Grasper: A Generalist Pursuer for Pursuit-Evasion Problems

Pengdeng Li* Shuxin Li* Xinrun Wang
Nanyang Technological University Nanyang Technological University Nanyang Technological University
Singapore Singapore Singapore
pengdeng.li@ntu.edu.sg shuxinli@ntu.edu.sg xinrun.wang@ntu.edu.sg

Jakub Cerny Youzhi Zhang Stephen McAleer

Columbia University
New York City, United States
cerny@disroot.org

Hau Chan

University of Nebraska-Lincoln
Lincoln, Nebraska, United States
hchan3@unl.edu

ABSTRACT

Pursuit-evasion games (PEGs) model interactions between a team
of pursuers and an evader in graph-based environments such as
urban street networks. Recent advancements have demonstrated
the effectiveness of the pre-training and fine-tuning paradigm in
Policy-Space Response Oracles (PSRO) to improve scalability in
solving large-scale PEGs. However, these methods primarily fo-
cus on specific PEGs with fixed initial conditions that may vary
substantially in real-world scenarios, which significantly hinders
the applicability of the traditional methods. To address this issue,
we introduce Grasper, a GeneRAlist purSuer for Pursuit-Evasion
pRoblems, capable of efficiently generating pursuer policies tai-
lored to specific PEGs. Our contributions are threefold: First, we
present a novel architecture that offers high-quality solutions for
diverse PEGs, comprising critical components such as (i) a graph
neural network (GNN) to encode PEGs into hidden vectors, and
(ii) a hypernetwork to generate pursuer policies based on these
hidden vectors. As a second contribution, we develop an efficient
three-stage training method involving (i) a pre-pretraining stage
for learning robust PEG representations through self-supervised
graph learning techniques like graph masked auto-encoder (Graph-
MAE), (ii) a pre-training stage utilizing heuristic-guided multi-task
pre-training (HMP) where heuristic-derived reference policies (e.g.,
through Dijkstra’s algorithm) regularize pursuer policies, and (iii)
a fine-tuning stage that employs PSRO to generate pursuer policies
on designated PEGs. Finally, we perform extensive experiments
on synthetic and real-world maps, showcasing Grasper’s signif-
icant superiority over baselines in terms of solution quality and
generalizability. We demonstrate that Grasper provides a versatile

*Equal contribution.
"Corresponding author.

@ This work is licensed under a Creative Commons Attribution
By, International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 — 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

CAIR, HKISI, CAS
Hong Kong, China
youzhi.zhang@cair-cas.org.hk

Carnegie Mellon University
Pittsburgh, United States
mcaleer.stephen@gmail.com

Bo An
Nanyang Technological University
Singapore
boan@ntu.edu.sg

approach for solving pursuit-evasion problems across a broad range
of scenarios, enabling practical deployment in real-world situations.

KEYWORDS

Multi-Agent Learning; Pursuit-Evasion Problems; Generalizability;
Pre-training and Fine-tuning; Hypernetwork

ACM Reference Format:

Pengdeng Li*, Shuxin Li*, Xinrun WangT, Jakub Cerny, Youzhi Zhang,
Stephen McAleer, Hau Chan, and Bo An. 2024. Grasper: A Generalist Pursuer
for Pursuit-Evasion Problems. In Proc. of the 23rd International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2024), Auckland,
New Zealand, May 6 — 10, 2024, IFAAMAS, 9 pages.

1 INTRODUCTION

The deployment of security resources to detect, deter, and catch
criminals is a critical task in urban security [30, 32]. Statistics
show that police pursuits probably “injure or kill more innocent
bystanders than any other kind of force” [26]. Therefore, it is crucial
to come up with scalable approaches for effectively coordinating
various security resources, ensuring the swift apprehension of a
fleeing criminal to minimize harm and property damage. Due to the
adversarial nature between attackers and defenders, game-theoretic
models have been used to model various real-world urban security
scenarios. In particular, the pursuit-evasion game (PEG) has been
extensively employed to model the interactions between a team
of pursuers (e.g., police forces) and an evader (e.g., a criminal) on
graphs (e.g., urban street networks) [21, 38, 42, 43]. To effectively
solve PEGs under various settings, several methods, such as coun-
terfactual regret minimization (CFR) [47] and policy-space response
oracles (PSRO) [18], have been developed in the literature. Among
these algorithms, PSRO, a deep reinforcement learning algorithm,
provides a versatile framework for learning the (approximate) Nash
equilibria (NEs) of PEGs (refer to Section 3.2 for an introduction
of the PSRO framework). Furthermore, recent works have also in-
tegrated the pre-training and fine-tuning paradigm into the PSRO
framework to further enhance its scalability [20].

Although many existing works have achieved significant success,
they only focus on solving specific PEGs with predetermined initial


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

conditions, e.g., the initial locations of all players and exits, and the
time horizon of the game. Unfortunately, these conditions may vary
substantially in real-world scenarios, where crimes can occur at
any location in a city and at any time. When the initial conditions
change, existing algorithms must solve the new PEG from scratch,
which is computationally demanding and time-consuming [20],
restricting the real-world deployment of current algorithms. Thus,
there is an urgent necessity to develop a new approach capable of
solving different PEGs with varying initial conditions effectively.

To this end, we introduce Grasper: a GeneRAlist purSuer for
Pursuit-Evasion pRoblems, which can effectively solve different
PEGs by generating the pursuer’s policies conditional on the initial
conditions of the PEGs. Grasper consists of two critical components.
First, as the PEG is played on a graph, it is natural to use a graph
neural network (GNN) to encode the PEG with the given initial
conditions into a hidden vector. Then, inspired by recent work
on generalization over games with different population sizes [19],
we introduce a hypernetwork to generate the base policy for the
pursuer conditional on the hidden vector obtained by the GNN.
This generated base policy then serves as a starting point for the
pursuer’s best response policy training at each PSRO iteration.

To train the networks of Grasper, we find that naively applying
multi-task training [44] is inefficient. Furthermore, jointly training
the GNN and hypernetwork could be time-consuming as the GNN is
only used to encode the initial conditions which are fixed during the
game playing. To address these challenges, we propose an efficient
three-stage training method to train the networks of Grasper. First,
we introduce a pre-pretraining stage to train the GNN by using
self-supervised graph learning methods such as GraphMAE [15].
Second, we fix the GNN and pre-train the hypernetwork by using
a multi-task training procedure where the training data is sampled
from different PEGs with different initial conditions. In this stage,
to overcome the low exploration efficiency due to the pursuers’
random exploration and the evader’s rationality, we propose a
heuristic-guided multi-task pre-training (HMP) where a reference
policy derived by heuristic methods such as Dijkstra is used to
regularize the pursuer policy. Finally, we follow the PSRO procedure
and obtain the pursuer’s best response policy at each iteration by
fine-tuning the base policy generated by the hypernetwork.

