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This paper proposes a novel agent-design for a three-player game involving human players 
and computer agents. The game is analogous to settings in which participants repeatedly 
negotiate over contracts, such as cell-phones and credit card plans. The game comprises 
three players, two service providers who compete to sign contracts with a single customer 
player. The service providers compete to make repeated contract offers to the customer 
consisting of resource exchanges in the game. Customers can join and leave contracts 
at will. We computed sub-game perfect equilibrium strategies for all players that were 
based on making contracts involving commitments between the customer player and one 
of the service provider players. We conducted extensive empirical studies (spanning over 
500 participants) comparing the performance of computer agents using different types 
of equilibrium strategies with that of people in three different countries, the U.S., Israel 
and China, that are characterized by cultural differences in how people make contracts 
in the game. Two human participants played a single computer agent in various role 
configurations in the game. For the customer role, agents using equilibrium strategies were 
able to obtain a higher score than people playing the same role in three countries. For 
the service provider role, agents using equilibrium strategies that reasoned about possibly 
irrational behavior were able to obtain higher scores than people (as well as agents that did 
not reason about irrational behavior). This work shows that for particular market settings 
involving competition between service providers, equilibrium strategies can be a successful 
design paradigm for computer agents without relying on data driven approaches.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Web-based markets are becoming increasingly prevalent in our daily lives [23,5]. Examples include cell-phone and credit 
card plans, car insurance, bank accounts, pension plans and many more. The growth of these market is facilitated by tech-
nology, which allows service providers to tailor plans to the needs of different types of customers, while customers are able 
to change plans and service providers easily and quickly.

In addition to these benefits, web-based markets also bring new challenges. From the perspective of customers, the 
existence of a wide array of different plans and possible service providers makes it time consuming and challenging to 
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negotiate over contracts. From the perspective of suppliers, the need to attract and continuously maintain a large base of 
customers makes it difficult to stay profitable.

This paper studies how computer agents can balance the trade-off between profitability and competition when negoti-
ating over contracts with people in a three-player market settings. The first contribution of this paper is the design of a 
“contract game” which is analogous to a market setting in which participants need to reach agreements on contracts over 
time. The game comprises three players, two service providers and one customer that are allocated resources at the onset 
of the game. The service providers compete to make contract offers to the customer that consist of resource exchanges. The 
objectives for all players is to maximize their profits, measured by the amount of resources they are able to collect by the 
end of the game and whether they can reach the goal.

The second contribution of this paper is to formally define the type of offers and contracts that arise in the contract game 
and to define sub-game perfect equilibrium strategies for the game. The equilibrium explicitly reasons about the probability 
that a customer player makes irrational moves during the game. We show that for a particular class of contract games, the 
contracts reached in equilibria involve a commitment between the customer and one of the service providers that prevent 
the customer from signing a contract with the other provider.

The third contribution of this paper is to evaluate computer agents playing the equilibria strategies in extensive empirical 
studies carried out in three different countries, the U.S., Israel and China. We hypothesized the following: First, that people 
will vary in the way they play the game, but by including commitments in their strategies the equilibrium agents will be 
able to play well with people. Second, that defining off-the-equilibrium path strategies is crucial to interacting with people 
in the game, because they may not necessarily adhere to the specified equilibrium strategies.

We ran several configurations in which two human participants played with a single agent participant in various role 
configurations in the game. The computer agents used several types of equilibrium strategies that varied in whether they 
reason about possible irrational behavior by people. We measured whether the agents can (gain more utility) in the same 
role (service provider or responder) when playing other people (not when playing them directly). This supports the use of 
the computer agents as proxies for people who negotiate with other people or computer agents in e-commerce situations. 
Our results showed that the computer agent using the sub-game perfect equilibrium strategies for the customer role was 
able to outperform people in the same role all three countries. In particular, the customer agent made significantly more 
commitment type proposals than people, and requested significantly more resources from service providers than did people. 
The service provider agent was able to gain more utility than people playing the same role by reasoning about the probabil-
ity that people will make irrational moves in the game. This probability was tuned separately for each country using prior 
data of people’s play, which enabled the service provider to adapt different negotiation behavior for each country.

Lastly, we saw significant differences in the performance of the provider agents playing Nash equilibrium strategies 
between the different countries. Specifically, in China, people were able to outperform the provider agent, while in Israel 
the performance of the service provider agent was similar to that of people.

Our results have insight for agent-designer in human–computer negotiation settings in which it is difficult to use 
data-driven approaches. We show that despite people’s inherent tendency to deviate from rational strategies, equilibrium 
strategies can form the basis of computational agents for negotiating with people in different cultures, provided that two 
conditions are met: First, these agents directly reason about people’s possible irrational behavior in the game. Second, the 
agents compute and are able to use off-the-equilibrium path strategies. The paper provides further evidence that although 
equilibrium strategies are prone to fail in game settings such as the ultimatum game they can be successful in other do-
mains, namely market competition settings, and that the extent to which people engage in sub-optimal behavior seems to 
be culturally influenced. It is the first study showing the value of equilibrium strategies for negotiating with people from 
different cultures.

The remainder of this paper is organized as follows. The next section describes relevant work on automated negotiations 
that include both people and computer agents. Section 3 presents the game that we used in our study. Our three-player 
market game was configured using the Colored Trails (CT) game [10] which provides a realistic analog to task settings. 
Section 4 provides a formalization of the game and provides necessary definitions. Section 5 presents the sub-game perfect 
equilibrium and correctness proof. Section 6 presents an empirical study with 500 human subjects from three countries. 
We end this section with a discussion on the reasons for the successes of the computer agent using the sub-game perfect 
equilibrium strategies playing the customer role and the modified agent that plays the role of a service provider. We charac-
terize the situations in which sub-game perfect equilibrium agents can be beneficial and discuss the benefits and limitations 
of our approach. Lastly, Section 7 concludes the paper and presents some ongoing and future directions on agent-design for 
market settings that involve people.

2. Related work

Significant work exists on agent design for negotiation between multiple solely computational players [1, inter alia]. 
In the seminal work on analyzing bargaining agents’ subgame perfect equilibrium strategies, Rubinstein [31] studies the 
alternating-offers game with infinite horizon. Many works in multi-agent systems focused on designing heuristic strategies 
for more complex negotiation problems where it is difficult to derive equilibrium strategies [3,6,19,25,35]. Gatti et al. [13]
provided an algorithm to compute agents’ equilibrium strategies in bilateral bargaining with one-sided uncertain deadlines. 
Sandholm and Vulkan [32] computed the sequential equilibrium for a continuous time bilateral bargaining setting in which 
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agents don’t know each other’s deadlines. An et al. [2] formalized how uncertainty over deadlines and reserve prices can 
affect equilibrium strategies in one-to-many and many-to-many negotiation scenarios in which agents follow alternating-
offers bargaining protocols with a discount factor. Sandholm and Zhou studied equilibrium in negotiation in which agents 
could opt out of a commitment by a penalty fee [33]. Kalandrakis [16] studied bargaining behavior among three players and 
formalized a Markov perfect Nash equilibrium that depends on the state of the world using a dynamic game formalism. All 
of the works above did not consider possibly bounded rational behavior by participants.

Our work also relates to works studying negotiation and bargaining behavior between people and computer agents in AI. 
Ficici and Pfeffer used machine learning to model the belief hierarchies that people use when they make decisions in one-
shot interaction scenarios [8,9]. Van Wissen at el. [34] studied team formation in human–computer teams in which players 
negotiated over contracts. None of these works considered an agent-design for repeated negotiation with people. Other work 
has addressed some of the computational challenges arising in repeated negotiation between people and computer agents 
in two-player settings [12,17,20]. Azaria et al. [4] studied negotiation over completing a set of tasks in a crowd-sourcing 
environment. They implemented an agent which negotiated with people from the USA and from India. Rosenfeld et al. 
[30] studied how to design an effective chat agent for negotiations with people. Lastly, Peled et al. [28] used equilibrium 
agents to play with people in a two-round negotiation setting of incomplete information. These agents were outperformed 
by agents using machine learning methods that predicted how people reveal their goals during negotiation. All of these 
works included two participants, which significantly reduces the complexity of the decision-making. Kraus developed an 
agent for negotiating with people in a game that consists of seven players. However, it was tailored to a specific domain of 
the Diplomacy game [18].

Negotiation between people with different cultures has been studied extensively in the psychological and social science 
literature (Gal et al. [11] inter alia). There is also an increasing literature on using computational models of human nego-
tiation behavior that reasons about cultural differences, although none of these works has provided an equilibrium based 
approach towards interacting with people. Mell et al. [24] studied the impact of trust in automated negotiation agents 
within American and Indian cultures. Gal et al. [11] proposed an agent for negotiating with people in the U.S. and Lebanon 
in a two-player CT setting in which agreements were not binding. They showed that an agent that used hand-designed rules 
to make and respond to offers could adapt to the different reliability and generosity measures that were exhibited by people 
in the different cultures. Haim et al. [14] proposed an alternative agent design for this setting that used machine learning 
to predict how people respond to offers and fulfill their agreements in each culture. This prediction was combined with a 
decision-theoretic model that was used by the agents to make and respond to offers. This agent was able to outperform 
people in the three aforementioned countries.

Common approaches in the literature for human–computer negotiation in bilateral settings rely on machine learning [15,
14] or rule-based approaches to adapt to people’s behavior at each stage in the game [11,21]. Such approaches are not 
feasible in our setting, in which the number of states is prohibitively large, and it is not possible to collect data apriori for 
every conceivable occurrence in the game.

