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ABSTRACT
Influence maximization (IM) aims to find a set of seed nodes in a
social network that maximizes the influence spread. While most IM
problems focus on classical influence cascades (e.g., Independent
Cascade and Linear Threshold) which assume individual influence
cascade probability is independent of the number of neighbors,
recent studies by sociologists show that many influence cascades
follow a pattern called complex contagion (CC), where influence
cascade probability is much higher when more neighbors are in-
fluenced. Nonetheless, there are very limited studies on complex
contagion influence maximization (CCIM) problems. This is partly
because CC is non-submodular, the solution of which has been an
open challenge. In this study, we propose the first reinforcement
learning (RL) approach to CCIM. We find that a key obstacle in
applying existing RL approaches to CCIM is the reward sparseness
issue, which comes from two distinct sources. We then design a
new RL algorithm that uses the CCIM problem structure to address
the issue. Empirical results show that our approach achieves the
state-of-the-art performance on four real-world networks.
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1 INTRODUCTION & BACKGROUND
We study the problem of influence maximization with a complex
contagion model, where the cascade probability to a target node
has a non-concave jump when the number of activated neighbors
exceeds a threshold. Formally, a social network is represented as a
graph 𝐺 = (𝑉 , 𝐸), where 𝑉 and 𝐸 are the nodes and edges, respec-
tively. Each node is either activated or inactivated, which means
the node is influenced or not. We assume all nodes are initially
inactivated unless chosen as the seed node. Nodes which are linked
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by edges have a probability 𝑝 of influencing each other. For each
node 𝑣 , its neighbors are represented asN(𝑣). In simple contagions
such as the Independent Cascade (IC) [13] and the Linear Threshold
(LT) [14], the probability 𝑝 is assumed to be a constant that is inde-
pendent of the number of its neighbors. In complex contagion, the
assumption is relaxed, and 𝑝 is represented as a dependent variable
of the number of activated neighbors 𝑘 . Without loss of generality,
we consider the classical 𝐾-complex contagion model [5, 6, 11]:

𝑝 (𝑘) =
{
𝑝0, if 𝑘 ≥ 𝐾

𝑝1, if 𝑘 < 𝐾
(1)

where 0 ≤ 𝑝1 ≪ 𝑝0 ≤ 1.𝐾 ≥ 1 is an integer threshold value.𝐾 is in-
terpreted as the threshold to make a qualitative change to 𝑝 (𝑘). Fig-
ure 1 shows the cascade probability (y-axis) 𝑝 given numbers of ac-
tivated neighbors (x-axis) in simple vs complex contagions (𝐾 = 3).

Figure 1: Simple (green) v.s.
complex (orange) contagions.

Given a set of seed
nodes 𝑆 ⊆ 𝑉 , we repre-
sent the influence of com-
plex contagion as 𝜎 (𝐺, 𝑆).
Therefore, Complex Conta-
gion Influence Maximiza-
tion (CCIM) problem is to
select the optimal set of
seeds 𝑆∗ given a budget
|𝑆 | ≤ 𝑇 , such that the to-
tal influence 𝜎 (𝐺, 𝑆) is maximized:

𝑆∗ = argmax
𝑆⊆𝑉

𝜎 (𝐺, 𝑆) (2)

Despite evidence that many influence cascades display complex
dynamics [2, 10, 20, 24], there are very limited studies on CCIM.
Mainstream IM algorithms rely crucially on a property of simple
contagions called submodularity, which reflects diminishing returns
to the selection of additional seeds (the blue curve in Figure 1). Un-
der submodularity, a simple greedy algorithm is highly effective
[16]. However, the CC models’ surge of cascade probability in adop-
tion probability violates submodularity. This greatly complicates
optimization by introducing complementarities: the marginal gain
to selecting any single seed is small since its value is only revealed
in combination with a specific set of other seeds. Formally, this
means that CCIM is NP-hard to approximate even under simpli-
fied network models [23]. To our knowledge, the only practical



algorithm for CCIM thus far is the Dynamic Programming for Influ-
ence Maximization (DPIM) approach of [1]. However, DPIM heavily
relies on the assumption that the network has a hierarchical struc-
ture and its effectiveness may be limited when a good hierarchical
decomposition cannot be found.

2 APPROACH & RESULTS
In this work, we treat CCIM as a stochastic combinatorial opti-
mization problem (COP) with a non-submodular objective function.
Inspired by recent works that combine RL and graph representa-
tion techniques to address COPs on graphs [4, 7, 9, 17, 19] and
influence maximization in particular [8, 18], we design a new RL al-
gorithm, Reinforcement Learning for IM with Complex Contagion
(RL4IM-CC) to solve the CCIM problem.