In summary, we provide three contributions. First, we propose
Grasper which is the first generalizable framework capable of ef-
ficiently providing highly qualified solutions for different PEGs
with different initial conditions. Second, to efficiently train the net-
works of Grasper, we propose a three-stage training method: (i)
a pre-pretraining stage to train the GNN through GraphMAE, (ii)
a pre-training stage to train the hypernetwork through heuristic-
guided multi-task pre-training (HMP), and (iii) a fine-tuning stage
to obtain the pursuer’s best response policy at each PSRO itera-
tion. Finally, we perform extensive experiments, and the results
demonstrate the superiority of Grasper over different baselines.

2 RELATED WORK

Pursuit-evasion games (PEGs) have been extensively applied to
model various real-world problems such as security and robot-
ics [3, 14, 17, 22, 23, 33, 35]. To efficiently solve PEGs and differ-
ent variants, many algorithms such as value iteration [14] and

incremental strategy generation [42, 43] have been introduced.
Nonetheless, these methods encounter scalability issues as they
typically rely on linear programming. On the other hand, PEG can
be viewed as a particular type of two-player imperfect-information
extensive-form game (IIEFG). Thus, the algorithms used for solv-
ing large-scale IIEFGs, such as counterfactual regret minimization
(CFR) [47] and Policy-Space Response Oracles (PSRO) [18], have
been applied to tackle large-scale PEGs [21, 38]. However, when
solving large-scale PEGs using PSRO, there exist significant com-
putational challenges as it involves computing the best response
strategy multiple times. To mitigate this issue, recent research [20]
integrates the pre-training and fine-tuning paradigm into PSRO
to improve its scalability. Despite the success, all these algorithms
are tailored to solve a specific PEG with predetermined initial con-
ditions. When these conditions change, they must recompute the
NE strategy from scratch (one to two hours for a PEG on a 10 X 10
grid map [20]), which hinders their real-world applicability!. To
address this limitation, we propose Grasper, which uses PSRO to
compute the NE strategy and can generate different pursuers’ strate-
gies for different PEGs based on their initial conditions without
recomputing the NE strategy from scratch.

The generalizability of algorithms and models over different
games has gained increasing attention and remarkable progress has
been achieved in recent research. Neural equilibrium approximators
that directly predict the equilibrium strategy from game payoffs in
normal-form games (NFGs) have been theoretically proven PAC
learnable [7, 8] and are able to generalize to different games with
desirable solution quality [7-9, 24]. However, it remains under-
explored when going beyond NFGs. In this work, we make the first
attempt to consider the generalization problem in the domain of
PEGs, a type of game that has a wide range of real-world applica-
tions [14, 22] and is far more complicated than NFGs. We propose
a novel algorithmic framework that is able to efficiently solve dif-
ferent PEGs with varying initial conditions and demonstrate the
generalization ability through extensive experiments.

Our work is also related to self-supervised graph learning and
multi-task learning. Recent works have shown that generative self-
supervised learning [13] can be applied to graph learning and out-
perform contrastive methods which require complex training strate-
gies [25, 31], high-quality data augmentation [41], and negative
samples that are often challenging to construct from graphs [46].
Therefore, we employ the recent state-of-the-art, GraphMAE [15],
to learn a good representation of a PEG with the given initial con-
ditions. Multi-task learning [27, 44] has been applied to various
domains including natural language processing [6], computer vi-
sion [11], and reinforcement learning (multi-task RL) [34, 36, 40, 45].
Due to its strong generalizability, we employ multi-task RL for the
pre-training process, enabling the pre-trained policy to be quickly
fine-tuned for efficient policy development in new tasks.

Finally, our work is related to the multi-agent patrolling problem
where the evader often anticipates patrolling strategies and may
choose a target or a single path as an action [2, 4, 16, 29]. Conversely,
our pursuit-evasion game features simultaneous actions with the
evader unaware of the pursuer’s real-time locations.

!Note that classical heuristic algorithms such as Dijkstra are also less applicable owing
to this reason. Moreover, it is less meaningful to assume that there is at least one
pursuer at each exit as the pursuer’s resources are typically limited [32].



3 PROBLEM FORMULATION

In this section, we first present all the elements for defining the
PEGs. Then, we present the state-of-the-art (SOTA) method for
solving PEGs. Finally, we give the problem statement of this work.

3.1 Preliminaries

A pursuit-evasion game (PEG) is a two-player game played between
a pursuer and an evader, i.e., N = {p, e}. Following previous works
[21, 38, 43], we assume that the pursuer comprises n members
denoted as p = {1,2,...,n}, and the pursuer can obtain the real-
time location information of the evader with the help of tracking
devices. In reality, PEGs are typically played on urban road maps,
which can be represented by a graph G = (V, E), where V is the
set of vertices and E is the set of edges. Let V/ C V denote the
set of exit nodes from which the evader can escape and T the
predetermined time horizon of the game. At ¢ < T, the locations
of the evader and pursuer are denoted by lf and lf = (ll, ltz, l;‘),
respectively. Then, the history of the game at t is a sequence of
past locations of both players, ie., h = (I, lOP, ey lte—l’ lf_l). The
available action set for both players is the neighboring vertices of
the player’s current location, i.e., Ae(h) = N(If_;) and Ap(h) =
{42, M e N(l;_l),\ﬁ € p} where N (v) denotes the set
of neighboring vertices of vertex v. According to the definition of
history, we define the information set for each player as the set
consisting of indistinguishable histories. As the evader cannot get
the pursuer’s real-time location information, the information set of
the evader is defined as I, = {h|h = (lg, lg, lle, % ..., lte—l’ %)}, where
* represents any possible location of the pursuer. Although the
PEG is a simultaneous-move game, we can model it as an extensive-
form game (EFG) by assuming that the evader acts first and then
the pursuer commits without any information about the evader’s
current action. The pursuer’s information set can be defined as
Ip = {hlh = (lg, lop, lf_l,l‘f_l, %)} since the pursuer knows the
evader’s location but not the evader’s current action.

A behavior policy of a player assigns a probability distribution
over the action set for every information set belonging to the player.
Notice that the pursuer’s action space is combinatorial and expands
exponentially with the number of pursuer members. As a result,
directly learning a joint policy of the pursuer members would be
computationally difficult. To address this issue, instead of learning
a joint policy, previous works learn the individual policies either
through value decomposition [21] or global critic [20], which are
the paradigm of centralized training with decentralized execution
(CTDE) for the pursuers. Furthermore, previous works [20] also
introduce a new state representation ignoring the game’s historical
information, which leads to improved performance. In our work,
we follow the previously mentioned conventions to define the ob-
servations and individual policies for the pursuers.

