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ABSTRACT
Designing efficient algorithms to compute a Nash Equilibrium (NE)

in multiplayer games is still an open challenge. In this paper, we

focus on computing an NE that optimizes a given objective function.

Finding an optimal NE in multiplayer games can be formulated as a

mixed-integer bilinear program by introducing auxiliary variables

to represent bilinear terms, leading to a huge number of bilinear

terms, making it hard to solve. To overcome this challenge, we

propose a novel algorithm called CRM based on a novel mixed-

integer bilinear program with correlation plans for some subsets

of players, which uses Correlation plans with their Relations to
strictly reduce the feasible solution space after the convex relaxation

of bilinear terms whileMinimizing the number of correlation plans

to significantly reduce the number of bilinear terms. Experimental

results show that our algorithm can be several orders of magnitude

faster than the state-of-the-art baseline.
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1 INTRODUCTION
One of the important problems in artificial intelligence is the design

of algorithms for agents to make decisions in interactive environ-

ments [13]. Designing efficient algorithms to compute NEs in mul-

tiplayer games is still an open challenge. In this paper, we focus on

computing an optimal NE that optimizes a specific objective over

the space of NEs. In the real world, we may need to optimize our

objective over the space of NEs [3, 14]. Possible objectives could

be maximizing social welfare (the sum of the players’ expected

utilities), maximizing the expected utilities of one player or several

players, maximizing the minimum utility among players, minimiz-

ing the support sizes of the NE strategies, and so on. In addition,

when there is a team of players in a game, team members need

to consider finding an equilibrium that optimizes some objective
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[2, 4, 16–20]. Unfortunately, the problems mentioned above are NP-

hard [3, 6]. In this paper, we propose a novel algorithm called CRM

based on a novel mixed-integer bilinear program with correlation

plans for some subsets of players.

2 FINDING OPTIMAL NASH EQUILIBRIA
We consider a normal-form multiplayer game [15] with at least

three players. The set of players as 𝑁 = {1, . . . , 𝑛}; the set of all
players’ joint actions is 𝐴 = ×𝑖∈𝑁𝐴𝑖 , where 𝐴𝑖 is the finite set

of player 𝑖’s pure strategies (actions) with 𝑎𝑖 ∈ 𝐴𝑖 ; 𝑢𝑖 : 𝐴 → R
is player 𝑖’s payoff function. 𝑈𝑚𝑎𝑥 = max𝑖∈𝑁 max𝑎∈𝐴 𝑢𝑖 (𝑎), and
𝑈𝑚𝑖𝑛 = min𝑖∈𝑁 min𝑎∈𝐴 𝑢𝑖 (𝑎). In addition, the set of (joint) mixed

strategy profiles 𝑋 = ×𝑖∈𝑁𝑋𝑖 , where 𝑋𝑖 = Δ(𝐴𝑖 ) (i.e., the set of
probability distributions over 𝐴𝑖 ) is the set of mixed strategies

of player 𝑖 . Let −𝑖 be the set of all players excluding player 𝑖 . 𝑥∗

is a Nash Equilibrium (NE, and NEs for Nash Equilibria) [11] if,

for each player 𝑖 , 𝑥∗
𝑖
is a best response to 𝑥∗−𝑖 , i.e., 𝑢𝑖 (𝑥

∗
𝑖
, 𝑥∗−𝑖 ) ≥

𝑢𝑖 (𝑥𝑖 , 𝑥∗−𝑖 ),∀𝑥𝑖 ∈ 𝑋𝑖 . The space of NEs in multiplayer games can

be formulated as a multilinear program by directly extending the

formulation for two-player games [14]:

𝑢𝑖 (𝑎𝑖 , 𝑥−𝑖 ) =
∑︁

𝑎−𝑖 ∈𝐴−𝑖
𝑢𝑖 (𝑎𝑖 , 𝑎−𝑖 )

∏
𝑗 ∈−𝑖

𝑥 𝑗 (𝑎−𝑖 ( 𝑗 ) ) ∀𝑖 ∈ 𝑁,𝑎𝑖 ∈ 𝐴𝑖 (1a)∑
𝑎𝑖 ∈𝐴𝑖

𝑥𝑖 (𝑎𝑖 ) = 1 ∀𝑖 ∈ 𝑁 (1b)

1 − 𝑏𝑎𝑖 ≥ 𝑥𝑖 (𝑎𝑖 ) ∀𝑖 ∈ 𝑁,𝑎𝑖 ∈ 𝐴𝑖 (1c)

