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Abstract Automating negotiations in markets where multiple buyers and sellers operate
is a scientific challenge of extraordinary importance. One-to-one negotiations are clas-
sically studied as bilateral bargaining problems, while one-to-many and many-to-many
negotiations are studied as auctioning problems. This paper aims at bridging together these
two approaches, analyzing agents’ strategic behavior in one-to-many and many-to-many
negotiations when agents follow the alternating-offers bargaining protocol (Rubinstein
Econometrica 50(1), 97–109, 1982). First, we extend this protocol, proposing a novel mech-
anism that captures the peculiarities of these settings. Then, we analyze agents’ equilibrium
strategies in complete information bargaining and we find that for a large subset of the space
of the parameters, the equilibrium outcome depends on the values of a narrow number of
parameters. Finally, we study incomplete information bargaining with one-sided uncertainty
regarding agents’ reserve prices and we provide an algorithm based on the combination
of game theoretic analysis and search techniques which finds agents’ equilibrium in pure
strategies when they exist.
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1 Introduction

Automated negotiation is an important research area bridging together economics, game
theory, and artificial intelligence. It has received a prominent attention in recent years [24]
and its importance is widely acknowledged since intelligent agents that negotiate with each
other on behalf of human users are expected to lead to more efficient negotiations [35]. A
very common class of negotiation is bargaining, which refers to a situation in which indi-
vidual agents have the possibility of concluding a mutually beneficial agreement which
could not be imposed without all individuals’ approval. A bargaining theory is an explo-
ration of the relation between the outcome of bargaining and the characteristics of the
situation. Cooperative bargaining theory (axiomatic approach) initiated by Nash [29] is
concerned with the outcome of bargaining given the list of properties the outcomes are
required to satisfy. In the non-cooperative bargaining theory (strategic approach), the out-
come is an equilibrium of an explicit model of the bargaining process. The strategic
bargaining has received more attention following Rubinstein’s path-breaking work [33]. In
the non-cooperative bargaining theory literature, most work focuses on bilateral bargain-
ing. A variety of negotiation aspects have been studied, e.g., uncertainty [3, 9], outside
options [18], multi-issue negotiation [14]. In addition to bilateral negotiation, one-to-
many and many-to-many negotiations are also very important and widely exist in many
application domains like e-commerce as well as in human society. A crucial problem is
that there is no satisfactory analysis of concurrent one-to-many negotiation and many-to-
many negotiation.

The situation where an agent has multiple contracting opportunities and faces com-
petition from other agents widely exists in service-oriented computing [5, 39], sensor
networks [4, 7, 26], and Grid resource management [38]. As an example, consider negotia-
tion management [1] for Collaborating, Autonomous Stream Processing systems (CLASP)
[11], which has been designed and prototyped in the context of System S project [23] within
IBM Research to enable sophisticated stream processing. There are multiple sites running
the System S software, each with their own administration and limited processing capabil-
ities. Considering that a site receives a job. After planning [32], the site finds that using
only its local resources, it cannot satisfy all resource requirements of the plan. Then, the site
negotiates with other sites to acquire resources needed using its negotiation management
component [1]. For each resource, there can be multiple providers and the site concurrently
negotiates with different resource providers to construct agreements for these resources.
There could be other sites requiring the same resource. Thus, each negotiating site needs
to take the resource competition into account. In the literature, an auction is widely used
for one-to-many negotiation and for many-to-many negotiation, market mechanisms like
matching or two-sided auction seem more intuitively appropriate. The difference between
negotiation and market mechanisms, especially auction, is blurred with the arrival of the
Internet and electronic commerce [25]. Negotiation has been treated as a key component of
e-commerce and has been applied to e-commerce, manufacturing planning, and distributed
vehicle routing. While auction is the most widely implemented and discussed mecha-
nism, only recently the complex, multidimensional, and combinatorial auctions have gained
the interest of researchers and foremost practitioners. Negotiations have been somewhat
neglected as a possible market mechanism. The proliferation and acceptance of web and
Internet technologies made the replacement of some negotiated transactions with auctions
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not only possible but also efficient. Negotiation-based mechanisms however, still remain
the preferred choice when the good and service attributes are ill defined and there are crite-
ria other than price (e.g., reputation, trust, relation and future contracts) [21]. In addition, no
third party like auctioneer is needed in bargaining. Strategic agents may prefer bargaining as
they can exploit other agents by using learning, collusion, and other bargaining techniques.
In this paper, we compared the outcomes the agents achieve in our model with respect to
those achieved with other economic mechanisms, e.g. with the VCG auction.1