Nouri and Traum [27] showed that it was possible to predict the cultural affiliation of a player (whether American or 
Indian) when playing 10 rounds of the ultimatum game with a virtual human using a baseline negotiation strategy. They 
were able to predict people’s negotiation behavior in later rounds of the game using support vector machines. In further 
work, they used a multi-attribute utility function to model social factors that affect people’s play in ultimatum and centipede 
games [26]. The parameters of the model were elicited from people who filled a social value questionnaire prior to playing 
the game. Mascarenhas et al. [22] used a theory of mind model to build agents that interact with students in a simulated 
virtual world. Their setting uses characters exhibiting emotional cues and empathy and adapts its reciprocal behavior based 
on the cultural affiliation of its partner.

3. Implementation: colored trails

Our three-player market setting was configured using the Colored Trails (CT) game [10]. It consists of a game that 
interleaves negotiation to reach agreements and decisions on whether to accept or reject an agreement, to whom to propose 
a proposal, and the movement strategy.

3.1. The contract game

There are 3 players, one is the customer (C S) player and two players are the service providers (S P g and S P y) players. 
The C S player moves on a board of color squares m × n grid. Fig. 1 shows a snapshot of the game from the perspective of a 
C S player (the “me” player). The S P g player is designated as the square icons located at the far-left corner of the first row 
(on the gray goal square), and the S P y player is designated as the oval goal icon on the far-right corner of the first row 
(on the yellow goal square). These two squares on the board were designated as the goal squares. The board also shows the 
location of the C S player icon on the last line of the board in the middle column, nine steps away from each goal square.

At the beginning of the game, each player has a set of colored chips, in which the amount and the colors of the chips 
may differ from one player to another. The game is divided into several rounds. Each round entails a negotiation phase 
between the customer and the providers, and a movement phase in which the customer player is free to utilize its chips 
to move on the board. In the negotiation phase, the S P players or the C S can act as a “Proposer” or as a “Responder”. The 
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Fig. 1. Snapshot of the contract game. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

players switch their roles, such that the first proposer in the previous negotiation phase was designated as a responder in 
the next negotiation phase, and vice versa. When the C S is the proposer, it can send a proposal to only one of the providers. 
When the C S is the responder, each of the providers may send it a proposal. The C S player can see the proposals from both 
service providers while the service providers cannot see each other’s proposals. Once the C S player receives a proposal, it 
may accept or reject the proposal, but it can accept only one such proposal in each round. Once the responder accepts a 
proposal, the chips are automatically exchanged between the proposer and the responder of the proposal. The movement 
phase is analogous to the customer player using its resources (chips) to perform individual tasks (moving on the board). 
The C S can choose where to move according to the chips it has, and can move any number of squares (up, right or left but 
not diagonally) according to the chips in its possession.

3.2. Game termination and scoring

The phases described above repeat until the game terminates, which occurs when one of the following conditions holds.

1. The C S does not move for two consecutive rounds.
2. The C S reaches one of the goal-squares belonging to one of the providers.

The players’ scores are computed at an intermediate or terminal point in the game as follows:

• 150 Points to both the customer and the provider whose goal-square was reached by the customer (if any).
• 5 bonus points for any chip left in a player’s possession. For example, at the beginning of the game, as shown in Fig. 1, 

the C S player has 24 chips and its score is 120, whereas the SPs has 40 chips each and their initial score is 200 each.

The objective of the game for the C S is to reach the goal of one of the providers, and to try to use as few chips as possible 
in order to end the game with a large number of chips. In this game, all players have full knowledge about the board and 
chips, but both providers repeatedly compete to make contracts with the customer player. The score of each player does not 
depend on the scores of other players.

An advantage of using CT is that it provides a realistic analog to task settings, highlighting the interaction among goals, 
tasks required to achieve these goals and resources needed for completing tasks. In CT, chips correspond to agent capabilities 
and skills required to fulfill tasks. Different squares on the board represent different types of tasks. A player’s possession of 
a chip of a certain color corresponds to having the skill available for use at that time.
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Table 1
Notations used in contract game model.

Notations Meaning

C S The customer player.
S Pi , S P j The service provider players (S P g , S P y ).
b∗ A bonus that both the C S and the S Pi receive if the C S player reached Gi .
c The number of points a player will get for each chip it has at the end of the game.
ui(s) The score of any player i at a non-terminal state s in the game.
(x, y) The location of the C S player on the board.
Ccs , C1, C2 The set of chips of the customer player, S P g and S P y respectively.
r The round of the game.
d Dormant indicator.
s The state of the game.
G1, G2 The goals for the customer player, S P g and S P y respectively.
P A possible path from (x1, y1) to (xk, yk) on the board.
C P The set of needed chips to go through a path P .
Res(s, P ) The resulting state of C S moving according to P .
Res(s, O ) The resulting state from the acceptance of an offer O = (O cs, O i).
O An offer is a pair (O cs, O i) where O cs and O i is the set of chips sent by the C S player and O i player, respectively.
Ô s,i The preferred offer of the C S player to an S Pi player.
Ô s The preferred offer of the C S player that is directed to the S P player that is best for the C S player.
Ô −

s,i The S Pi preferred offer at state s.
P∗

s A preferred (optimal) path for the C S player at a state s.
s∗ The state resulting in using the preferred path at state s (Res(s, P∗

s )).
pr The probability that the C S player will succeed to reach the goal Gi .
Eul(s, O ) The expected utility of the l ∈ {C S, i, j} agent from implementing an offer O at state s.
Eul(s, P ) The expected utility of the l ∈ {C S, i, j} agent from the C S agent following path P at state s.
swi,cs(s, O ) The social welfare of an offer O at state s between the customer player and the S Pi player.

4. Game formalization

In this section, we provide a formalization of the contract game as well as the necessary definitions to characterize the 
equilibrium strategies of the contract game. A summary of all the notations appears in Table 1.

Given a board in the Contract Game, a location (x1, y1) is said to be near another location (x2, y2) if it is one move 
away, that is |x2 − x1| + |y2 − y1| = 1.

A state s of the game is a tuple: 〈Ccs, C1, C2, (x, y), r, d〉 where Ccs is the set of chips of the customer player, C1 and C2
are the sets of chips of the service provider players S P g and S P y respectively, (x, y) is the location of C S on the board, 
r is the round index in the game, and d indicates if the C S player moved in the previous round (d = 0 if it moved in the 
previous round, d = 1 indicates that it did not move in the previous round and d = 2 indicates it did not move for two 
consecutive round). There are two goal locations on the board: G1 = (x1, y1) and G2 = (x2, y2).

A path P from (x1, y1) to (xk, yk) on the board is defined as a sequence of locations on the board {(x1, y1), . . . , (xl, yl),

. . . , (xk, yk)} such that (xl, yl) is near (xl+1, yl+1) for any 1 ≤ l ≤ k − 1. As an example, in Fig. 1, we can see a possible path 
outlined on the board from the current location of the C S player to the S P y service provider. We say a path P ′ is contained
in a possible path P , denoted by P ′ ⊆ P if all coordinates {(x1, y1), . . . , (xk, yk)} in P ′ are also coordinates in P .

The set of needed chips to go through a path P is denoted by C P . A path P is possible in state s if C P ⊆ Ccs and 
(x1, y1) = (x, y). Let s = 〈Ccs, C1, C2, (x, y), r, d〉 be a state and P = {(x, y), . . . , (xl, yl), . . . , (xk, yk)} be a possible path of s. 
The result of C S moving according to P , denoted by Res(s, P ), is the state 〈Ccs \C P , C1, C2, (xk, yk), r +1, d = 0〉. To illustrate, 
in Fig. 1, if the C S moves on the outlined path, this will result in the new state in which the location of the player will be 
at the goal square at the end of the path and the player has reduced from its chip set 9 gray chips.

An offer O is a pair (O cs, O i) i ∈ {1, 2} such that O cs ⊆ Ccs is the set of chips that the customer C S will send to player 
S Pi and O i ⊆ Ci is the set of chips that the S Pi will send to the C S player. We extend the Res(s, O ) notation to account 
for an offer O  = (O cs, O i) that is accepted in state s = 〈Ccs, C1, C2, (x, y), r, d〉. For the case in which the proposal involves 
the S P g player, then we have

Res(s, O ) = 〈Ccs ∪ O i \ O cs, C1 ∪ O cs \ O 1, C2, (x, y), r,d〉
and similarly for the case in which the proposal involves the S P y player. For example, suppose a proposal from S P g to the 
C S player at the state that is depicted in the board of Fig. 1 is to send 33 red chips and 7 purple chips for 11 gray chips. 
In this case, the resulting state from the acceptance of the offer includes 33 red chips, 12 yellow chips, 7 purple and 1 gray 
chip for the C S player, and 11 gray chips for the S P y player (the S P player that is located on the yellow goal square in the 
figure).

Without loss of generality, throughout the paper we will refer to the yellow goal square as G2 and the gray goal square 
as G1. Similarly, S P g refers to the service provider player who is located on the G1 goal square and S P y refers to the 
service provider who is located on the G2 goal square.
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The game ends in a terminal state s = 〈Ccs, C1, C2, (x, y), r, d〉 in which one of the following holds:

• The C S agent reached the G1 goal.
• The C S agent reached the G2 goal.
• The C S player has not moved for two consecutive rounds (d = 2) i.e., in the two states prior to s, the location of the 

C S was also (x, y).

