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Abstract

Learning to defer (L2D) allows the classifier
to defer its prediction to an expert for safer
predictions, by balancing the system’s accu-
racy and extra costs incurred by consulting
the expert. Various loss functions have been
proposed for L2D, but they were shown to
cause the underfitting of trained classifiers
when extra consulting costs exist, resulting
in degraded performance. In this paper, we
propose a novel loss formulation that can mit-
igate the underfitting issue while maintaining
statistical consistency. We first show that our
formulation can avoid a common character-
istic shared by most existing losses, which
has been shown to be a cause of underfitting,
and show that it can be combined with the
representative losses for L2D to enhance their
performance and yield consistent losses. We
further study the regret transfer bounds of the
proposed losses and experimentally validate
its improvements over existing methods.

1 Introduction

For machine learning models deployed in risk-sensitive
tasks (e.g., medical diagnosis (Kadampur and Al
Riyaee, 2020), autonomous driving (Grigorescu et al.,
2020), and healthcare (Beede et al., 2020)), an incorrect
prediction can result in serious and even fatal conse-
quences. To meet the requirements of these tasks, the
learning to defer (L2D) framework was studied (Madras
et al., 2018; Bansal et al., 2021; Okati et al., 2021; De
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et al., 2021; Mozannar and Sontag, 2020; Verma and
Nalisnick, 2022; Mozannar et al., 2022; Charusaie et al.,
2022; Verma et al., 2023; Mozannar et al., 2023; Strai-
touri et al., 2023; Narasimhan et al., 2022; Mao et al.,
2023a) that aims to help reduce critical mistakes by
enabling models to defer to human experts, which can
be seen as the generalization of the classification with
rejection task (Chow, 1970; Bartlett and Wegkamp,
2008; Cortes et al., 2016a,b; Ramaswamy et al., 2018;
Ni et al., 2019; Cao et al., 2022; Mao et al., 2023b).
In L2D, the classifier is equipped with an option of
deferral that allows the classifier to refrain from making
decisions and seeking answers from an expert who is
more likely to be correct for certain predictions.

In L2D, the performance of the classifier augmented
with a deferral option is evaluated by a system loss. In
most previous studies, the target system loss is set to
the system’s misclassification cost and an extra cost
incurred by the choice of deferring to the expert, which
can be either positive or zero. Then L2D is further
formulated as a risk minimization problem that aims at
minimizing the expected system loss over an underlying
data distribution. Given the discontinuous nature of
the target system loss, various surrogate losses were
designed to make the optimization problem tractable
while ensuring statistical consistency. In Mozannar
and Sontag (2020), a cross-entropy-like surrogate loss
was used to integrate the option of deferral into the
training of the classifier. Then, OvA-type losses and an
asymmetric softmax-based surrogate loss (Verma and
Nalisnick, 2022; Verma et al., 2023; Cao et al., 2023)
were further proposed to improve the models’ calibra-
tion of probability forecasts. A unified framework was
proposed in Charusaie et al. (2022) that allows the use
of any consistent multiclass loss (Tewari and Bartlett,
2007) for constructing a consistent surrogate for L2D,
which was further shown in Cao et al. (2023) to include
existing representative surrogates (Mozannar and Son-
tag, 2020; Verma and Nalisnick, 2022; Cao et al., 2023)
as its special realizations by incorporating specific base
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losses for multiclass classification.

Though the existing losses have guarantees on their
infinite-sample consistency, it was pointed out by
Narasimhan et al. (2022) that their finite-sample effi-
cacy can be greatly weakened and will suffer from the
underfitting issue when the extra cost of deferring to
the expert is non-zero. That is, with a non-zero extra
cost, the formulation of these losses all possesses a label
smoothing term (Szegedy et al., 2016), which is redun-
dant in the task of L2D and will lead to a flattened
training distribution. As a result, it can be harder to
recognize the true label for each sample and thus the
performance of the learned classifier will be degraded.
This degradation of the classifier performance can fur-
ther have negative impacts on the augmented deferring
rule, which finally makes them underfit the training set.
A post-hoc estimator was proposed (Narasimhan et al.,
2022) to alleviate this underfitting issue, however, it
requires the re-training of the deferring rule before the
deployment of L2D models.

Do there exist consistent surrogate losses that can
resist the issue of underfitting caused by the extra
costs of consulting the expert? Such an underfitting-
resistant consistent surrogate is naturally end-to-end,
which can avoid the extra re-training procedure and
its required additional data, and thus close the gap
between the training and deployment of L2D systems.
In this paper, we give a positive answer to this question
by proposing a novel loss formulation that is free from
the redundant label smoothing term and we further
examine various consistent surrogates for L2D whose
performance remains satisfactory under the existence
of a non-zero expert cost. The main contributions of
this paper are four-fold as summarized below:

• We propose a novel label-smoothing-free loss for-
mulation based on the observation that the redun-
dant label smoothing term in the previous general
loss formulation (Narasimhan et al., 2022) can be
eliminated by utilizing the intermediate result of
models in the training process.

• We show that the existing representative surrogate
losses for L2D can be label-smoothing-free by plug-
ging their base multiclass losses into our proposed
loss formulation and their consistency guarantees
can be also attained, which demonstrates the flex-
ibility of our approach.

• We provide regret transfer bounds w.r.t. the target
system loss for proposed consistent loss formula-
tion, which shows that the models that have low
risk w.r.t. surrogate losses are also good solutions
for L2D. A more detailed regret bound on the
model’s classification ability further indicates the
efficacy of our proposed method.

• Experimental results on benchmark datasets with
different experts accuracy and extra costs validate
the superiority of our proposed loss formulation
and its robustness to underfitting.

2 Preliminaries

In this section, we introduce the problem formulation
and existing solutions for L2D, then we review the issue
of underfitting and its cause.

2.1 The Problem Formulation and Existing
Losses for L2D

Problem Setup: Let us denote by X and Y = [K]
the feature space and label space, respectively. In the
problem of L2D, we focus on the feature-label-expert
random variable triplet X ×Y ×M ∈ X ×Y ×Y , which
has a joint distribution with density p(x, y, m) where
x, y, m are their realizations. The training sample set
Sn = {xi, yi, mi}n

i=1 is independently and identically
drawn from the joint distribution p(x, y, m). We denote
by Acc(x) = Pr(M = Y |X = x) the accuracy of the
expert on x in the rest of this paper.

Let us denote by ⊥ the option of deferring to the expert
and Y⊥ = Y ∪ {⊥}. L2D aims to learn an augmented
classifier f : X → Y⊥ with performance evaluated by a
system loss consists of the classifier loss ℓclf(x, y, f(x))
and the expert loss ℓexp(x, y, m), which are metrics
for the classifier and the expert, respectively. The
classifier loss ℓclf is usually set to the ordinary zero-one
loss I(f(x) ̸= y), and the expert loss further takes into
consideration the extra cost of consulting the expert,
e.g., monetary expense and computational cost. As a
result, the expert loss is in the form of c + I(m ̸= y),
which is a mixture of the expert’s misclassification error
and the extra cost of consulting the expert. In this
way, the target system loss is shown below (Mozannar
and Sontag, 2020; Narasimhan et al., 2022):

ℓ⊥
01(f(x), y, m) =I(f(x) ̸= ⊥)I(f(x) ̸= y)

+ I(f(x) = ⊥)(c + I(m ̸= y)), (1)

which is determined by both the quality of prediction
and whether the decision of deferral is made. Finally, a
risk minimization problem w.r.t. this loss is formulated,
which is the goal of L2D:

min
f

R⊥
01(f) = Ep(x,y,m)[ℓ⊥

01(f(x), y, m)]. (2)

It was shown in Mozannar and Sontag (2020) that f∗

is a Bayes optimal solution w.r.t. ℓ⊥
01 if and only if it

meets the following condition:

f∗(x) =
{

⊥, Acc(x) ≥ p(y∗|x) + c,

argmaxy∈[K] p(y|x), else.
(3)
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where y∗ = argmaxy∈Y p(y|x) is the optimal prediction
of multiclass classification. Intuitively, an accepted
expert is required to be strictly more accurate than the
optimal classifier by c to make sure that the gain of
the expert’s high accuracy is not offset by the incurred
cost of consulting him.

