policy rather than

merely on current state and action. Formally, a C-MDP can be

described byM = ⟨S,A,T ,R,o, s0⟩:

• State. S is a finite set of spatial-temporal states. Each state

s ∈ S is a tuple (t,v), where t is the current period and v is

the current region. Let t(s) and v(s) denote the period and

region of state s . Here, we assume that all agents start from

a source state s0. Throughout this paper, the set S includes

the source state s0, unless specified.
• Action.A is a finite set of actions. The set of actions available

at state s = (t,v), A(s), is the set of regions that can be

reached from the region v . For example, the action a =→ vj
denotes that the agent is planned to move to the region vj .
• Transition.T (s,a, s ′) ∈ [0, 1] is the transition probability of

ending up at state s ′ after taking action a at state s . In reality,

due to congestion or traffic signals, there may be stochastic

delays that disrupt the mobility. This transition function can

be estimated by the Google Map using the daily travel time

between regions.

• Demand Distribution. o(s,a) = {o0(s,a),o1(s,a), · · · } de-
notes the probability distribution of demand ⟨s,a⟩, where
ok (s,a) ∈ [0, 1] is the probability of k demands ⟨s,a⟩ re-
quested at s , and

∑
k ok (s,a) = 1. The demand ⟨s,a⟩ can be

served by the agent taking action a at state s . For example,

in ride-sharing, the demand ⟨s,a⟩, where a =→ vj indicates
the passenger order that wish to pick up at s and drop off

at the region vj . At state s , once an agent plans to travel to

another region vj , he can serve the passenger order with

the same origin-destination type, i.e., starting from v(s) and
going for vj . As typically assumed in the ride-sharing liter-

ature [8, 11, 21], this demand distribution can be estimated

by the historical demand data, which is often available using

GPS traces of the taxi fleet.

• Reward. R(s,a) is the immediate reward for taking action a
at state s . In MoDs, each demand can only be served by one

agent. For example, in ride-sharing, one vehicle is enough

to complete a certain passenger order. Thus, the state-action

reward R(s,a) depends on both the number of demands ⟨s,a⟩
and the number of agents at state s taking action a. A concise

reward function is defined in Section 3.1.

The Policy and Objective. Let π (a |s) denote the probability of

taking the action a ∈ A(s) at state s , we have π (a |s) ∈ [0, 1] and∑
a∈A(s) π (a |s) = 1. Let π (s) = {π (a |s)}a∈A(s) denote the local pol-

icy at the state s . A policy π = {π (s)}s ∈S with π (−s) referring to all
the local policies except π (s). For the city-scale MoD systems with a

large agent population, it is not possible to compute a unique policy

for each agent. Therefore, similar to previous works [27, 35], our

ultimate goal is to compute a homogeneous policy π for all agents

such that the total rewards over the horizon T ,
∑
s ∈S ,a∈A(s) R(s,a)

Algorithm 1: Computing the Expected Number of Agents

λπ (s)

Input :The policy π and target state s .
Output :The expected number of agents at s , λπ (s).

1 Initialize λπ (s0) = n;

2 for 1 ≤ ϕ(s ′) ≤ ϕ(s) do
3 λπ (s

′) =∑
s ′′∈pre(s ′),a′′∈A(s ′′) λπ (s

′′)π (a′′ |s ′′)T (s ′′,a′′, s ′).

is maximized
1
. As the number of agents in the system is large, the

action probability can be interpreted as the fractional population,

and converts agents into a spatio-temporal flow.

3.1 The Reward Function

Before defining the reward function, we first define useful nota-

tions such as the expected number of agents at states as well as its

probability distribution function.

The C-MDP can be regarded as a directed acyclic graph (DAG),

where states are nodes and transitions are directed edges. We start

with sorting states S in a topological order according to the tran-

sition function. Let pre(s) = {s ′ |T (s ′,a, s) > 0} denote the direct
previous states of s , and post(s) = {s ′ |T (s,a, s ′) > 0} denote the di-
rect posterior states of s . Given such partial orders, the set of states

S can be sorted in topological order using the depth-first search

technique. Let ϕ(s) ∈ [0, |S |] denote the order priority of the state

s , where ϕ(s0) = 0. Moreover, we define succ(s) = {s ′ |ϕ(s ′) > ϕ(s)}
the successor states of s , and prio(s) = {s ′ |ϕ(s ′) < ϕ(s)} the prior
states of s . Since the transitions directed from the state with the

earlier period to the state with the later period, the earlier state has

a higher order priority than the later state.

Expected Number of Agents. Given the policy π , let λπ (s) de-
note the expected number of agents reaching state s . If the expected
number of agents λπ (s

′) of direct previous states s ′ ∈ pre(s) is
known, λπ (s) can be computed by the following recurrence for-

mula

λπ (s) =
∑

s ′∈pre(s),a′∈A(s ′)

λπ (s)π (a
′ |s ′)T (s ′,a′, s). (1)

The expected number of agents λπ (s) at state s only depends on

the expected number of agents and actions of these previous states

prio(s). Thus, λπ (s) can be updated according to the topological

order, and a dynamic programming (DP)-based technique can be

used to compute λπ (s), which is shown in Algorithm 1. In Line 1,

all agents start from the source state s0, i.e., the expected number

of agents at s0, λπ (s0) = n. In Lines 2-3, the expected number of

agents λπ (s
′) of each previous state s ′ ∈ prio(s) is computed in a

topological order.