Even if an agent interacts with many agents, a common assumption in this literature is
that an agent can pursue only one negotiation at a time [18]. The result is that an agent may
terminate a current negotiation in disagreement, in spite of possible gains from trade in order
to pursue a more attractive outside alternative. Therefore, the presumption that an agent can
pursue only one negotiation at a time appears to be restrictive. When an agent is negotiating
with one trading partner, other trading partners are called outside options. While there has
been much experimental work (e.g., [6, 30, 37]) on one-to-many and many-to-many nego-
tiations in which an agent synchronously negotiates with multiple agents in discrete time,
to our best knowledge, this paper is the first work to provide a game theoretical analysis
of agents’ strategic interactions in concurrent one-to-many and many-to-many negotia-
tions. The analysis can provide insights and suggestions for designing negotiation agents in
practical electronic marketplaces in which agents are involved in concurrent negotiations.

The focus of this work is on analyzing agents’ strategic behavior in one-to-many and
many-to-many negotiations in which agents are negotiating with multiple trading partners
and, at the same time, are facing competition from trading competitors. In this paper, negoti-
ating agents make offers following the alternating-offers protocol, which was first analyzed
by Rubinstein [33], which has been widely used in the bargaining theory literature, e.g., [8,
20, 34, 36], just to name a few. The alternating-offers protocol captures the most important
features of bargaining: bargaining consists of a sequence of offers and decisions to accept
or reject these offers. In this paper, we extend the alternating-offers protocol to capture the
peculiarities of these settings. The subgame perfect equilibrium for complete information
setting is presented and equilibrium properties, such us uniqueness, are discussed. Further-
more, we provide an algorithm to compute the sequential equilibrium in the incomplete
information setting where there is uncertainty regarding the reserve price of an agent. The
main goal of this paper is to begin to understand which factors are affecting agents’ bargain-
ing position relative to others when each agent is negotiating with multiple trading partners
simultaneously.

A central research topic in bargaining theory is understanding bargaining power, which
is related to the relative abilities of agents in a situation to exert influence over each other. In
bilateral bargaining, each agent’s bargaining power is affected by its reserve price, patience
attitude, deadline, etc. When many buyers and sellers are involved in negotiation, it is impor-
tant to investigate how the market competition will affect agents’ equilibrium bargaining
strategies. With a large number of buyers and sellers, a single agent is unlikely to have much
influence on the market equilibrium. Our analysis shows that both bargaining order and
market competition affect agents’ bargaining power. An agent’s bargaining power increases
with the number of trading partners (agents of a different type) and decreases with the
number of trading competitors.

1The Vickrey–Clarke–Groves mechanism (VCG) is an auction mechanism that, given the private valuations
of the agents over the allocations, returns the allocation maximizing the social welfare and a profile of
payments, one per agent, such that reporting the true valuations is a dominant equilibrium strategy for every
agent.
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This paper also considers the effect of incomplete information in one-to-many nego-
tiation and many-to-many negotiation. One crucial challenge in bargaining theory is the
development of algorithmic techniques to find equilibria in presence of information incom-
pleteness [9, 20]. The microeconomic literature provides a number of closed form results
with very narrow uncertainty settings in bilateral bargaining. For instance, Rubinstein [34]
considered bilateral infinite horizon bargaining with uncertainty over two possible discount
factors. Gatti et al. [20] analyzed bilateral bargaining with one-sided uncertain deadlines.
The only known result about bargaining with uncertain reserve prices is due to Chatter-
jee and Samuelson [12, 13] where they studied bilateral infinite horizon bargaining with
two-type uncertainty over the reservation values. Our previous paper [2, 3] presented a
search based approach which includes choice rule enumeration (a choice rule specifies
whether different agent types will behave in the same way or in different ways at a deci-
sion making point) and equilibrium strategy calculation given a set of choice rules. Some
work (e.g., [19]) attempts to provide one-to-one bargain mechanism allowing agent to
change the agent with which an agent is negotiating have been explored. However, these
attempts do not allow agent to negotiate simultaneously with multiple agents. In this paper,
we consider two-type uncertainty about the reserve price of an agent while the reserve
prices of other agents are common knowledge. In this paper. we extend our approach for
bilateral bargaining to search sequential equilibrium while each agent is negotiating with
multiple agents.