Existing Losses for L2D: Various surrogate losses
have been proposed (Mozannar and Sontag, 2020;
Verma and Nalisnick, 2022; Cao et al., 2023), to make
(2) tractable. Recently, Cao et al. (2023) showed that
these surrogate losses can be unified into a general
framework proposed by Charusaie et al. (2022), which
can be expressed by the following formulation given
the target loss (1):

ℓΨ(g(x), y, m) = Ψ(g(x), y)+cI(m ̸= y)
∑

y′∈[K]
Ψ(g(x), y′)

+ (1−c)I(m = y)Ψ(g(x), K+1) (4)

where g : X → RK+1 is a scoring function and Ψ :
RK+1 × [K + 1] → R+ is a multiclass loss. A link
function is further introduced to induce an augmented
classifier fg from the scoring function:

fg(x) =

 ⊥, argmax
y∈[K+1]

gy(x) = K + 1.

argmaxy gy(x), else.
(5)

The loss formulation (4) shares critical properties with
a (K + 1)-class classification problem. We can rewrite
the risk R⊥

Ψ(g) = Ep(x,y,m)[ℓΨ(g(x), y, m)] into the
following form:

R⊥
Ψ(g) = Ep̂(x,y)[ξ̂(x)Ψ(g(x), y)], (6)

where p̂(x, y) is dummy distribution defined as

p̂(y|x) = 1
ξ̂(x)

{
(1 − c)Acc(x), y = K + 1,

p(y|x) + c(1 − Acc(x)), else,
(7)

and ξ̂(x) = 1 + (1 − c)Acc(x) + Kc(1 − Acc(x)) is
the normalization variable. This problem reduction is
similar to the case of classification with rejection in Cao
et al. (2022) and we will elaborate on it in Appendix A.
It can be learned that argmaxy p̂(y|x) = K + 1 if and
only if Acc(x) > p(y∗|x) + c, in this case f∗(x) = ⊥;
otherwise f∗(x) = argmaxy p̂(y|x). As a result, for any
g∗ ∈ argming R⊥

Ψ(g), argmaxy g∗
y(x) = argmaxy p̂(y|x)

and thus fg∗(x) = f∗(x) if Ψ is a consistent multiclass
loss, which indicates the consistency of (4).

2.2 Underfitting and Redundant Label
Smoothing Issues in L2D

While (4) successfully induces a general consistent loss
formulation, a natural question is whether it is also

troubled by the issue of underfitting as its special real-
ization in Mozannar and Sontag (2020). Unfortunately,
we show that this problem still persists.

It is worth noting that cI(m ≠ y)
∑

y∈[K] Ψ(g(x), y) in
(4) is exactly a label smoothing term that is active with
a wrong expert and c > 0, which is proved to be the
cause of underfitting for the method in Mozannar and
Sontag (2020). To verify that such a label smoothing
term is also harmful in the general loss formulation (4),
we follow the practice in Narasimhan et al. (2022) by
inspecting the probability margin of both the original
distribution p and the dummy distribution p̂. For any
y ∈ Y/{y∗}, we can learn from the definition of p̂ that:

p̂(y∗|x)−p̂(y|x) = p(y∗|x) − p(y|x)
1 + (1 − c)Acc(x) + Kc(1 − Acc(x)) .

Notice that the denominator of the equation’s r.h.s. is
larger than 1 in general, we can learn that the mar-
gin between the likelihood of the optimal label and
non-optimal ones shrinks when we conduct problem
reduction from the distribution p to p̂. Furthermore,
such a margin shrinks in the rate of O( 1

K ) as long as
the expert is not perfect. With an increasing class
number K, the probability margin decays rapidly and
will make it more challenging to recognize the optimal
label y∗ in the sense that the training distribution is
flattened (Chou et al., 2020). Therefore, all the losses
induced from (4) would face the problem of underfitting
the training set.

3 Elimination of the Redundant Label
Smoothing Term

In the previous section, we revisited the problem of
underfitting in L2D with a non-zero cost c > 0, which is
a common issue shared by existing losses induced from
the loss formulation (4). According to the previous
study (Narasimhan et al., 2022), the shrinking of the
possibility margin is highly related to the existence
of the redundant label smoothing term, which finally
causes the problem of underfitting. Given these clues,
a natural question for the mitigation of underfitting
arises: can we derive a novel loss formulation that
can avoid the redundant label smoothing term while
maintaining its consistency? We confirm the existence
of such a loss formulation in two stages: in this section,
we trace back to the motivation of (4) and propose a
novel loss formulation for the construction of L2D losses
that can eliminate the label smoothing term; then we
induce various consistent losses using this formulation
in the next section.

According to the previous discussion, the redundant
label smoothing term in (4) is closely related to the
extra c(1 − Acc(x)) appearing uniformly in all the
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labels’ modified class probabilities p̂(y|x). By recalling
the definition (7) of p̂ and adding cAcc(x)/ξ̂(x) to both
p̂(y|x) and p̂(K + 1|x) in (7), we can learn that:{

p̂(y|x) ≥ p̂(K+1|x) ⇔ p(y|x) + c ≥ Acc(x), ∀y ∈ [K],
p̂(y|x) ≥ p̂(y′|x) ⇔ p(y|x) ≥ p(y′|x), ∀y, y′ ∈ [K].

This property can immediately guarantee the consis-
tency of the deferral rule, according to the definition of
Bayes optimal solution (3). However, by recalling the
Bayes optimal solution (3) for L2D, we can find there is
redundancy in the first requirement above. Concretely,
it is unnecessary for all the labels to fulfill this require-
ment. Then, we denote by y∗ = argmaxy∈Y p(y|x)
the Bayes optimal label, and thus the Bayes optimal
solution (3) indicates that we only have to compare
p(y∗|x) + c and Acc(x) to correctly judge if we should
defer to an expert. This discovery leads to the following
simplified requirement for a better distribution p̃:{

p̃(y∗|x) ≥ p̃(K+1|x)⇔p(y∗|x)+c ≥ Acc(x),
p̃(y|x)≥ p̃(y′|x)⇔p(y|x)≥p(y′|x), ∀y, y′ ∈Y.

(8)

We squeeze out the redundancy of the first requirement
by removing the requirements for the labels other than
y∗. Since the previous indiscriminate requirement is
implemented by adding c(1 − Acc(x)) uniformly to
p(y|x), which is the cause of label smoothing term, our
simplified requirement (8) is expected to be free from
label smoothing. Based on the discussions above, we
move to consider the following ideal scenario: suppose
we are aware of the Bayes optimal solution y∗ for each
x, we can construct the following formulation for the
class-posterior probability p̃(y|x):

p̃(y|x) = 1
ξ̃(x)


p(y|x), y ∈ [K]/{y∗},

p(y|x) + c(1 − Acc(x)), y = y∗,

(1 − c)Acc(x), y = K + 1,

where ξ̃(x) = 1 + c + (1 − 2c)Acc(x) is to normalize
the possibilities into the probability simplex ∆K+1.
By inspecting this new distribution p̃(y|x), we can
learn that (8) holds, which means that we can re-
produce (3) by solving the (K + 1)-class classifica-
tion problem on p̃(y|x). Furthermore, the probability
margin between y∗ and other labels w.r.t. p̃ is co-
herently larger than that in p̂, i.e., ∀y ∈ [K]/{y∗},
p̃(y∗|x) − p̃(y|x) > p̂(y∗|x) − p̂(y|x)1, , which can alle-
viate the difficulty of recognizing y∗, and thus mitigate
the issue of underfitting. This enlargement of probabil-
ity margin is a direct effect of our new distribution p̂
that avoids redundant terms added on non-optimal la-
bels, which makes the value of p̂(y|x) independent from
the class number K. Similarly to the relation between

1We prove this claim in Appendix B.

formulation (6) and loss formulation (4), we can derive
the following loss formulation, whose expectation w.r.t.
p̃(x, y) is Ep̃(x,y)[ξ̃(x)Ψ(g(x), y)]:

ℓ̃Ψ(g(x), y, m) = Ψ(g(x), y) + cI(m ̸= y)Ψ(g(x), y∗)
+ (1 − c)I(m = y)Ψ(g(x), K+1). (9)

It is noticeable that the above formulation is free from
label smoothing, where the label smoothing term is
substituted by the loss w.r.t. the Bayes optimal label
y∗. According to the conditional expectation and def-
inition of p̂, we can choose any consistent multiclass
classification losses to instantiate Ψ to get a consistent
surrogate for L2D with a non-zero expert cost. How-
ever, we should recall that this is an idealized scenario:
in most cases, there is no access to the Bayes optimal
label y∗, and thus the loss formulation above is not
applicable in practical applications.