At each time step ¢, each pursuer member gets an observation
oi = (lp L0 t) € 0!, which includes all players’ current locations,
the id of the pursuer member, and the time step. Each pursuer
member i constructs a policy? 7 : O' — A(4A;), which assigns a
probability distribution over the action set Ai(oi) =N (li), Vi€ p.
As for the evader’s policy, we follow previous works [37, 38] that

2All the pursuer members share one policy. As the observations include pursuers’ ids,
different pursuer members can have different behaviors [10]. A denotes the simplex.

employ High-Level Actions for the evader. That is, the evader only
chooses the exit node to escape from and then samples one shortest
path from the initial location to the chosen exit node, instead of
deciding where to go in the next time step. Specifically, at time step
t = 0, the evader determines an exit node v’ € V' using the policy
7¢:V — A(V'), samples a shortest path from [§ € V to the chosen
exit node o', and then takes actions based on the path.

Here, we give some remarks on the assumption of High-Level
Actions of the evader. (i) In our game setting, the evader lacks
real-time access to the pursuers’ locations, requiring the evader to
act without any information about their whereabouts. Therefore,
sampling one path for the evader would not lose much information
compared with the case where the evader acts step by step. (ii)
Training the pursuer against an evader who chooses the shortest
path, a worst-case scenario for the pursuer, enhances the robustness
of the pursuer’s policy. (iii) Though it is a simplification, the problem
setting remains highly complex due to the multiple exits and diverse
players’ initial conditions, enlarging the task space for the pursuer,
as detailed in the Introduction and Appendix A Q2.

In summary, given a graph G with the specific set of exit nodes
V’, the initial locations of the pursuer and evader (lg , lg ), and the
predetermined time horizon T, we can define a specific PEG as G =
(G, v/, lop s lg, T). In the PEG, players will get the non-zero rewards
only when the game is terminated. The termination conditions
include three cases: (i) the pursuer catches the evader within the
time horizon T, i.e., lf € lf,t < T; (ii) the evader escapes from
an exit node within the time horizon T, i.e, If € V’',t < T; (iii)
the game reaches the time horizon T. Let ¢t < T be the time step
that the game is terminated. Then, for all t < ¢/, rf = rf = 0.
For t = t/, in cases (i) and (iii), the pursuer receives a reward

rf = 1 while the evader incurs a penalty r{ = —1. In case (ii),
the evader gains a reward r{ = 1, and the pursuer suffers a loss
rf = —1. Given the exit node chosen by the evader v/ ~ 7€, we

have VP (z?,v") = E| Ztho rf] for the pursuer and V¢(n?,0’) =
E[ Ztho re ] for the evader, where the expectation is taken over
the trajectories induced by 7?. Then, for the policy pair (=2, 7€),
we have VP (7P, %) = By ne|[VP(nP,0")] for the pursuer and
Ve(nP, n%) = Eyge [V¢ (P, 0")] for the evader.

3.2 Policy-Space Response Oracles

Algorithm 1: PSRO for a specific PEG G

I = ('}, 10 = {xg}, Us, of), of;

2 for epochk=1,2,---K do

3 Compute the evader’s BR policy n]i against U;f,p
4 Compute the pursuer’s BR policy ﬁl‘t: against of _;
5 Expansion: HZ = Hi_l U {ﬁf}, Hi = Hz_l U {7{2};
6 Update meta-game matrix Uy through simulation;

7 Compute olf and 0]‘2 using a meta-solver on Ug;
.1? 11€ e
s Return: HK, HK, 0'112, o

As one of the popular algorithms, PSRO [18] can be employed
to solve a PEG G, shown in Algorithm 1. It commences with each



(a) Graphical Rep. (b) Pre-pretraining

Pooling

% Evader ® Pursuer @ Exit

(c) Pre-training (HMP)

Rep. Layer

(d) Fine-tunning

Meta Strategy «—— M

lBF
\ 4

—> —+ Hypernetwork Solve ’

SimulateT

—/
f S ::E Oi—’l 0 — m — Oracle —— Policy Space
t P
Trained via GraphMAE Expand

Figure 1: Architecture and training pipeline of Grasper.

player using a random policy (Line 1) and then expands the policy
spaces of the pursuer and evader in an iterative manner. At each
epoch 1 < k < K: (1) Compute the best response (BR) policies of

the pursuer 7 and evader J'[]i and add them to their policy spaces

k
H‘Z and Hz (Line 3-5); (2) Construct a meta-game Uy using all
policies in each player’s policy space (Line 6); (3) Compute the
meta-strategy of the pursuer o-lf € A(Hi ) and evader a]i € A(Hli)
using a meta-solver (e.g., PRD [18]) on the meta-game Uy (Line 7).
These processes are repeated for K epochs and then output the final
meta-strategy across the players’ policy spaces (Line 9).

As the evader’s policy is a probability distribution over exit
nodes, to compute the BR policy (Line 3), we only need to estimate
the value of each exit node through simulations, i.e., V€(v") =
E;rP~a;’c’71 [Ve(ll'p, v')], Vo’ € V’. Then, the evader’s BR policy is
constructed by applying softmax operation on the values of all the
exit nodes. For the pursuer, computing the BR policy is to solve
the problem nf = argmaxye Epe ge [VP(xP, 7¢)] (Line 4). As
there are multiple pursuer members, we can use MAPPO [39] to
learn the BR policy. In the traditional PSRO algorithm, the pursuer’s
BR policy is learned from scratch, i.e., the BR policy is randomly
initialized, which is inefficient. To address this issue, recent works
integrate the pre-training and fine-tuning paradigm into PSRO to
improve learning efficiency [20]. Specifically, before running PSRO,
a base pursuer policy is trained through multi-task RL where each
task is generated with a randomly initialized evader’s policy. Then,
at each PSRO epoch, the pursuer’s BR policy is initialized with the
pre-trained base policy, rather than learning from scratch, which
can largely improve the learning efficiency of the PSRO algorithm.

3.3 Problem Statement

Although PSRO has been successfully applied to solve PEGs, un-
fortunately, previous works typically focus on solving a specific
PEG with predetermined initial conditions which are not always
fixed in real-world scenarios: (i) The initial locations of the pursuers
and the evader (IOP , 1) are not always fixed since attacks (thieves,
crimes, terrorists) can occur at any time and location in a city; (ii)
The locations of the exit nodes V' may change due to temporary
closures and openings; (iii) The time horizon T might vary, as the
time required to pursue the evader is not always the same. When
any of the initial conditions change, the PEG adapts accordingly.
As a consequence, current algorithms can only solve the modified
PEG from scratch, leading to significant time consumption and inef-
ficiency. Even the SOTA method presented in the previous section
- PSRO with pre-trained base pursuer policy - still suffers from

such an issue as the base policy is pre-trained under the premise
that the initial condition of the PEG is fixed. In other words, a new
base policy must be pre-trained from scratch for the modified PEG
since the original base policy may not be a good starting point for
the pursuer’s BR policy in the modified game (even worse than a
randomly initialized BR policy). In this paper, we aim to address this
issue by developing a generalist pursuer capable of learning and
adapting to different PEGs with varying initial conditions without
the need to restart the training process from the beginning.