Similarly, let λπ (s,a) denote the expected number of the agents

reaching state s taking actiona, which can be computed by λπ (s,a) =
λπ (s) · π (a |s). Intuitively, the minimum between the expected num-

ber of agents and the expected number of demands can be used for

1
From here on in our discussion we will assume no discounting, although for com-

pleteness we do include the possibility of discounting in the algorithm.

state-action reward approximation [35], i.e.,

R(s,a) ≈ min{λπ (s,a), õ(s,a)}. (2)

where õ(s,a) =
∑
k k · ok (s,a) denote the expected number of de-

mands. Unfortunately, the linear reward function can deteriorate

real reward arbitrarily on problems when there are few agents, as

shown in Figure 1.

Probability Distribution of Agents. Here, using the proba-

bility distribution of agents [18], we propose a expected reward

function that better approximates the real reward function. Given

the expected number of agents λπ (s,a), each agent has the probabil-

ity
λπ (s ,a)

n reaching state s taking action a. Thus, the probability of

exactly k agents reaching state s taking action a follows a Binomial

distribution:

f kλ (s,a) =

(
n

k

)
(
λπ (s,a)

n
)k (1 −

λπ (s,a)

n
)n−k . (3)

where n and
λπ (s ,a)

n represent the twin parameters, namely the

number of trials and the probability of success of each trial of a

Binomial distribution, respectively.

ExpectedReward Function.Given the demand probability dis-

tribution o(s,a) = {o0(s,a),o1(s,a), · · · } and the agent probability

distribution fλ(s,a) = { f
0

λ (s,a), f
1

λ (s,a), · · · }. the expected reward

R(s,a) achieved by taking action a at state s is defined by

R(s,a) =
n∑

k=0

k
[
ok (s,a)(

∑
j≥k

f
j
λ (s,a)) + f kλ (s,a)(

∑
j≥k+1

oj (s,a))
]

=

n−1∑
k=0

[1 − Fkλ (s,a)][1 −Ok (s,a)] (4)

where Fλ(s,a) and O(s,a) are the Cumulative Distribution Func-

tions of fλ(s,a) and o(s,a), respectively. To mitigate the computa-

tion load of R(s,a), we can pre-compute Fλ(s,a) by dividing the

expected number of agents λ(s,a) into a set of intervals in an offline

manner.

We use a toy example to illustrate these notations including the

expected number of agents, the probability distribution of agents

and the expected reward function.

Example 1. In the left of Figure 1, there is an MoD instance consist-
ing of six states {s0, s1, s2, s3, s4, s5}. The directed edge between states
indicates the deterministic transition function. Each transition (s,a, s ′)
is associated with a two-tuple ⟨π (a |s),o(s,a)⟩, where the former π (a |s)
indicates the local policy. The latter o(s,a) = {o0(s,a),o1(s,a)} in-
dicates the demand distribution. Here, we assume demand follows a
0-1 distribution, i.e., has a o1(s,a) probability, there is one demand
and a o0(s,a) probability for zero demand. Now suppose that there
are two agents starting from the source state s0. Given the policy
π = {π (s0), π (s1), π (s2), π (s3), π (s4), π (s5)}, the expected number
of agents reaching state s2 taking action→ v(s3) is λπ (s2) · π (→
v(s3)|s2) = λπ (s0) · π (→ v(s2)|s0) · π (→ v(s3)|s2) = 0.4. The
probability of zero agent reaching state s2 taking action → v(s3)

is f 0λ (s2,→ v(s3)) =
(
2

0

)
(0.4
2
)0(1 − 0.4

2
)2 = 0.64, the probability of

one agent f 1λ (s2,→ v(s3)) = 0.32 and the probability of two agents
f 0λ (s2,→ v(s3)) = 0.04. Finally, for the state-action ⟨s2,→ v(s3)⟩,

2 4 6 8 10 12 14 16 18

1.5

2

2.5

3

3.5

The Number of Agents

T
o
t
a
l
R
e
w
a
r
d
s

Expected Reward

Linear Reward

Real Reward

s0

s1

s2

s3

s4

s5

⟨0.5, {0.4, 0.6}⟩

⟨0.5, {0, 1.0}⟩

⟨1.0, {1, 0}⟩

⟨0.4, {0.4, 0.6}⟩

⟨0.6, {0.1, 0.9}⟩

⟨1.0, {1, 0}⟩

⟨1.0, {1, 0}⟩

Figure 1: Left: A toy MoD instance. Right: Given the policy

π , the total rewards achieved by different reward function

over different number of agents. The real reward is averaged

over 1000 trials, which is approximately equal to the same

with the expected reward.However, there is a non-negligible

error between the linear reward and real reward.

the expected state-action reward

R(s2,→ v(s3)) =
n−1∑
k=0

[1 − Fλk (s,a)][1 −Ok (s,a)] = 0.216.

Moreover, from the right of Figure 1, we can find that the expected
reward function is efficient to approximate real reward function.

Remarks. Due to the dependence of reward on the number of

agents, this optimization problem of C-MDP becomes significantly

more complicated than a single agent MDP. Using a piecewise linear

reward function to approximate the expected reward function (i.e.,

Eq.(2)), a baseline LP solution has been proposed in [7, 18, 35]. How-

ever, the disadvantages of the LP baseline are: 1) requiring carefully

designed approximation of the non-linear objective function, where

the solution quality can deteriorate arbitrarily, 2) non-adaptive to

real agent and demand information, and 3) time consuming of

reusing the LP to return the adaptive policy at each decision period.

To address these issues, this paper proposes a novel policy iteration

variant, which can be adapted to dynamic MoD environments and

improved for online planning in an anytime way.

4 THE ALGORITHM

In this section, by examining how the history policy affects the

successive state-action reward, we propose a novel policy itera-

tion algorithm that can find optimal solutions on the constructed

C-MDP. The proposed algorithm builds off the structured state

value-based policy evaluation and the gradient-ascent-based policy

improvement.