Though the loss formulation is not directly applicable,
its derivation can still provide quite meaningful insights:
focusing on a certain label can help avoid the presence
of redundant label smoothing, while the consistency is
further guaranteed if the label is Bayes-optimal. While
concentrating on a certain label is easy to implement
since we can substitute y∗ by any other y, it is hard
to ensure its Bayes optimality. To obtain a feasible
solution, there is a promising scheme: using the inter-
mediate learning results as the approximation of
Bayes optimal labels. Concretely, for a scoring function
g : X → RK+1, the index of argmaxy∈[K] gy(x) is used
as the estimate of y∗ w.r.t. x. If argmaxy∈[K] gy(x)
approaches y∗ gradually in the training process, it is
reasonable to expect the consistency of using it as the
approximation of y∗ in (9). Based on this idea, we can
correct (9) as follows:
Definition 1. (label-smoothing-free Loss Formulation)
Let us denote by Ψ : RK+1 × [K +1] → R+ a multiclass
loss and g : X → RK+1 the scoring function, we have
the following formulation without extra label smoothing
term:

ℓ̃Ψ(g(x), y, m) = Ψ(g(x), y)+cI(m ̸=y) min
y′∈[K]

Ψ(g(x), y′)

+ (1 − c)I(m = y)Ψ(g(x), K + 1). (10)

Notice that we use miny′∈[K] Ψ(g(x), y′) here instead
of Ψ(g(x), argmaxy′∈[K]gy(x)) since they are equiv-
alent for monotonic losses that gy(x) > gy′(x) →
Ψ(g(x), y) < Ψ(g(x), y′).

Finally, the label smoothing term is completely elim-
inated in our proposed loss formulation (10). In the
next section, we will show that our formulation can
be instantiated with existing surrogates to make them
free from label smoothing with consistency guarantees.
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Table 1: Multiclass losses used in representative consistent L2D surrogates.

L2D Loss Multiclass Loss Ψ(g(x), y)
Mozannar and Sontag (2020)

(ΨCE) − log
(

exp(gy(x))∑
y′∈[K+1]

exp(gy(x))

)
Verma and Nalisnick (2022)

(ΨOvA)

{
log (1 + exp(−gy(x))) − log (1 + exp(gy(x))) , y = K + 1,

log (1 + exp(−gy(x))) +
∑

y′∈[K+1]/{y} log (1 + exp(gy(x))) , else.

Cao et al. (2023)
(ΨASM)


− log

(
exp(gy(x))∑

y′∈[K]
exp(gy′ (x))−maxy′∈[K] exp(gy′ (x))

)
, y = K + 1,

− log
(

exp(gy(x))∑
y′∈[K]

exp(gy′ (x))

)
− log

( ∑
y′∈[K]

exp(gy′ (x))−maxy′∈[K] exp(gy′ (x))∑
y′∈[K+1]

exp(gy′ (x))−maxy′∈[K] exp(gy′ (x))

)
, else.

4 Theoretical Results: Consistent
Realizations and Regret Analysis

In this section, we first instantiate our formulation
with representative L2D surrogates to correct them
into label-smoothing-free training objectives and their
consistency guarantees can be still attained. Then we
further provide the regret transfer bounds of the losses
for both tasks of L2D and multiclass classification,
which demonstrate the efficacy of our formulation on
L2D with a non-zero expert cost.

4.1 Consistent Realizations with
Representative Surrogates

In Section 3, we have derived a label-smoothing-free
loss formulation (10) by removing redundant terms and
trusting the intermediate learning results. To find prac-
tical consistent surrogates for L2D with our proposed
general formulation, the next step is to check whether
potential multiclass base losses Ψ can be plugged into
our formulation (10) to be free from label smoothing
and attain consistency guarantees. Recalling that the
representative consistent L2D surrogates proposed in
Mozannar and Sontag (2020); Verma and Nalisnick
(2022); Cao et al. (2023) are the realizations of (4) with
specific multiclass losses, which are summarized in Ta-
ble 1. The following theorem shows that these base
losses can also induce consistent surrogates by using
our proposed formulation:
Theorem 1. Let R⊥

Ψ(g) = Ep(x,y,m)[ℓ̃Ψ(g(x, y, m))].
The formulation (10) is a consistent L2D loss if Ψ is
set to any multiclass loss in Table 1:

∀g∗ ∈ argmingR⊥
Ψ(g), fg∗ ∈ argminf R⊥

01(f).

Sketch of proof: The proofs of the consistency results
for the three losses are similar. The first step is to make
sure that the first K dimensions of the scoring function,
i.e., g[K], is a consistent multiclass classifier. This point
can be proved by substituting the Bayes-optimal label
y∗ into (9) with different labels y′ ∈ [K] and enumerat-
ing the minimums of their risks, which will finally lead

to the conclusion that the global minimum can only
be achieved when y′ = y∗, i.e., argmaxy∈[K]gy(x) = y∗.
Then, the consistency of the deferral rule can be fur-
ther proved based on this result. The detailed proof is
provided in Appendix C.

Given the consistency results, we can plug the multi-
class losses Ψ(g(x), y) listed in Table 1 into (10) to get
consistent surrogates. They can also be seen as the
label-smoothing-free correction for the corresponding
existing losses. In Section 5, we experimentally validate
the improvement of our methods against these existing
non-corrected losses.

4.2 Regret Transfer Bounds for L2D and
Multiclass Classification

The previous section shows the infinite-sample consis-
tency of the proposed surrogates. In this section, we
further study the regret transfer bounds of the proposed
surrogates, which provide performance guarantees for
models that are close to the optimal ones. Denote by
Regret⊥

01(g) = R⊥
01(fg) − R⊥

01(f∗) the regret of target
loss and Regret⊥

Ψ(g) = R⊥
Ψ(g) − R⊥

Ψ(g∗) the surrogate
loss’s risk. Then we have the following regret transfer
bound:
Theorem 2. For surrogate losses in Table 1, we have
the conclusion that Regret⊥

Ψ(g) = O
(√

Regret⊥
Ψ(g)

)
,

i.e., Regret⊥
Ψ(g) ≤ αΨ

√
Regret⊥

Ψ(g), where αΨ > 0 is
a constant depend on Ψ.

In practical scenarios, we usually approximate R⊥
Ψ(g)

with its empirical version and obtain a sub-optimal
solution that is close to the optimal solution. This
conclusion further guarantees the performance of our
methods in this case.

While the bound above is similar to those proposed
in previous works, the following regret transfer bound
for the model’s classifier counterpart’s misclassification
error further is unique for our formulation, which is
focused on samples with low expert accuracy:
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Table 2: The mean and standard error of the system error w.r.t. ℓ⊥
01 (Err, rescaled to 0-100), and Coverage (Cov)

for 5 trails, on the CIFAR-100 dataset. We compare the performance of the label-smoothing-free surrogates and their
non-label-smoothing-free counterparts in pairs. The best performance is highlighted in boldface.