The assumptions made in this paper are not more restrictive than related work in the
literature. The assumption of the existence of deadline and reserve price in bargaining is
widely used in the literature (e.g., [17, 20, 31, 34]). Computing agents’ equilibrium strate-
gies in incomplete information bargaining is extremely difficult and most related work
only considers one type of uncertainty. For instance, Rubinstein [34] considered bilateral
bargaining with uncertainty over two possible discount factors. Gatti et al. [20] analyzed
bilateral bargaining with one-sided uncertain deadlines. In this paper, we consider the uncer-
tain information about the reserve price of an agent while assuming complete information
of other negotiation parameters. As in most related work, we consider the negotiation
over a single issue, price of a good. However, our analysis can be easily extended to the
multi-attribute negotiations in which the attributes are negotiated simultaneously [20].

While many-to-many negotiation is a generalization of one-to-many negotiation and
bilateral negotiation, we start from the simplest model and then iteratively consider more
complex negotiation models. In this way, it is easier for us to understand the factors affecting
agents’ bargaining power. The rest of this paper proceeds as follows: We start with bilateral
negotiation in Section 2. Section 3 discusses one-to-many negotiation and Section 4 inves-
tigates many-to-many negotiation. Section 5 discusses how to handle uncertainty of agents’
reserve prices. Section 6 concludes this paper and outlines future research directions.

2 Bilateral alternating-offers negotiation

We follow [20] to describe the non-cooperative bargaining problem between a buyer b and
a seller s. All the agents enter the market at time 0. The seller agent wants to sell a single
indivisible good for some quantity of a divisible good (“money”). The buyer agent wants to
buy the indivisible good provided by the seller. The characteristics of a transaction that are
relevant to an agent are the price x and the number of periods t after the agent’s entry into
the market that the transaction is concluded.
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We study a discrete time (indexed by integers 0, 1, 2, . . . ) bilateral negotiation. A finite
horizon alternating-offers bargaining protocol is utilized for the negotiation on one contin-
uous issue (price of a good). Formally, the buyer b and the seller s can act at times t ∈ N.
The player function ι : N → {b, s} returns the agent that acts at time t and is such that
ι(t) �= ι(t + 1), i.e., a pair of agents bargain by making offers in alternate fashion. For
ease of analysis, this paper focuses on single-issue negotiation rather than multiple-issue
negotiation. However, our model can be easily extended to handle multi-issue negotiation
as in [20].

Possible actions σ t
ι(t) of agent ι(t) at any time point t > 0 are: 1) offer[x], where x ∈ R

is the proposed price for the good; 2) exit, which implies that negotiation between b and s
fails; and 3) accept, which implies that b and s make an agreement. At time point t = 0 the
only allowed actions are 1) and 2). If σ t

ι(t) = accept the bargaining stops and the outcome

is (x, t), where x is the value such that σ t−1
ι(t−1) = offer[x]. This is to say that the agents

agree on the value x at time point t . If σ t
ι(t) = exit the bargaining stops and the outcome is

NoAgreement . Otherwise the bargaining continues to the next time point.
Each agent a ∈ {b, s} has a utility function Ua : (R × N) ∪ NoAgreement → R,

which represents its gain over the possible bargaining outcomes. Each utility function Ua
depends on a’s reserve price RPa ∈ R

+, temporal discount factor δa ∈ (0, 1], and deadline
Ta ∈ N, Ta > 0. For ease of analysis, we assume that agents have different reserve prices
throughout this paper.