4 GRASPER

In this section, we introduce Grasper, illustrated in Figure 1. We first
present the architecture of Grasper including several innovative
components, and then the training pipeline which consists of three
stages to efficiently train the networks of Grasper.

4.1 Architecture

4.1.1 Graphical Representations of PEGs. To generate the pur-
suer’s policy based on the specific PEG, we propose to take the
specific PEG as an input of a neural network. To this end, we encode
the initial conditions of a PEG except for T into a graph (Figure 1(a)).
The time horizon T can be directly fed into the neural network.
Specifically, given a PEG G = (G, V', lop ,1¢,T), these initial condi-
tions V’, IOP and [§ can be encoded into the graph G by associating
each node of the graph with a vector consisting of the following
parts: (i) a binary bit {0, 1} where 1 indicates that the node is an
exit, (i) a binary bit {0, 1} where 1 signifies that the evader’s ini-
tial location is this node, (iii) the number of pursuers on this node
{0, ..., n} (the total number of pursuers across all nodes equals to
n), and (iv) additional information regarding the topology of the
graph, such as the degree of the node. This provides a universal
representation of any PEG with any initial condition.

4.1.2 Game-conditional Base Policies Generation. After rep-
resenting a PEG as a graph, it is natural to leverage a graph neural
network (GNN) to encode the PEG with the given initial conditions
into a hidden vector. As shown in Figure 1(b), we first feed the
graphical representation of the initial conditions into the GNN and
get the representations of all the nodes of the graph. Then, we use
a pooling operation to integrate all the node representations into a
hidden vector which will be concatenated with the time horizon T
to get the final representation of the PEG. Next, to generate a base
policy conditional on the PEG, we introduce a hypernetwork [12],
a neural network that takes the final representation of the PEG as



input and outputs the parameters (weights and biases) of the policy
network (Figure 1(c)). Finally, the base policy network serves as a
starting point for the training of the pursuer’s best response policy
in each iteration of the PSRO algorithm (Figure 1(d)).

4.1.3 Observation Representation Layer. As described earlier,
the pursuer’s policy is a mapping that associates each observation
with a probability distribution over the available action set. Notably,
an observation consists of the positions of both players. Represent-
ing these positions by mere index numbers of vertices in the graph
does not provide much useful information for training, though.
Therefore, we seek a more compact and meaningful representa-
tion of these observations. Previous works [20, 38] typically train
a node embedding model for this purpose. Unfortunately, such a
model is often tailored and trained for a specific graph, limiting its
generalizability to other graphs. This lack of generalizability makes
this method unsuitable for our problem. To address this issue, we
adopt a representation layer to encode the pursuer’s observations,
an approach that is not limited to a specific graph.

As given in Section 3.1, the pursuer’s observation oi = (lf R lf, i,t)
includes three parts: the players’ current locations (l‘;7 ,17), the pur-
suer member’s id i, and the current time step t. Thus, the repre-
sentation layer consists of three components, each of which is a
“torch.nn.Embedding” which has been extensively used to encode
an integer to a compact representation. The outputs of the three
components are concatenated to obtain the representation of the
pursuer’s observation. This representation layer will be trained
jointly with the hypernetwork during the pre-training process.
Please refer to Appendix B for details on the architecture of the
representation layer, the GNN, and the hypernetwork.

Intuitively, the generalization ability of Grasper benefits from
several designs of our architecture. First, the graphical represen-
tation offers a universal representation of any PEG, regardless of
the graph’s topology. Second, GNN can encode different PEGs into
fixed-size hidden vectors, which can be directly fed into the hy-
pernetwork (otherwise, additional techniques are required if the
sizes of the hidden vectors are varied). Finally, the hypernetwork is
designed to generate a specialized policy tailored to a given PEG.

4.2 Training Pipeline

Now we introduce the training pipeline of Grasper, which involves
three stages: pre-pretraining, pre-training, and fine-tuning. Prior to
delving into the specifics, we first describe how the training set is
generated. The training set J should consist of different PEGs for
training. To this end, we generate the training set by randomizing
the initial conditions, denoted by (G, V’, IOP , lg, T). However, this
approach may yield certain games that lack meaningful training
value. For example, when the evader’s initial location is in such close
proximity to the exit nodes that the pursuer becomes incapable of
capturing the evader regardless of its movements. To exclude these
trivial cases, we introduce a filter condition when generating the
training set: the shortest path from the evader’s initial location to
any exit nodes must exceed a predetermined length.

4.2.1 Stage I: Pre-pretraining. As the hypernetwork takes a fea-
ture vector as input, we first use a GNN to encode the graphical rep-
resentation of the PEG into a fixed-size hidden vector. As the GNN

is solely employed to derive the effective representation from the
PEG’s graphical interpretation, we introduce a pre-pretraining stage
(Figure 1(b)) to pre-train the GNN before the actual pre-training
stage. This approach is more efficient compared to jointly training
the GNN and hypernetwork in the pre-training stage. Specifically,
for each game in the training set G € 7, let Ag and X g denote the
adjacency matrix and feature matrix of the underlying graph, respec-
tively. We first obtain the latent code matrix Hg = fonn(Xg, Ag)
by the GNN and train the GNN via any self-supervised graph learn-
ing method (we use the recent SOTA method, GraphMAE [15]).
Then, we get the hidden vector by pooling the latent code matrix
hg = pool(Hg), which will be fed into the hypernetwork.

Algorithm 2: Pre-training

1 Initialize Grasper and the episode buffer D « 0;
2 for train epoch =1,2,--- do

3 Uniformly sample ¢; games from the training set J;

4 for each of the c; games G do

5 Randomly generate c; evader’s policies;

6 Generate pursuer’s policy ng «— Grasper(G);

7 for each of the cy evader’s policies ¢ do

8 Sample data using 7€, ﬂg, and 7?;

9 Add the data into the episode buffer D;
10 Train the networks by optimizing the loss function L;
1 Clear the episode buffer D « 0;

4.2.2 Stage II: Pre-training. Given a fixed evader’s policy in a
specific PEG, computing the pursuer’s best response policy can be
seen as an RL task. Thus, we can apply the multi-task RL algorithm
to guide the pre-training process, which is shown in Algorithm 2.
Different from previous work [20], in these RL tasks, except for
the change in the evader’s policy, the game’s initial conditions also
change. To obtain these RL tasks for pre-training, we first randomly
sample c¢; games from the training set (Line 3), and then for each
game, we randomly sample ¢z evader’s policies (Line 5). Once the
game and the evader’s policy are fixed, the RL task is generated.
During pre-training, for each game, we first feed the hidden vector
of the game (obtained by the trained GNN) and the time horizon
into the hypernetwork to generate the pursuer’s base policy, and
then for each evader’s policy, we collect the training data using
the pursuer’s base policy (accompany by the representation layer)
into the episode buffer. Finally, we train the hypernetwork and
the representation layer jointly based on the episode buffer (Lines
6-9). To deal with the multiple pursuer members cases, we employ
MAPPO [39] as the underlying RL algorithm.