𝑢𝑖 (𝑥 ) ≥ 𝑢𝑖 (𝑎𝑖 , 𝑥−𝑖 ) ∀𝑖 ∈ 𝑁,𝑎𝑖 ∈ 𝐴𝑖 (1d)

𝑢𝑖 (𝑥 ) − 𝑢𝑖 (𝑎𝑖 , 𝑥−𝑖 ) ≤ 𝑏𝑎𝑖 (𝑈𝑚𝑎𝑥 −𝑈𝑚𝑖𝑛 ) ∀𝑖 ∈ 𝑁,𝑎𝑖 ∈ 𝐴𝑖 (1e)

𝑢𝑖 (𝑎𝑖 , 𝑥−𝑖 ) ∈ [𝑈𝑚𝑖𝑛,𝑈𝑚𝑎𝑥 ],𝑢𝑖 (𝑥 ) ∈ [𝑈𝑚𝑖𝑛,𝑈𝑚𝑎𝑥 ] ∀𝑖, 𝑎𝑖 (1f)

𝑥𝑖 (𝑎𝑖 ) ∈ [0, 1], 𝑏𝑎𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝑁,𝑎𝑖 ∈ 𝐴𝑖 , (1g)

where we use the notations of utility functions𝑢𝑖 (𝑥) and𝑢𝑖 (𝑎𝑖 , 𝑥−𝑖 )
to represent the corresponding variables in the program. Eq.(1c)

ensures that binary variable 𝑏𝑎𝑖 is set to 0 when 𝑥𝑖 (𝑎𝑖 ) > 0 and can

be set to 1 only when 𝑥𝑖 (𝑎𝑖 ) = 0; and Eq.(1e) ensures that the regret

of action 𝑎𝑖 equals 0 (i.e., 𝑢𝑖 (𝑥) = 𝑢𝑖 (𝑎𝑖 , 𝑥−𝑖 )), unless 𝑏𝑎𝑖 = 1 where

the constraint 𝑢𝑖 (𝑥) − 𝑢𝑖 (𝑎𝑖 , 𝑥−𝑖 ) ≤ (𝑈𝑚𝑎𝑥 −𝑈𝑚𝑖𝑛) always holds.
The multilinear program is usually transformed into a bilinear

program to make the program solvable using global optimization

solvers, e.g., Gurobi [9]. We use the binary tree definition to provide

a recursive-binary definition for each subset of players in order to

transform multilinear terms into bilinear terms. Our binary tree

𝑇𝑁 ′ of 𝑁
′ ⊆ 𝑁 with |𝑁 ′ | ≥ 2 is that: 1) its root is 𝑁 ′; 2) its nodes

are {𝑁 ′′ | 𝑁 ′′ ⊆ 𝑁 ′}; 3) each of its leaf nodes is a singleton;

and 4) each of its internal nodes 𝑁 ′′ has two children 𝑁 ′′
𝑙

and

𝑁 ′′𝑟 with 𝑁 ′′
𝑙
∩ 𝑁 ′′𝑟 = ∅ and 𝑁 ′′ = 𝑁 ′′

𝑙
∪ 𝑁 ′′𝑟 , i.e., 𝑁 ′′ is divided



into two disjoint sets. Let Ch(𝑁 ′′) = {𝑁 ′′
𝑙
, 𝑁 ′′𝑟 } be the set of 𝑁 ′′’s

children in 𝑇𝑁 ′ , and Ch(𝑁 ′′) = ∅ if 𝑁 ′′ is a singleton. Let N𝑇𝑁 ′ be
the set of internal nodes in 𝑇𝑁 ′ . A recursive-binary definition
of 𝑁 ′ is a set of 𝐶ℎ(𝑁 ′′) for all 𝑁 ′′ ∈ N𝑇𝑁 ′ . Given a collection

N of subsets of players, which is a subset of the power set of

𝑁 , we say 𝑁 ′ is recursively-binarily defined in N if there is

a binary tree 𝑇𝑁 ′ such that all internal nodes in 𝑇𝑁 ′ are in N ,

i.e., N𝑇𝑁 ′ ⊆ N . N is a binary collection if each element 𝑁 ′ in
N is recursively-binarily defined in N , and {−𝑖 | 𝑖 ∈ 𝑁 } ⊆ N .

The vanilla binary collection is N that includes all of 𝑁 ’s non-

singleton proper subsets, where 𝑁 ′’s children set Ch(𝑁 ′) could be

{𝑁 ′ \ { 𝑗}, { 𝑗} | 𝑗 = max𝑖∈𝑁 ′ 𝑖} for each 𝑁 ′ ∈ N .