If the outcome of the bargaining is (x, t), then the utility function Ua is defined as:

Ua(x, t) =
⎧
⎨

⎩

(RPa − x) · δt
a if t ≤ Ta and a is a buyer

(x − RPa) · δt
a if t ≤ Ta and a is a seller

−ε otherwise

If the outcome is NoAgreement , then Ua(NoAgreement) = 0. Notice that the assign-
ment of a strictly negative value (we have chosen by convention the value ε > 0) to Ua after
agent a’s deadline allows one to capture the essence of the deadline: an agent, after its dead-
line, strictly prefers to exit the negotiation rather than to reach any agreement. Finally, we
assume the feasibility of the problem, i.e., RPb ≥ RPs, and the rationality of the agents, i.e.,
each agent will act to maximize its utility. [RPs,RPb] is the zone of potential agreements.

With complete information the appropriate solution concept for the game we are dealing
with is the subgame perfect equilibrium. In subgame perfect equilibrium, agents’ strategies
are in equilibrium in every possible subgame. Such a solution can be found by backward
induction [20].

Initially, it is determined that the game rationally stops at the time point T = min(Tb, Ts).
The equilibrium outcome of every subgame starting from t ≥ T is NoAgreement , since at
least one agent will exit from negotiation. Therefore, at t = T agent ι(T ) would accept any
offer x which gives it a utility not worse than NoAgreement , namely, any offer x such that
Uι(T )(x, T ) ≥ 0. From t = T − 1 back to t = 0 it is possible to find the optimal offer agent
ι(t) can make at t , if it makes an offer, and the offers that it would accept. x∗(t) denotes the
optimal offer of agent ι(t) at t . x∗(t) is the offer such that, if t < T − 1, agent ι(t + 1) is
indifferent at t + 1 between accepting it and rejecting it to make its optimal offer x∗(t + 1)
and, if t = T − 1, agent ι(t + 1) is indifferent at t + 1 between accepting it and making
exit . Formally, x∗(t) is such that Uι(t+1)(x

∗(t), t) = Uι(t+1)(x
∗(t + 1), t+1) if t < T − 1

and Uι(t+1)(x
∗(t), t) = 0 if t = T − 1. The offers agent ι(t) would accept at t are all those

offers that give it a utility no worse than the utility given by offering x∗(t). The equilibrium
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strategy of any sub-game starting from 0 ≤ t < T prescribes that agent ι(t) offers x∗(t) at
t and agent ι(t + 1) accepts it at t + 1.

Backward propagation is used to provide a recursive formula for x∗(t): given value x

and agent a, we call backward propagation of value x for agent a the value y such that
Ua(y, t − 1) = Ua(x, t); we employ the arrow notation x←a for backward propagations.
Formally, x←b = RPb − (RPb − x) · δb and x←s = RPs + (x − RPs) · δs. If a value x

is backward propagated n times for agent a, we write x←n[a], e.g. x←2[a] = (x←a)←a. If
a value is backward propagated for more than one agent, we list them left to right in the
subscript, e.g., x←b2[s] = ((x←b)←s)←s. The values of x∗(t) can be calculated recursively
from t = T − 1 back to t = 0 as follows:

x∗(t) =
{
RPι(t+1) if t = T − 1
(x∗(t + 1))←ι(t+1) if t < T − 1

It can be easily observed that x←b ≥ x as x←b − x = RPb − (RPb − x) · δb − x = (1−
δb)(RPb−x) ≥ 0, and x←s ≤ x as x←s−x = RPs+(x−RPs)·δs−x = (δs−1)(x−RPs) ≤ 0.
In addition, if x ≤ RPb, it follows that x←b ≤ RPb. Similarly, If x ≥ RPs, x←s ≥ RPs.

