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Abstract

In multi-class hierarchical classification, a nat-
ural evaluation metric is the tree distance loss
that takes the value of two labels’ distance on
the pre-defined tree hierarchy. This metric is
motivated by that its Bayes optimal solution
is the deepest label on the tree whose induced
superclass (subtree rooted at it) includes the
true label with probability at least 1

2 . How-
ever, it can hardly handle the risk sensitivity
of different tasks since its accuracy require-
ment for induced superclasses is fixed at 1

2 .
In this paper, we first introduce a new evalua-
tion metric that generalizes the tree distance
loss, whose solution’s accuracy constraint 1+c

2
can be controlled by a penalty value c tai-
lored for different tasks: a higher c indicates
the emphasis on prediction’s accuracy and a
lower one indicates that on specificity. Then,
we propose a novel class of consistent sur-
rogate losses based on an intuitive presenta-
tion of our generalized metric and its regret,
which can be compatible with various binary
losses. Finally, we theoretically derive the
regret transfer bounds for our proposed surro-
gates and empirically validate their usefulness
on benchmark datasets.

1 Introduction

Label hierarchies widely exist in the scenario of mul-
ticlass classification. For example, the labels of news
documents obey the hierarchy determined by their top-
ics (Lang, 1995); a natural hierarchy also exists in the
task of species classification (Van Horn et al., 2018),
where each image has the annotation of its species that
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has the hierarchy of biological taxonomy. To better
utilize the hierarchy information, the task of hierarchi-
cal classification is studied and many efforts have been
contributed to this area (Valmadre, 2022; Giunchiglia
and Lukasiewicz, 2020; Dekel, 2009; Cesa-Bianchi et al.,
2004; Babbar et al., 2013; Cesa-Bianchi et al., 2006;
Wehrmann et al., 2018).

Given the label hierarchy, which is often a tree graph
whose nodes are the class labels, it is able to design
evaluation metrics other than the misclassification er-
ror that can better reflect the nature of hierarchical
classification tasks. A natural evaluation is the tree
distance between the prediction and the ground truth,
which has been theoretically and empirically studied
in previous works (Dekel et al., 2004; Sun and Lim,
2001; Ramaswamy et al., 2015; Bertinetto et al., 2020).
A consistent surrogate loss was also proposed in Ra-
maswamy et al. (2015) to enable efficient optimization
of this non-continuous metric.

Intuitively, the knowledge about label hierarchy pro-
vides us with an option of giving intermediate predic-
tions (Bertinetto et al., 2020). i.e., predicting a non-leaf
label on the tree that denotes the superclass consists of
itself and all its descendant labels. Ramaswamy et al.
(2015) proved that the tree distance loss fits well with
this purpose by showing that its Bayes optimal solution
is the class label of the highest level among those labels
whose induced superclass includes the ground-truth
label with a probability of at least 0.5.

While the Bayes optimal solution of the tree distance
loss aims to achieve a balance between the predictions’
semantic clarity and safeness, its safeness guarantee is
not flexible enough to cope with different risk sensitivi-
ties of practical tasks: when a prediction with accuracy
higher than 0.5 is needed, the tree distance loss fails to
recognize a solution that meets this requirement. Such
a requirement is natural since the accuracy guarantee
of 0.5 is quite a weak one which only means the super-
class is more likely to include the true label than not.
Furthermore, the encouraged consistent surrogate in
Ramaswamy et al. (2015) takes a hinge-like formulation
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that is only verified on the linear model class, whose
performance on popular deep models remains unclear.

In this paper, we tackle both problems of the design of
a risk-sensitive evaluation metric and efficient surrogate
losses. The main contributions of this paper can be
summarized as follows:

• We propose a generalized version of the popular
tree distance loss whose Bayes optimal solution
has a flexible accuracy guarantee of 1+c

2 , where
c > 0 can be set to proper values that conform to
the need of practical tasks. An illustration can be
found in Figure 1.

• We derive an intuitive representation of the pro-
posed loss and use it to rewrite its risk formulation
into the sum of binary classification risks, which
enlightens a consistent problem reduction from hi-
erarchical classification to ordinary classification.

• We further delve into the regret formulation of our
proposed generalized tree distance loss and provide
a condition on the coherency of the model we
use, which can capture the essence of hierarchical
classification and further reduce the gap between
hierarchical classification and binary classification.

• Based on these findings, we propose a loss formu-
lation that can integrate various losses for binary
classification to construct consistent surrogates
for our generalized tree distance loss and further
induce regret transfer bounds for them to better
characterize their behavior.

Experimental results on benchmark datasets of hierar-
chical classification clearly demonstrate the effective-
ness of our proposed method.

2 Background: Tree Distance Loss,
Consistency, and Surrogates

In this section, we review the problem setting of hi-
erarchical classification w.r.t. the evaluation metric
of the tree distance loss, and its existing surrogate
losses. Before reviewing the problem formulation, we
first introduce some notations about the structure of
the tree as shown in Table 1, which is necessary for the
definition of hierarchical classification.

Notations: Given a tree H = ([K], E) with node
set [K], edge set E, and root node r = 1, we list the
notations for each y ∈ [K] in Table 1. We further
define Uu(ϵ) = {y| maxy′∈Cy

Wy(u) = ϵ}, which means
the collection of y whose children’s subtrees’ maximum
weight is equal to ϵ. Let us denote by Ty = T 1

y and
its complement set T y = T 0

y , and we will use both

Table 1: Notations used in tree structure.

Lev(y) Level of y
Py Parent of y
Cy Children of y
Dy Descendants of y
Ty y-induced superclass/subtree

Wy(u) Weight of subtree with root y,
∑

y′∈Ty
uy′

notations according to the context. We further define
the function sy1(y2) : [K] → {0, 1}:

sy1(y2) =
{

1, y2 ∈ Ty1 ,

0, else.