Method Cost ASM+ ASM CE+ CE OvA+ OvA1

Err Cov Err Cov Err Cov Err Cov Err Cov Err Cov

CIFAR-100
(94%)

0.10 21.71 92.66 22.11 78.02 20.56 81.03 22.18 80.18 22.86 88.92 24.69 76.16
(0.15) (0.36) (0.19) (0.43) (0.21) (0.61) (0.19) (0.45) (0.10) (0.38) (0.20) (1.48)

0.20 22.55 94.64 26.30 81.37 22.37 83.88 25.37 82.78 23.60 91.65 31.45 77.33
(0.10) (0.22) (0.11) (0.29) (0.07) (0.17) (0.19) (0.37) (0.13) (0.51) (0.07) (0.40)

0.30 23.24 96.51 30.65 84.60 23.76 85.60 31.65 85.28 23.99 93.16 42.66 65.63
(0.04) (0.11) (0.23) (0.17) (0.33) (0.19) (0.26) (0.27) (0.38) (0.21) (0.46) (0.93)

0.40 23.42 97.79 35.11 86.97 24.41 88.06 35.32 87.12 25.20 92.36 50.65 74.89
(0.07) (0.20) (0.17) (0.23) (0.17) (0.15) (0.14) (0.26) (0.19) (0.25) (0.24) (0.52)

CIFAR-100
(75%)

0.10 23.04 96.48 23.14 84.69 22.82 84.49 22.97 89.76 23.62 91.97 25.91 87.17
(0.17) (0.19) (0.10) (0.51) (0.17) (0.28) (0.08) (5.46) (0.12) (0.45) (0.10) (0.64)

0.20 23.31 97.57 25.52 87.85 24.13 85.69 25.76 88.39 24.28 92.71 28.56 86.54
(0.10) (0.18) (0.32) (0.39) (0.19) (0.37) (0.16) (0.33) (0.15) (0.26) (0.15) (1.48)

0.30 23.63 98.06 29.68 90.95 24.94 87.42 29.65 91.95 24.09 94.44 34.64 84.33
(0.15) (0.10) (0.18) (0.28) (0.12) (0.33) (0.15) (0.25) (0.16) (0.25) (0.27) (0.98)

0.40 24.04 98.82 32.80 94.16 25.62 89.31 33.27 94.12 24.82 96.02 49.51 77.66
(0.08) (0.12) (0.11) (0.25) (0.14) (0.28) (0.17) (0.28) (0.21) (0.44) (0.39) (1.26)

Corollary 1. Let us denote by X β ⊂ X the set that
∀x ∈ X β , Acc(x) ≤ β. Then we have the following
conclusion:

Regret01(g|X β) ≤ αβ,ΨRegret⊥
Ψ(g|X β),

where Regret01(g|X β) = Ep(x,y|X β)[I(argmax
y′∈[K]

gy′) ̸=

y]−Ep(x,y|X β)[miny∈[K] p(y|x)] is the regret of g’s clas-
sifier counterpart w.r.t 0-1 loss and Regret⊥

Ψ(g|X β) is
the surrogate loss’s regret conditioned on X β . αβ,Ψ > 0
is a determined by β, Ψ, and is increasing when β.

The proof of this corollary and Theorem 2 is provided in
Appendix D. According to this corollary, we can learn
that the regret transfer bound for the classifier’s misclas-
sification rate is linear on the set that expert’s accuracy
is smaller than β. Compared with the quadratic bound
in Theorem 2, this bound is a tighter one. Furthermore,
when the expert’s performance decreases, the bound
becomes tighter as αβ,Ψ is also decreasing. This prop-
erty conforms to the motivation of L2D since a sample
point with low expert accuracy can be more dependent
on the classifier’s prediction. The observations above
indicate that our method can better fit a classifier,
which can finally result in a better L2D system. We
will experimentally validate it in the next section.

5 Experiments

In this section, we empirically evaluate the improve-
ment of our method over the existing surrogates by
experiments. All the experiments are conducted with
8 NVIDIA GeForce 3090 GPUs.

5.1 Experimental Setup

Models, Datasets, and Optimizers: We evaluate
our method and baselines on widely used benchmark
datasets with different expert settings:

• We first conduct experiments on the CIFAR-100
dataset (Krizhevsky et al., 2009) with data aug-
mentation. Following the settings in Mozannar
and Sontag (2020) and Verma and Nalisnick (2022),
in order to simulate different expert accuracy,
we set the expert to an oracle that can provide
the true label of an instance with probability
p ∈ {75%, 94%} if its label is in the first 50 classes,
and does random guessing otherwise. The used
model is a 28-layer WideResnet (Zagoruyko and
Komodakis, 2016).

• For the experiments on the CIFAR-10 dataset
(Krizhevsky et al., 2009), we use an expert who
can provide the true label of an instance with prob-
ability p = 94% on the first 5 classes. We also
conduct experiments without data augmentation
to simulate tasks with different difficulties as sug-
gested in Mozannar and Sontag (2020). The used
model is ResNet-18 (He et al., 2016).

A batch norm layer is added to the last layer of the
model for all the methods based on OvA strategy in
the training process for stable outputs as in Charoen-
phakdee et al. (2021). For all the methods, SGD with
cosine annealing is used with learning rate, weight de-
cay, and batch size set to 1e-1, 5e-4, and 128. The
epoch numbers for CIFAR-10 and CIFAR-100 are 200
and 400, respectively. 10% of the training set is split
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Table 3: The mean and standard error of the system error w.r.t. ℓ⊥
01 (Err, rescaled to 0-100), and Coverage (Cov)

for 5 trails, on the CIFAR-10 dataset. We compare the performance of the label-smoothing-free surrogates and their
non-label-smoothing-free counterparts in pairs. The best performance is highlighted in boldface.

Method Cost ASM+ ASM CE+ CE OvA+ OvA1

Err Cov Err Cov Err Cov Err Cov Err Cov Err Cov

CIFAR-10(w)

0.10 13.21 94.99 15.17 91.92 12.71 90.56 14.60 93.37 10.94 94.83 11.33 94.44
(0.07) (0.20) (0.11) (0.14) (0.14) (0.27) (0.38) (0.31) (0.11) (0.16) (0.15) (0.37)

0.20 14.30 96.08 17.59 92.39 13.19 92.27 15.51 93.53 11.79 94.58 12.00 95.54
(0.08) (0.06) (0.34) (0.14) (0.08) (0.11) (0.38) (0.36) (0.14) (4.25) (0.35) (0.37)

0.30 14.62 99.19 18.89 94.91 14.55 95.40 16.44 95.49 12.05 97.25 13.22 97.11
(0.28) (0.08) (0.10) (1.03) (0.30) (0.77) (0.37) (0.36) (0.14) (0.21) (0.16) (1.01)

0.40 14.62 99.82 19.29 98.13 15.20 95.66 19.24 96.58 12.34 98.52 13.68 97.72
(0.09) (0.06) (0.17) (0.15) (0.15) (0.45) (0.39) (0.26) (0.26) (0.33) (0.18) (0.13)

CIFAR-10(o)

0.10 23.32 97.35 24.40 92.30 21.08 80.32 21.05 89.01 20.84 94.79 21.25 91.80
(0.15) (0.23) (0.10) (0.26) (0.09) (0.79) (0.19) (4.85) (0.10) (0.29) (0.35) (0.65)

0.20 24.30 99.33 27.92 93.87 23.40 84.00 23.41 63.06 21.79 96.73 22.41 94.29
(0.13) (0.05) (0.09) (0.16) (0.13) (0.31) (0.09) (36.17) (0.17) (0.22) (0.12) (0.42)

0.30 24.05 99.85 31.74 95.41 23.99 87.86 26.70 92.65 21.87 97.68 23.56 94.28
(0.31) (0.04) (0.09) (0.28) (0.12) (0.36) (0.12) (0.32) (0.11) (0.16) (0.20) (0.46)

0.40 24.43 99.98 32.32 97.51 26.28 88.37 27.96 92.39 22.67 98.26 25.69 94.30
(0.06) (0.01) (0.49) (0.12) (0.09) (0.13) (0.09) (0.30) (0.09) (0.09) (0.45) (0.52)

out as the validation set.

Baselines: In the experiments, we focus on the com-
parisons between end-to-end methods of consistent sur-
rogates without post-hoc correction, as the correction
requires extra retraining. Our methods refer to the
consistent realizations of our loss formulation (10) with
the three base losses of representative surrogates in
Table 1. The baseline methods are the combination
of (4) and losses in Table 1, which correspond to the
surrogates proposed in Mozannar and Sontag (2020);
Verma and Nalisnick (2022); Cao et al. (2023). These
methods are abbreviated as ASM+/ASM, CE+/CE,
and OvA+/OvA according to the base losses and loss
formulations they use. We report the results with
an extra expert cost c ∈ {0, 10, 0, 20, 0, 30, 0, 40} since
a larger cost will completely deactivate the deferral
rule and reduce the problem into ordinary multiclass
classification, which is out of the scope of this paper.