Finally, agents’ equilibrium strategies can be defined on the basis of x∗(t) as follows:

σ ∗
b (t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t = 0 offer[x∗(0)]
0 < t < T

{
if σs(t − 1) = offer[x] with x ≤ (x∗(t))←b accept
otherwise offer[x∗(t)]

T ≤ t ≤ Tb

{
if σs(t − 1) = offer[x] with x ≤ RPb accept
otherwise exit

Tb < t exit

σ ∗
s (t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t = 0 offer[x∗(0)]
0 < t < T

{
if σb(t − 1) = offer[x] with x ≥ (x∗(t))←s accept
otherwise offer[x∗(t)]

T ≤ t ≤ Ts

{
if σb(t − 1) = offer[x] with x ≥ RPs accept
otherwise exit

Ts < t exit

Therefore, at equilibrium, the two agents will reach an agreement at the time t = 1 and
the agreement price is x∗(0). Agents’ bargaining power depends on the order of proposing:
the agent ι(T −1) that will act at the time point before the deadline has a stronger bargaining
power, and the agent ι(T ) gets a utility of 0.

3 One-to-many alternating-offers negotiation

3.1 Negotiation mechanism

In this section, we extend the alternating-offers protocol to capture the situation wherein
there is one buyer agent b and a set S = {s1, . . . , sn} of n seller agents such that: 1) the
items sold by the sellers are the same, 2) all the sellers have exactly one item to sell, and 3)
the buyer is interested in buying exactly one item.

Our mechanism extends the alternating-offers protocol allowing the buyer to carry on
more simultaneous negotiations, each one with a different seller. As in [6, 30, 37], a buyer
synchronously negotiates with multiple sellers in discrete time. We use the term “negotia-
tion thread” for the single bargaining between b and a seller si and we denote it by 
b,si .
Furthermore, we denote by ι(
b,si , t) the agent that acts at t in the negotiation thread 
b,si .
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We assume that if ι(
b,si , t) = b then ι(
b,sj , t) = b for all j . That is, b simultaneously
acts in all the negotiation threads. Therefore, if b is proposing at time t , ι(t) = b. Otherwise,
ι(t) = S .

We modify the alternating-offers mechanism by introducing an action confirm to avoid
agents’ non-reasonable behaviors. In the following we show an example of non-reasonable
behavior in absence of such action. The sellers’ action space is A = {offer[x], accept,
exit, confirm}, whereas the buyer’s action space is the Cartesian product ×n

i=1A. Legal
actions for the buyer are all the pure strategies σb = 〈σb,s1 , . . . , σb,sn〉 such that: if
σsi (t −1) �= accept, then σb,si (t) ∈ {offer[x], accept, exit} except when t = 0, accept is not
available, otherwise σb,si (t) ∈ {confirm, exit}. Legal actions for the sellers are defined anal-
ogously: if σb,si (t − 1) �= accept, then σsi (t) ∈ {offer[x], accept, exit} except when t = 0,
accept is not available, otherwise σsi (t) ∈ {confirm, exit}. The action confirm is allowed
only after making the action accept.

The outcome of a single negotiation thread 
b,si is NoAgreement if either b or si
made exit, whereas it is an agreement (x, t) if σι(
b,si ,t)

(t) = confirm, where x is such that
σι(
b,si ,t−2)(t − 2) = offer[x]. Notice that, in absence of the action confirm, if b makes
offers to multiple sellers and all these accept, b must buy multiple items. In presence of the
action confirm, b is in the position to choose only one contract. Summarily, in our mecha-
nism the following process is needed for implementing an agreement: one agent proposes a
price, the other agent accepts the offer, then the first agent confirms the contract made by
the second agent. Without loss of generality, we assume that each seller’s deadline is no less
than 2, i.e., Tsi ≥ 2.

The utility functions of the seller agents are exactly those defined in the previous section.
However, we need to refine the utility function of b. This is because b can potentially buy
more items, but is interested in only one item. We redefine b’s utility as follows. If b has
reached more than one agreement, let (xf irst , tf irst ) be the agreement such that, for any
other agreement (xj , tj ), (1) tf irst ≤ tj and (2) xf irst ≤ xj if tf irst = tj . Let if irst be the
seller involved in the agreement (xf irst , tf irst ). Agent b’s utility is defined over the set of
agreements it reached:

Ub({(xi, ti )}) =
{

(RPb − xf irst ) · δ
tf irst

b − ∑
j �=if irst

xj if tf irst ≤ Tb

−ε otherwise

That is, b receives a positive utility from the first agreement, whereas all the
other agreements reduce b’s utility. This will induce a rational buyer to reach at most
one agreement.