Tree-Distance Loss and Bayes Optimality: De-
note by X and Y = [K] the input and label spaces,
X×Y is the input-label random variable tuple and x×y
is their realization. In the setting of hierarchical classifi-
cation, we have access to i.i.d. data pairs (x, y) ∈ X ×Y
drawn from the distribution D with density p(x, y).
The goal is to obtain a classifier f ∈ X → Y, which is
often required to minimize the risk RℓH

D (f), i.e., the ex-
pectation of the tree distance loss ℓH : Y × Y → R+:

RℓH

D (f) = Ep(x,y) [ℓH(f(x), y)] , (1)

where the tree distance loss ℓH(y, y′) is defined as
the length of the path between y and y′. The tree dis-
tance loss can measure the discrepancy between the
predicted label and the ground-truth label according to
the tree H. Furthermore, the essence of risk minimiza-
tion with tree distance loss can be better demonstrated
with the following characterization of its Bayes op-
timal solution f∗ = argminf RℓH

D (f) as stated in
Theorem 1 of Ramaswamy et al. (2015). Suppose
η(x) = {p(y|x)}K

y=1 is the class posterior probability,
then we have

f∗(x) ∈

(
argmax

Wy(η(x))≥0.5
Lev(y)

)
∪ Uη(x)(0.5). (2)

Notice that the weight term Wy(η(x)) is exactly the
likelihood that the ground-truth label is included in
the induced superclass Ty, i.e., the accuracy of Ty,
while a prediction y with higher level can induce a
more compact and exact Ty than its ancestors. In a
nutshell, the Bayes optimal prediction f∗(x) is the
label of the highest level among those labels whose
induced superclasses include the ground-truth label
with probabilities greater than 0.5. The set Uη(x)(0.5)
can be seen as a further trade-off: since it is hard
to judge if a superclass with accuracy equals 0.5 is
a good solution, we can take into consideration its
parent class to diminish the ambiguity. Nevertheless,
the constraint for the accuracy of superclasses is fixed
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Figure 1: Illustration of the Bayes optimal solution for ℓc
H under different c. The highlighted label is the optimal

prediction and the labels enclosed by the dashed line make up the induced superclass.

at 0.5, which can be too loose and restrictive due to
the risk-sensitivity nature of different tasks.

Consistency and Surrogates: It is worth noting
that the tree distance loss ℓH is discontinuous in gen-
eral, which makes its minimization problem NP-hard
(Feldman et al., 2012). To make the optimization prob-
lem tractable, an effective method is to substitute the
discontinuous target losses with continuous surrogates.
This method has been systematically studied in var-
ious fields of statistical machine learning, including
but not limited to multiclass classification (Bartlett
et al., 2006; Zhang, 2004; Tewari and Bartlett, 2007;
Ramaswamy and Agarwal, 2016; Pires and Szepesvári,
2016; Finocchiaro et al., 2019; Mao et al., 2023a; Bao,
2023), multilabel classification (Gao and Zhou, 2013;
Zhang et al., 2020; Koyejo et al., 2015; Wu et al., 2021),
linear-fractional utility and AUC maximization (Gao
and Zhou, 2015; Menon and Williamson, 2014; Bao and
Sugiyama, 2020; Mao et al., 2023b),top-K classification
(Lapin et al., 2018; Yang and Koyejo, 2020), adversar-
ially robust classification Bao et al. (2020); Awasthi
et al. (2021b,a, 2023), and classification with rejection
(Cortes et al., 2016a,b; Ni et al., 2019; Charoenphakdee
et al., 2021; Cao et al., 2022).

To have a guaranteed performance both theoretically
and practically, the consistency of surrogate losses
is often required. In the field of hierarchical classifica-
tion, we are also interested in the design of consistent
surrogates for the tree distance loss. Let C ⊂ Rd and
Φ : C × Y → R+ is a surrogate loss. We aim to learn a
model g∗ : X → C via the surrogate risk minimization
described as follows:

g∗ ∈ argming RΦ
D(g) = Ep(x,y)[Φ(g(x), y)], (3)

and then design a link function φ : C → Y so that
φ◦g∗ can be used for prediction. A consistent surrogate
should fulfill the following conditions for any D:

φ ◦ g∗ ∈ argminf RℓH

D (f), ∀g∗ ∈ argming RΦ
D(g),

which immediately indicates that the minimization of
the surrogate risk RΦ

D(g) can lead to that of RℓH

D (f).

Inspired by the characterization of the Bayes optimal
solution (2), a natural surrogate was proposed in Ra-
maswamy et al. (2015), which directly estimates the
class posterior probability and then traverses the tree to
find the optimal label according to the estimated proba-
bility. A problem reduction based on the hinge-like loss
functions (Ramaswamy et al., 2018) for classification
with rejection was further proposed (Ramaswamy et al.,
2015), which can better utilize the label hierarchy and
achieve a tight regret bound. In Sections 4-6, we will
give a novel consistent surrogate formulation that can
be constructed using more kinds of loss functions while
allowing simple regret analyses based on fruitful results
from the field of binary classification.

3 Risk Sensitive Metric: Generalized
Tree Distance Loss

It is noticeable that the original tree distance loss
is unable to handle the increased risk sensitivity in
the sense that the accuracy constraint of its optimal
prediction’s induced superclass is fixed at 0.5. In this
section, we propose a generalized tree distance loss
that allows us to manually set the accuracy constraint
according to practical requirements.

By inspecting the Bayes optimal solution (2) of the tree
distance loss, we can learn that the level of a predic-
tion y′ plays a crucial role in evaluating its exactness.
Meanwhile, the level of y′ is also closely related to the
accuracy of its induced superclass Ty′ . To achieve a
trade-off between the exactness and accuracy of the
prediction according to the risk sensitivity, it is a nat-
ural idea to pay more attention to the level term. To
this end, we propose a straightforward implementation
of this trade-off (i.e., a generalized tree distance loss),
which is formulated as follows:
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Definition 1. (Generalized tree distance loss) Our
generalized tree distance loss is defined as follows:

ℓc
H(y′, y) = ℓH(y′, y) + c ∗ Lev(y′), (4)

where c ∈ [0, 1] is the trade-off parameter.

The generalized tree distance loss ℓc
H only differs from

the original one ℓH on the extra term c∗Lev(y′), which
can be simply obtained. The extra term Lev(y′) serves
as a penalty on the prediction’s level, while c can control
the degree of penalty. As a result, predictions of lower
levels, i.e., those labels whose induced superclass are
of higher accuracy, can be preferable under this new
evaluation metric.