A player’s performance in the game is measured by a scoring function. Each player obtains c points for each chip it has 
at the end of the game. If the C S player reached one of the goals Gi then both the C S player and the service provider S Pi
receive a bonus b∗ . In the specific game that we played c was 5 and b∗ was 150 points. For a terminal state s we denote 
by ui(s) the score of any player i at s. We extend ui to non-terminal states to be c · |Ci | where |Ci | represents the number 
of chips player i has.

Importantly, although reaching one of the goals of the service providers before the game terminates increases the score 
of the customer player, we do not assume that the customer player will necessarily follow this strategy. This allows us to 
capture players that exhibit boundedly rational behavior. In the next section, we shall see how this allows to define an 
equilibrium strategy that reasons about people’s play. We denote by pr the probability that the CS player will succeed to 
reach a goal Gi following a possible path P toward Gi and receive the bonus b∗ .

Let Eul(s, O ) indicate the expected utility of the l ∈ {C S, i, j} agent from implementing an offer O at state s given that 
all players follow the subgame perfect equilibrium in state Res(s, O ). This equilibrium will be formalized in Theorem 1. 
Similarly, let Eul(s, P ) denote the expected utility of the l ∈ {C S, i, j} agent from the C S agent following path P at state s
given that all players follow the subgame perfect equilibrium in state Res(s, P ).

We will first define the expected utility of the players from the C S player attempting to reach the goal Gi by following 
the possible path P , given that the probability of getting to the goal is pr. The expected utility to S Pi is defined as:

Eui(s, P ) = p · ui(Res(s, P )) + (1 − p) · ui(s) (1)

For the S P j agent ( j 
= i) the expected utility is defined as follows, because the C S player will not reach its goal.

Eu j(s, P ) = u j(s) (2)

The expected utility of the C S player is:

Eucs(s, P ) = p · ucs(Res(s, P )) + (1 − p) · ui(s) (3)

We define the social welfare of an offer O at state s between a C S player and an S Pi player to be

swi,cs(s, O ) = Eucs(s, O ) + Eui(s, O ) (4)

To illustrate, suppose that in the state presented in Fig. 1, the C S player attempts to move toward the goal of the gray 
player G1 using the path P marked with the black line. Suppose further that p = 0.9. If the C S player succeeds in its move 
than it is left with 3 gray chips and 12 yellow chips. The agent also gets the a bonus of 150 points. If the agent fails, it 
keeps all its 24 chips. Thus, its expected score is 0.9 · (15 · 5 + 150) + 0.1 · 24 · 5 = 214.5. The expected score of S P g is 
0.9 · (40 · 5 + 150) + 0.1 · 40 · 5 = 335.

4.1. Possible offers

In this section we define the set of offers that are possible for the C S player and an S Pi player, denoted possible offers. 
This definition depends on the notion of a preferred path, which due to the recursive nature of our equations we will 
formalize later, in Definition 5. A preferred path at state s, denoted P∗

s , is a possible path at s such that for any other 
possible path P at s, i.e., Eucs(s, P ) ≤ Eucs(s, P∗

s ). A possible offer O at state s between the C S player and an S Pi player 
will not make the C S worse off than following his preferred path P∗

s at state s. In a similar way, the possible offer O will 
not make the S Pi player worse off than the C S player following its preferred path.

Definition 1. An offer O is a possible offer for a C S and a given S Pi player at state s if the following conditions hold:

Eui(s, O ) ≥ Eui(s, P∗
s ) and Eucs(s, O ) ≥ Eucs(s, P∗

s ) (5)

The preferred offers for the C S player is a subset of possible offers that are stated in the following definition.

Definition 2 (C S preferred offer toward S Pi ). An offer O involving the C S player and the S Pi player at state s is a C S Preferred 
Offer to S Pi , denoted Ô s,i , if the following conditions hold

1. Eui(s, O ) > Eui(s, P∗
s ) and Eucs(s, O ) ≥ Eucs(s, P∗

s ).
2. For any offer O ′ toward S Pi that satisfies condition (1) it holds that Eucs(s, O ′) ≤ Eucs(s, O ).
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The preferred offer Ô s,i is defined to be the empty set if no such offers O exist. Otherwise, Ô s,i is defined as

Ô s,i = arg max
O

{Eui(s, O ) | O is a C S preferred offer to S Pi at s} (6)

Condition 1 of Definition 2 requires that O is a possible offer according to Definition 1. Condition 2 of Definition 2
requires that there is no alternative possible offer that is better for the C S player.

We extend this definition to describe the preferred offer for the C S player that is directed to the S P player that will 
provide the C S player with higher utility.

Ô s = argmax{Eucs(s, Ô s,g), Eucs(s, Ô s,y)}. (7)

We break ties by preferring offers involving an S P player that yield higher sum of utilities

swi,cs(s, Ô ) > sw j,cs(s, Ô ) (8)

If the sum of utilities is equal, then we prefer offers made to S P g over offers made to S P y . Note that ties can also be 
broken towards S P y and the equilibrium definition will still hold. We expand on this point in the Discussion (Section 6.5).

The preferred offers for an S Pi player is a subset of possible offers that are strictly more beneficial to the C S player 
following the preferred path P∗

s and most beneficial for the S Pi . This is stated in the following definition.

Definition 3 (S Pi preferred offer). The S Pi and S P j , i 
= j preferred offers at state s, Ô −
s,i, Ô

−
s, j satisfy the following conditions:

1. Eucs(s, Ô −
s,i) ≥ Eucs(s, P∗

s ), Eui(s, Ô −
s,i) > ui(s) and Eui(s, Ô −

s,i) ≥ Eui(s, Ô −
s, j). If there is no offer that satisfies this con-

dition we set Ô −
s,i = (∅, ∅).

2. Eucs(s, Ô −
s, j) ≥ Eucs(s, P∗

s ), Eu j(s, Ô −
s, j) > u j(s) and Eu j(s, Ô −

s, j) ≥ Eu j(s, Ô −
s,i). If there is no offer that satisfies this 

condition we set Ô −
s, j = (∅, ∅).

3. For any offer O involving S Pi that satisfies the constraints in condition (1), if Eui(s, O ) > Eui(s, Ô −
s,i) then either 

Eucs(s, O ) < Eucs(s, Ô −
s, j), or Eucs(s, Ô −

s, j) = Eucs(s, O ) and ties were broken in favor of S P j .

4. For any offer O involving S P j that satisfies the constraints in condition (2), if Eu j(s, O ) > Eu j(s, Ô −
s, j) then either 

Eucs(s, O ) < Eucs(s, Ô −
s,i), or Eucs(s, Ô −

s,i) = Eucs(s, O )) and ties were broken in favor of S Pi .

Condition 1 of Definition 3 states that the benefit at state s from the S Pi preferred offer Ô −
s,i is at least as high the 

benefit that is associated at state s for the S Pi player. In addition, for the S Pi player, its benefit from Ô −
s,i must be at 

least as high as its benefit from the S P j preferred offer Ô −
s,i . Condition 2 states symmetrical requirements regarding the 

benefit at state s from the S P j preferred offer Ô −
s, j . Condition 3 states that if an alternative offer O is more beneficial to 

S Pi player than the S Pi preferred offer, then it must be the case that the C S player prefers the S P j offer. Condition 4 sates 
symmetrical requirements regarding an alternative offer O for the S P j player.

We now define the S P preferred that will provide the C S player with higher utility.

Ô −
s = argmax{Eucs(s, Ô −

s,g), Eucs(s, Ô −
s,y)}. (9)

We break ties by preferring offers that yield higher sum of utilities

swi,cs(s, Ô −) > sw j,cs(s, Ô −) (10)

If the sum of utilities is equal, then we prefer offers made by S P g over offers made to S P y .1

A special type of possible offers involve a commitment between one of the S P players and the C S player. Such offers 
prevent the C S player from reaching the goal square of the other S P player. The C S player is committed to player S Pi , 
i ∈ {1, 2} in state s = 〈Ccs, C1, C2, (x, y), r, d〉 if for any path P from (x, y) to G j , j ∈ {1, 2}, j 
= i, C P 
⊆ (Ccs ∪ C j).

Definition 4 (Commitment offer). An offer O  = (O cs, O i) made at a state s is a commitment offer toward S Pi if the following 
conditions hold:

1. in s the C S player is not committed toward any of the S P players,
2. the resulting state Res(s, O ) is a commitment state towards S Pi .

1 As stated above, ties can also be broken towards toe S P y player.
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Intuitively, if the C S player is committed to player S Pi in state s, then there is no possible path for the C S player at this 
state to the goal of the other S P j player, even if the S P j player provides all its chips to the C S player. Therefore the only 
way for the C S player to receive the bonus in the game is to reach the goal of the S Pi player. As an example, a commitment 
offer at the beginning of the game shown in Fig. 1 is when the S P g proposes to send 33 red chips and 7 purple chips for 
11 yellow chips. As we will show, commitment offers play a key role in the equilibria strategies that are described in the 
following section.

4.2. Preferred paths

We are now ready to formalize the preferred path P∗
s for any state s. We will use the following notation. Let s∗ =

Res(s, P∗
s ) denote the state resulting in the C S using the preferred path at state s.

Definition 5 (Preferred path). We define the preferred path at state s as the best of four possible candidate paths 
{P1, P2, P3, P4} that are defined as follows.

1. If the C S player is able to reach one of the goals at state s, then P1 is the shortest path towards the goal square, 
breaking ties in favor of the path leading to S P y . Otherwise P1 = ∅.