4.1 Structured State Value Function

Since the state-action reward R(s,a) depends on the expected num-

ber of agents λπ (s), we first quantify how the local policy π (s) at s
affects the expected number of agents λπ (s

′) of the successor state

s ′ ∈ succ(s). From the point of view of state s , we can rewrite the

policy π = ⟨π (s), π (−s)⟩. Let ⟨π ′(s), π (−s)⟩ be a policy identical to

π except to perform the local policy π ′(s) at state s . Next, we show
that the local policy π (s) has a linear effect on the expected number

of agents at the successor state s ′ ∈ succ(s).

Algorithm 2: Structured State Value Function Vπ (s)

Input :The policy π and the target state s .
Output :The state value Vπ (s).

1 ∀s ′ ∈ succ(s), λπ (s
′) ← Algorithm 1;

2 for s ′ ∈ succ(s) do
3 Vπ (s) = Vπ (s) +

∑
a′∈A(s ′) R(s

′,a′);

Lemma 1. Given the state s and its successor state s ′ ∈ succ(s),
let λ ⟨π (s),π (−s)⟩(s ′) denote the expected number of agents at s ′ under
the policy ⟨π (s), π (−s)⟩, and λ ⟨π ′(s),π (−s)⟩(s

′) denote the expected
number of agents s ′ under the policy ⟨π ′(s), π (−s)⟩. We have

λ ⟨π (s)+π ′(s),π (−s)⟩(s
′)

= λ ⟨π (s),π (−s)⟩(s
′) + λ ⟨π ′(s),π (−s)⟩(s

′). (5)

where the policy ⟨π (s) + π ′(s), π (−s))⟩ is identical to π except to
perform the local policy π (s) + π ′(s) at state s .

This additive property will be useful for gradient computation

in Section 4.2. Omitted proofs are shown in the appendix.

Structured State Value Function Vπ (s). Similar to MDPs, we

require a state value function to estimate how good it is to be at a

state. In C-MDPs, considering that the state-action rewards depend

on history policies, we define a new state value function variant as

the total rewards accumulated from all successor state-action pairs

⟨s ′,a′⟩, i.e.,

Vπ (s) =
∑

s ′∈succ(s),a′∈A(s ′)

R(s ′,a′). (6)

The structure state value function explicitly captures the influence

of history policy on related state-action rewards. In particular, the

state value function at the initial state s0, Vπ (s0) returns the offline

objective. Using the expected number of agents returned by Al-

gorithm 1, we can evaluate the state value function Vπ (s) for an
arbitrary policy π and state s . The policy evaluation is formally

described in Algorithm 2. In Line 1, Algorithm 1 is used to re-

turn the expected number of agents λπ (s
′) at each successor state

s ′ ∈ succ(s). Given the expected number of agents at succ(s ′), Lines
2-3 accumulate the total rewards of these successor state-action

pairs ⟨s ′,a′⟩.

4.2 Gradient Ascent-Based Policy

Improvement

We propose a gradient ascent (GA)-based policy improvement algo-

rithm to optimize the state value function. We first introduce GA

in stateless settings, and extend GA to our C-MDPs settings. Policy

gradient algorithms have widely employed in RL for action selec-

tion [31]. Different from traditional parameterized policy gradient

methods, we directly calculate the policy gradient on the struc-

tured state value function without any kind of parameterization.

Moreover, the proposed GA-based policy improvement algorithm

is guaranteed to converge to global optima.

A straightforward extension of GA to C-MDPs is to enumerate

all of the pure strategies in C-MDPs. Each pure strategy consists

of the complete sequential deterministic action starting from the

source state s0. The policy can be a probability distribution over

these pure strategies. By translating C-MDPs into stateless settings,

Algorithm 3: Compute the Gradient ∇V⟨π k (s),π k (−s)⟩(s)

Input :The policy π , and the target state s .
Output :The gradient of local policy π (s).

1 Compute λ ⟨π (s),π (−s)⟩(s
′), ∀s ′ ∈ succ(s);

2 for ai ∈ A(s) do
3 Compute λ ⟨δ βi ,π (−s)⟩(s

′), ∀s ′ ∈ succ(s);

4 λ ⟨π (s)+δ βi ,π (−s)⟩(s
′)=λ ⟨π (s),π (−s)⟩(s

′)+λ ⟨δ βi ,π (−s)⟩(s
′);

5 λ ⟨π (s)−δ βi ,π (−s)⟩(s
′)=λ ⟨π (s),π (−s)⟩(s

′)−λ ⟨δ βi ,π (−s)⟩(s
′);

6 V⟨π k (s)+δ βi ,π k (−s)⟩(s) ← Algorithm 2;

7 V⟨π k (s)−δ βi ,π k (−s)⟩(s) ← Algorithm 2;

8

dV
⟨πk (s),πk (−s)⟩(s)

dai
← Eq.(8)

GA is guaranteed to converge to the optimal solution [6]. However,

this kind of GA extension has an exponentially increasing strategy

space with the size of states and actions [7, 15], which is impractical

for city-scale MoD systems. This paper proposes a new method

to scale-up as well as to guarantee convergence. The fundamental

idea is to use GA to optimize the local policy π (s) at each state

s . We show that optimizing the local policy maximizes the global

objective.