Though it seems heuristic at first glance due to its
simplicity, the generalized tree distance loss has a strong
theoretical guarantee, which can be characterized by
its Bayes optimality shown below:
Theorem 1. (Bayes optimality of ℓc

H) Denote by
R

ℓc
H

D (f) = Ep(x,y)[ℓc
H(f(x), y)]. f∗

c ∈ argminf R
ℓc

H

D (f)
i.f.f it meets the following condition almost surely:

f∗
c (x) ∈

(
argmax

Wy(η(x))≥ 1+c
2

Lev(y)
)

∪ Uη(x)

(1 + c

2

)
. (5)

The proof of Theorem 1 is provided in Appendix A.

This Bayes optimal solution of ℓc
H theoretically val-

idates the rationality of our generalized metric: by
adding a level-related term c ∗ Lev(y′), the accuracy
constraint for the desired prediction can be raised by
c
2 compared with the original one and thus generate a
solution with higher accuracy, which shows that our
generalized tree distance loss can conform to the task’s
risk sensitivity by switching to a proper value of c.
Aside from the risk Rℓc

H (f), we are also interested in
the regret, which is also the key object of our study:

Regretℓc
H

D (f) = R
ℓc

H

D (f) − R
ℓc

H

D (f∗
c ),

which is equal to 0 i.f.f. f = f∗
c almost surely.

After validating the effectiveness of our proposed gen-
eralized metric, we should notice that its optimization
faces the same difficulties as the original one due to its
discontinuity. Furthermore, the complexity caused by
its hierarchy also makes the design of surrogates and
regret analysis a challenge. In the following sections,
we will first propose a node-wise risk representation to
demystify the problem structure of risk minimization
with ℓc

H (and ℓH), and then show that it can strongly
inspire the design of consistent surrogates for ℓc

H and,
furthermore, enable the regret analysis.

1
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Figure 2: Since labels 1 and 9 are not included in T4 at
the same time, we can learn that the edge between 4 and
its parent must be a part of the route from 1 to 9.

4 Node-wise Representation and
Problem Reduction

According to the previous sections, our task is to obtain
the model that can minimize risk Rℓc

H (f), i.e., achieve
zero regret Regretℓc

H

D (f) = 0. An indispensable step
toward solving the problem is the design of surrogate
loss, which is not as clear as in the ordinary classi-
fication scenario due to the complexity of our target
loss. In this case, a promising key is to find a proper
representation of our target loss, which has been
shown to be helpful for the design of losses and regret
analysis (Reid and Williamson, 2009; Yoshida et al.,
2021). In this section, we give a node-wise represen-
tation of our target loss ℓc

H and then generalize it to
its risk, which finally leads to an intuitive problem
reduction to binary classification. We further conduct
regret analysis and show that this problem reduction
also possesses an intuitive regret representation if the
modeling method captures the intrinsic structure of
hierarchical classification.

4.1 Loss Representation and Binary
Classification Reduction

Recalling the definition of ℓc
H , we can find that it con-

sists of two components, including the path length
between y′ and y and the level of y′, which can be seen
as the path length between y′ and root node 1. To
calculate the length of the two paths in the tree H, a
viable method is to enumerate each non-root node of
the tree, i.e., y ̸= 1, and count the number of nodes
whose edge to its parent is a part of the path, which
is exactly the path length. A direct realization of this
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idea is implemented below:
Theorem 2. (Node-wise Representation of ℓc

H)

ℓc
H(y′, y) =

K∑
i=2

[
I(y′ ̸∈ T

si(y)
i ) + c∗I(y′ ̸∈ T 0

i )
]
. (6)

The proof of Theorem 2 is provided in Appendix B.

A straightforward explanation for this representation
is that if y and y′ are not included in the same sub-
set induced by the node i, the path between them
must overlap with the edge from i to its parent. An
illustration of this explanation is shown in Figure 2.
The second term uses T 0

i directly since the root node
1 is always in T i. Given this representation, we are
able to obtain the following intuitive representation of
point-wise risk by taking the expectation over p(x, y):

Lemma 1. (Node-wise Representation of R
ℓc

H

D ) Denote
by Di a dummy distribution on X ×{0, 1} with density
pi(x, γ), we can obtain the following representation:

R
ℓc

H

D (f) = (1 + c)
K∑

i=2
Epi(x,γ) [I(f(x) ̸∈ T γ

i )] , (7)

where pi(γ = 1|x) = ηi(x) = Pr(Y ∈T 1
i |x)

1+c and the
marginal density pi(x) = p(x).

The proof of Lemma 1 is provided in Appendix C.

Considering the expectation terms in (7) as (K − 1)
sub-problems, it can be seen that each of them is similar
to a binary classification problem that aims to classify
samples into one of its two induced subsets. To be
detailed, for each non-root node i, we can construct
a binary classifier f i : X → {0, 1} to predict the set
S

fi(x)
i that the ground-truth label of x belongs to.

This problem reduction can be formulated as the risk
minimization problem below for i ∈ [2, K]:

minfi Rℓ01
Di

(f i) = Epi(x,γ)[ℓ01(f i(x), γ)], (8)

where ℓ01(f i(x), γ) = I(f i(x) ̸= γ) is the celebrated
zero-one loss in binary classification. The following the-
orem further reveals the strong connection between the
binary sub-problems and our generalized hierarchical
classification problem:
Theorem 3. Denote by F = {f i}K

i=2 the sequence of
binary classifiers and F∗ = {f i∗}K

i=2 the solutions of
(8)1. Then there exists a binary classifier f∗

c such that
the following equation holds almost surely:

si(f∗
c (x)) = f i∗(x). (9)

The proof of Theorem 3 is provided in Appendix D.
1Assume f i∗(x) = 1 when ηi(x) = 0.5.

As a result, we can get f∗
c with the following operation:

f∗
c (x) = φ ◦ F∗(x), (10)

where φ ◦ F(x) = ∩K
i=2 T

fi(x)
i .

According to (9), the solutions of binary classification
sub-problems are closely connected to f∗

c : f i∗(x) can
accurately reflect if the Bayes optimal prediction f∗

c (x)
is in the subtree Ti or not. Since each f i∗(x) provides
a set that includes f∗

c (x), we can finally get f∗
c (x) by

taking the intersection of all these sets as in (10).