2. For any path P that does not lead to one of the goals (and if the number of dormant turns d is 1, then P 
= ∅) one of 
the following must hold:
(a) if it is the S P ’s turn to make offers in Res(s, P ) then:

P2 = argmax
P

{Eucs(Res(s, P ), Ô −
Res(s,P )))}

Let EUl(s, P2) = Eul(Res(s, P2), Ô −
Res(s,P2)) denote the expected utility to any player from the C S player choosing 

path P2.
(b) if it is the C S ’ turn to make offers in Res(s, P ) then:

P3 = argmax
P

{Eucs(Res(s, P ), Ô Res(s,P ))}

Let EUl(s, P3) = Eul(Res(s, P3), Ô Res(s,P3))

We break ties toward shorter paths.
3. If the C S player must move in s, i.e., d = 1, P4 = ∅ and Eul(P4) = ul(s).

We choose P∗
s = argmaxP∈{P1,..P4}{Eucs(s, P )}. We break ties in favor of paths that leads to one of the goals, and otherwise 

in favor of short paths.

Using the expected utility of preferred paths we can specify the expected utility of implementing an offer O in state s
for player l ∈ {cs, 1, 2} as follows.

Eul(s, O ) = Eul(Res(s, O ), P∗
Res(s,O )) (11)

The main question is whether P∗
s is well defined since the definition is recursive and we need to show that there are no 

circles in the definition. This is stated in the next proposition.

Proposition 1. For any state s the preferred path P∗
s is well defined.

The proof of this proposition is as follows. First, the contract game always ends after a finite number of rounds. Since 
the number of chips of the players is finite, the upper bound on the number of rounds is twice the sum of the number of 
chips of all players. Furthermore, the same state cannot appear twice in a game. Either, the S P moved and the total number 
of chips decreased by one. If it doesn’t move, then d is increased which leads to a different state.

4.3. Examples

We will demonstrate the preferred paths and preferred offers using a few examples. In all examples we assume that 
the C S player always succeeds to reach the goal (i.e., p = 1). Consider the board in Fig. 2 and suppose that the state s
corresponds to each of the players having 10 red chips, and that the S P y player (whose goal is G2) has an additional 
1 yellow chip, and the S P g player (whose goal is G1) has an additional 1 gray chip. Suppose the C S player (the “me” 
player) must move (i.e., the number of dormant turns is d = 1) and it is its turn to make an offer. The C S preferred offer 
(Definition 2) depends on its preferred path (Definition 5). Since it does not have the needed chips to move, the preferred 
path of the C S player in state s is the empty set, and its expected utility Eucs(s, P∗

s ) is defined in Equation (4) as 5 ·10 = 50. 
Similarly, the expected utility for each of the S P players Eui(s, P∗

s ) is defined in Equation (4) as 5 ·11 = 55. The C S preferred 
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Fig. 2. Example demonstrating preferred offers and preferred paths. (For interpretation of the references to color in this figure, the reader is referred to the 
web version of this article.)

offer to the S P g requests all of the chips (i.e., one gray and 10 red chips) from the S P g player. Similarly, the C S preferred 
offer to the S P y requests all of the chips from the S P y player. Ties are broken towards the S P g player, since the sum of 
the utilities for the C S preferred offer to both S P g and S P y players is equal (Equation (8)). The S P g will accept the offer 
and the C S player will move one square to the gray goal, thereby ending the game. The final score for the C S player will 
be 20 · 5 + 150 = 250 points, the final score for the S P g player will be 150 points, and the final score for the S P y player 
will be 55 points.

If it is the turn of the S P players to make an offer, then the S P g player will make the S P g preferred offer Ô −
s,g of 

Definition 3, which is to offer all of its chips to the C S player. The S P y player will make the S P y preferred offer Ô −
s,y of 

Definition 3, which is to offer all of its chips to the C S player. The score that is associated with accepting the S P g preferred 
offer for the C S player is 250 points, which is strictly higher than the utility at state s, which is 50 points. The utility 
to the S P g player from this offer is 150 points, which is strictly greater than its utility at state s, which is 55 points. In 
addition, the utility to the S P g player from this offer is greater than its utility given that the C S player accepts the S P y

preferred offer, which is also 55 points. Hence Condition 1 of Definition 3 is satisfied. Any offer that is better off for the 
S P g player and satisfies Condition 1 of Definition 3 (e.g., offering only 9 chips to the C S player) is worse off for the C S
player than accepting the S P y preferred offer. Hence Condition 3 of Definition 3 is satisfied. In a similar way, the S P y and 
S P g preferred offers satisfy Conditions 2 and 4 of Definition 3. The C S player, breaking ties towards S P g , will accept the 
offer of the S P g player.

Suppose now that the board is the one in Fig. 2, but that the chip distribution is as follows: all players have 10 red 
chips, and in addition the C S player has 1 yellow chip and 1 gray chip. Suppose again that it is the turn of the C S player to 
make an offer and that it must move (d = 1). In the current state there are two viable paths for the C S player, one leading 
to the goal of the S P g player and one leading to the goal of the S P y player. The preferred path of the C S player breaks 
ties toward the S P y player and the score of the S P y player will be 5 · 10 + 150 = 200, while the score for the S P g player 
will be 5 · 10 = 50. The C S preferred offer towards the S P g player will offer one yellow chip for all of its 10 red chips. This 
offer represents a commitment (Definition 4) of the C S player towards the S P g player. The score for the CS player for this 
offer will be 20 · 5 + 150 = 250 and for the S P g player will be 1 · 5 + 150 = 155. Note that sending its yellow chip is a 
necessary condition for the commitment to hold. If this offer did not include a yellow chip, then S P g should not accept the 
offer, because the preferred path (and the only viable path towards the goal) for the C S player would lead it to the goal of 
the S P y player (because ties are broken towards the S P y player).

Lastly, suppose that the board is the one in Fig. 2, but the S P g player has 1 gray chip and all players have 10 red chips. 
Suppose that it is the turn of the S P players to make an offer. In this case, the S P g preferred offer will provide one gray 
chip in return for all of the 10 red chips. The score of the S P g player will be 20 · 5 + 150 = 250 and the score of the C S
player will be 150. If the C S player rejects the offer then its score will be 50; therefore the C S player is strictly better off 
accepting the offer. The S P y player cannot make an offer that will allow the C S player to reach the goal.

5. Equilibrium strategies

In this section we present an equilibrium definition for the contract game. We first provide the strategies for any possible 
contract game. Then, we will present the details of the strategies for the specific game we ran our experiment on.

5.1. Sub-game perfect equilibrium

We first provide a general description of the equilibrium strategies for both player types. The strategy depends on the 
features mentioned in the beginning of section 4.1.

Theorem 1. The following strategies form a sub-game perfect equilibrium for the contract game.

Strategy for the S P i player: Given a state s = 〈Ccs, C1, C2, (x, y), r〉, the strategy for the S Pi is as follows:

1. If the S Pi player receives the offer O i from the C S player, it will accept it only if the following holds: Eui(s, O i) > Eui(s, P∗
s ).

2. If it is the turn of the S Pi player to make the offer, it will make the S Pi preferred offer Ô − .
s,i
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Strategy for the C S player: Given a state s = 〈Ccs, C1, C2, (x, y), r〉, the strategy for the C S is as follows:

1. If it is the negotiation stage of an odd round and it has received offers O 2 and O 1 and let O l denote the best offer for the C S player 
(breaking ties first towards the offer that maximizes the social welfare (Equation (8)) and then towards the offer that is made by 
S P g player):

O l = arg max
O i∈{O 2,O 1} Eucs(s, O i) (12)

The C S player will accept O l only if

Eucs(s, O l) ≥ Eucs(s, P∗
s ). (13)

2. If it is a negotiation stage of an even round (the C S makes the proposal) then make the proposal Ô s toward the relevant S Pi .
3. Movement:

If it is a movement state then move according to the preferred path P∗
s .

Note that ties are broken towards the S P g player when making and responding to offers, but are broken towards the 
S P y player when choosing paths on the board. The reason for this was to provide each service provider agent with fair 
opportunity for an advantage in the game, rather than consistently favoring one of the service providers at all decision 
points. From a theoretical point of view we can change the breaking ties arbitrarily but keep all the definitions consistent. 
The correctness of Theorem 1 will not be affected. For the remainder of this section, we use the term “equilibrium strategy” 
to refer to the one that is defined in Theorem 1.

5.2. Proof of Theorem 1

The correctness of Theorem 1 depends on the definition of the expected utility to the C S and the S P players. The 
following propositions states that the definitions of these utility functions are well defined.

Proposition 2 (Correctness of expected utility definitions). Let O be an offer that is accepted at state s, P∗
s is a preferred path that is 

followed by the C S player starting at state s and that both C S and S P players follow the equilibrium strategies defined in Theorem 1. 
Then the expected utilities Eui(s, P ), Eu j(s, P ), Eucs(s, P ), Eui(s, O ), Eu j(s, O ) are correctly defined by Equations (1), (3), (2), (11)
and Definition 5.

The proof follows from the equilibrium strategy defined in Theorem 1 and from the definitions of the aforementioned 
equations.

We now show that the S P does not have an incentive to deviate from its equilibrium strategy in Theorem 1.
Strategy of the S P player for receiving an offer: If the S Pi will reject the offer O i , the game will proceed to the 

movement phase. According to the equilibrium strategy for the C S player, it will follow P∗
s . According to Proposition 2, the 

expected utility to the S Pi player from accepting the offer O i is Eui(s, O i) and his expected utility from the C S player 
following the path P∗

s is Eui(s, P∗
s ). According to condition 1 in the equilibrium definition of the strategy for the S Pi player, 

we have that Eui(s, O i) > Eui(s, P∗
s ), and thus deviation by rejecting the offer is not beneficial.