The proposed policy improvement algorithm executes over iter-

ations. On each iteration k , GA is used to improve the local policy

πk (s) with respect to the state value function V⟨π k (s),π k (−s)⟩(s) of

state s . Let∇V⟨π k (s),π k (−s)⟩(s) denote the gradient ofV⟨π k (s),π k (−s)⟩(s)

with respect to the local policy πk (s), which can be computed by

∇V⟨π k (s),π k (−s)⟩(s)

=
dV⟨π k (s),π k (−s)⟩(s)

da1
, · · · ,

dV⟨π k (s),π k (−s)⟩(s)

da |A(s) |
(7)

As discussed earlier, the state value function V⟨π k (s),π k (−s)⟩(s) is

a collective effect of joint actions, it is difficult to compute the

partial gradient

dV
⟨πk (s),πk (−s)⟩(s)

dai
for each action ai . Inspired by

online convex optimization without a gradient [14], we use a simple

approximation gradient instead:

dV⟨π k (s),π k (−s)⟩(s)

dai

≈
V⟨π k (s)+δ βi ,π k (−s)⟩(s) −V⟨π k (s)−δ βi ,π k (−s)⟩(s)

2δ
(8)

where δ is a small positive real number, and βi is a unit vector

(0, · · · , 1, · · · , 0) with the ith component is equal to 1 and 0 other-

wise. The additive property of expected number of agents λπ (s)
can be used to speed up the gradient computation, shown in Algo-

rithm 3. In Lines 1 and 2, at each successive state s ′ ∈ succ(s), the
expected numbers of agents under the policies ⟨π (s), π (−s)⟩ and
⟨δβi , π (−s)⟩ are computed respectively. In Lines 3-4, the expected

number of agents at s ′, λ ⟨π (s)−δ βi ,π (−s)⟩(s
′) can be computed di-

rectly by adding λ ⟨π (s),π (−s)⟩(s
′) and λ ⟨δ βi ,π (−s)⟩(s

′).

Using the gradient direction, the local policy πk (s) can be im-

proved by

πk+1(s) = P(πk (s) + ηs∇V⟨π k (s),π k (−s)⟩(s). (9)

Algorithm 4: GA-based Policy Iteration (GA-PI)

Input :The C-MDP modelM.

Output :The policy π and global objective Vπ k (s0).

1 Initialize k = 0 and πk arbitrary;

2 repeat

3 for s ∈ S do

4 ηs = 1;

5 ∇V⟨π k (s),π k (−s)⟩(s) ← Algorithm 3;

6 repeat

7 πk+1(s) = P(πk (s) + ηs∇Vπ k (s));

8 ηs = γηs ;

9 until V⟨π k+1(s),π k (−s)⟩(s) ≥ Vπ k (s);

10 k = k + 1;

11 until time budget is used up;
// offline time budget, e.g., 2 hours

12 Return the global objective Vπ k (s0) =
∑
s ,a R(s,a).

where ηs is the learning rate at state s . The projection function P is

utilized to project the vector πk (s) + ηt∇V⟨π k (s),π k (−s)⟩(s) to the

convex domain [0, 1] |A(s) | where
∑
a∈A(s) π (a |s) = 1. Given such

a positive simplex domain, a polynomial time algorithm [13] of

performing Euclidean norm projection can be employed.

4.3 Anytime Policy Iteration

This section presents our GA-based policy iteration algorithm (GA-

PI). The main idea behind GA-PI is to evaluate the current policy

πk and improve it to achieve a better policy πk+1 on each iteration.

We also show the convergence of GA-PI.

A complete GA-PI is shown in Algorithm 4. On each iteration t ,

GA is used to improve the local policy πk (s) at state s (i.e., Lines
3-10). In Line 4, we initialize the learning rate ηs = 1 at state s .
In Line 5, the policy gradient ∇V (π t , s) is computed by Algorithm

3. In Lines 6-9, the learning rate ηs is carefully discounted by a

discounting factor γ ∈ [0, 1] such that the improved policy π t+1(s)

is non-deceasing over the previous policy πk (s). The existence of
such a learning rate is shown in [6]. The policy iteration (i.e., Lines

2-11) terminates when certain condition is satisfied, e.g., the time

allotted for computing offline policy is running out.

Monotony property.On the one hand, we first show the mono-

tonicity of the GA-PI algorithm.

Lemma 2. GA-PI is monotonically non-deceasing on the global
objective Vπ (s0) such that Vπ k+1 (s0) ≥ Vπ k (s0).

Theorem 1. The GA-PI algorithm always converges within finite
iterations.

5 REAL-TIME ONLINE PLANNING

The solutions of the GA-PI constructed on the offline C − MDP
provide a static policy, however, cannot be dynamically adjusted to

real-time agent and demand distributions. In this section, we pro-

pose an online planning algorithm to dynamically adjust the policy

according to real-time observations. The main idea is that given the

real-time information, the offline policy is used as a baseline plan.

Algorithm 5: Real-Time Online Planning (Online_GA-

PI)

Input :The current C-MDP modelMt
.

Output :The real-time online planning πt .
1 Initialize πt (a |s) = πt−1(a |s);

2 repeat

3 Steps 3-10 in Algorithm 4 on real C-MDPMt
;

4 until time budget is used up;
// real-time budget, e.g., 5s

5 Each agent takes the action a according to the policy πt (a |s)
and serves the demand ⟨s,a⟩ if any.

We reuse GA-PI to the current plan and improve it in an anytime

manner.

At the beginning of each decision period t , given the observed

demands and agents’ positions, we first construct an online C-MDP

Mt = ⟨St ,At ,T t ,ot ⟩, shown as follows.

• The state s ∈ St satisfies t(s) ≥ t .
• Given the real traffic delay dtjk between regions vj and vk ,

the transition from the current state s = (t,vj) to the state

s ′ = (t + dtjk ,vk) is deterministic, i.e., T (s,→ vk , s
′) = 1.