Given Theorem 3, it seems that the rationality of prob-
lem reduction (8) is justified since we can finally get
the Bayes optimal solution of R

ℓc
H

D (f) via the solutions
of (8). However, it is noticeable that we have no ac-
cess to the exact value of p(x, y) in practical scenarios,
and we may only obtain an approximation of optimal
solutions F̃ ≈ F∗. Due to the deviation of F̃ , we can
be easily confused by contradictions when trying to
assemble the prediction of f̃ i. Let us consider the tree
structure in Figure 1 with f̃3(x) = f̃4(x) = 1. Ac-
cording to these results, the ground-truth label is in
both {3, 6, 7} and {4, 8, 9}, which is contradictory since
{3, 6, 7} ∩ {4, 8, 9} = ∅, and thus it is hard to obtain a
prediction in [K], which makes it hard to be put into
final deployment. In the next subsection, we give a
crucial property to characterize a family of models that
can avoid such a contradiction, and further show its
helpfulness with regret analysis.

4.2 Finer Modeling and Regret Analysis

In the last part of the previous section, we have shown
that separately constructing binary classifiers for sub-
problems (8) can cause serious contradictions that con-
fuse the final prediction. To achieve contradiction-free
prediction, we introduce a precise property that char-
acterizes the coherency of F w.r.t. H:
Definition 2. (H-Coherency) A sequence of classifiers
F = [f i]Ki=2 is H-coherent if |φ ◦ F(x)| = 1, ∀x ∈ X .

This property requires that the binary classifiers finally
reach a consensus without a veto to any of them, which
means there is no contradiction as described before.

Given this property, we can finally bind the risk of each
binary sub-problem together: inversely, we can learn
that I(φ ◦ F(x) ̸∈ T y

i ) = I(f i(x) ̸= y) according to F ’s
coherency, and thus we can substitute the expectation
term in (7) with the binary problems’ risks (8). Such a
connection makes it possible to finally decompose the
regret of our hierarchical classification problem into
the sum of binary problems’ regrets:
Theorem 4. (Node-wise Representation of Regret)
Denote by Regretℓ01

Di
(f i) = Rℓ01

Di
(f i) − Rℓ01

Di
(f i∗). If
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F = {f i}K
i=2 is H-coherent, then:

Regretℓc
H

D (φ ◦ F) = (1 + c)
K∑

i=2
Regretℓ01

Di
(f i). (11)

The proof of Theorem 4 is provided in Appendix E.

The proof of this regret representation is straightfor-
ward since Theorem 3 indicates that F∗ is also H-
coherent. Given this regret representation, we can
learn that a group of binary classifiers F that is close
to the optimal ones F∗ can also induce a hierarchical
classifier φ ◦ F that is close to f∗

c . In Section 6, we
will further show that it can help the derivation of the
regret transfer bounds for various surrogates.

5 Coherent and Consistent Surrogates

In the previous sections, we have shown that the mini-
mization of target risk R

ℓc
H

D (f) is equivalent to solving
(K − 1) binary classification problems if we choose the
model appropriately. Then there exists a problem be-
fore we can get the consistent surrogates for ℓc

H : how
can we design a modeling method that meets the con-
dition of H-coherency? In this section, we first solve
this issue with the following conclusion:
Lemma 2. Given η̂(x) ∈ ∆K , we denote by η̄i(x) =∑

j∈Ti
η̂j(x). When f i

η̂(x) = I(η̄i(x) > 0.5), Fη̂ =
{f i

η̂}K
i=1 is H-coherent.

The proof of Lemma 2 is provided in Appendix F.

The proof can be completed by checking that φ◦Fη̂(x)
is neither empty nor having multiple elements. Com-
pared with directly modeling the dummy distribution
ηi(x) with a function in X → [0, 1], which is not H-
coherent in general2, our method instead models η(x)
first and then uses it to construct ηi(x), which captures
the intrinsic structure of the setting of this problem.
In practical applications, η̂ can be the composite of
the softmax function a K-dimensional scoring function,
which can be easily implemented.

Based on the proposed coherent modeling, we can
proceed to the design of surrogate losses. Inspired by
our discussions on the binary classification reduction,
we can substitute the indicator functions in (6) with
binary classification losses to construct the surrogates
for ℓc

H . Meanwhile, our coherent modeling use η ∈ [0, 1]
to model ηi(x), it is promising that we can find a
suitable binary loss function as the component of our
surrogate from the family of losses that focus on inputs
in the range of [0, 1], e.g., proper losses (Reid and
Williamson, 2010; Williamson et al., 2016). This idea
is supported by the following theorem:

2We defer the proof of this claim to Appendix G.

Theorem 5. (Consistency Result) Let us denote by
R

Φϕc

D (η̂) = Ep(x,y)[Φc
ϕ(η̂(x), y)]. When ϕ is a binary

strictly proper loss or mean absolute loss, the following
loss formulation is a consistent surrogate w.r.t. ℓc

H :

Φc
ϕ(η̂(x), y)=

K∑
i=2

[ϕ(η̄i(x), si(y))+c∗ϕ(η̄i(x), 0)] (12)

i.e., for any η̂∗ ∈ argmin
X →∆K

R
Φϕc

D (η̂), we have f i
η̂ = f i∗,

and thus φ ◦ Fη̂∗ ∈ argmin
f

R
ℓc

H

D (f).

The proof of Theorem 5 is provided in Appendix H.

According to the theorem above, by plugging the Log
loss and the Mean Absolute Error (MAE) into our
formulation, we can get the following realizations of
consistent surrogates:
Example 1. (The realization by the Log loss.)

Φc
Log(η̂(x), y) =

K∑
i=2

[−c log(1 − η̄i(x))

−(1 − si(y)) log(1 − η̄i(x)) − si(y) log(η̄i(x))] . (13)

Example 2. (The realization by MAE.)

Φc
MAE(η̂(x), y) =

K∑
i=2

[−cη̄i(x)

−(1 − si(y))η̄i(x) − si(y)(1 − η̄i(x)))] . (14)

With these instantiations, we finally turn our findings
into consistent surrogate formulations. We will empiri-
cally validate these surrogates in Section 7.