5.2 Experimental Results

We first report the obtained models’ performance w.r.t.
the target loss ℓ⊥

01 with different costs c to measure the
improvement of our methods in Table 2 and 3, and then
report the coverage, i.e., the ratio of non-deferred in-
stances, as in previous works to further characterize the
behavior of all the methods. To evaluate all the meth-
ods’ robustness to underfitting, we report the classifier
counterpart’s classification error, i.e., misclassification
rate, of all the methods in Figure 1.

Comparison of Classification’s Error: According
to Figure 1, we can see that the novel label-smoothing-
free surrogates all outperform their existing counter-

parts with redundant label smoothing terms in all the
setups. In (a) and (b), we can learn that the pro-
posed methods, i.e., ASM+, CE+, and OvA+, are
not sensitive to the change of extra cost, and their
classifier’s performance remains unchanged. However,
the surrogates that possess label smoothing terms i.e.,
ASM, CE, and OvA, suffer seriously from the issue of
underfitting, and their performance drops drastically
with the increasing of extra expert cost, which is caused
by the increasing degree of label smoothing. In (c) and
(d), though the change of performance is less obvious
compared with the results of CIFAR-100 due to the de-
creasing of tasks’ difficulty, the trend is still unchanged
that the baseline accuracy gets lower by increasing c.
In conclusion, our proposed methods remain effective
under different costs c, thanks to the elimination of
label smoothing terms, while baseline methods derived
from (4) are all affected by the issue of underfitting.

Comparison of System Error and Coverage:
From Table 2 and 3, we can see that our proposed
methods enjoy lower system error in most cases. This
advantage gets more obvious with larger extra expert
costs, which also validates the robustness of our loss
formulation to the issue of underfitting. Our loss for-
mulation’s coverage is also higher than the baselines’
in most cases, except for CE, which was empirically
shown in previous studies (Mozannar and Sontag, 2020;
Cao et al., 2023) to have lower coverage. Combining
the observations above, we can deduce that our formu-
lation can defer to the correct experts, reduce needless
deferral decisions, and further classify the accepted
samples correctly, which can validate that our methods
combat underfitting, as shown in Figure 1.
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(a) CIFAR-100 (94%) (b) CIFAR-100 (75%)

(c) CIFAR-10 (w) (d) CIFAR-10 (o)

Figure 1: The misclassification rate of the classifier’s counterpart’s prediction argmaxy∈[K]gy for all the methods. Solid
lines are the methods derived from our proposed formulation (10) and dashed lines are the methods derived from the
previous formulation (4).

6 Conclusion and Future Work

Conclusion: In this paper, we investigated the prob-
lem of underfitting mitigation with consistent surrogate
losses in the scenario of L2D with an extra non-zero
expert cost. We first pointed out that the redundant
label smoothing term in existing L2D losses that leads
to their underfitting is caused by the general loss for-
mulation they belong to. Then we traced back to the
motivation of consistent L2D surrogates’ design and
proposed a novel loss formulation that can avoid redun-
dant label smoothing terms. With this loss formulation,
we derived consistent L2D surrogates based on this for-
mulation that can turn the existing L2D surrogates into
label-smoothing-free forms and still attain consistency

guarantees. We also provided regret transfer bounds,
which further justified the efficacy of our formulation.
Finally, the experimental result on datasets with dif-
ferent task difficulties demonstrated the improvement
of our formulation over the existing surrogate and val-
idated the robustness of our loss formulation to the
issue of underfitting.

Future Work: A promising future direction is to
explore the conditions that provide consistency guar-
antees for a multiclass surrogate to be plugged into
our loss formulation, which can enlighten the design
and enlarge the range of choice of label-smoothing-free
surrogates for L2D.
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A Derivation of (6)

Ep(y,m|x)[ℓΨ(g(x), y, m)] =
∑

y∈[K]

(p(y|x) + c(1 − Acc(x))) Ψ(g(x), y) + (1 − c)Acc(x)Ψ(g(x), K+1)

=

 ∑
y∈[K]

(p(y|x) + c(1 − Acc(x))) + (1 − c)Acc(x)


∗

∑
y∈[K] (p(y|x) + c(1 − Acc(x))) Ψ(g(x), y) + (1 − c)Acc(x)Ψ(g(x), K+1)∑

y∈[K] (p(y|x) + c(1 − Acc(x))) + (1 − c)Acc(x)
= (1 + (1 − c)Acc(x) + Kc(1 − Acc(x)))

∗
∑

y∈[K] (p(y|x) + c(1 − Acc(x))) Ψ(g(x), y) + (1 − c)Acc(x)Ψ(g(x), K+1)
1 + (1 − c)Acc(x) + Kc(1 − Acc(x))

= ξ̂(x)
∑

y∈[K] (p(y|x) + c(1 − Acc(x))) Ψ(g(x), y) + (1 − c)Acc(x)Ψ(g(x), K+1)
ˆξ(x)

= Ep̂(y|x)[ξ̂(x)Ψ(g(x), y)]

and we can take the expectation on X with p(x) to finish the proof. From the derivation, we can learn that ξ̂(x)
is used to normalize p̂ into a valid distribution.

B Proof of the Claim about Probability Margins

We formulate our claim into the following theorem:
Theorem 3. For any y ∈ [K]:

p̃(y∗|x) − p̃(y|x) ≥ p̂(y∗|x) − p̂(y|x)

and the equality holds if and only if the margin/the accuracy of expert/cost is equal to 0.

Proof. We give the detailed representation of the two margin terms respectively:

p̃(y∗|x) − p̃(y|x) = p(y∗|x) − p(y|x) + c(1 − Acc(x))
ξ̃(x)

p̂(y∗|x) − p̂(y|x) = p(y∗|x) − p(y|x)
ξ̂(x)

Meanwhile:

ξ̂(x) − ξ̃(x) = (K − 1)c(1 − Acc(x)) ≥ 0,

which means that ξ̂(x) ≥ ξ̃(x). Combining the conclusions above and we can immediately conclude the proof.

C Proof of Theorem 1

To prove the Theorem 1, we first construct the following auxiliary lemma. Denote by

ℓi
Ψ(g(x), y, m) = Ψ(g(x), y)+cI(m ̸=y)Ψ(g(x), i) + (1 − c)I(m = y)Ψ(g(x), K + 1)

, and we further give the definition of inner risk Ri
Ψ(g|x) = Ep(y,m|x)[ℓi

Ψ(g(x), y, m)] and similarly R⊥
Ψ(g|x) =

Ep(y,m|x)[ℓ̃Ψ(g(x), y, m)], we have the following lemma:

Lemma 1. ming Ri
Ψ(g|x) ≥ ming Ry∗

Ψ (g|x), and the equality holds i.f.f. p(i|x) = p(y∗|x).
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Proof. We denote by sy(x) the y-th output of symmetric softmax w.r.t. g and ay(x) the y-th output of asymmetric
softmax, σ(x) is the sigmoid output. We first give the following property that characterizes the minimizers for
each inner risk gi∗ ∈ argming Ri

Ψ(g|x).