• Given the demands occurring at current state s = (t,v),
the demand distribution o(s,a) is deterministic. For exam-

ple, if there are k demands ⟨s,a⟩ occurring at s , o(s,a) =
{0, 0, · · · , 1, · · · , 0} where the kth element ok (s,a) = 1.

• Given agents’ positions, the initial agent distribution λt (s)
at current state s = (t,v) is deterministic, where λt (s) equals
to the number of agents locating at state s .

The other model parameters (i.e., the future transition function and

demand distribution) are the samewith themodel defined in Section

3. Given the online C-MDPsMt
, we employ GA-PI to restart from

the baseline offline policy with the real information and improve it

in the new iteration. Algorithm 5 describes how to generate the real-

time online planning. In Line 2, given the real-time observations,

the previous period policy πt−1 is used as a baseline policy πt . In
Line 2-4, the baseline policy πt is improved by the GA-PI algorithm

within time budget. The real-time budget can be set as 5 seconds,

and is domain dependent. In Line 5, the agent takes the action ⟨s,a⟩
according to the probability πt (a |s). Once the agent is planned to

take the action ⟨s,a⟩, he should be responsible for serving this type
of demand.

6 EXPERIMENTS

6.1 Experiment Setup

All computations are performed on a 64-bit workstation with 64

GB RAM and a 16-core 3.5 GHz processor. All records are averaged

over 40 instances, and each record is statistically significant at 95%

confidence level unless otherwise specified.

6.1.1 Dataset Description. Both synthetic and real-world datasets

are used in our experiments.

Synthetic Dataset (SYN). The synthetic dataset consists of 20×

20 regions, 48 periods and 200 agents. The demand type o(s,a)

100 1,000 10,000 100,000
0

0.2

0.4

0.6

0.8

1

Iteration Steps (Log scale)

N
o
r
m
a
l
i
z
e
d
T
o
t
a
l
R
e
w
a
r
d
s

(a) Ride-sharing

100 1,000 10,000 100,000 1,000,000
0

0.2

0.4

0.6

0.8

1

Iteration Steps (Log scale)

(b) Security Traffic Patrolling

1,000 10,000 100,000 1,000,000
0

0.2

0.4

0.6

0.8

1

Iteration Steps (Log scale)

(c) Synthetic Dataset

GA-PI LP-App Bellman-VI

Figure 2: OFFLINE: The expected total rewards (normalized) achieved by the offline methods in real-world ride-sharing and

security traffic patrolling, and the synthetic datasets.

2 4 6 8 10

3.5

4

4.5

×105

Time Budget (s)

R
e
a
l
T
o
t
a
l
R
e
w
a
r
d
s

(a) Ride-sharing

1 2 3 4 5

3,500

4,000

4,500

Time Budget (s)

(b) Security Traffic Partrolling

1 2 3 4 5

100

120

140

160

Time Budget (s)

(c) Synthetic Dataset

LP-App SCO OLOP Online_GA-PI

Figure 3: ONLINE: The real total rewards achieved by the online methods in real-world ride-sharing and security traffic pa-

trolling, and the synthetic dataset.

follows a Gaussian distributionN (1.5, 0.25). The transition function
T (s,a, s ′) follows the uniform distributionU (0, 1) 2.

Real-WorldDataset. Two typical ride-sharing and security traf-

fic patrolling datasets are used.

• Ride-Sharing (RS). The ride-sharing dataset is a real trip

dataset from New York city [1], which is divided into 370 non-

overlapping, same-sized hexagonal regions. The horizon T is dis-

cretized into 288 periods and each period contains 5 mins. We use

the trip data of February 2016, each piece of data contains the start

time of a trip and the coordinates of its pick-up and drop-off re-

gions. Pre-processing operations are conducted on the raw data,

for example, some out-of-bounds trips are removed according to

their coordinates of the boarding and alighting positions. After

pre-processing, there are about 300,000 requests per day, which

can be used to model the demand-type distribution o(s,a). We use

the real road network data provided by OpenStreetMap to model

the transition function T (s,a, s ′). The number of vehicles is set to

10,000.

• Security Traffic Patrolling (STP). The security traffic pa-

trolling aims at the omnipresence patrolling such that when an

emergency occurs, there are always police officers nearby serving

2
We also test other demand and transition distributions, and have the similar results.

it in time. The dataset is collected from a typical district of a mod-

ern city [36]. The district consists of 20 × 20 regions, and each day

is discretized into 48 periods. The dataset contains approximately

24,000 incident requests (IRs) of the year 2017. We use the IR dataset

to estimate the IR occurrence rate o(s,a). The police officers taking

the incident service action (i.e., staying at the current region) can

respond the IR. We use OpenStreetMap to record the traffic delay,

which can be used to estimate the transition function T (s,a, s ′).
There are 50 police officers available for security traffic patrolling.

6.1.2 Compared Methods. We compare our GA-PI method with

the following two categories of methods: offline methods and online

methods. Note that all methods are carefully tuned and their best

results are reported.

Offline Baselines:
• LP-based approximation (LP-App) [35], where the linear pro-

gram (LP) is constructed on C −MDP and the piece linear reward

(i.e., Eq.(2)) is used to approximate the real reward function. The

commercial solver Gurobi (version 9.10) is used to solve the LP.

•Bellman’s value iteration (Bellman-VI) [4], where a state value

function V (s) is defined and improved by the Bellman formula:

V (s) = max

π

∑
a∈As

π (a |s)
[
R(s,a) +

∑
s ′

T (s,a, s ′)V (s ′)
]
. (10)

Online Baselines:
• LP-based approximation (LP-App) [12], where the online plan-

ing directly reuses the offline policy.

• Offline learning and online planning (OLOP) [33, 39]. Using

the available historical data, a model-freeQ-learning is proposed to

learn the state value. Guided by the state value, an online matching

between agents and demands is proposed to dispatch the agents to

regions.