Strategy for the S P to make an offer: In this case S Pi offers Ô −
s,i and S P j offers Ô −

s, j . Deviation by S Pi and offer-

ing another offer O is beneficial only if Eui(s, O ) > Eui(s, Ô −
s,i) and either Eucs(s, O ) > Eucs(s, Ô −

s, j) or if Eucs(s, Ô −
s, j) =

Eucs(s, O )) ties are broken in favor of S Pi . Otherwise, the offer will not be accepted or won’t be beneficial. According 
to Definition 3 such O exists only if it does not satisfy the conditions Eucs(s, O ) ≥ Eucs(s, P∗

s ), Eui(s, O ) > ui(s) and 
Eui(s, O ) ≥ Eui(s, Ô −

s, j). First, if Eucs(s, O ) < Eucs(s, P∗
s ) then the offer will not be accepted. So, either the score for S Pi

will be ui(s), but Eui(s, Ô −
s,i) > ui(s) or the expected utility will be Eui(s, Ô −

s, j) but Eui(s, Ô −
s,i) ≥ Eui(s, Ô −

s, j). Thus, in 
both cases deviation is not beneficial. Clearly, if Eui(s, O ) ≤ ui(s) or Eui(s, O ) < Eui(s, Ô −

s, j) deviation is not beneficial since 
Eui(s, Ô −

s,i) > ui(s) and Eui(s, Ô −
s,i) ≥ Eui(s, Ô −

s, j).
Strategy for the C S player to receive an offer: If the C S player rejects the offer O l , the game will proceed to the 

movement phase. According to the equilibrium strategy for the C S player it will follow P∗
s . According to Proposition 2, the 

expected utility to the C S player from accepting the offer O l is Eucs(s, O l) and his expected utility from following the path 
P∗

s is Eucs(s, P∗
s ). According to condition 13 in the equilibrium definition of the strategy for the S Pi player, we have that 

Eucs(s, O i) ≥ Eucs(s, P∗
s ). Thus deviation by rejecting the offer is not beneficial.

Strategy for the C S player to make an offer: Suppose that the C S ’s player offer Ô s is toward S Pi . By the definition 
Eui(s, Ô s) > Eui(s, P∗

s ) and this offer will be accepted by S Pi . If C S player will make an offer that will not be accepted 
by the S Pi then its expected utility will be Eui(s, P∗

s ) and again by the definitions Eucs(s, Ô s) ≥ Eucs(s, P∗
s ). So, beneficial 

deviation O ′ given to S Pi should satisfy Eui(s, O ′) > Eui(s, P∗
s ), Eui(s, O ′) > Eucs(s, Ô s) but according to the preferred offer 

Definition 2 such an offer does not exist. Furthermore, according to equation (7) such an offer toward S P j does not exist 
either.
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Strategy for the C S player to move: We now show that it is preferable for the C S player to move using P∗
s . The C S

player can either go directly toward the goal, if possible or stay in its current location or move according to one of the 
possible paths that are not toward the goal. These are the cases that are considered in Definition 5 and P∗

s is defined as 
the one that maximizes the expected utility from all these options. Furthermore, according to Proposition 2, the expected 
utility of P∗

s is correct, deviation is not beneficial.

6. Empirical study

In this section we describe the evaluation of several types of agents for playing the contract game with human players. 
We recruited 500 human subjects from three countries: Israel, the U.S. and China. These included 208 computer science 
or engineering undergraduates from two Israeli universities (average age was 25 years; 35% female), 149 students from the 
greater Boston area (average age was 22; 48% female), and 143 students from universities in Beijing, China (average age was 
23; 46% female).

Each participant was given an identical 25-minute tutorial on the contract game as well as a 5-minute quiz about the 
rules of the game.2 We used identical versions of the tutorial in three languages, Hebrew, English and Mandarin. Participants 
were seated in front of terminals for the duration of the study, and could not speak to each other or see each other’s 
terminals. The tutorial consisted of a detailed explanation of the rules of the game in the form of a slide presentation that 
participants could go through at their own pace. By design, It did not include any examples of negotiation strategies to 
avoid priming subjects. To ensure that participants understand the game, we included a quiz at the end of the tutorial, 
and participating in the study was contingent on passing the quiz. To avoid long games, there was a 5-minute timeout 
for interacting during the communication phase in each round. At this point the game automatically proceeded to the 
movement phase (which was also associated with a timeout). Participants could see a counter representing the amount of 
time left to play in each of the phases.

All participants were told they would be playing the game with other people or with other computer agents. This 
wording was chosen to standardize the instructions for all players. It reflects situations as in e-commerce in which players 
may not know the identity of their negotiation partners. Players were paid a fixed sum of 12 U.S. Dollars (in local currency) 
for participating in the game. We did not pay people with respect to their performance for two reasons: First, our goal 
was to create an agent that can play well with people and not to claim that their behavior was completely driven by their 
preferences. Second, past work shows that people play competitively in CT games when given a fixed reward and their play 
does not differ substantially from participants whose reward depends on their score [11].

We ran two types of configurations, one consisting of all human players and the other consisting of two people and 
a computer agent playing service provider or customer role. All of the games played included three human players, or 
a single human player and two computer agents playing the various roles. Specifically, we played games consisting of 
3-human players (denoted “HvsH”), games consisting of an agent playing the customer role and two human players (denoted 
“HvsCSa”), games consisting of an agent playing the service provider role and two human players (denoted as “HvsSPa”). In 
all games involving a human and a computer agent playing the service provider role (i.e., HvsSP-A, Hvs-RAP, Hvs-RAPD), the 
computer agent was consistently assigned to play the role of the S P y player. Note that this is without loss of generality, 
as the S P g and S P y players are symmetrical in the dependency relationship with the CS player. They both have the same 
chips and are located at equal distance from the position of the CS player.

6.1. Board game and commitments

We used the board game of Fig. 1 for all of the studies. In this board, the C S is independent (has the resources to get to 
either of the goals at the onset of the game), while the S P players are symmetric (they have the same number of chips and 
the length of the path to each of their goals is equal). In this game, the preferred offers for the S P and the C S player are 
commitment offers. Furthermore, according to the sub-game equilibrium of Theorem 1, both S P players offer their preferred 
offer, the C S player accepts the offer of the S P g player, and proceeds directly to the goal, thereby ending the game.

For the customer (CS) role, we used an agent termed “CS-A” that used the strategy that is described in the equilibrium 
definition of Theorem 1 while assuming the customer player always reaches the goal (i.e., p = 1) after a commitment has 
been made. For the service provider (SP) role, we used one of two types of equilibrium agents. One agent, termed “SP-A”, 
used the strategy that is described in the equilibrium definition in Theorem 1, while assigning probability p = 1 for the 
customer player reaching the goal.

The agent termed “SP-RAP” extended the SP-A agent in two ways in order to handle the uncertainty that characterizes 
human play in negotiation settings. First, it used a risk averse strategy using a concave utility function 1 − e−α·ui(s) where 
ui(s) is the score of the S Pi player at state s. Second, it reasoned about a possibly bounded rational C S player by assigning 
a positive probability p > 0 for the customer player not reaching the goal. A separate value for pr was assigned for each 
country by dividing the number of times the CS player reached the goal by the total number of games played.3 We measured 

2 The tutorial and quiz can be downloaded at the link http :/ /tinyurl .com /zp4lapk.
3 In all countries, there were some cases in which the customer player did not reach the goal despite having the required resources at the onset of the 

game.

http://tinyurl.com/zp4lapk
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Fig. 3. Performance of the CS-A agent.

the parameter pr on a set of held out games which included only humans. The lowest parameter setting was obtained in 
China, where pr was set at 0.6. In Israel, the value of the pr parameter was set at 0.83. The value obtained for pr in the 
USA was significantly higher than that of China and Israel and was set at 0.93.

We highlight the difference in the strategy of these different agents by specifying the first preferred commitment. The 
preferred commitment offer of the SP-RAP agent depended on the value of the pr parameter and thus the offer made the 
SP-RAP agent was different in each country. In China, the preferred commitment offer made by the SP-RAP agent offered 
19 chips (12 red chips and 7 purple chips) in return for 11 gray chips. In Israel, the preferred commitment offer made by the 
SP-RAP agent offered 26 chips (19 red chips and 7 purple chips) for 11 gray chips. In the USA, the preferred commitment 
offer made by the SP-RAP agent offered 33 chips (26 red chips and 7 purple chips) for 11 gray chips. Our hypothesis was 
that the SP-A agent (which does not reason about bounded rational customer players) will be outperformed by the SP-RAP 
agent when playing with people in the customer role. The SP-A agent offered 40 chips (33 red chips and 7 purple chips) 
in return for 11 gray chips. The Appendix shows how to compute this preferred commitment offer for the SP-A agent. The 
process for computing the preferred commitment offers for the other agents is similar. All results in the sections that follow 
were statistically significant in the p < 0.05 range using t- and Mann Whitney (Wilcoxon) tests for unpaired data.