• If Ψ =CE:


sy(gi∗(x)) = p(y|x)

(1+c+(1−2c)Acc(x)) , y ̸= i, y ∈ [K]
sy(gi∗(x)) = p(y|x)+c(1−Acc(x))

(1+c+(1−2c)Acc(x)) , y = i

sy(gi∗(x)) = (1−c)Acc(x)
(1+c+(1−2c)Acc(x)) , y = K + 1

• If Ψ =ASM:


ay(gi∗(x)) = p(y|x)

1+c−cAcc(x) , y ̸= i, y ∈ [K]
ay(gi∗(x)) = p(y|x)+c(1−Acc(x))

1+c−cAcc(x) , y = i

ay(gi∗(x)) = (1−c)Acc(x)
1+c−cAcc(x) , y = K + 1

• If Ψ =OvA:


σ(gi∗

y (x)) = p(y|x)
1+c−cAcc(x) , y ̸= i, y ∈ [K]

σ(gi∗
y (x)) = p(y|x)+c(1−Acc(x))

1+c−cAcc(x) , y = i

σ(gi∗
y (x)) = (1−c)Acc(x)

1+c−cAcc(x) , y = K + 1

Given these characterizations, we only have to show Ri
Ψ(gi∗|x) − Ry∗

Ψ (gy∗∗|x) ≥ 0 for all the three losses. For all
the three losses:

• If Ψ =CE:

Ri
Ψ(gi∗|x) − Ry∗

Ψ (gy∗∗|x) = −(p(i|x) + c(1 − Acc(x))) log (p(i|x) + c(1 − Acc(x))) − p(y∗|x) log (p(y∗|x))
+ p(i|x) log (p(i|x)) + (p(y∗|x) + c(1 − Acc(x))) log (p(y∗|x) + c(1 − Acc(x))))

= −p(i|x) log
(

p(i|x) + c(1 − Acc(x))
p(i|x)

)
+ p(y∗|x) log

(
p(y∗|x) + c(1 − Acc(x))

p(y∗|x)

)
+ c(1 − Acc(x)) log

(
p(y∗|x) + c(1 − Acc(x))
p(i|x) + c(1 − Acc(x))

)
≥ 0

and the equality holds only if p(i|x) = p(y∗|x). This holds since x log(1 + 1
x ) is strictly increasing and the

term in the second line is also non-negative.

• If Ψ =ASM, the case is the same as in Ψ =CE.
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• If Ψ =OvA:

Ri
Ψ(gi∗|x) − Ry∗

Ψ (gy∗∗|x)

= −(p(i|x) + c(1 − Acc(x))) log
(

p(i|x) + c(1 − Acc(x))
ξ̃(x)

)
− (1 − p(i|x)) log

(
1 − p(i|x)

ξ̃(x)

)
− p(y∗|x) log

(
p(y∗|x)

ξ̃(x)

)
− (1 − p(y∗|x) + c(1 − Acc(x))) log

(
1 − p(y∗|x) + c(1 − Acc(x))

ξ̃(x)

)
+ (p(y∗|x) + c(1 − Acc(x))) log

(
p(y∗|x) + c(1 − Acc(x))

ξ̃(x)

)
− (1 − p(y∗|x)) log

(
1 − p(y∗|x)

ξ̃(x)

)
− p(i|x) log

(
p(i|x)
ξ̃(x)

)
− (1 − p(i|x) + c(1 − Acc(x))) log

(
1 − p(i|x) + c(1 − Acc(x))

ξ̃(x)

)
= −p(i|x) log

(
p(i|x) + c(1 − Acc(x))

p(i|x)

)
+ p(y∗|x) log

(
p(y∗|x) + c(1 − Acc(x))

p(y∗|x)

)
+ c(1 − Acc(x)) log

(
p(y∗|x) + c(1 − Acc(x))
p(i|x) + c(1 − Acc(x))

)
− (1 − p(y∗|x)) log

(
(1 − p(y∗|x)) + c(1 − Acc(x))

1 − p(y∗|x)

)
+ (1 − p(i|x)) log

(
1 − p(i|x) + c(1 − Acc(x))

1 − p(i|x)|x)

)
+ c(1 − Acc(x)) log

(
1 − p(i|x) + c(1 − Acc(x))

1 − p(y∗|x) + c(1 − Acc(x))

)
≥ 0

For the last equation, its first two lines ≥ 0 according to the discussion in the first two cases. Its last two
lines is also non-negative, which is similar to the derivation of the first two lines.

Combining the conclusions above, we can conclude the proof.

Given this lemma, we can simply conclude the proof. First, it is can be learned that any minimizer of Ry∗

Ψ (g|x) is
also that of R⊥

Ψ(g|x) since R⊥
Ψ(g|x) ≥ Ry∗

Ψ (g|x) and the equality holds when g minimizes Ry∗

Ψ (g|x) according to
the definition of R⊥

Ψ(g|x). There will not be any g that minimizes Ry∗

⊥ (g|x) but does not minimizes Ry∗

Ψ (g|x)
according to the lemma above. According to the consistency of the three Ψ used in our paper, we can directly get
the consistency of our loss according to the definition of Ry∗

Ψ (g|x).

D Proof of Theorem 2 and Corollary 1

Proof. First of all, notice that the first K coordinates of ΨCE, ΨOvA, and ΨASM are monotonic decreasing, so for
any g that argmaxy∈[K]gy(x) ̸= y∗, we can swap them and get g′ to make the regret smaller. Then we begin with
discussing the point-wise regret. In this proof, we denote by y′ = argmaxy∈[K]gy(x). g∗

CE/ovA/ASM is the optimal
solution w.r.t. ℓ̃CE/OvA/ASM, and gi∗

CE/OvA/ASM is the optimal solution w.r.t. ℓ̃i
CE/OvA/ASM. We also denote by

sy(x) the y-th output of symmetric softmax w.r.t. g and ay(x) the y-th output of asymmetric softmax. Finally,
we denote by y′ = argmaxy∈[K]gy(x).

D.1 Case of Ψ =CE

First of all, we set Ψ to the CE loss. We consider the two cases of error that:

• Acc(x) > p(y∗|x) + c, gK+1(x) ≤ gy′(x), Acc(x) ≤ p(y∗|x) + c, gK+1(x) > gy′(x).

Denote by c(1 − Acc(x)) = ϵ(x). In these cases, we can learn from our previous discussion and Pinsker’s
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inequality that for CE:
Ep(y,m|x)[ℓ̃CE(g(x), y, m)] − Ep(y,m|x)[ℓ̃CE(g∗

CE(x), y, m)]
≥ Ep(y,m|x)[ℓ̃CE(g′(x), y, m)] − Ep(y,m|x)[ℓ̃CE(g∗

CE(x), y, m)]

≥ ξ̃(x)
2

(∣∣∣∣p(y∗|x) + ϵ(x)
ξ̃(x)

− sy∗(x)
∣∣∣∣ +

∣∣∣∣ (1 − c)Acc(x)
ξ̃(x)

− sK+1(x)
∣∣∣∣)2

≥ ξ̃(x)
2

(∣∣∣∣p(y∗|x) + ϵ(x)
ξ̃(x)

− (1 − c)Acc(x)
ξ̃(x)

+ sK+1(x) − sy∗(x)
∣∣∣∣)2

= ξ̃(x)
2

(∣∣∣∣p(y∗|x) + ϵ(x)
ξ̃(x)

− (1 − c)Acc(x)
ξ̃(x)

∣∣∣∣ + |sK+1(x) − sy∗(x)|
)2

≥ ξ̃(x)
2

∣∣∣∣p(y∗|x) + ϵ(x)
ξ̃(x)

− (1 − c)Acc(x)
ξ̃(x)

∣∣∣∣2

= 1
2ξ̃(x)

|p(y∗|x) + ϵ(x) − (1 − c)Acc(x)|2

≥ 1
4 |p(y∗|x) + c − Acc(x)|2

Details: The first inequality holds due to our discussion in the first paragraph of this section. The second
one holds due to Pinsker’s inequality. The third one holds due to the absolute value inequality. The fourth
equation holds according to (1). The last inequality holds since 2 ≥ ξ̃(x) ≥ 1 and the definition of ϵ(x).