6 Regret Transfer Bound

While the previous section provides infinite-sample con-
sistency for our loss formulation, we are also interested
in the performance guarantee of solutions that are close
to the optimal ones, since we often approximate the
data distribution with the sample mean and the empir-
ically optimal solutions usually differ from the Bayes
optimal ones. The following regret transfer bound
provides such guarantee for the consistent surrogates
considered in this paper:
Theorem 6. (A data-dependent bound) Denote by
Regret

Φc
ϕ

D (η̂) = R
Φϕc

D (η̂)−R
Φϕc

D (η̂∗). For ϕ considered
in Theorem 5 with regret transfer bound O(ϵα) for
α ∈ (0, 1], the following regret transfer bound holds:

Regretℓc
H

D (φ ◦ Fη̂) ≤ kLD(η̂)1−α
(

Regret
Φc

ϕ

D (η̂)
)α

,

where k > 0 only depends on ϕ and LD(η̂) =
Ep(x)[ℓH(φ ◦ Fη̂(x), f∗

c (x))] is the averaged distance
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between the estimated and Bayes optimal predictions
(holds for any valid f∗

c ).

The proof of Theorem 6 is provided in Appendix I.

Notice that we can immediately get a looser but data-
independent bound by substitute LD(η̂) with the di-
ameter of the tree d(H). Given this conclusion, we
directly use it to provide a more detailed bound for the
widely used log loss and MAE loss:
Corollary 1. Regret transfer bound when the Log
loss is used:

Regretℓc
H

D (φ ◦ Fη̂) ≤ 2
√

LD(η̂)Regret
Φc

Log
D (η̂).

Regret transfer bound when MAE is used:

Regretℓc
H

D (φ ◦ Fη̂) ≤ 2RegretΦc
MAE

D (η̂).

The proof of Corollary 1 is provided in Appendix J.

It is noticeable that while our MAE surrogate and
the OvA hinge surrogate in Ramaswamy et al. (2015)
both achieve linear regret. However, the hinge-like
surrogate’s regret transfer bound depends linearly on a
constant that is determined by the diameter of the tree,
which can be large when the class number increases.
According to the results above, our MAE surrogate’s
regret transfer bound does not rely on the tree’s struc-
ture, which indicates that our method benefits from its
coherent model design.

7 Experiments

In this section, we conduct experiments to empirically
evaluate the performance of our proposed method by
comparing it with existing baselines on the CIFAR-100
dataset and a deep model.

7.1 Experimental Setup

We first compare all the methods according to the error
measured by our proposed generalized tree distance
loss with c ∈ {0.0, 0.2, 0.5, 0.8}, and further provide
the averaged level of the predictions and the induced
superclass’s misclassification rate for further reference.
The three statistics are shown in Table 2, 3, and 4,
respectively. All the experiments are conducted with 8
NVIDIA GeForce 3090 GPUs. More details and results
can be found in the appendix.

Baselines. We compare our consistent implementa-
tions LOG (1) and MAE (2) with following baselines:

• FLAT: the plug-in classifier method that works
by directly estimating class-posterior probability

with cross-entropy loss and then generating the
prediction according to the characterization of
Bayes optimal solution (2).

• OvA: the OvA hinge loss based multiclass classi-
fication with rejection reduction proposed in Ra-
maswamy et al. (2015). To make it capable of
dealing with 1+c

2 > 0.5, we generalize it by us-
ing its corresponding formulation with a rejection
threshold larger than 0.5 in Ramaswamy et al.
(2018).

Dataset, model, and optimizers. We provide the
details about our used dataset with the corresponding
model and optimizers as follows:

• We conduct experiments based on the dataset of
CIFAR-100 (Krizhevsky, 2012). We process it into
a dataset with label hierarchy by integrating its
20 coarse labels and finally get a label tree with 2
levels, 21 non-leaf labels, and 100 leaf labels.

• To validate all the methods’ performance when
combined with deep models, we use a 28-layer
WideResNet Zagoruyko and Komodakis (2016).

• For the method of LOG and FLAT, we use SGD
with cosine annealing as the optimizer, and the
epoch number, learning rate, weight decay, and
batch size are set to 400, 1e-1. 5e-4, and 128. For
MAE and OvA, Adam (Kingma and Ba, 2015) is
used as the optimizer. The learning rate is set to
1e-3 and other parameters are the same as in the
setting of SGD.

7.2 Experimental Results

Combining Table 2-4, we can learn that:

• Our method LOG outperforms FLAT consistently
over all the selections of penalty cost c. To explain
this observation, we can refer to Table 3 and 4.
Notice that the averaged level of prediction for
method FLAT is larger than that for LOG, while
the misclassification error of its induced superclass
is always higher than LOG’s. These observations
indicate that FLAT generated predictions that are
higher than necessary on average. The cause of
this phenomenon can be that it omits the label
hierarchy in the training process, which leads to a
biased estimation of prediction.

• Though MAE and OvA achieve linear regret trans-
fer bounds, they both suffer from the problem of
underfitting: the level of their prediction is obvi-
ously lower than necessary. This phenomenon can
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Table 2: Experimental results of generalized tree distance loss of predictions on the tree structure of CIFAR-100 for 5
trails. The best performance is highlighted in bold.

Method Penalty cost c

0.0 0.2 0.5 0.8

Previously proposed
FLAT 0.70 1.03 1.50 1.91

(0.02) (0.01) (0.02) (0.01)

OvA 1.11 1.73 2.01 2.42
(0.04) (0.16) (0.07) (0.09)

Our proposed
MAE 0.93 1.25 1.84 2.16

(0.03) (0.02) (0.03) (0.01)

LOG 0.68 0.98 1.41 1.88
(0.01) (0.01) (0.02) (0.01)

Table 3: Experimental results of the averaged level of predictions on the tree structure of CIFAR-100 for 5 trails.

Method Penalty cost c

0.0 0.2 0.5 0.8

Previously proposed
FLAT 1.81 1.73 1.60 1.43

(0.03) (0.02) (0.02) (0.02)

OvA 1.21 1.245 1.08 0.68
(0.10) (0.05) (0.07) (0.14)

Our proposed
MAE 1.50 1.52 1.10 0.97

(0.01) (0.01) (0.03) (0.17)

LOG 1.79 1.66 1.54 1.39
(0.01) (0.02) (0.01) (0.01)

Table 4: Experimental results of the induced superclass’s misclassification error of predictions on the tree structure of
CIFAR-100 for 5 trails. The results are rescaled to 0-100.