However, we found that simply applying the MAPPO under the
multi-task learning framework can result in low efficiency due to
random exploration in the environment. To clarify, consider the
example illustrated in Figure 2, which shows the need for a more
efficient pre-training method. Assume that the evader’s policy is to
take the shortest path to one of the exits (denoted by the red path). If
the pursuer explores the environment randomly (the orange path),
it will probably lose the game and then receive a negative reward.
This situation can occur frequently at the beginning of the pre-
training process because the pursuer’s initial policy is invariably



random. To mitigate this exploration inefficiency>, we propose a
novel scheme: heuristic-guided multi-task pre-training (HMP).

»@ Succeed!

—> A P = +1
Rife fence |
\ .
Guided
* ® Exploration
® Failed!
P =-1

% Evader @ Pursuer @ Exit

Figure 2: Illustration of HMP.

Note that in the RL tasks used for pre-training, we can acquire
the evader’s policy, which can be used to guide the exploration
of the pursuer’s policy. Specifically, given the exit node chosen
by the evader’s policy 7€, we first induce a reference policy #*
(represented by the green path) for the pursuer using heuristic
methods such as the Dijkstra algorithm. Then, apart from the ac-
tions sampled by the generated policy ﬂg (Line 6), we also sample
the reference actions using the reference policy 7 and add the
data to the training buffer (Lines 8-9). Let L(0) denote the original
loss function for training the actor in the MAPPO algorithm. The
HMP is implemented by introducing an additional loss into the
original loss function: L = L(0) + aKL(x”||#?) where « € [0,1]
controls the weight of the guidance of the reference policy and
KL represents the Kullback-Leibler divergence (for the reference
policy 7P, the action probability distribution is obtained by setting
the probability of the reference action to 1 while all others to 0).

4.2.3 Stage lll: Fine-tuning. In this phase, we integrate the pre-
trained pursuer policy into the PSRO framework, as shown in Al-
gorithm 3. The pursuer’s policy ﬂ'g is initialized using the output
neural network from the pre-trained Grasper, which takes the graph-
ical representation of the specific PEG as an input. Simultaneously,
the evader’s policy #{ is randomly initialized (Line 2). Then we
follow the standard PSRO framework: in each iteration k, the best
response (BR) policies for both players, ﬂlf and 7¢, are computed
using their respective BR oracles (Lines 4-6). These BR policies are
then added to the policy sets H’Z and Hz (Line 7), and the meta-game
matrix Uy is updated through simulation (Line 8). Finally, the meta
distribution (of, az) is computed using any meta-solver (Line 9).
The BR oracles for both players are the important components
of the PSRO algorithm. The evader’s BR oracle follows the standard
PSRO algorithm given in Algorithm 1. The key difference between
our fine-tuning process and the standard PSRO algorithm lies in
the training of the pursuer’s BR policy, which is highlighted in
blue. Specifically, given the pre-trained policy Jfg conditional to
the initial conditions, we can use it as the starting point for the
3Notice that many exploration methods in RL such as RND [5] typically encourage

the policy to explore novel states of the environment, which are different from our
design where random exploration is less favored.

computation of the pursuer’s BR policy (Line 5), rather than training
from scratch. This allows us to simply fine-tune the pre-trained
policy ng over a few episodes (Line 6) to quickly obtain the BR
policy, significantly enhancing the learning efficiency.

Algorithm 3: Fine-tuning

1 Require: Grasper, PEG G;
2 Hg = {IZ'OP « Grasper(G)}, II§ = {x{}, Uo, og, ag;
3 for epoch k=1,2,---K do

> ; e ; .

4 Compute the evader’s BR policy 7 against 05_1,
5 Initialize the pursuer’s BR policy nf — ﬂop ;
6 Train ”lfc] against o, for few episodes;

ion- TP = 112 e _ 178 ey.
7 Expansion: I, =1L, U {ﬁf}, Iy =1, U {nk},
8 Update meta-game matrix Uy through simulation;
9 Compute crlf and 0]‘2 using a meta-solver on Uy;

=

.TP e e
o Return: HK, HK, 011;, O

5 EXPERIMENTS

In this section, we perform experiments to evaluate the performance
of Grasper and the effectiveness of different components*.

5.1 Setup

Hyperparameters. The number of pursuers is n = 5, the number
of exit nodes is 8, the time horizon T is 6 < T < 10, and the number
of pre-training episodes is 20 million (20M). For PSRO, the number
of episodes used for training the best response is 10. We conduct
experiments on four maps: the grid map with size 10 x 10, the
scale-free graph with 300 nodes, the Singapore map [38] with 372
nodes, and the Scotland-Yard map [28] with 200 nodes. To simulate
the situation where a road might be temporally blocked due to
congestion or traffic accidents, we set the probability of an edge
between two nodes to 0.8 for the grid map, 0.9 for the Singapore
map, and 1.0 (i.e., no congestion) for the other two maps. More
details on the hyperparameters can be found in Appendix B.
Worst-case Utility. Given that a PEG is a zero-sum game, we use
the pursuer’s worst-case utility (as the evader always chooses the
shortest path from the initial location to the chosen exit) to measure
the quality of the solution: u? = E;p_gp re~geE[rP], where the
inner expectation is taken over the trajectories induced by 7 and
¢ which are respectively sampled according to o and o°.
Training and Test Sets. (1) We generate || = 1000 games as
the training set. During the generation, the minimum length of
the evader’s shortest path is set to 6 for the grid map and 5 for
other maps. (2) We create two test sets, 7; and Z2, each containing
30 games. (i) 77 includes the games sampled from the training set
I c I (in-distribution test). (ii) Z2 contains the games distinct from
the training set 7, N 7 = 0 (out-of-distribution test). To avoid trivial
cases (the games that are either too difficult or too simple for the
pursuers), we constrain the zero-shot performance of Grasper (i.e.,
the worst-case utility of the generated policy without fine-tuning)
within the range: [0.8,0.9] for 73 and [0.1,0.2] for Z5.

“4The code is available at https://github.com/IpadLi/Grasper.