• We further consider a special case that ϵ(x) ̸= 0 and use the inequalities that x ≥ log(1 + x) ≥ x
1+x :

Ep(y,m|x)[ℓ̃CE(g(x), y, m)] − Ep(y,m|x)[ℓ̃CE(g∗
CE(x), y, m)]

≥ Ep(y,m|x)[ℓ̃y′

CE(gy′∗
CE(x), y, m)] − Ep(y,m|x)[ℓ̃CE(g∗

CE(x), y, m)]

= −(p(y′|x) + ϵ(x)) log
(

p(y′|x) + ϵ(x)
ξ̃(x)

)
− p(y∗|x) log

(
p(y∗|x)

ξ̃(x)

)
+ p(y′|x) log

(
p(y′|x)
ξ̃(x)

)
+ (p(y∗|x) + ϵ(x)) log

(
p(y∗|x) + ϵ(x))

ξ̃(x)

)
= −p(y′|x) log

(
p(y′|x) + ϵ(x)

p(y′|x)

)
+ p(y∗|x) log

(
p(y∗|x) + ϵ(x)

p(y∗|x)

)
+ ϵ(x) log

(
p(y∗|x) + ϵ(x)
p(y′ |x) + ϵ(x)

)
= (p(y∗|x) − p(y′|x)) log

(
p(y∗|x) + ϵ(x)

p(y∗|x)

)
+ (p(y′|x) + ϵ(x)) log

(
p(y∗|x) + ϵ(x)
p(y′ |x) + ϵ(x)

)
− p(y′|x) log

(
p(y∗|x)
p(y′|x)

)
= (p(y∗|x) − p(y′|x)) log

(
p(y∗|x) + ϵ(x)

p(y∗|x)

)
+ (p(y′|x) + ϵ(x)) log

(
1 + p(y∗|x) − p(y′|x)

p(y′ |x) + ϵ(x)

)
− p(y′|x) log

(
1 + p(y∗|x) − p(y′|x)

p(y′|x)

)
︸ ︷︷ ︸

≥0

≥ (p(y∗|x) − p(y′|x)) log
(

p(y∗|x) + ϵ(x)
p(y∗|x)

)
≥ (p(y∗|x) − p(y′|x)) ϵ(x)

p(y∗|x) + ϵ(x)

≥ (p(y∗|x) − p(y′|x)) ϵ(x)
1 + ϵ(x)

= (p(y∗|x) − p(y′|x))
(

1 − 1
1 + c − cAcc(x)

)
Then we can see a linear regret bound w.r.t. classifier’s misclassification rate. Furthermore, a lower expert
accuracy can make this bound tighter.
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• Then we consider the next case of error:
Acc(x) ≤ p(y∗|x) + c, gK+1(x) ≤ gy′(x), p(y′|x) < p(y∗|x).
This case can also be split into two cases. First:

◦ When p(y′|x) + ϵ(x) > p(y∗|x):
In this case, we can use the last inequality in the previous case:

Ep(y,m|x)[ℓ̃CE(g(x), y, m)] − Ep(y,m|x)[ℓ̃CE(g∗
CE(x), y, m)] ≥ (p(y∗|x) − p(y′|x))

(
1 − 1

1 + c − cAcc(x)

)
≥ (p(y∗|x) − p(y′|x))

(
p(y∗|x) − p(y′|x)
1 + c − cAcc(x)

)
≥ (p(y∗|x) − p(y′|x))2

2
◦ When p(y′|x) + ϵ(x) ≤ p(y∗|x).

Ep(y,m|x)[ℓ̃CE(g(x), y, m)] − Ep(y,m|x)[ℓ̃CE(g∗
CE(x), y, m)]

≥ Ep(y,m|x)[ℓ̃y′

CE(g(x), y, m)] − Ep(y,m|x)[ℓ̃y∗

CE(gy∗

CE(x), y, m)]

≥ Ep(y,m|x)[ℓ̃y′

CE(gy′∗
CE(x), y, m)] − Ep(y,m|x)[ℓ̃y∗

CE(g∗
CE(x), y, m)]

= −
∑

y∈[K],y ̸=y′

p(y|x) log(p(y|x)) +
∑

y∈[K],y ̸=y∗

p(y|x) log(p(y|x))

− (p(y′|x) + ϵ(x)) log(p(y′|x) + ϵ(x)) + (p(y∗|x) + ϵ(x)) log(p(y∗|x) + ϵ(x))

≥ −
∑

y∈[K],y ̸=y′

(p(y|x) + I(y = y∗)ϵ(x)) log(p(y|x)) +
∑

y∈[K],y ̸=y∗

p(y|x) log(p(y|x))

− p(y′|x) log(p(y′|x) + ϵ(x)) + (p(y∗|x) + ϵ(x)) log(p(y∗|x) + ϵ(x))

The last inequality holds according to the description of this case. Then we define a dummy K + 1 class
distribution with class posterior probability [ p(1|x)

1+ϵ(x) , · · · , p(y∗|x)+ϵ(x)
1+ϵ(x) , · · · , 0] and we can apply Pinsker’s

inequality according to the inequality above and get a quadratic bound:

−
∑

y∈[K],y ̸=y′

(p(y|x) + I(y = y∗)ϵ(x)) log(p(y|x)) +
∑

y∈[K],y ̸=y∗

p(y|x) log(p(y|x))

− p(y′|x) log(p(y′|x) + ϵ(x)) + (p(y∗|x) + ϵ(x)) log(p(y∗|x) + ϵ(x))

= −
∑

y∈[K],y ̸=y′

(p(y|x) + I(y = y∗)ϵ(x)) log(p(y|x)
ξ̃(x)

) +
∑

y∈[K],y ̸=y∗

p(y|x) log(p(y|x)
ξ̃(x)

)

− p(y′|x) log(p(y′|x) + ϵ(x)
ξ̃(x)

) + (p(y∗|x) + ϵ(x)) log(p(y∗|x) + ϵ(x)
ξ̃(x)

)

≥ ξ̃(x)
2

(∣∣∣∣p(y∗|x) + ϵ(x)
ξ̃(x)

− sy∗(x)
∣∣∣∣ +

∣∣∣∣p(y′|x)
ξ̃(x)

− sy′(x)
∣∣∣∣)2

≥ ξ̃(x)
2

(
p(y∗|x) + ϵ(x)

ξ̃(x)
− sy∗(x) − p(y′|x)

ξ̃(x)
+ sy′(x)

)2

≥ ξ̃(x)
2

(
p(y∗|x) + ϵ(x)

ξ̃(x)
− p(y′|x)

ξ̃(x)

)2

≥ 1
4 (p(y∗|x) + ϵ(x) − p(y′|x))2

≥ 1
4 (p(y∗|x) − p(y′|x))2

And we can generalize the point-wise regret to the distribution using Jensen’s inequality for expectation and
concave function.
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D.2 Case of Ψ =ASM

According to our proof of Theorem 1, the linear regret case can be directly deduced. Then we focus on the
quadratic bound.

• Acc(x) > p(y∗|x) + c, gK+1(x) ≤ gy′(x), Acc(x) ≤ p(y∗|x) + c, gK+1(x) > gy′(x).
Denote by ξ(x) = 1 + c − cAcc(x) ∈ [1, 1 + c]:

Ep(y,m|x)[ℓ̃ASM(g(x), y, m)] − Ep(y,m|x)[ℓ̃ASM(g∗
ASM(x), y, m)]

≥ Ep(y,m|x)[ℓ̃ASM(g′(x), y, m)] − Ep(y,m|x)[ℓ̃ASM(g∗
ASM(x), y, m)]

≥ ξ(x)
2

(∣∣∣∣p(y∗|x) + ϵ(x)
ξ(x) − ay∗(x)

∣∣∣∣)2
+ ξ(x)

2

(∣∣∣∣ (1 − c)Acc(x)
ξ(x) − aK+1(x)

∣∣∣∣)2

≥ ξ(x)
(∣∣∣∣p(y∗|x) + ϵ(x)

ξ(x) − ay∗(x)
∣∣∣∣ +

∣∣∣∣ (1 − c)Acc(x)
ξ(x) − aK+1(x)

∣∣∣∣)2

≥ ξ(x)
(

p(y∗|x) + ϵ(x)
ξ(x) + aK+1(x) − ay∗(x) − (1 − c)Acc(x)

ξ(x)

)2

≥ 1
2 (p(y∗|x) + ϵ(x) − (1 − c)Acc(x))2

= 1
2 (p(y∗|x) + c − Acc(x))2

Details: The first inequality holds due to our discussion in the first paragraph of this section. The second
one holds due to Pinsker’s inequality for the classifier and rejector counterpart, respectively. The third one
holds due to Holder’s inequality. The fourth one holds due to the absolute value inequality. The fourth
equation holds according to (1).
Then we consider the next case of error:

• Acc(x) ≤ p(y∗|x) + c, gK+1(x) ≤ gy′(x), p(y′|x) < p(y∗|x).
We can also split it into two cases.