Method Penalty cost c

0.0 0.2 0.5 0.8

Previously proposed
FLAT 17.34 13.87 10.06 7.42

(0.07) (0.16) (0.14) (0.18)

OvA 28.18 25.99 24.48 23.78
(1.38) (0.61) (1.13) (0.92)

Our proposed
MAE 17.26 16.67 12.66 11.86

(0.38) (0.34) (0.26) (0.96)

LOG 16.76 11.45 8.45 6.11
(0.09) (0.15) (0.12) (0.06)

be caused by the empirical finding (Zhang and
Sabuncu, 2018; Feng et al., 2020) that the MAE
loss and hinge loss are all hard to optimize due to
their sparse/zero gradients. Furthermore, the per-
formance of OvA is outperformed by MAE, which
can be attributed to that hinge loss is not differen-
tiable, which can be troublesome in gradient-based
optimization.

In conclusion, our proposed method LOG consistently
outperforms the baseline methods due to its, which
again validates the efficacy of our formulation.

8 Conclusion

In this paper, we studied the problem of the design of
evaluation metrics and novel loss functions for hierar-
chical classification. We first generalized the popular
evaluation metric (i.e., tree distance loss) to make it
able to reflect the risk sensitivity of different tasks.
Then we gave an intuitive representation of our pro-
posed generalized loss and used it to induce a problem
reduction (more specifically, from hierarchical classifica-
tion to binary classification). A more detailed analysis
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of the used model was conducted to further justify the
rationality of this problem reduction from the aspect
of regret. Finally, we derived consistent surrogates for
the proposed generalized tree distance loss that can be
compatible with various binary losses and showed that
the regret transfer bounds can further characterize the
property of proposed methods. Experimental results
demonstrate the efficacy of our methods.
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A Proof of Theorem 1

Proof. We focus on the case of c > 0. In this proof, we denote by Rℓc
H (y′, η(x)) =

∑
y∈[K] ηy(x)ℓc

H(y′, y) the
inner risk. Since [K] is finite, the existence of the solution is proven. We first show that any y′ that does not
meet the condition in the theorem cannot be the solution, and then show that all the y that meet the condition
in Theorem 1 have the same value of inner risk, which concludes the proof.

(A). ⇐:

Fixing a η(x) ∈ ∆K and c ∈ [0, 1], we assume that there exist a y′ = f∗
c (x) which does not meet the condition in

Theorem 1. Then y′ ̸∈ argmax
Wy(η(x))≥0.5+ c

2

Lev(y) and y′ ̸∈ Uη(x)(0.5 + c
2 ). There is two cases:

①. Wy′(η(x)) < 0.5 + c
2 .

In this case, we can learn that y′ must not be the root node 1. Denote by ỹ its parent. We can learn that:

Rℓc
H (y′, η(x)) − Rℓc

H (ỹ, η(x))
= c − Wy′(η(x)) + (1 − Wy′)(η(x))
= c − 2Wy′(η(x) + 1
> c − 1 − c + 1
= 0,

which means Rℓc
H (y′, η(x)) > Rℓc

H (ỹ, η(x)) and thus leads to a contradiction.

②. Wy′(η(x)) ≥ 0.5 + c
2 ,

Denote by y∗ ∈ argmaxWy(η(x))≥0.5+ c
2

Lev(y). We can learn that Lev(y′) < Lev(y∗). In this case, y∗ must be
y′’s descendant, otherwise

∑
y∈[K] p(y|x) > 1 + c. Furthermore, y′’s children y′′, which is the ancestor of y∗, has

Wy′′(η(x)) > 0.5 + c
2 since y′ ̸∈ Uη(x)(0.5 + c

2 ). Then we can learn:

Rℓc
H (y′, η(x)) − Rℓc

H (y′′, η(x))
= Wy′′(η(x)) − (1 − Wy′′)(η(x)) − c

= 2Wy′′(η(x)) − 1 − c

> 0

which means Rℓc
H (y′, η(x)) > Rℓc

H (y′′, η(x)) and thus leads to a contradiction.

(B). ⇒

We focus on the set argmaxWy(η(x))≥0.5+ c
2

Lev(y). It is a singleton: if there exist y′ ̸= y′′ that are both in this
set, 1 =

∑
y∈[K] p(y|x) ≥ Wy′(η(x)) + Wy′′(η(x)) ≥ 1 + c, which leads to a contradiction.

Denote by the unique element in the set by y∗. If Uη(x)(0.5 + c
2 ) is empty, the proof is done. When it is

non-empty, we can learn that: any element in Uη(x)(0.5 + c
2 ) must be the ancestor of y∗ and we can prove it use

the same contradiction as in the previous paragraph. For any y′ ∈ Uη(x)(0.5 + c
2 ), denote by y′′ the child with

Wy′′(η(x)) = 0.5 + c
2 . We can learn that it must be y∗ or y∗’s ancestor, and Wy∗(η(x)) = 0.5 + c

2 . Then for any
y′, suppose the path from it to y∗ is y′ → y1 → · · · → yn → y∗. We can learn Wyi

(η(x)) for i = 1, · · · , n. Denote
by y′ = y0, y∗ = yn+1, for each step on the path:

∆i = Rℓc
H (yi, η(x)) − Rℓc

H (yi+1, η(x)) = 0, i = 0, · · · , n.

We can learn:

Rℓc
H (y′, η(x)) − Rℓc

H (y∗, η(x)) =
n∑

i=1
∆i = 0,

and thus we can conclude the proof.
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B Proof of Theorem 2

Proof. First we prove that
K∑

i=2
I(y′ ̸∈ T 0

i ) = Lev(y′). Then we prove ℓc
H(y′, y) =

K∑
i=2

I(y′ ̸∈ T
si(y)
i ).

Denote by 1 → y1 · · · → yLev(y′)−1 → y′ the path between 1 and y′. We can learn that y′ ̸∈ T 0
yi

for i = 1, · · · ,

and y′ ∈ T 0
y′′ for other y′′. Then

K∑
i=2

I(y′ ̸∈ T 0
i ) =

Lev(y′)−1∑
i=1

I(y′ ̸∈ T 0
i ) + I(y′ ̸∈ T 0

y′) = Lev(y′).