Grasper MT-PSRO MT-PSRO-Aug PSRO Random
1.00 1.00
. 075 |Iy = . 075 | I
= 0.50 = 050
= 03 AT B o e
g 0.00 2 0.00 f
2025 g-025
£ -050 '4/"‘/_/\’\/"_/ £-050
z —0.75 T T T T T =z —0.75
-1.00 -1.00
0 100 200 300 400 500 0 200 400 600 800
Runtime (s) Runtime (s)
(a) Grid Map
Grasper MT-PSRO MT-PSRO-Aug PSRO Random
1.00 1.00
2 075 I .. 075 | 12
= 050 = 0.50
S 025 S 025 =
g 0.00 % 0.00
7025 g -0.25
E—O.SO 2—0.50
£075| e 2075 e e s e e
-1.00 ; 1 1 1 1 1 -1.00
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Runtime (s) Runtime (s)

(c) Singapore Map

Grasper MT-PSRO MT-PSRO-Aug PSRO Random
1.00 1.00
o 075 | Iy L. 075 | I
= 0.50 = = 050
S5 025 S 025 —————————
Z 0.00 Z 0.00
$-0.25 ¢ -0.25
Z -0.50 Z —0.50
Z 075 Z 075 e
-1.00 -1.00 i i i i
0 50 100 150 200 250 300 350 400 0 100 200 300 400
Runtime (s) Runtime (s)
(b) Scale-Free Map
Grasper MT-PSRO MT-PSRO-Aug PSRO Random
1.00 1.00
L. 075 |1 .. 075 |12
Z 05 £ 050
S 025 S 025
g 0. 2 0.00 |
o <
§ -0.25 $-0.25
PR = ——— -
-1.00 -1.00
0 200 400 600 800 0 200 400 600 800
Runtime (s) Runtime (s)

(d) Scotland-Yard Map

Figure 3: Evaluation performance. The shaded area represents the standard error.

Baselines. (i) Multi-task PSRO (MT-PSRO): the state-of-the-art
(SOTA) approach adapted from [20], which also uses the observa-
tion representation layer and HMP. (ii) MT-PSRO with augmen-
tation (MT-PSRO-Aug): the hidden vector obtained from the pre-
trained GNN and the time horizon are concatenated to the output
of the observation representation layer. (iii) PSRO: the standard
PSRO method. (iv) Random: the pursuer randomly selects actions.

5.2 Results

The experimental results are summarized in Figure 3. The x-axis is
the running time. For the purpose of a fair comparison, apart from
the running time of the fine-tuning stage (the PSRO procedure), we
also include the running time of pre-pretraining and pre-training
(called the pre-training time for convenience). Since the games
in the training set are uniformly randomly sampled during pre-
training, we approximate the pre-training time of each game by
averaging the total pre-training time over the training set. Then,
for each testing game, we add the pre-training time to the running
time (the horizontal gap between 0 and the start of the line). Note
that the amortized pre-training time for Grasper, MT-PSRO, and
MT-PSRO-Aug is similar since the pre-pretraining time is very short
(Table 2). From the results, we can draw several conclusions.

(i) Given a fixed number of episodes for the fine-tuning process,
Grasper can start from and converge to a higher average worst-case
utility than the baselines, although it takes a certain pre-training
time, demonstrating the effectiveness of the pre-pretraining and pre-
training in accelerating the PSRO procedure. Note that MT-PSRO
and MT-PSRO-Aug also employ pre-pretraining or pre-training, but
they perform worse than Grasper, showcasing the superiority of
Grasper. (ii) For a fair comparison, MT-PSRO-Aug also integrates
the information about the initial conditions of the PEGs. The results
clearly show the necessity of the hypernetwork in Grasper. This can

be also partly verified by comparing MT-PSRO and MT-PSRO-Aug
where their performance is comparable, meaning that naively inte-
grating the information about the initial conditions does not bring
much benefit and novel designs are necessary. (iii) An interesting
result is that even on the test set 77 (in-distribution test), MT-PSRO
and MT-PSRO-Aug, the strongest baselines, perform worse on all
the other maps than on the grid map. We hypothesize the reason
is that the other maps are more heterogeneous than the grid map.
For example, the degree of the nodes varies from 1 to 16 in the Sin-
gapore map while it remains between 2 to 4 in the grid map. Thus,
the games generated on the Singapore map share much less simi-
larity. In this sense, the information about the initial conditions is
particularly important when solving different PEGs. (iv) In all cases,
the performance of Grasper is much more stable than the baselines
(smaller standard error) as Grasper can generate distinct policies for
different PEGs. In contrast, other baselines either entirely ignore
or naively integrate the information about the initial conditions
of the PEGs, which renders them hard to generalize to different
PEGs, leading to larger performance variance than Grasper. (v) The
results on the test set 7 show that Grasper can solve unseen games,
exhibiting better generalizability than the baselines.

5.3 Ablations

Effectiveness of Different Modules. First, we study the contri-
bution of HMP and the observation representation layer (Rep.) to
the performance of Grasper, as shown in Table 1. The results show
that we can get better performance (high worst-case utility and
small standard error) only when combining the two components,
meaning that both two components are indispensable for Grasper.
Effectiveness of Pre-pretraining. Next, we investigate the ef-
fectiveness of the pre-pretraining stage in accelerating the whole
training procedure of Grasper. Since jointly training GNN and the



Table 1: Ablation studies. The results are obtained in the grid
map. v’ means the module is used.

HMP v v

11 Rep. v v
Utility ‘ 0.90 +£0.01 —-0.54+0.06 —0.05+0.17 —0.52 £ 0.08
HMP v v

I, Rep. v v

Utility ‘ 0.45+0.04 —0.60+0.06 —0.64 +0.11 —0.63 +0.06

other parts of Grasper for 20M pre-training episodes requires a
long running time, in this ablation study, we focus on the first 2M
pre-training episodes and compare the running time of Grasper
with pre-pretraining (w/ PP) and without pre-pretraining (w/o PP).
The training curves are shown in Figure 4, which shows that using
pre-pretraining can significantly accelerate the training procedure
(3.9 times faster than without using pre-pretraining).

3‘ —0 3 3.9x

S 04

)

£

£ 05

=

= 0.6 |- —— w/o PP w/ PP

0 10000 20000 30000 40000

Time (s)

Figure 4: Pre-training curves.

The quantitative values of the running time of the pre-pretraining
and pre-training are given in Table 2. As the pre-pretraining time
(304.2 seconds) is much shorter than the pre-training time (9954.9
seconds), the curves of Grasper, MT-PSRO, and MT-PSRO-Aug
shown in Figure 3 start from a similar position in the x-axis.

Table 2: Running time (second).