6.2. Analysis of performance for the customer role

We begin by comparing the performance of the CS-A agent to that of people playing with other people. Fig. 3a shows the 
average score of the CS-A agent in HvsCS-A games when compared to people playing the customer role in the HvsH games. 
As shown in the Figure, the CS-A agent outperformed people playing the customer role in all countries by a significant 
margin. In Israel, there was a significant difference in the score of the CS-A agent score (Mean = 403.33, SD = 48) and 
people (Mean = 293.77, SD = 20), t(49) = 4.12, p < 0.0001. In the U.S., there was a significant difference in the score of 
the CS-A agent (Mean = 383.33, SD = 72) and people (Mean = 278.6677, SD = 89), t(28) = 3.53, p < 0.0001. In China, 
there was a significant difference in the score of the CS-A agent (Mean = 364.76, SD = 72.4) and people (Mean = 230.66, 
SD = 106.43), t(30) = 3.80, p < 0.0001.

There are several possible factors that can explain the success of the CS-A agent, which we describe in turn. The first 
factor is the extent to which human players reach the goal and collect the bonus when playing the CS-A role. Fig. 3b 
compares the percentage of games in which the customer player reached the goal in HvsCS-A games and games in which 
human players played the customer role. As shown in the figure, the CS-A agent was always able to reach one of the service 
providers. This was not the case for the human players in the customer role. In particular, in China only 60% of human CS 
players reached the goal, followed by Israel (83%) and the U.S. (93%).4 This result is striking, given that customer players 
have the necessary resources to reach the goal at the onset of the game, demonstrating irrational behavior by people during 
the game.

The second possible factor that may explain the success of the CS-A agent is the difference in benefit associated with the 
offers that were made by the equilibrium agents and those with the relevant human players. We define the competitiveness 
measure of an offer O  = (O cs, O i) made by the customer player to a service provider S Pi to equal to the difference between 
the number of chips sent by the S Pi and the number of chips sent by the customer player (|O i | − |O cs|). For example, 
suppose that the CS-A agent player proposes a commitment offer and asks for 40 red chips and proposes to send 11 yellow 
chips. In this case, its competitiveness measure will be 29 chips.

4 We present a detailed comparison of people’s behavior across countries in the next section.
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Table 2
Average competitiveness of C S offers.

HvsH HvsCS-A HvsSP-A HvsSP-RAP

Competitiveness 6.67 23.1 9.15 6.76

Table 3
The percentage of games ended with a commitment agreement.

HvsH HvsCS-A HvsSP-A HvsSP-RAP

Games ended with commitments 31.8% 68.7% 73.6% 71.4%

Fig. 4. Performance of the SP-A agent.

Table 2 compares the average competitive measure between offers made by the CS-A agent and offers made by people 
playing the customer role across in the different settings. The results are averaged over all countries. As shown by the table, 
offers made by the CS-A agent were significantly more competitive than offers made by people playing the same role.

To distinguish between the effects of getting to the goal and making competitive offers on the performance of the CS-A 
agent, we compared the final score in the game for the CS-A players. We controlled for those games in which the human 
CS player was able to reach the goal. The average score for the CS player in the HvsH setting was 315 points in Israel, 
288 points in the U.S., and 294 points in China. Thus, in all countries, the average score for the CS-A agent (Fig. 3a) was 
consistently higher than that of people playing the same role that reached the goal. Therefore, we can conclude that the 
success of the CS-A agent cannot be solely attributed to the fact that people were not always able to reach the goal.

The third factor that explains the performance of the CS-A agent is how commitment offers were accepted by human 
players. According to the equilibrium strategy of Theorem 1 the customer player proceeds directly to the goal following an 
accepted commitment offer, effectively ending the game. Table 3 shows the ratio of games that ended following commitment 
offers was significantly higher in the HvsCS-A games (68.7%) than in the HvsH games (31.8%). As we have shown in Table 2, 
such commitment offers were significantly more beneficial to the CS-A agent than people playing the same role, and the 
CS-A agent proceeded to the goal square and ended the game after commitment offers were made. Together, these three 
factors provide a comprehensive explanation of how the CS-A agent was able to outperform people playing the same role.

6.3. Analysis of performance for service provider role

We now compare the performance of the service provider agent to people playing the same role. We begin with the 
SP-A agent which used the equilibrium strategy of Theorem 1 which assumed that the customer player always reaches the 
goal following the acceptance of a commitment offer (an assigned probability pr = 1).

Fig. 4a compares the performance of the SP-A agent to people playing the service provider role in all countries. In 
contrast to the performance of the CS-A agent, there was no statistically significant difference between the scores of the 
SP-A agent and people in all countries. The average score for the SP-A agent in each country was higher than that of people 
playing the service provider role.

To understand the reason for this poorer performance, we computed the average competitiveness of offers made by the 
SP-A agent. Because both service providers are competing to sign a contract with the customer player, we expected that 
offers made by the service provider role will be highly generous (i.e., will incur a negative competitiveness measure). As 
shown in Table 4, the SP-A agent was significantly less competitive than people playing the same role (−28 competitive 
ratio of the SP-A agent vs. −2.33 of people). Table 3 shows that the percentage of accepted commitments leading to game 
termination in HvsSP-A games (73.6%) was higher than in HvsCS-A games (65.9%). This means that the SP-A player made 
significantly more generous offers than people did, and that these offers were likely to be accepted by people. Lastly, as 
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Table 4
Average competitiveness of S P offers.

HvsH games HvsCS-A games HvsSP-A games HvsSP-RAP

Competitiveness −2.33 −1.53 −28.78 −12.59

Fig. 5. Performance of the SP-RAP agent.

shown in Fig. 4b, human players playing the CS role in the HvSP-A games reached the goal significantly less than human 
players playing the CS role in the HvsH games. Together, these results explain the poor performance of the SP-A player.

Finally, Fig. 5a compares the performance of the SP-RAP agent to people playing the service provider role in all countries. 
As shown by the figure, the SP-RAP agent was able to outperform people in all countries. In Israel, there was a significant 
difference in the score of the SP-RAP agent score (Mean = 239.70, SD = 53.8) and people (Mean = 200.02, SD = 78.16), 
p < 0.03. In China, there was a significant difference in the score of the SP-RAP agent score (Mean = 254.66, SD = 65.9) 
and people (Mean = 220, SD = 59.3), p = 0.05. In the US the difference between the SP-RAP and the SP-A players was not 
statistically significant in the p < 0.05 range.

To explain the success of the SP-RAP, we note the following. First, the SP-RAP agent was significantly less generous than 
the SP-AP agent, while still more generous than people playing the same role. This can be seen in Table 4, which shows 
that the generosity measure of the SP-RAP agent was 14.5, compared to 28.78 for the SP-AP agent, and 2.33 for people. 
Second, as shown in Table 3, the ratio of accepted commitment offers in HvsSP-RAP games (71.4%) was significantly higher 
than those in HvsH games (31.8%) while not significantly different than those of HvsCS-A games (73.6%). Fig. 5b shows that 
human players in the CS role playing the SP-RAP agent were able to reach the goal as often (Israel and the U.S.) or more 
often than (China) people in the equivalent SP role in the HvsH games.5 Together, these results show that reasoning about 
people not being able to reach the goal square resulted in less generous commitments by the SP-RAP player (compared to 
the SP-AP agent), but this did not affect the acceptance rate of these commitment proposals.

The next question to ask is whether we can improve the strategies of the CS-A and SP-RAP agents. While the SP-RAP 
agent’s offers were generally less generous (i.e., more competitive) than those of the SP-A agent, they were less competitive 
than those of humans playing one of the SP roles (with associated benefit −2.33 in HvsH games vs −12.59 of the SP-RAP). 
Furthermore, even though the SP-RAP’s offers in China were much less generous than those in Israel and the USA (with 
associated benefit of −14.5 in Israel; −15.56 in USA and −7.41 in China), the percentage number of games that ended 
with a human CS accepting the commitment was similar across al countries. Therefore we can attribute the higher score of 
the SP-RAP agent to the fact that it made less generous offers than the SP-A agent, yet they were still accepted by people. 
However, we hypothesized that as the SP-RAP agent’s offers become less generous, at some point the human will prefer the 
offers of the other SP, which in turn reduces the score of the SP-RAP. Thus, it would be beneficial to quantify the extent 
to which the SP agent can be generous while still making offers that are accepted by human CS players, and are able to 
compete with the other service provider. Given the inherent lack of data in our domain (there was less than 50 offers made 
by the SP player in the HvsH setting in Israel) we cannot use classical machine learning algorithms for finding out the 
tradeoff.

Therefore we used a data-driven approach described as follows for the S Pi player (without loss of generality). At a 
state s, we seek an S Pi preferred offer denoted ̂O T s,i with benefit ucs(s, ̂O T s,i) to the C S player that represents a minimal 
acceptance threshold for the C S player, while still being likely to be accepted by people. To this end, we require that the 
following conditions are met: This first condition requires that the offer ̂O T s,i is likely to be accepted by people. Let Oi
be the set of offers between the S Pi player and the C S player made by people in the HvsH setting. The first condition 

5 There was no statistically significant difference in the percentage of people reaching the goal in the CS role between the HvsH and the HvsRAP setting 
both in Israel and the U.S. The percentage of people reaching the goal in the CS role in the HvsRAP setting in China was significantly higher than that of 
people playing the S role in the HvsH setting.
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Table 5
Cultural differences in players’ behavior in the game.