To transform each multilinear term in Eq.(1a) into bilinear terms,

given any binary collection N and each 𝑁 ′ ∈ N , we introduce

auxiliary variable 𝑃𝑁 ′ (𝑎𝑁 ′ ) ∈ [0, 1] for each 𝑎𝑁 ′ ∈ 𝐴𝑁 ′ with

chains of bilinear equalities (i.e., Eq.(2b)) according to the definition

of Ch(𝑁 ′) of each 𝑁 ′ ∈ N . Specifically, 𝑃𝑁 ′ (𝑎𝑁 ′ ) = 𝑥𝑖 (𝑎𝑖 ) for each
singleton 𝑁 ′ = {𝑖}. Then we can transform multilinear constraints

in Eq.(1a) into the following constraints with chains of bilinear

equalities (i.e., Eq.(2b)):

𝑢𝑖 (𝑎𝑖 , 𝑥−𝑖 ) =
∑

𝑎−𝑖 ∈𝐴−𝑖𝑢𝑖 (𝑎𝑖 , 𝑎−𝑖 )𝑃−𝑖 (𝑎−𝑖 ) ∀𝑖 ∈𝑁,𝑎𝑖 ∈𝐴𝑖 (2a)

𝑃𝑁 ′ (𝑎𝑁 ′ ) = 𝑃𝑁 ′
𝑙
(𝑎𝑁 ′

𝑙
)𝑃𝑁 ′𝑟 (𝑎𝑁 ′𝑟 ) ∀𝑁

′ ∈ N,Ch(𝑁 ′ ) = {𝑁 ′
𝑙
, 𝑁 ′𝑟 },

𝑎𝑁 ′ = (𝑎𝑁 ′
𝑙
, 𝑎𝑁 ′𝑟 ) ∈ 𝐴𝑁 ′ . (2b)

𝑃𝑁 ′ (𝑎𝑁 ′ ) ∈ [0, 1] . ∀𝑎𝑁 ′ ∈ 𝐴𝑁 ′ , 𝑁
′ ∈ N, (2c)

After the transformation, Eqs.(1b)-(1g) and (2) represent the

space of NEs. An optimal NE is an NE optimizing an objective.

Then finding an optimal NE requires optimizing an objective func-

tion 𝑔(𝑥) over this space of NEs:
max𝑥 𝑔 (𝑥 ) (3a)

s.t. Eqs.(1𝑏 ) − (1𝑔), (2) . (3b)

An important step used by state-of-the-art algorithms to solve

such bilinear programs is to use convex relaxation to replace each

bilinear term in the program [7, 8], which significantly enlarges the

feasible solution space. To reduce this space, we propose to exploit

correlation plans with their relations. For each 𝑁 ′ in any binary

collection N , a correlation plan of 𝑁 ′ is a probability distribution

𝑃𝑁 ′ over 𝐴𝑁 ′ (i.e., 𝑃𝑁 ′ ∈ Δ(𝐴𝑁 ′ )), which satisfies:∑
𝑎𝑁 ′ ∈𝐴𝑁 ′ 𝑃𝑁

′ (𝑎𝑁 ′ ) = 1 ∀𝑁 ′ ∈ N. (4)

We now exploit relations between correlation plans for elements

in N ∪ {{𝑖} | 𝑖 ∈ 𝑁 } according to the binary definition.∑︁
𝑎𝑁 ′ ∈𝐴𝑁 ′ ,𝑎𝑁 ′ (𝑖 )=𝑎𝑖

𝑃𝑁 ′ (𝑎𝑁 ′ ) = 𝑥𝑖 (𝑎𝑖 ) ∀𝑖 ∈ 𝑁 ′, 𝑎𝑖 ∈ 𝐴𝑖 , 𝑁
′ ∈ N (5a)∑︁

𝑎𝑁 ′=(𝑎𝑁 ′
𝑙
,𝑎𝑁 ′𝑟

) ∈𝐴𝑁 ′

𝑃𝑁 ′ (𝑎𝑁 ′ ) = 𝑃𝑁 ′
𝑙
(𝑎𝑁 ′

𝑙
) ∀𝑎𝑁 ′

𝑙
∈𝐴𝑁 ′

𝑙
, |𝑁 ′

𝑙
| > 1 (5b)