• Sample-Based combination optimization (SCO) [22], where

at each period, the demands of future periods are sampled. To

maximize the current and future demands of multiple samples, an

integer program is proposed to return the current period policy.

6.2 Experiment Results

The Convergence in Offline Scenarios. Figure 2 shows the con-

vergence of the proposed GA-PI to the baseline offline methods in

real-world RS (Figure 2(a)) and STP (Figure 2(a)) datasets and the

SYN dataset (i.e., Figure 2(a)). The x-axis represents the iteration
steps, and each step records the visit and policy update at a state.

They-axis normalized total reward represents the ratio between the

rewards achieved and the maximum rewards achieved by our GA-PI.

From Figure 2, we can observe that in all three datasets, the pro-

posed GA-PI method is anytime, by which the system efficiency (i.e.,

solution quality) increases with time. This result is in accordance

with our theoretical analysis. The Bellman-VI algorithm, however,

only converges to the local optima. This is in spite of Bellman-VI

providing near optimal solutions in single agent MDP domains. In

C-MDPs, Bellman-VI is myopic of maximizing the current state

value, ignoring the effect (i.e., the expected number of agents) of

history behavior on the current state. The backward mechanism of

computing the expected number of agents allows GA-PI to domi-

nate Bellman-VI. This advantage is prominent in ride-sharing (i.e.,

Figure 2(a)), where customer orders (i.e., demands) are uniformly

distributed over state-action pairs. By considering the history ef-

fect, the GA-PI can dispatch agents among states uniformly, but

the myopic Bellman-VI always dispatches agents to states with

the highest state values. In the datasets of STP and SYN with the

smaller size of agents, Bellman-VI can converge faster than our

proposed GA-PI. The baseline LP-App only achieves 70% rewards

of GA-PI in security traffic patrolling scenario (i.e., Figure 2(b)).

The potential reason is that in such a dataset, the reward R(s,a) is
sparse since only staying at the current regions can respond to the

IR. The linear reward approximation Eq.(2) causes the mismatch

between the number of agents and demands at each state, thereby

decreasing the solution quality. LP-App performs the best in RS,

which is followed by SYN and STP. This result can be explained by

the fact that the number of agents in STP (i.e., 50) is much smaller

than that in RS (i..e, 10,000). Figure 1 has verified that the linear re-

ward function (which is used in LP-App) deteriorate the real reward

significantly with few agents.

TheReal-Time and Efficiency inOnline Scenarios. Figure 3

compares the online methods on these datasets in terms of real-time

and the exact reward achieved. The x-axis time budget represents

the response time available for online methods. We observe that

Online_GA-PI can always return an online plan within seconds,

which can be regarded as a real-time method for MoD applications

(e.g., RS and STP). Although the differences are minor, it can also be

seen that given more time budget, Online_GA-PI achieves higher

rewards. We argue that this can be explained by the fact that given

the current period modelMt , Online_GA-PI is an anytime method.

With large enough time budget, Online_GA-PI can visit all of the

state-actions properly, and it could restart from the current solution

with the new information in the new iteration, and will converge

to the optimal solution ofMt . The SCO has the similar monotone

property. This can be explained by the fact that given more time

budget, the longer look-ahead periods can be sampled, and better

solution quality will be achieved.

In most scenarios, Online_GA-PI achieves the highest rewards.

An exception is in the SYN dataset with 1 second budget (i.e., Figure

3(c)), OLOP outperforms Online_GA-PI. The potential reason is

that OLOP can efficiently learn the state value in such a static MoD

environment (since the transition and reward function is known).

As we can see in Figure 3(a) and Figure 3(b) within a more stochastic

environment (the model is constructed by averaging the historical

data), model-based Online_GA-PI can achieve significantly higher

rewards than the model-free-based RL (i.e., OLOP). Looking at the

comparisons between the offline and online scenarios, we can find

the consistency property.

In summary, experiment results suggest that 1) GA-PI is an

anytime algorithm that converges to the optima progressively, 2)

Online_GA-PI is a real-time algorithm that scales well to city-scale

MoD problems with hundreds of regions, thousands of agents and

long horizon periods, and 3) Online_GA-PI outperforms state-of-

the-art online planning methods in terms of solution quality.

7 CONCLUSION

This paper studies the Online_CMP problem that has a wide range

of applications on MoD systems, and proposes a offline policy reuse

method. In offline scenarios, the CMP is modeled as aC-MDPwhere

the reward is a function of the system history. Considering the ef-

fect of history behaviors on successor states, the proposed GA-PI

introduces a new state value function, which can be evaluated by

DP and improved by GA over iterations. We theoretically show

that improving local policy increases the global objective, leading

GA-PI converge to the optima. In the online stage, given the real

observations, the offline policy is regarded as an initial policy and

GA-PI is employed to derive an efficient online plan. Experimental

results show that 1) in offline scenarios, GA-PI can converge to

the optimal solution, and 2) in online scenarios, the proposed of-

fline policy reuse can achieve efficient solution quality in real-time.

As a consequence, our GA-PI technique provides a real-time On-

line_CMP method and theoretically guarantees that the efficiency

can be improved over time.

This paper should also be viewed as providing a bridge between

the offline and online collective multiagent planning. We are also

encouraged by the success of offline policy reuse methods for het-

erogeneous multiagent systems, where the joint reward depends on

coordination action of agents rather than their anonymity count.

ACKNOWLEDGMENTS

This research was supported by the National Natural Science Foun-

dation of China (62076060, 62072099, 61932007, 61806053).