Denote by ỹ the node of the highest level among all the common ancestors of y and y′. Denote the path between
y and y′ by y → y1 → · · · → yn → ỹ → y′

1 · · · → y′
n′ → y′. We can learn that I(y′ ̸∈ T

si(y)
i ) = 1 if and only if i is

on the path except ỹ: if an i is not on the path , y and y′ will be both in T 0
i or T 1

i ; if i = ỹ, y and y′ will be both

in T 1
i . Then we can learn

K∑
i=2

I(y′ ̸∈ T
si(y)
i ) = n + n′ + 2 = ℓH(y′, y).

C Proof of Lemma 1

Proof. We can learn that

Ep(y|x)[I(y′ ̸∈ T
si(y)
i ) + c∗I(y′ ̸∈ T 0

i )] = Pr(Y ∈ T 1
i |x)I(f(x) ̸∈ T 1

i ) + (1 + c − Pr(Y ∈ T 1
i |x))I(f(x) ̸∈ T 0

i )
= (1 + c)

[
pi(1|x)I(f(x) ̸∈ T 1

i ) + pi(0|x)I(f(x) ̸∈ T 0
i )
]

= (1 + c)Epi(γ|x)[I(f(x) ̸∈ T γ
i )]

Further taking the expectation w.r.t. p(x) and we can conclude the proof.

D Proof of Theorem 3

Proof. Given the binary classification problems, we can explicitly give their optimal solutions ∀i ∈ [2, K]:

f i∗(x) = I(Pr(Y ∈ Ti) ≥ 1 + c

2 )

Then we can learn that φ◦F∗(x) = argmax
Wy(η(x))≥ 1+c

2

Lev(y), which is a Bayes optimal solution for ℓc
H . The uniqueness

is due to the fact that there cannot be to mutual exclusive Y1, Y2 ⊂ Y that
∑

y∈Y1/2
p(y|x) ≥ 1+c

2 otherwise∑K
y=1 p(y|x) ≥ 1 + c > 0.

E Proof of Theorem 4

Proof. Notice that according to Theorem 3, F∗ is also H-coherent. Meanwhile, f∗
c = φ ◦ F∗ is the Bayes optimal

solution for our target loss. Then we can write:

R
ℓc

H

D (f∗
c ) = (1 + c)

K∑
i=2

RDℓ01
i

(f i∗),

Furthermore, since F is H-coherent:

R
ℓc

H

D (φ ◦ F) = (1 + c)
K∑

i=2
RDℓ01

i

(f i),

and thus we can conclude the proof using the definition of ℓc
01’s regret and the equations above.

F Proof of Lemma 2

Proof. First, φ ◦ Fη̂(x) is non-empty. Denote by Ay the ancestors of y (except 1 and include y). Denote by
ŷ = argmax

Wy(η̂(x))> 1
2

Lev(y). For y′ ∈ [2, K]/Aŷ, we can learn that fy′

η̂ (x) = 0 and ŷ ∈ T 0
y′ . For y′ ∈ Aŷ, fy′

η̂ (x) = 1

and ŷ ∈ T 1
y′ , and thus ŷ must be in this set.
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Secondly, we show that it is a singleton. Suppose there are two different elements y1 and y2 in this set, they
cannot be each other’s ancestor according to the definition of φ, and thus Ty1 and Ty2 are mutually exclusive.
Then we can learn that η̄y1(x) > 0.5 and η̄y2(x) > 0.5. Then

∑
y η̂y(x) ≥ η̄y1(x) + η̄y1(x) > 1, which leads to a

contradiction and concludes the proof.

G Proof of the Non-Coherency of Simple Binary Reduction

Proof. The proof is direct. Suppose we have a label hierarchy 1 → 2 → 3 → 4 and we directly construct each
dummy distribution, suppose there is a sample x that η2(x) = 0.2 and η3(x) = 0.7, a contradiction can be
derived since the derived f3(x) = 1 and f2(x) = 0 and T 1

3 ∩ T 0
2 = ∅.

H Proof of Theorem 5

Proof. First of all, we study the Bayes optimal solution w.r.t. the surrogate loss.

For strictly proper losses, the optimal solution is η̄∗
i (x) =

∑
y∈Ti

p(y|x)
1+c for i ∈ [2, K], and thus we can learn that

η̂∗
i (x) = p(i|x)

1+c for i ∈ [2, K]. Given this characterization, the consistency is directly verified.

For the MAE loss, η̄∗
i (x) = 1 if Pr(Y ∈ Ti|x) > 1 + c and 0 otherwise, and thus η̂∗

i (x) = 1 if and only if
Pr(Y ∈ Ti|x) > 1 + c and Pr(Y ∈ Tj |x) ≤ 1 + c for all of i′s children j. This characterization directly lead to
the consistency according to the definition of f i

η̂ and the Bayes optimal solution.

I Proof of Theorem 6

Proof. According to Theorem 6, we have:

Regretℓc
H

D (φ ◦ Fη̂) = (1 + c)
K∑

i=2
Regretℓ01

Di
(f i

η̂).

We can further rewrite it into the point-wise regret version, which is equal to the regret with p(x′) = δ(x′ − x):

Regretℓc
H (φ ◦ Fη̂(x), η(x)) = (1 + c)

K∑
i=2

Regretℓ01(f i
η̂(x), ηi(x)).

For any f∗
c , suppose all the nodes on the path from φ ◦ Fη̂(x) to f∗

c except their common ancestor consists the set
Yη̂. We can learn that the size of this set is ℓH(φ ◦ Fη̂(x), f∗

c (x)) from the proof of Theorem 2. For those i ̸∈ Yη̂,
the binary subproblem is correctly solved, i.e., f i

η̂(x) = f i∗(x) and thus Regretℓ01(f i
η̂(x), ηi(x)) = 0, then we can

learn:

Regretℓc
H (φ ◦ Fη̂(x), η(x)) = (1 + c)

∑
i∈Yη̂

Regretℓ01(f i
η̂(x), ηi(x)).
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Combining the regret transfer bound of ϕ, Jensen’s inequality, and our loss formulation, we can learn:

(1 + c)
∑

i∈Yη̂

Regretℓ01(f i
η̂(x), ηi(x))

≤ (1 + c)
∑

i∈Yη̂

(
Regretϕ(η̄i(x), ηi(x)