3.2 Agents’ equilibrium strategies

Let S=t be the set of sellers whose deadline is t , i.e., S=t = {si |Tsi = t}. Let St be the set of
sellers which have no shorter deadline than t , i.e., St = {si |Tsi ≥ t} = ∪t ′≥tS=t ′ . Without
loss of generality, we assume that the sellers St are ranked according to their reserve prices.
We denote by S i

t (S i=t ) the seller with the ith lowest reserve price in St (S=t ). Let x∗
b,si

(t)

be b’s optimal offer to si at time t if ι(
b,si , t) = b and x∗
si ,b

(t) be si’s optimal offer to
agent b at time t if ι(
b,si , t) = si .

The negotiation deadline for the negotiation thread between b and si is Tb,si =
min(Tb, Tsi ). After Tb,si , at least one agent will have no interest in reaching agreements.
Obviously, the negotiation deadline for b is T = maxsi∈S{Tb,si }. We state the following
lemma that allows us to reduce the complexity of the problem.
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Lemma 1 It is b’s weakly dominant strategy to make the same offer to all the sellers in
St+2 at each time t .

Proof At t we consider only St+2 since all the other sellers will not be interested in reaching
agreements at t +2 and later. Consider the time point t wherein ι(t) = b. On the equilibrium
path, at t agent b will expect to reach exactly one agreement, say (x∗

b(t + 2), t + 2), with
a specific seller, say s∗. Obviously, s∗ is the seller that will accept the highest offer. If b
makes offers higher than x∗

b(t) to the other sellers, then these sellers will not accept such
offers and therefore b cannot improve its utility. Analogously, if b makes offers lower than
x∗
b(t) to the other sellers, it cannot improve its utility.

According to Lemma 1 we can assume, without loss of generality, that x∗
b,si

(t) = x∗
b,sj

(t)

for all si , sj . For simplicity, we denote such offer by x∗
b(t). We state the following theorem

whose proof is reported in Appendix A.

Theorem 1 In the one-to-many negotiation, the sequences of equilibrium offers x∗
b and

x∗
si are:

x∗
b(t) =

{
RPS1

t+2
t = T − 2 or t = TS1

t+2
− 2

min{(x∗
S1

t+2
(t + 1))←S1

t+2
,RPS2

t+2
} t < T − 2 and t �= TS1

t+2
− 2 ,

x∗
si (t) =

{
max{RPsi ,RPS2

T
} t = T − 2

max{RPsi ,min{RPS2
t+2

, (x∗
b(t + 1))←b}} t < T − 2

.

Agent’s equilibrium strategies are similar to those discussed in Section 2, but σb,si
prescribes that:

– b accepts the offer x made by si at t if: x ≤ (x∗
b(t))←b and x is the lowest received

offer. If more than one seller has offered x, than b accepts the offer made by the seller
with the lowest reserve price ;

– b confirms an accept of si at t if: σb(t − 2) = offer[x] with x ≤ (x∗
b(t))←2[b] and,

among all the sellers that have accepted σb(t − 2), si is the one with the lowest reserve
price ;

and σb,si prescribes that:

– si confirms the accept of b at t if: σsi (t − 2) = offer[x] with x ≥ max{(x∗
si (t))←2[si ],

RPsi }.

The computational complexity of the backward induction is O(nT ) as the backward
induction will go through all the time points and at each time point, each agent has at most
three possible optimal actions. The equilibrium agreement is reached at t = 2 between b
and S1

2 and it is (x∗
b(0), 2) if ι(0) = b and (x∗

S1
2
(0), 2) otherwise. It can be easily observed

that RPS1
2

≤ x∗
b(0), x

∗
S1
2
(0) ≤ RPS2

2
. The result about agreement price is intuitive in the

following sense: obviously, the agreement price cannot be lower than each seller’s reserve
price. But it also cannot be higher than the second lowest price as, if so, there is at least
another seller who is willing to sell for less and make an agreement with the buyer. There-
fore, market competition guarantees that the buyer can make an agreement by paying no
more than RPS2