‘ w/o PP ‘ w/ PP

Pre-pretraining | N/A 304.2
Pre-training 39977.3 | 9954.9

Total | 39977.3 | 10259.1 (3.9x)

Influence of Evader’s Initial Location. We perform some ex-
periments using Grasper to provide some insights into the PEG.
In Figure 5, we present the pursuer’s utility when the evader ran-
domizes the initial location over the grid map. We found that in
some areas the pursuers can have high utility. For example, in the
top-right of the left figure, there are three pursuers and only one

exit, which means it could be hard for the evader to escape. In the
bottom-right of the right figure, as the pursuer’s initial location

is near the two exits, it could be easy for the pursuer to catch the
evader, even though there is only one pursuer in this area. The re-
sults reflect the intuition that Grasper can generate distinct policies
for different games and hence, the performance is more stable.

1.00 1.00

)
0.75 5 8 o 075 =
0.50 = 0.50 =
0.25 3 6 0.25 E
0.00 § >y 0.00 §
-0.25 0 -0.25 2
-0.50 g 2 -0.50 g
-0.75 -0.75
—1.003 0 —1.003

2 4 6 8
X

Figure 5: Zero-shot worst-case utility of the pursuer for each
possible evader’s initial location. Red dots are exits and blue
dots are pursuers’ initial locations.

6 CONCLUSIONS

In this work, we investigate how to efficiently solve different PEGs
with varying initial conditions. First, we propose a novel gener-
alizable framework, Grasper, which includes several critical com-
ponents: (i) a GNN to encode a specific PEG into a hidden vector,
(ii) a hypernetwork to generate the base policies for the pursuers
conditional on the hidden vector and time horizon, (iii) an observa-
tion representation layer to encode the pursuers’ observations into
compact and meaningful representations. Second, we introduce
an efficient three-stage training method which includes: (i) a pre-
pretraining stage that learns robust PEG representations through
GraphMAE, (ii) a heuristic-guided multi-task pre-training stage
that leverages a reference policy derived from heuristic methods
such as Dijkstra to regularize pursuer policies, and (iii) a fine-tuning
stage that utilizes PSRO to generate pursuer policies on designated
PEGs. Finally, extensive experiments demonstrate the superiority
of Grasper over baselines in terms of solution quality and general-
izability. To the best of our knowledge, this is the first attempt to
consider the generalization problem in the domain of PEGs. Future
directions include (i) more efficient task sampling strategies for
pre-training, e.g., AdA [1], (ii) a model capable of generalizing to
different PEGs with different underlying graph topologies, e.g., gen-
eralizing from grid maps to scale-free maps, and (iii) a model capable
of tackling more complex settings, e.g., learning-based evader.

ACKNOWLEDGMENTS

This work is supported by the National Research Foundation, Singa-
pore under its Industry Alignment Fund - Pre-positioning (IAF-PP)
Funding Initiative. Any opinions, findings and conclusions, or rec-
ommendations expressed in this material are those of the author(s)
and do not reflect the views of National Research Foundation, Sin-
gapore. Youzhi Zhang is supported by the InnoHK Fund. Hau Chan
is supported by the National Institute of General Medical Sciences
of the National Institutes of Health [P20GM130461], the Rural Drug
Addiction Research Center at the University of Nebraska-Lincoln,
and the National Science Foundation under grant IIS:RI #2302999.
The content is solely the responsibility of the authors and does not
necessarily represent the official views of the funding agencies.



REFERENCES

(1]

(2]

[11]
[12
[13

[14]

[15

[16]

[17

(18]

[19]

[20

[21]

[22]

[23

[24]

Adaptive Agent Team, Jakob Bauer, Kate Baumli, Satinder Baveja, Feryal Be-
hbahani, Avishkar Bhoopchand, Nathalie Bradley-Schmieg, Michael Chang, Na-
talie Clay, Adrian Collister, Vibhavari Dasagi, Lucy Gonzalez, Karol Gregor,
Edward Hughes, Sheleem Kashem, Maria Loks-Thompson, Hannah Openshaw,
Jack Parker-Holder, Shreya Pathak, Nicolas Perez-Nieves, Nemanja Rakicevic,
Tim Rocktéschel, Yannick Schroecker, Jakub Sygnowski, Karl Tuyls, Sarah York,
Alexander Zacherl, and Lei Zhang. 2023. Human-timescale adaptation in an
open-ended task space. arXiv preprint arXiv:2301.07608 (2023).

Noa Agmon, Gal A Kaminka, and Sarit Kraus. 2011. Multi-robot adversarial
patrolling: facing a full-knowledge opponent. Journal of Artificial Intelligence
Research 42 (2011), 887-916.

Shaunak D Bopardikar, Francesco Bullo, and Joao P Hespanha. 2008. On discrete-
time pursuit-evasion games with sensing limitations. IEEE Transactions on Ro-
botics 24, 6 (2008), 1429-1439.

Jan Buermann and Jie Zhang. 2022. Multi-robot adversarial patrolling strategies
via lattice paths. Artificial Intelligence 311 (2022), 103769.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. 2018. Exploration
by random network distillation. In ICLR.

Ronan Collobert and Jason Weston. 2008. A unified architecture for natural
language processing: Deep neural networks with multitask learning. In ICML.
160-167.

Zhijian Duan, Wenhan Huang, Dinghuai Zhang, Yali Du, Jun Wang, Yaodong
Yang, and Xiaotie Deng. 2023. Is Nash equilibrium approximator learnable?. In
AAMAS. 233-241.

Zhijian Duan, Yunxuan Ma, and Xiaotie Deng. 2023. Are equivariant equilibrium
approximators beneficial? arXiv preprint arXiv:2301.11481 (2023).

Xidong Feng, Oliver Slumbers, Ziyu Wan, Bo Liu, Stephen McAleer, Ying Wen,
Jun Wang, and Yaodong Yang. 2021. Neural auto-curricula in two-player zero-sum
games. In NeurIPS. 3504-3517.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and
Shimon Whiteson. 2018. Counterfactual multi-agent policy gradients. In AAAL
2974-2982.

Ross Girshick. 2015. Fast R-CNN. In ICCV. 1440-1448.

David Ha, Andrew M. Dai, and Quoc V. Le. 2017. HyperNetworks. In ICLR.
Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick.
2022. Masked autoencoders are scalable vision learners. In CVPR. 16000-16009.
Karel Horak and Branislav Bosansky. 2017. Dynamic programming for one-sided
partially observable pursuit-evasion games. In ICAART. 503-510.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang,
and Jie Tang. 2022. GraphMAE: self-supervised masked graph autoencoders. In
KDD. 594-604.

Li Huang, MengChu Zhou, Kuangrong Hao, and Edwin Hou. 2019. A survey of
multi-robot regular and adversarial patrolling. IEEE/CAA Journal of Automatica
Sinica 6, 4 (2019), 894-903.