REFERENCES

[1] 2016. Taxi and limousine commission (tlc) trip record data. https://www1.nyc.

gov/site/tlc/about/tlc-trip-record-data.page.

[2] Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and

Daniela Rus. 2017. On-demand high-capacity ride-sharing via dynamic trip-

vehicle assignment. Proceedings of the National Academy of Sciences 114, 3 (2017),
462–467.

[3] Richard E. Bellman. 1957. Dynamic Programming. Princeton University Press.

[4] Dimitri P. Bertsekas. 2005. Dynamic programming and optimal control, 3rd Edition.
Athena Scientific.

[5] Filippo Bistaffa, Alessandro Farinelli, and Sarvapali D. Ramchurn. 2015. Sharing

Rides with Friends: A Coalition Formation Algorithm for Ridesharing. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January
25-30, 2015, Austin, Texas, USA. 608–614.

[6] Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge

University Press, 1st edition (2004).

[7] Matthew Brown, Sandhya Saisubramanian, Pradeep Varakantham, and Milind

Tambe. 2014. STREETS: Game-Theoretic Traffic Patrolling with Exploration and

Exploitation. In AAAI’14. 2966–2971.
[8] Harshal A. Chaudhari, JohnW. Byers, and Evimaria Terzi. 2020. Learn to Earn: En-

abling Coordination Within a Ride-Hailing Fleet. In IEEE International Conference
on Big Data, Big Data 2020, Atlanta, GA, USA, December 10-13, 2020. 1127–1136.

[9] ShushmanChoudhury, Jayesh K. Gupta, PeterMorales, andMykel J. Kochenderfer.

2021. Scalable Anytime Planning for Multi-Agent MDPs. In AAMAS’21. 341–349.
[10] Daniel Claes, Frans A. Oliehoek, Hendrik Baier, and Karl Tuyls. 2017. Decen-

tralised Online Planning for Multi-Robot Warehouse Commissioning. In Pro-
ceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems,
AAMAS 2017, São Paulo, Brazil, May 8-12. 492–500.

[11] John P. Dickerson, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan

Xu. 2018. Allocation Problems in Ride-Sharing Platforms: Online Matching With

Offline Reusable Resources. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI’18),New Orleans, Louisiana, USA, February 2-7,
2018. 1007–1014.

[12] John P. Dickerson, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan

Xu. 2018. Assigning Tasks to Workers based on Historical Data: Online Task

Assignment with Two-sided Arrivals. In Proceedings of the 17th International Con-
ference on Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stockholm,
Sweden, July 10-15, 2018. 318–326.

[13] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. 2008.

Efficient Projections onto the l1-Ball for Learning in High Dimensions. In ICML’08.
272–279.

[14] Abraham Flaxman, Adam Tauman Kalai, and H. Brendan McMahan. 2005. Online

convex optimization in the bandit setting: gradient descent without a gradient.

In SODA’05. 385–394.
[15] Andrew Gilpin, Samid Hoda, Javier Peña, and Tuomas Sandholm. 2007. Gradient-

Based Algorithms for Finding Nash Equilibria in Extensive Form Games. In

WINE’07, Vol. 4858. 57–69.
[16] Suining He and Kang G. Shin. 2019. Spatio-Temporal Capsule-based Reinforce-

ment Learning for Mobility-on-Demand Network Coordination. In The World
Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019.
2806–2813.

[17] Jiarui Jin, Ming Zhou, Weinan Zhang, Minne Li, Zilong Guo, Zhiwei (Tony) Qin,

Yan Jiao, Xiaocheng Tang, Chenxi Wang, Jun Wang, Guobin Wu, and Jieping Ye.

2019. CoRide: Joint Order Dispatching and Fleet Management for Multi-Scale

Ride-Hailing Platforms. In Proceedings of the 28th ACM International Conference
on Information and Knowledge Management, CIKM 2019, Beijing, China, November
3-7, 2019. 1983–1992.

[18] Rajiv Ranjan Kumar and Pradeep Varakantham. 2017. Exploiting Anonymity and

Homogeneity in Factored Dec-MDPs through Precomputed Binomial Distribu-

tions. In Proceedings of the 16th Conference on Autonomous Agents and MultiAgent
Systems (São Paulo, Brazil) (AAMAS’17). 732–740.

[19] Minne Li, Zhiwei Qin, Yan Jiao, Yaodong Yang, Jun Wang, Chenxi Wang, Guobin

Wu, and Jieping Ye. 2019. Efficient Ridesharing Order Dispatching with Mean

Field Multi-Agent Reinforcement Learning. In The World Wide Web Conference,
WWW 2019, San Francisco, CA, USA, May 13-17, 2019. 983–994.

[20] Kaixiang Lin, Renyu Zhao, Zhe Xu, and Jiayu Zhou. 2018. Efficient Large-Scale

Fleet Management via Multi-Agent Deep Reinforcement Learning. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2018, London, UK, August 19-23, 2018. 1774–1783.

[21] Meghna Lowalekar, Pradeep Varakantham, Supriyo Ghosh, Sanjay Dominik

Jena, and Patrick Jaillet. 2017. Online Repositioning in Bike Sharing Systems. In

Proceedings of the Twenty-Seventh International Conference on Automated Planning
and Scheduling (ICAPS’17), Pittsburgh, Pennsylvania, USA, June 18-23, 2017. 200–
208.

[22] Meghna Lowalekar, Pradeep Varakantham, and Patrick Jaillet. 2018. Online spatio-

temporal matching in stochastic and dynamic domains. Artificial Intelligence 261
(2018), 71 – 112.