◦ When p(y′|x) + ϵ(x) > p(y∗|x):
The result of this case is the same as in the case for CE since they share the same linear lower bound.

◦ When p(y′|x) + ϵ(x) ≤ p(y∗|x):

Ep(y,m|x)[ℓ̃ASM(g(x), y, m)] − Ep(y,m|x)[ℓ̃ASM(g∗
ASM(x), y, m)]

≥ Ep(y,m|x)[ℓ̃y′

ASM(g(x), y, m)] − Ep(y,m|x)[ℓ̃y∗

ASM(gy∗

ASM(x), y, m)]

≥ Ep(y,m|x)[ℓ̃y′

ASM(gy′∗
ASM(x), y, m)] − Ep(y,m|x)[ℓ̃y∗

ASM(g∗
ASM(x), y, m)]

= −
∑

y∈[K],y ̸=y′

p(y|x) log(p(y|x)) +
∑

y∈[K],y ̸=y∗

p(y|x) log(p(y|x))

− (p(y′|x) + ϵ(x)) log(p(y′|x) + ϵ(x)) + (p(y∗|x) + ϵ(x)) log(p(y∗|x) + ϵ(x))

≥ −
∑

y∈[K],y ̸=y′

(p(y|x) + I(y = y∗)ϵ(x)) log(p(y|x)) +
∑

y∈[K],y ̸=y∗

p(y|x) log(p(y|x))

− p(y′|x) log(p(y′|x) + ϵ(x)) + (p(y∗|x) + ϵ(x)) log(p(y∗|x) + ϵ(x))

≥ ξ(x)
2

(∣∣∣∣p(y∗|x) + ϵ(x)
ξ(x) − ay∗(x)

∣∣∣∣ +
∣∣∣∣p(y∗|x)

ξ(x) − ay′(x)
∣∣∣∣)2

≥ ξ(x)
4

(
p(y∗|x) + ϵ(x)

ξ(x) + aK+1(x) − ay∗(x) − (1 − c)Acc(x)
ξ(x)

)2

= 1
4 (p(y∗|x) − p(y′|x))2

Then we can conclude the proof.
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D.3 Case of Ψ =OvA

We consider the first type of error:

• Acc(x) > p(y∗|x) + c, gK+1(x) ≤ gy′(x), Acc(x) ≤ p(y∗|x) + c, gK+1(x) > gy′(x).
Denote by ξ(x) = 1 + c − cAcc(x) ∈ [1, 1 + c]:

Ep(y,m|x)[ℓ̃OvA(g(x), y, m)] − Ep(y,m|x)[ℓ̃OvA(g∗
OvA(x), y, m)]

≥ Ep(y,m|x)[ℓ̃OvA(g′(x), y, m)] − Ep(y,m|x)[ℓ̃ASM(g∗
OvA(x), y, m)]

≥ ξ(x)
2

(∣∣∣∣p(y∗|x) + ϵ(x)
ξ(x) − ay∗(x)

∣∣∣∣)2
+ ξ(x)

2

(∣∣∣∣ (1 − c)Acc(x)
ξ(x) − aK+1(x)

∣∣∣∣)2

≥ ξ(x)
(∣∣∣∣p(y∗|x) + ϵ(x)

ξ(x) − ay∗(x)
∣∣∣∣ +

∣∣∣∣ (1 − c)Acc(x)
ξ(x) − aK+1(x)

∣∣∣∣)2

≥ ξ(x)
(

p(y∗|x) + ϵ(x)
ξ(x) + aK+1(x) − ay∗(x) − (1 − c)Acc(x)

ξ(x)

)2

≥ 1
2 (p(y∗|x) + ϵ(x) − (1 − c)Acc(x))2

= 1
2 (p(y∗|x) + c − Acc(x))2

Details: The derivation is similar to that of ASM since they both share a structure that can separate the
K-class classification task and training of deferral rule.

• The linear regret bound can be derived similarly: according to the discussion in the proof of Theorem 1, we
can find the first two lines of the regret of OvA is the same with the regret for CE, and thus we can get the
same lower bound. Notice that the last two lines of the regret of OvA can also be lower-bounded by the
same lower bound if we substitute p(y∗|x) and p(i|x) with 1 − p(i|x) and 1 − p(y∗|x) respectively in the
derivation of the first two lines’ lower bound.

• Acc(x) ≤ p(y∗|x) + c, gK+1(x) ≤ gy′(x), p(y′|x) < p(y∗|x).

◦ When p(y′|x) + ϵ(x) > p(y∗|x):
The result of this case is the same as in the case for CE since they share the same linear lower bound.

◦ When p(y′|x) + ϵ(x) ≤ p(y∗|x):

Ep(y,m|x)[ℓ̃OvA(g(x), y, m)] − Ep(y,m|x)[ℓ̃OvA(g∗
OvA(x), y, m)]

≥ Ep(y,m|x)[ℓ̃OvA(g′(x), y, m)] − Ep(y,m|x)[ℓ̃OvA(g∗
OvA(x), y, m)]

≥ ξ(x)
2

(∣∣∣∣p(y∗|x) + ϵ(x)
ξ(x) − σy∗(x)

∣∣∣∣)2
+ ξ(x)

2

(∣∣∣∣p(y′|x)
ξ(x) − σy′(x)

∣∣∣∣)2

≥ ξ(x)
(∣∣∣∣p(y∗|x) + ϵ(x)

ξ(x) − σy∗(x)
∣∣∣∣ +

∣∣∣∣p(y′|x)
ξ(x) − σy′(x)

∣∣∣∣)2

≥ ξ(x)
(

p(y∗|x) + ϵ(x)
ξ(x) − σy∗(x) − p(y′|x)

ξ(x) + σy′(x)
)2

= 1
2 (p(y∗|x) − p(y′|x))2
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Checklist

1. For all models and algorithms presented, check if you include:

(a) A clear description of the mathematical setting, assumptions, algorithm, and/or model. [Yes]
Please refer to the definitions and description of each theorem/lemma.

(b) An analysis of the properties and complexity (time, space, sample size) of any algorithm. [Yes]
We provide the regret transfer bound to further quantify our methods in Theorem 2.

(c) (Optional) Anonymized source code, with specification of all dependencies, including external libraries.
[No]
The loss functions in our paper can be easily implemented and we will include a demo for both datasets
in the future version.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all theoretical results. [Yes]
(b) Complete proofs of all theoretical results. [Yes]
(c) Clear explanations of any assumptions. [Yes]

Please refer to the definitions and description of each theorem/lemma, and the proofs are included in the
appendix.

3. For all figures and tables that present empirical results, check if you include:

(a) The code, data, and instructions needed to reproduce the main experimental results (either in the
supplemental material or as a URL). [Yes]

(b) All the training details (e.g., data splits, hyperparameters, how they were chosen). [Yes]
(c) A clear definition of the specific measure or statistics and error bars (e.g., with respect to the random

seed after running experiments multiple times). [Yes]
(d) A description of the computing infrastructure used. (e.g., type of GPUs, internal cluster, or cloud

provider). [Yes]

Please refer to Section 5 for the detailed experimental setup.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets, check if you
include:

(a) Citations of the creator If your work uses existing assets. [Yes]
The used models and data are cited in Zagoruyko and Komodakis (2016); Krizhevsky et al. (2009).

(b) The license information of the assets, if applicable. [Not Applicable]
(c) New assets either in the supplemental material or as a URL, if applicable. [Not Applicable]
(d) Information about consent from data providers/curators. [Not Applicable]
(e) Discussion of sensible content if applicable, e.g., personally identifiable information or offensive content.

[Not Applicable]

5. If you used crowdsourcing or conducted research with human subjects, check if you include:

(a) The full text of instructions given to participants and screenshots. [Not Applicable]
(b) Descriptions of potential participant risks, with links to Institutional Review Board (IRB) approvals if

applicable. [Not Applicable]
(c) The estimated hourly wage paid to participants and the total amount spent on participant compensation.

[Not Applicable]