Getting to goal Commitment offers Games ending with commitments

Israel 83% 26% 69%
USA 90% 19% 73%
China 68% 28% 67%

requires that any offer O ′ ∈ Oi at state s that provides equal or greater benefit to the C S player (ucs(s, O ′) ≥ ucs(s, ̂O T s,i))

was accepted by the C S player in the HvsH setting.
The second condition requires that the offer ̂O T s,i is sufficiently generous to compete with the offers that can be made by 

the S P j player in the HvsH setting. Recall that the generosity measure of an offer O  = (O cs, O i) made by an S Pi towards 
the C S player is the difference in the number of chips sent by the S Pi and the number of chips sent by the customer 
player (|O i | −|O cs|). This condition requires that the generosity measure of the offer ̂O T s,i is at least as high as the average 
generosity of all O j offers made by people playing the role of the S P j player in the HvsH setting. This represents a baseline 
for offers to compete with those offers that are made by the other service providers.

We found that an offer ̂O T s,i with a benefit threshold of 50 to the customer player (i.e., ucs(s, ̂O T s,i) = 50) satisfied both 
of the conditions defined above. We therefore programmed a data-driven agent termed SP-RAPD that makes offers at state 
s in the game as follows: If a preferred offer exists at s that provides the offer ̂O T s,i with a minimal acceptance threshold, 
then the agent makes the offer ̂O T s,i (otherwise, it does not make any offer). In all other respects (accepting offers, moving 
on the board) the agent behaves like the SP-RAP agent. We illustrate the behavior of the SP-RAPD agent at the onset of the 
board game of Fig. 1. This agent would offer to the CS player the following commitment offer: 21 chips (14 red chips and 
7 purple chips) in return for 11 gray chips. Note that this offer is less competitive than the commitment offer made by the 
SP-RAP agent in this state, which offered 26 chips to the CS player in return for the same 11 gray chips.

We compared the performance of this agent with that of people in Israel, playing 16 games in a lab setting that we will 
denote HvsRAPD. All subjects were engineering students from Ben-Gurion University from the same pool as the subjects 
in the other settings described earlier. The results from the games played in the HvsRAPD were as follows: As expected, 
the average generosity measure for the SP-RAPD agent was 10, which was lower than the average generosity measure for 
the SP-RAP agent that was reported in the HvsRAP games played in Israel (14.5). However, there was no difference in the 
percentage of accepted commitments made by the SP-RAPD agent (77%) and those made by the SP-RAP agent in Israel (76%). 
Consequently, the SP-RAPD agent was able to achieve an average score of 265.3 points (SD = 62.8), which was significantly 
higher than the average score achieved by the SP-RAP agent in Israel (239.7 points, SD = 53.8, p < 0.05) see Fig. 5a).

These results show that the SP-RAPD was able to adopt the right tradeoff between making beneficial offers to itself, 
while ensuring that the offers are accepted by people. In addition, the generosity measure of offers made by the S P g human 
player was only 5.65, showing that the offers made by the SP-RAPD agent were still competitive with those offers made by 
the other service provider. Together, these results explain the success of the SP-RAPD agent in Israel. It demonstrates the 
potential of using data-driven heuristics to augment equilibrium agents in the absence of sufficient data.

6.4. Cultural differences in people’s play

We end this section with studying cultural difference between people’s behavior across all game conditions (HvsH, 
HvsSP-A and HvsSP-RAP games). To this end, we compare people’s behavior in Israel, the USA and China using the following 
three measures: the extent to which people reached the goal when playing the role of the customer player, the ratio 
of commitment offers made by people versus the ones made by the agents and the extent to which people accepted 
commitment offers. The results are shown in Table 5.

As shown in the table, people in the US were most likely to reach the goal, followed by people in Israel and in China.6

We observed two classes of scenarios in which people’s irrational behavior prevented them from getting to the goal. The 
first consists of people who mistakenly send the needed chips to one of the SP players and are not able to reach the goal. 
The second scenario consists of human players who become too involved in the negotiations and end the game due to the 
dormant turn timeout.

It is also shown in the table that people made relatively more commitment offers in China, followed by Israel and then 
USA. Finally, people in the USA accepted more commitment offers that those in Israel and China, leading to the end of the 
game.

Finally, it is interesting to observe that the number of rounds in the games was not significant different between the 
countries. For example, in HvsH games, the average number of rounds in Israel was 5.86, in the China 5.33 and in USA it 
was 4.13.

6 Note that the percentages here are slightly different from those used for pr in the SP-RAP strategy. The original ones were taken from only HvsH data, 
while Table 5 reports the results of all type of games where a human played the CS role.
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6.5. Discussion

The fact that the CS-A agent who used sub-game perfect equilibrium was able to outperform people was striking. This 
contradicts past results in the literature showing that agents using equilibrium strategies to negotiate with people were 
generally unsuccessful [17,28]. This prompted us to identify the reasons behind the success of the CS-A agent.

To this end, we compared the behavior of the CS-A agent in HvsCS-A games to that of people in HvsH games in the 
three countries. We found that in all countries the CS-A agent reached the goal more often than did humans (100% vs 80%).

We therefore conjectured that the high competitiveness of the CS-A played an important role in its success. To support 
this claim, we found that the benefit for the CS-A agent from the commitment offers that were accepted by people was 
significantly higher than that reached by people when accepting such offers from other people. In fact, in the commitment 
offers made by the CS-A, almost all the points that the SP player received from the CS-A reaching its goal (145 points out 
of 150) went to the CS-A agent.7

The competitiveness of the CS-A agent’s offers are similar in spirit to (sub-game perfect) equilibrium offers made in 
the classic two-player ultimatum game. However, people do not generally accept such offers because they are perceived to 
be unfair. In contrast, in our study, 68.7% of the HvCS-A games ended with people accepting offers that are significantly 
more beneficial to the agent than to themselves. Interestingly, the average number of rounds in the HvsCS-A games was 
significantly longer than the HvsH and HvsSPa games (10.12 rounds in HvsCS vs 5.11 rounds in HvsH vs 3.9 in HvsSPa). 
A possible explanation is that people were aware of the disadvantage to them when accepting the CS-A agent’s offers 
and therefore it took a greater number of rounds for them to accept the CS-A’s unfair offers. Nevertheless, most of them 
eventually accepted the unfair offers with almost no benefit.

A possible explanation for the fact that people were willing to accept unfair offers is the inherent competition between 
the SPs in the game. This is supported by experiments reported in Roth et al. [29], who compared related two-person ulti-
matum game and multi-player market environments in Israel, Japan, the United States and Yugoslavia. In both environments, 
subjects played several times, each time with different people. Both the market and ultimatum game environments chosen 
for their experiment have an extreme sub-game perfect-equilibrium, in which one player receives all of the benefits from 
the transaction. The market outcomes converged to the equilibrium in all the countries; however the ultimatum outcomes 
were different from the equilibrium predictions in all the countries. These differences cannot solely be attributed to the 
repeated interaction, as in both settings, the subjects played the relevant game repeatedly. Rather, one of the explanations is 
that the competitive pressure toward equilibrium in the market overwhelms any fairness factors in the players’ preferences. 
Thus, we may hypothesize that equilibrium agents may be beneficial in the presence of competition. Despite the success of 
equilibrium agents playing the CS role, our findings that the SP-A agent was outperformed by people, and other experiments 
where agents and humans interact in competitive environments such as auctions [7] reveal that the specific context of the 
settings plays an important role in equilibrium agents’ success. Thus categorizing a priori the type of strategies that will 
succeed in complex environment is still a challenge.

We showed that it was possible to improve the performance of the SP agent by using a data-driven heuristic for finding 
preferred offers that are likely to be accepted by the CS player while providing a higher benefit to the SP agent than the 
preferred offers made by the SP-RAP agent. It may also be possible to improve the CS-A agent. In particular, we observed a 
few games where the human CS player gained more than 500 points while the average score of the CS-A agent was 387.35. 
The strategy of the human players that obtained a higher score was to first propose non-commitment offers to one of the 
SPs and get as many chips from him as possible. Only then did the human who played the CS role made a commitment 
offer to the other side. The risk in such a strategy is that the other SP may not accept the commitment offer after observing 
the behavior of the CS agent toward the first SP. More experiments should be run to collect data on the SPs’ behavior in 
such situations.

Another possible improvement of the CS-A’s score is to increase the acceptance rate of its commitment offers. As men-
tioned above, only 63% of the HvsCS-A games ended with an SP human player accepting the commitment offer. A possible 
way to increase the acceptance rate is to decrease the competitiveness of the offers over time, making the later offers more 
beneficial for the SP human player. Clearly, decreasing the competitiveness of the offers also reduces the score of the CS-A 
agent. Therefore, again, being able to predict people’s willingness to accept such competitive commitment offers over time 
is essential for the success of such a modified SP agent. We believe that such a predictor will be country dependent since 
the percentage of HvsCS-A games that ended with a commitment offer in China was only 0.4 while it was 0.66 and 0.8 in 
Israel and USA, respectively.

The equilibrium definition breaks ties towards the S P g player when making offers (Definition 2) and breaks ties towards 
the S P y player when moving according to the preferred path (Definition 5). We broke ties in this way in order to provide 
each service provider agent with a fair opportunity for an advantage in the game, rather than consistently favoring one of 
the service providers at all decision points. From the theoretical point of view we can break ties arbitrarily but keep all 
the definitions consistent. The correctness of Theorem 1 will not be affected. In particular, in Definition 2 we can break 
ties toward the S P y player (instead of the S P g player), when making offers. In Theorem 1, in the strategy of CS player 
(item 1) needs to change so that the CS player breaks ties toward the S P y player instead of the S P g player when making 

7 A typical offer was 40 chips to the CS-A (33 red chips and 7 purple chips) in return for 11 gray chips to the SP.
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offers. Note that this change would also change the negotiation strategies used in equilibrium on the board game used in 
our study.