[23] Meghna Lowalekar, Pradeep Varakantham, and Patrick Jaillet. 2020. Competitive

Ratios for Online Multi-capacity Ridesharing. In Proceedings of the 19th Interna-
tional Conference on Autonomous Agents and Multiagent Systems, AAMAS ’20,
Auckland, New Zealand, May 9-13, 2020. 771–779.

[24] Shuo Ma, Yu Zheng, and Ouri Wolfson. 2015. Real-Time City-Scale Taxi Rideshar-

ing. IEEE Transactions on Knowledge and Data Engineering 27, 7 (2015), 1782–1795.
[25] Ayan Mukhopadhyay, Yevgeniy Vorobeychik, Abhishek Dubey, and Gautam

Biswas. 2017. Prioritized Allocation of Emergency Responders based on a

Continuous-Time Incident Prediction Model. In Proceedings of the 16th Con-
ference on Autonomous Agents and MultiAgent Systems (AAMAS’17), São Paulo,
Brazil, May 8-12, 2017. 168–177.

[26] Duc Thien Nguyen, Akshat Kumar, and Hoong Chuin Lau. 2017. Collective

Multiagent Sequential Decision Making Under Uncertainty. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San
Francisco, California, USA. 3036–3043.

[27] Duc Thien Nguyen, Akshat Kumar, and Hoong Chuin Lau. 2017. Policy Gradient

With Value Function Approximation For Collective Multiagent Planning. In

Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA. 4319–4329.

[28] Duc Thien Nguyen, Akshat Kumar, and Hoong Chuin Lau. 2018. Credit Assign-

ment For Collective Multiagent RL With Global Rewards. In NeuIPS’18. 8102–
8113.

[29] Zhiwei (Tony) Qin, Xiaocheng Tang, Yan Jiao, Fan Zhang, Zhe Xu, Hongtu Zhu,

and Jieping Ye. 2020. Ride-Hailing Order Dispatching at DiDi via Reinforcement

Learning. Interfaces 50, 5 (2020), 272–286.
[30] Ariel Rosenfeld and Sarit Kraus. 2017. When Security Games Hit Traffic: Optimal

Traffic Enforcement Under One Sided Uncertainty. In IJCAI’17, Carles Sierra (Ed.).
3814–3822.

[31] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement learning - an intro-
duction. MIT Press.

[32] Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour.

1999. Policy Gradient Methods for Reinforcement Learning with Function Ap-

proximation. In Advances in Neural Information Processing Systems 12, [NIPS
Conference, Denver, Colorado, USA, November 29 - December 4, 1999]. 1057–1063.

[33] Xiaocheng Tang, Fan Zhang, Zhiwei Qin, Yansheng Wang, Dingyuan Shi,

Bingchen Song, Yongxin Tong, Hongtu Zhu, and Jieping Ye. 2021. Value Func-

tion is All You Need: A Unified Learning Framework for Ride Hailing Platforms.

KDD’21 (2021).
[34] Yongxin Tong, Yuxiang Zeng, Bolin Ding, Libin Wang, and Lei Chen. 2021. Two-

Sided Online Micro-Task Assignment in Spatial Crowdsourcing. IEEE Trans.
Knowl. Data Eng. 33, 5 (2021), 2295–2309.

[35] Pradeep Varakantham, Yossiri Adulyasak, and Patrick Jaillet. 2014. Decentralized

Stochastic Planning with Anonymity in Interactions. In AAAI’14. 2505–2512.
[36] Wanyuan Wang, Zichen Dong, Bo An, and Yichuan Jiang. 2021. Toward Efficient

City-Scale Patrol Planning Using Decomposition and Grafting. IEEE Transactions
on Intelligent Transportation Systems 22, 2 (2021), 747–757.

[37] Ronald J. Williams. 1992. Simple statistical gradient-following algorithms for

connectionist reinforcement learning. In Machine Learning. 229–256.
[38] Yuhang Xu, Wanyuan Wang, Guwei Xiong, Xiang Liu, Weiwei Wu, and Kai Liu.

2021. Network-Flow-Based Efficient Vehicle Dispatch for City-Scale Ride-Hailing

Systems. IEEE Transactions on Intelligent Transportation Systems (2021), 1–13.
https://doi.org/10.1109/TITS.2021.3054893

[39] Zhe Xu, Zhixin Li, Qingwen Guan, Dingshui Zhang, Qiang Li, Junxiao Nan,

Chunyang Liu, Wei Bian, and Jieping Ye. 2018. Large-Scale Order Dispatch in

On-Demand Ride-Hailing Platforms: A Learning and Planning Approach. In

KDD’18. 905–913.
[40] Yisong Yue, LavanyaMarla, and Ramayya Krishnan. 2012. An Efficient Simulation-

Based Approach to Ambulance Fleet Allocation and Dynamic Redeployment. In

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July
22-26, 2012, Toronto, Ontario, Canada.

[41] Ming Zhou, Jiarui Jin, Weinan Zhang, Zhiwei Qin, Yan Jiao, ChenxiWang, Guobin

Wu, Yong Yu, and Jieping Ye. 2019. Multi-Agent Reinforcement Learning for

Order-dispatching via Order-Vehicle Distribution Matching. In Proceedings of the
28th ACM International Conference on Information and Knowledge Management,
CIKM 2019, Beijing, China, November 3-7, 2019. 2645–2653.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://doi.org/10.1109/TITS.2021.3054893

	Abstract
	1 Introduction
	2 Related Work
	3 The Model
	3.1 The Reward Function

	4 The Algorithm
	4.1 Structured State Value Function
	4.2 Gradient Ascent-Based Policy Improvement
	4.3 Anytime Policy Iteration

	5 Real-Time Online Planning
	6 Experiments
	6.1 Experiment Setup
	6.2 Experiment Results

	7 Conclusion
	Acknowledgments
	References