∑︁
𝑎𝑁 ′=(𝑎𝑁 ′

𝑙
,𝑎𝑁 ′𝑟

) ∈𝐴𝑁 ′

𝑃𝑁 ′ (𝑎𝑁 ′ ) = 𝑃𝑁 ′𝑟 (𝑎𝑁 ′𝑟 ) ∀𝑎𝑁 ′𝑟 ∈𝐴𝑁 ′𝑟 , |𝑁
′
𝑟 | > 1, (5c)

where conditions |𝑁 ′
𝑙
| > 1 and |𝑁 ′𝑟 | > 1 ensure Eq.(5a) and Eq.(5)

do not generate the same constraints, and 𝐶𝐻 (𝑁 ′) = {𝑁 ′
𝑙
, 𝑁 ′𝑟 }.

Now we explicitly restrict the feasible solution space by adding

Eqs.(4) and (5) to Program (3) for any binary collection N :

max𝑥 𝑔 (𝑥 ) (6a)

s.t. Eqs.(1𝑏 ) − (1𝑔), (2), (4), (5) . (6b)

Algorithm 1 Generate N
1: Build a full binary tree𝑇−𝑛 with the height ⌈log

2
(𝑛 − 1) ⌉ for −𝑛 with

the set of internal nodes N𝑇−𝑛 and |N𝑇−𝑛 | = 𝑛 − 2

2: for each 𝑖 in {1, . . . , 𝑛 − 1} do
3: Search 𝑇−𝑛 to replace 𝑖 with 𝑛 in each node including 𝑖 to form a

binary tree𝑇−𝑖 with the set of internal nodes N𝑇−𝑖
4: end for
5: N ← ∪𝑖∈𝑁 N𝑇−𝑖 .

Table 1: Results. “∞": no solutions are returned. The last three
games are six-player three-action GAMUT games.

Runtime (Percentage of Games not Solved) (Utility Gap)

(𝑛,𝑚) CRM MIBP ENUMPOLY EXCLUSION

(3, 2) 0.01 0.02 0.03 31 (gap:15%)

(7, 2) 25 42 (20%) 1000 (97%) 835 (80%) (gap:53%)

(3, 5) 0.2 0.3 1000 (100%) 1000 (100%) (gap:67%)

(3, 13) 38 342 (27%) 1000 (100%) 1000 (100%) (gap:∞)
Collaboration 1 967 (97%) 1000 (100%) 1000 (100%) (gap:81%)

Random LEG 2 1000 (100%) 1000 (100%) 986 (97%) (gap:11%)

Uniform LEG 2.2 1000 (100%) 1000 (100%) 986 (97%) (gap:11%)

Theorem 1. The optimal solution of Program (6) maximizes 𝑔(𝑥)
over the space of NEs.

It is straightforward to use N in Program (6), where we need

to add a set of linear constraints and bilinear constraints for each

correlation plan corresponding to each element in any binary collec-

tion N . However, N is too large. To reduce the number of bilinear

terms, we propose building minimum-height binary trees to obtain

a new binary collection with the minimum size, which gives us

the minimum set of correlation plans. This procedure is shown in

Algorithm 1 generatingN . Our algorithm, CRM, is solving Program

(6) based on N , i.e., N in Eqs.(2), (4), and (5) is replaced by N .

Theorem 2. N generated by Algorithm 1 is a binary collection,
and 𝑂 (𝑛 log𝑛) for the size of N is the minimum size of all binary
collections of a game.

3 EXPERIMENTS
We evaluate our approach on randomly generated games with 𝑛

players and𝑚 actions for each player and GAMUT [12] games. We

compare our CRM to the state-of-the-art baselines: 1)MIBP [5, 14]:

the equivalent of solving Program (3) based onN ; 2) EXCLUSION
[1]: the first implemented algorithm guarantees to converge to an

NE (that may not be optimal, and then we measure the utility gap);

and 3) ENUMPOLY [10]: an algorithm in Gambit, which tries to

find all NEs, which can then choose an optimal NE from the output

of all NEs. CRM andMIBP can guarantee finding an optimal NE. The

objective function maximizes the expected utility of player 𝑛. We

use the non-convex solver of Gurobi 9.5 to solve all mixed-integer

bilinear programs with the optimality gap 0.0001. EXCLUSION uses

this optimality gap as well, which is significantly smaller than 0.001

in [1]. We set a time limit of 1000 seconds for each case and measure

the percentage of games that are not solved within the time limit.

Table 1 shows the results average on 30 cases, where CRM can be

two or three orders of magnitude faster than baselines.
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