Lastly, we deal with the question of how our model adapts to increasing the number of players. We limited the set of 
participants to two service providers and a single customer, the minimal number of participants to guarantee competition in 
a market setting, which also allowed to easily run lab studies with people. We can generalize our model to more than two 
service providers by changing the S Pi preferred offer (Definition 3) to reasoning about all of the other service providers. 
This is shown in the revised Definition 6 below for S Pi preferred offers:

Definition 6 (S Pi preferred offer for n service providers). Let {S P1, . . . , S Pn} be a set of service providers. The set of SP pre-
ferred offers at state s, {Ô −

s,1, . . . , Ô
−
s,n} satisfy the following conditions:

1. Eucs(s, Ô −
s,i) ≥ Eucs(s, P∗

s ), Eui(s, Ô −
s,i) > ui(s) and for all j 
= i, Eui(s, Ô −

s,i) ≥ Eui(s, Ô −
s, j). If there is no offer that satis-

fies this condition we set Ô −
s,i = (∅, ∅).

2. For any offer O involving an S Pi player that satisfies the constraints in condition (1), if Eui(s, O ) > Eui(s, Ô −
s,i) then 

there exists a service provider S P j, i 
= j such that either Eucs(s, O ) < Eucs(s, Ô −
s, j), or Eucs(s, Ô −

s, j) = Eucs(s, O ) and 
ties were broken in favor of S P j .

The model also extends to the case in which there are multiple customers, and the chip set of each service provider 
allows it to make a commitment offer simultaneously to each customer during the negotiation phase. We only need to 
update the S Pi preferred offer of Definition 3 to reason about making an offer to each of the customer players, rather to 
just one customer player. The alternative case in which it is not possible for an S Pi player to make commitment offers to 
all customers is more complicated, and we leave it to future work.

7. Conclusions

This paper studied three-player contract games consisting of human and computer players. We defined a new game that 
comprises three players, two service providers and one customer. The service providers compete to make repeated contract 
offers to the customer consisting of resource exchanges in the game. The customer can join and leave contracts at will.

The first contribution of the paper was the design of a “contract game” which is analogous to a market setting in which 
participants need to reach agreements on contracts over time. The second contribution was providing sub-game Perfect 
equilibrium strategies for each of the players. Specifically, because service providers compete over the customer player, the 
contracts proposed by both service providers and customers are highly beneficial contracts to the customer, but require a 
commitment from the customer that would prevent it from signing a contract with the other service provider.

We evaluated computer agents that use the equilibrium strategies in extensive empirical studies in three different coun-
tries, the U.S., Israel and China. We ran several configurations in which two human participants played a single agent 
participant in various role configurations in the game. The third contribution is showing via our extensive experiments that 
the computer agent using equilibrium strategies for the customer role was able to outperform people playing the same role 
in all three countries. In particular, the customer agent made significantly more commitment type proposals than people, 
and requested significantly more chips from service providers than did people. In contrast, the computer player in the role 
of the service provider was not able to outperform people due to the fact that people may not behave rationally in the 
game. However, our forth contribution is that introducing a simple model that captures the bounded rationality of people 
playing the customer role into the formal model of the contract game led to an automated agent that plays well the service 
provider role.

These results indicate that in some settings it is possible to build agents that interact proficiently with people using 
equilibrium strategies. In future work, we mean to use machine learning models to predict how people behave in the game 
and to use this insight to improve the performance of the computer agents. We will need to collect significantly more data 
instances of people’s play for this purpose. In addition, we mean to conduct more experiments with different board games 
that vary the dependency relationships between the players, and increase the number of service providers and customers.
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Appendix A

In this section we show how the preferred commitment offer for the SP-A agent is realized in the board game of Fig. 1.

Proposition 3 (Preferred commitment offer for SP-A agent). The preferred commitment offer of the SP-A agent in the board game of 
Fig. 1 was to offer 33 red chips and 7 purple chips) in return for 11 gray chips.
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The S Pi preferred offers at the initial state s1, Ô −
1,i are defined iteratively. At iteration 0, the preferred offer depends on 

the expected utility Eucs(1, P∗
1) for the C S player given the preferred path P∗

1 . The definition of P∗ is recursive. Therefore 
we show how to compute this offer using backward induction.

1. Suppose that the C S player is located one square before the yellow goal, no offer was accepted until this point, and it 
is the C S player’s turn to make an offer. We denote this as state sl . If no offer will be accepted at this state, then the 
C S player will go to the yellow goal. This is the base case of the recursion. When reaching the goal, the C S player will 
have 15 chips in its possession, and its score will be 150 + 15 · 5 = 225, the S P y ’s score will be 40 · 5 + 150 = 350 and 
the S P g ’s score will be 40 · 5 = 200.

2. Given the definition of C S preferred offer the CS will give the offer Ô l,g where it gives 4 yellow for 7 pink and 26 reds 
to S P g . The S P g score will be 150 + 11 · 5 = 205. The CS players’ score will be (24 − 8 − 7 − 4 − 2 + 33) · 5 + 150 = 330; 
the S P y ’s score be 200. Note that it is a commitment offer (Definition 4). Otherwise, after the acceptance of the offer 
the C S will go to G y leaving S P g with 55 points.

3. In the prior step, denoted l − 1, it is the turn of the S P s players to make offers. S Pl−1,y should yield at least 330 to 
the C S player (see condition 1) and at least 200 points to the S P y (the score for S P y in the initial state). The best 
such offer for S P y getting 11 grays and sending him 32 reds (24 − 11 − 9 + 32) which will yield the S P y the score of 
150 + 19 · 5 = 245. For S P g the only such offer to S P g is the offer Ô l,g . The C S player prefers the S P y over the S P g
player because it maximizes the sum of the scores.

4. Using the same line of reasoning, we can show that preferred offers for all states on the yellow path leading to the S P y
player up to the yellow square near the “small” purple bridge are as follows: When it is the C S player turn to make 
an offer, the C S preferred offer will be Ô l,g (and the commitment is towards to S P g ). When it is the turn of the S P

players to make an offer, the S P preferred offer will be Ô −
l−1,y (and the commitment is towards the S P y).

5. Consider the state sb1 where the C S player is located in the fourth square on the yellow path (near the purple “bridge”) 
and suppose it is the C S player to make an offer and it must move. If its offer is rejected the best path is to continue 
on the yellow path Eucs(sb1, P∗

b1) = 330, Eu y(sb1, P∗
b1) = 245 and Eu y(sb1, P∗

b1) = 200. The C S preferred offer, Ô b1 is 
sending 7 yellow chips to S P g and getting in return 3 purple and 33 red chips which will be accepted by the S P g
player. The expected utility of the C S player will be (24 − 4 − 7 − 3 − 6 + 36) · 5 + 150 = 40 · 5 + 150 = 350 and S P g ’s 
score will be 205. S P y ’s score will be 200.

6. In the state prior to sb1 the S P s will make offers. The preferred offer for S P g will be Ô b1 since this is the only 
offer that will yield the S P g more than 200 points and at least 350 to the C S player. However, S P y ’s offer will be 
getting 11 gray chips from the C S player and sending back 33 red chips and 3 purple in return. The C S ’s score will be 
(24 − 9 − 11 + 36) · 5 + 150 = 350 and S P y ’s score will be (40 + 11 − 36) · 5 + 150 = 15 · 5 + 150 = 225. Breaking ties 
toward the offer that maximizes the sum of the expected utility leads to choosing Ô −

y .
7. Going back, the prior interesting state, sb2 is when the C S player is located in the second square on the yellow path 

and it is its turn to make an offer and it must move. The offer should yield at least 350 to C S and 205 to S P g or 245 
to S P y . The best such offer to the C S player, Ô b2 is sending 9 yellow chips to S P g and getting in return 7 purple and 
31 red chips. The C S score will be (24 − 9 − 2 − 3 − 6 + 38) · 5 + 150 = 360 and the expected utility of S P g is 205.

8. In a prior state when it is the SPs to make others, and similar to sb1 also here S P g preferred offer is Ô b2. The preferred 
offer of S P y is getting 11 gray chips and sending 33 red chips and 5 purple chips in return. Breaking ties in favor of 
the offer that maximize the sum of the expected utility S P y ’s offer will be accepted. The expected utility for the C S
will be (24 − 11 − 9 + 38) · 5 + 150 = 360 and S P y ’s expected utility will be 215 and that of S P g will be 200.

9. Using the same line of reasoning these will be the offers also when the C S is in the first square of the yellow path.
10. Now we are ready to compute the expected utility Eucs(2, P∗

2) where s2 = Res(1, P∗
1). By the definition of the preferred 

path, P∗
1 is the empty set, therefore the C S player must move at s2. Since we break ties toward S P y , the C S player will 

move one square toward the yellow goal. In this case, from item 8 we have that Eucs(2, P∗
2) = 360, Eu y(2, P∗

2) = 215

and Eug(2, P∗
2) = 200. We need now to compute Ô 2. According to the definition of the C S preferred offer Ô 2 should 

yield strictly higher score to the S P as the expected utility from P∗
2 and at least as the expected score from P∗

2 to the 
C S player. The best offer C S player in this case is made toward S P g where S P g is Ô 2 which sends 33 red chips and 7 
purple chips for 11 yellow chips. This yields 370 points to the C S player, 205 to S P g .

11. Now we are ready to compute Ô −
1 . Ô −

1,g is equal to Ô 2. And similarly, for S P y , the offer is Ô −
1,y is sends 33 red chips 

and 7 purple chips for 11 gray chips. Breaking ties in favor of S P g will lead to the acceptance of its agreement.
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