)α

≤ (1 + c)k′|Yη̂|

(∑
i∈Yη̂

Regretϕ(η̄i(x), ηi(x)
|Yη̂|

)α

= (1 + c)k′ℓH(φ ◦ Fη̂(x), f∗
c (x)

(∑
i∈Yη̂

Regretϕ(η̄i(x), ηi(x)
ℓH(φ ◦ Fη̂(x), f∗

c (x)

)α

= (1 + c)k′ℓH(φ ◦ Fη̂(x), f∗
c (x))1−α

∑
i∈Yη̂

Regretϕ(η̄i(x), ηi(x)

α

≤ (1 + c)k′ℓH(φ ◦ Fη̂(x), f∗
c (x))1−α

(
K∑

i=2
Regretϕ(η̄i(x), ηi(x)

)α

≤ (1 + c)k′ℓH(φ ◦ Fη̂(x), f∗
c (x))1−α

(
RegretΦc

ϕ(η̂(x), η(x))/(1 + c)
)α

≤ 2k′ℓH(φ ◦ Fη̂(x), f∗
c (x))1−α

(
RegretΦc

ϕ(η̂(x), η(x))
)α

Using the expectation version of Holder’s inequality and let k = 2k′ and we can conclude the proof.

J Proof of Corollary 1

Proof. The conclusion immediately holds since for log loss, α = 1
2 and k = 2; for MAE, α = 1 and k = 2.

K Additional Experimental Results on Fashion-MNIST

In this section, we evaluate our method on the Fashion-MNIST (Xiao et al., 2017) dataset with a WorkNet
induced label hierarchy (Zhang et al., 2021). We use a CNN with the same architecture as in Charoenphakdee
et al. (2021). Adam is used as the optimizer and the epoch number, batchsize, learning rate are set to 50, 128,
and 1e-3, respectively. These experiments are conducted with a NVIDIA GeForce 4090 GPU. We report and
compare the same statistics as in the experiments of CIFAR-100, which are listed in Table 5-7. According to the
results, it can be seen that our proposed methods outperform baselines, while MAE obviously outperform other
methods. It is a natural result since the CNN is a simpler model compared with the WideResNet and the class
number is also smaller, which makes the optimization easier for MAE.
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Table 5: Experimental results of generalized tree distance loss of predictions for all the methods on the tree structure of
Fashion-MNIST for 5 trails. The best performance is highlighted in bold.

Method Penalty cost c

0.0 0.2 0.5 0.8

Previously proposed
FLAT 0.24 1.20 2.60 3.98

(0.05) (0.03) (0.05) (0.02)

OvA 0.32 1.47 2.80 4.13
(0.03) (0.11) (0.17) (0.38)

Our proposed
MAE 0.20 1.15 2.58 3.96

(0.05) (0.01) (0.01) (0.03)

LOG 0.22 1.16 2.59 4.01
(0.02) (0.01) (0.07) (0.04)

Table 6: Experimental results of the averaged level of predictions for all the methods on the tree structure of Fashion-
MNIST for 5 trails.

Method Penalty cost c

0.0 0.2 0.5 0.8

Previously proposed
FLAT 4.77 4.70 4.63 4.30

(0.08) (0.03) (0.05) (0.18)

OvA 4.70 4.42 4.16 3.65
(0.13) (0.11) (0.21) (0.28)

Our proposed
MAE 4.80 4.75 4.69 4.58

(0.03) (0.07) (0.05) (0.14)

LOG 4.78 4.71 4.55 4.10
(0.05) (0.10) (0.08) (0.06)

Table 7: Experimental results of the induced superclass’s misclassification error of predictions for all the methods on the
tree structure of Fashion-MNIST for 5 trails. The results are rescaled to 0-100.

Method Penalty cost c

0.0 0.2 0.5 0.8

Previously proposed
FLAT 6.26 4.62 3.44 0.97

(0.08) (0.03) (0.05) (0.08)

OvA 6.05 5.90 2.88 2.36
(0.53) (1.21) (0.56) (0.72)

Our proposed
MAE 5.75 4.91 3.47 2.16

(0.05) (0.12) (0.06) (0.04)

LOG 5.93 3.95 1.94 1.04
(0.19) (0.09) (0.07) (0.11)

Checklist

1. For all models and algorithms presented, check if you include:

(a) A clear description of the mathematical setting, assumptions, algorithm, and/or model. [Yes]
Please refer to the definitions and description of each theorem/lemma.

(b) An analysis of the properties and complexity (time, space, sample size) of any algorithm. [Yes]
We provide the regret transfer bound to further characterize the properties of our method.
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(c) (Optional) Anonymized source code, with specification of all dependencies, including external libraries.
[No]
We will provide a demo for our proposed method in the future version.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all theoretical results. [Yes]
(b) Complete proofs of all theoretical results. [Yes]
(c) Clear explanations of any assumptions. [Yes]

Please refer to the definitions and description of each theorem/lemma. The proof is provided in the appendix

3. For all figures and tables that present empirical results, check if you include:

(a) The code, data, and instructions needed to reproduce the main experimental results (either in the
supplemental material or as a URL). [Yes]

(b) All the training details (e.g., data splits, hyperparameters, how they were chosen). [Yes]
(c) A clear definition of the specific measure or statistics and error bars (e.g., with respect to the random

seed after running experiments multiple times). [Yes]
(d) A description of the computing infrastructure used. (e.g., type of GPUs, internal cluster, or cloud

provider). [Yes]

Please refer to the experiment part and the appendix for the detailed experimental setup.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets, check if you
include:

(a) Citations of the creator If your work uses existing assets. [Yes]
(b) The license information of the assets, if applicable. [Not Applicable]
(c) New assets either in the supplemental material or as a URL, if applicable. [Not Applicable]
(d) Information about consent from data providers/curators. [Not Applicable]
(e) Discussion of sensible content if applicable, e.g., personally identifiable information or offensive content.

[Not Applicable]

5. If you used crowdsourcing or conducted research with human subjects, check if you include:

(a) The full text of instructions given to participants and screenshots. [Not Applicable]
(b) Descriptions of potential participant risks, with links to Institutional Review Board (IRB) approvals if

applicable. [Not Applicable]
(c) The estimated hourly wage paid to participants and the total amount spent on participant compensation.

[Not Applicable]