Linan Huang and Quanyan Zhu. 2021. A dynamic game framework for rational
and persistent robot deception with an application to deceptive pursuit-evasion.
IEEE Transactions on Automation Science and Engineering 19, 4 (2021), 2918-2932.
Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl
Tuyls, Julien Pérolat, David Silver, and Thore Graepel. 2017. A unified game-
theoretic approach to multiagent reinforcement learning. In NeurIPS. 4190-4203.
Pengdeng Li, Xinrun Wang, Shuxin Li, Hau Chan, and Bo An. 2023. Population-
size-aware policy optimization for mean-field games. In ICLR.

Shuxin Li, Xinrun Wang, Youzhi Zhang, Wanqi Xue, Jakub Cerny, and Bo An.
2023. Solving large-scale pursuit-evasion games using pre-trained strategies. In
AAAIL 11586-115%4.

Shuxin Li, Youzhi Zhang, Xinrun Wang, Wangi Xue, and Bo An. 2021. CFR-MIX:
Solving imperfect information extensive-form games with combinatorial action
space. In IJCAI 3663-3669.

Xiuxian Li, Min Meng, Yiguang Hong, and Jie Chen. 2022. A survey of decision
making in adversarial games. arXiv preprint arXiv:2207.07971 (2022).

Victor G Lopez, Frank L Lewis, Yan Wan, Edgar N Sanchez, and Lingling Fan.
2019. Solutions for multiagent pursuit-evasion games on communication graphs:
Finite-time capture and asymptotic behaviors. IEEE Transactions on Automatic
Control 65, 5 (2019), 1911-1923.

Luke Marris, Ian Gemp, Thomas Anthony, Andrea Tacchetti, Siqi Liu, and Karl
Tuyls. 2022. Turbocharging solution concepts: Solving NEs, CEs and CCEs with

[25

[26

[27

[28

[29

@
=

[31

(32]

[33

[34

@
2

[36

(37]

(38]

[39

=
=

[41

[42

[43

[44

[46

[47

neural equilibrium solvers. In NeurIPS. 5586-5600.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. GCC: Graph contrastive coding for graph
neural network pre-training. In SIGKDD. 1150-1160.

Frederick P Rivara and Christopher D Mack. 2004. Motor vehicle crash deaths
related to police pursuits in the United States. Injury Prevention 10, 2 (2004),
93-95.

Sebastian Ruder. 2017. An overview of multi-task learning in deep neural net-

works. arXiv preprint arXiv:1706.05098 (2017).
Martin Schmid, Matej Morav¢ik, Neil Burch, Rudolf Kadlec, Josh Davidson,

Kevin Waugh, Nolan Bard, Finbarr Timbers, Marc Lanctot, G Zacharias Hol-
land, Davoodi Davoodi, Alden Christianson, and Michael Bowling. 2023. Student
of Games: a unified learning algorithm for both perfect and imperfect information
games. Science Advances 9, 46 (2023), eadg3256.

Efrat Sless, Noa Agmon, and Sarit Kraus. 2014. Multi-robot adversarial patrolling:
facing coordinated attacks. In AAMAS. 1093-1100.

Milind Tambe. 2011. Security and Game Theory: Algorithms, Deployed Systems,
Lessons Learned. Cambridge University Press.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou,
Eva L Dyer, Remi Munos, Petar Velickovi¢, and Michal Valko. 2022. Large-scale
representation learning on graphs via bootstrapping. In ICLR.

Jason Tsai, Zhengyu Yin, Jun-young Kwak, David Kempe, Christopher Kiek-
intveld, and Milind Tambe. 2010. Urban security: Game-theoretic resource allo-
cation in networked domains. In AAAIL 881-886.

Rene Vidal, Omid Shakernia, H Jin Kim, David Hyunchul Shim, and Shankar
Sastry. 2002. Probabilistic pursuit-evasion games: Theory, implementation, and
experimental evaluation. IEEE Transactions on Robotics and Automation 18, 5
(2002), 662-669.

Tung-Long Vuong, Do-Van Nguyen, Tai-Long Nguyen, Cong-Minh Bui, Hai-
Dang Kieu, Viet-Cuong Ta, Quoc-Long Tran, and Thanh-Ha Le. 2019. Sharing
experience in multitask reinforcement learning. In IJCAIL 3642-3648.

Yuanda Wang, Lu Dong, and Changyin Sun. 2020. Cooperative control for multi-
player pursuit-evasion games with reinforcement learning. Neurocomputing 412
(2020), 101-114.

Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. 2007. Multi-task
reinforcement learning: A hierarchical Bayesian approach. In ICML. 1015-1022.
Wangqi Xue, Bo An, and Chai Kiat Yeo. 2022. NSGZero: efficiently learning non-
exploitable policy in large-scale network security games with neural Monte Carlo
tree search. In AAAIL 4646-4653.

Wangqi Xue, Youzhi Zhang, Shuxin Li, Xinrun Wang, Bo An, and Chai Kiat Yeo.
2021. Solving large-scale extensive-form network security games via neural
fictitious self-play. In IJCAL 3713-3720.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen,
and Yi Wu. 2022. The surprising effectiveness of PPO in cooperative multi-agent
games. In NeurIPS Datasets and Benchmarks Track. 24611-24624.

Sihan Zeng, Malik Aqeel Anwar, Thinh T Doan, Arijit Raychowdhury, and Justin
Romberg. 2021. A decentralized policy gradient approach to multi-task reinforce-
ment learning. In UAL 1002-1012.

Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S Yu. 2021.
From canonical correlation analysis to self-supervised graph neural networks. In
NeurlIPS. 76-89.

Youzhi Zhang, Bo An, Long Tran-Thanh, Zhen Wang, Jiarui Gan, and Nicholas R
Jennings. 2017. Optimal escape interdiction on transportation networks. In IJCAL
3936-3944.

Youzhi Zhang, Qingyu Guo, Bo An, Long Tran-Thanh, and Nicholas R Jennings.
2019. Optimal interdiction of urban criminals with the aid of real-time informa-
tion. In AAAIL 1262-1269.

Yu Zhang and Qiang Yang. 2021. A survey on multi-task learning. IEEE Transac-
tions on Knowledge and Data Engineering 34, 12 (2021), 5586-5609.

Mandi Zhao, Pieter Abbeel, and Stephen James. 2022. On the effectiveness of
fine-tuning versus meta-reinforcement learning. In NeurIPS. 26519-26531.
Yangiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021.
Graph contrastive learning with adaptive augmentation. In WWW. 2069-2080.
Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione.
2008. Regret minimization in games with incomplete information. In NeurIPS.
1729-1736.



	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Preliminaries
	3.2 Policy-Space Response Oracles
	3.3 Problem Statement

	4 Grasper
	4.1 Architecture
	4.2 Training Pipeline

	5 Experiments
	5.1 Setup
	5.2 Results
	5.3 Ablations

	6 Conclusions
	Acknowledgments
	References