The underlying idea of RL-based approaches to COPs is to de-
compose the original seed set selection into a sequence of seeds,
and it does so greedily based on the marginal “score” of each node.
The scores are estimated using deep function approximators. De-
spite the initial success of applying RL for IM [8, 18], we found
that directly applying these methods to the CCIM problems often
yields suboptimal performance, mainly because the reward signal
in CCIM is much more sparse than simple contagion IM. A major
challenge is that the reward signal in CCIM is much more sparse
than simple contagion IM. We identify two distinct causes of re-
ward sparseness. First, the effective solution space (i.e., solutions
with non-negligible influence) is much smaller. This is because CC
requires a harsher condition for influence to spread. Second, the
marginal contribution of each node (action) in CCIM is more sparse
than regular IM, because the reward becomes non-negligible only
after multiple seeds are selected. This yields small or zero reward
at the first few time steps even with the credit assignment mecha-
nism used in previous works. We refer to the two causes of reward
sparseness as effective solution sparseness and credit sparseness.

Our algorithm addresses the above issues with key innovations
including (i) a solution filtering step that yields more effective policy
exploration, (ii) an adapted return-based prioritized experience
replay (PER) [22] component that increases the chances of sampling
training transitions with higher rewards, and (iii) a new reward-
shaping component which, at the end of each training episode,
assigns an additional reward to nodes by looking at their marginal
contribution w.r.t. the global action sequence.

We present evaluations of RL4IM-CC and baselines on 4 publicly
available real-world networks, including Football [12], Polbooks
[21], India [3], and Exhibition [15]. The baselines include (i) Ran-
dom+, which selects seeds randomly from the effective candidate
set A, (ii) Greedy [16], which is the prominent approach for sub-
modular IM, (iii)DPIM [1], which is a dynamic programming based
method designed for non-submodular IM including CCIM. Note
that the code of DPIM is not publicly available. Therefore we im-
plemented our own version of DPIM, where to build a hierarchical
decomposition tree of the original network, we use the Jaccard
Similarity variant (see Section 4.1.3 of [1]). (iv) RL4IM [8], which
is a recent work that uses RL to address submodular IM.

We set propagation probabilities 𝑝1 = 0, 𝑝0 = 1, so that the propa-
gation is deterministic. This setting is convenient for comparison as
it rules out the factor that arises from stochasticity of different runs.

The threshold 𝐾 values are set to 4 for smaller networks (Football,
Polbooks and India), and 6 for the larger network Exhibition. The
values are set as such so that the influence spread is neither too
sparse (very few nodes are influenced) nor too dense (most nodes
are influenced) where comparisons become trivial. We set the seed
budget 𝑇 = 8 for all the networks except for the largest network
Exhibition which is 𝑇 = 12. In deterministic settings, there is no
randomness for Greedy and DPIM. Randomness of Random+ and
RL methods arises from different running seeds. For Random+, we
run 50 times each and take the average. For RL methods, we run
15 times and find the best model via a separate validation process
(performs every 20 training time steps), and report its performance.

Table 1: Normalized influence of different methods on 4 real-
world networks. Best results are highlighted.

Method \ Network Football Polbooks India Exhibition
Greedy 0.3217 0.4571 0.0396 0.0293
DPIM 0.3913 0.6762 0.3911 0.5537

Random+ 0.0926 0.1486 0.0498 0.0293
RL4IM 0.513 0.7429 0.3465 0.5439

RL4IM-CC 1.0 0.819 0.5347 0.5585

Table 1 shows the results. We have the following observations.
(i) RL4IM-CC consistently obtains the best results among all the

methods across all the networks. It obtains the optimal or close-to-
optimal solutions on small networks.

(ii) The Random+ method, though being far from optimal, seems
to be sufficient to serve as a warm-start for RL4IM-CC.

(iii) Surprisingly, Greedy can be arbitrarily bad. For example,
Greedy obtains only an influence value of 0.0396 on the India net-
work. Considering that there are 202 nodes in this network, this
means that Greedy does not find any effective solution.

(iv) RL4IM and DPIM are unstable. RL4IM performs close to
RL4IM-CC on some networks (e.g., and Exibition). However, on the
other networks (Football, Polbooks, and India), it is significantly
beaten by RL4IM-CC. Our hypothesis is that the effective solution
sparseness becomes more severe when the entire solution space
grows larger. The same holds for DPIM, where it works well on
Exhibition, but is much worse than RL4IM-CC on other networks.
A main reason, in our understanding, is that DPIM highly relies
on the assumption that networks are hierarchically structured, and
therefore the performance of it highly depends on how the net-
work’s structure is aligned with the assumption. Unfortunately in
practice, it is hard to measure the hierarchy of networks.

Conclusion:We propose the first learning-based approach to
CCIM, with innovative components addressing the reward sparse-
ness issues that uniquely arise from CCIM. Empirical results show
that our approach achieves new state-of-the-art performance on
4 real-world social networks. Our work opens up many potential
future directions for learning-based approach to CCIM. For exam-
ple, it is interesting to explore: (i) Can we design more efficient RL
algorithms for larger networks? (ii) Can the learned RL policies
generalize to new networks? (iii) What if the network structures or
the complex contagion model parameters are uncertain?
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