2
. The lower bound of agreement is due to the proposing ordering and agents’
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deadlines. For example, if T = 2 and the buyer proposes at time t = 0, the buyer will
propose RPS1

2
and the agent S1

2 will accept the offer at time t = 1. We can see that the mar-
ket competition plays an important role in affecting negotiation results. The buyer can make
an agreement with price at most RPS2

2
. With more sellers, the buyer can get better (at least

not worse) negotiation result.
Let us remark an observation. Consider the situation wherein ι(0) = S and x∗

S1
2

=
RPS2

2
. Although both S1

2 and S2
2 have the same equilibrium offer, i.e., RPS2

2
, the equilibrium

strategy of b prescribes that b must accept only the offer made by S1
2 . In the case b accepts

the offer by S2
2 or randomizes over accepting those offers, S1

2 ’s optimal action at t = 0 does
not exist, being limε→0(S2

2 − ε) with ε �= 0. We can state the following theorem which is a
direct consequence of the above observation and of the equilibrium uniqueness in bilateral
alternating-offers.

Theorem 2 Agents’ strategies on the equilibrium path are unique except when RPS1
2

=
RPsi for more than one i.

Notice that, when the reserve price of more sellers is equal to RPS1
2
, all these sellers will

offer their reserve price and b can accept any single offer among these. However, it can be
easily observed that all the equilibria are equivalent in terms of agents’ payoffs, b receiving
the same utility in all the equilibria. As we assume that agents have different reserve prices,
the equilibrium is unique.

Figure 1 shows an example of backward induction construction with RPb = 1, RPs1 = 0,
RPs2 = 0.2, δb = 0.8, δs1 = 0.7, δs2 = 0.8, Tb = 10, Ts1 = 11, Ts2 = 7. We report in the
figure for any time point t the optimal offer x∗

a (t) that ι(t) can make; the dashed lines are
sellers’ optimal offers if there is only one seller. The time point from which we can apply
the backward induction method is T = 10 at which b will confirm the agreement made
at t = 9. At t = 9 agent s1 will accept any offer equal to or higher than its reserve price
RPs1 = 0. The optimal offer x∗

b(8) of b at t = 8 is thus RPs1 = 0. s1’s optimal offer x∗
s1(7)

at t = 7 is (x∗
b(8))←b = RPb − (RPb − x∗

b(8))δb = 0.2. b’s optimal offer at time t = 6
is then x∗

b(6) = (x∗
s1(7))←s1 = 0.14. At time t = 5, another seller s2 can make an offer

(note that t = 5 is the last time s2 can make an offer as it needs another two rounds to
accept and confirm an agreement). s1 and s2 will compete with each other and their optimal
offers aren’t (x∗

b(6))←b = 0.312 as one seller has an incentive to choose a lower price if the
other seller choose (x∗

b(6))←b = 0.312. The equilibrium optimal price for the two sellers is
x∗
s1(5) = x∗

s2(5) = RPS2
t=5+2

= RPs2 = 0.2. The process continues to the initial time point

t = 0 where b’s optimal offer is x∗
b(0) = 0.14.

There are some other mechanisms which can be used to implement contracts between
buyer b and sellers S . Here we compare our model with the following mechanisms:

– Bilateral bargaining without outside option: Rubinstein’s bilateral bargaining does not
offer any mechanism to capture competition between sellers. In order to compare
outcomes from bilateral bargaining with respect to outcomes from our mechanism, sup-
pose that b is able to choose the seller with which to negotiate. In our mechanism
the buyer b gains as in bilateral bargaining without outside option when the sequence
of optimal offers x∗(t) in the bilateral negotiation between b and S1

2 is such that
x∗
i (t) ≤ RPS2

2
, otherwise the buyer b gains more in our mechanism.
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Fig. 1 Backward induction construction with RPb = 1, RPs1 = 0, RPs2 = 0.2, δb = 0.8, δs1 = 0.7,
δs2 = 0.8, Tb = 10, Ts1 = 11, Ts2 = 7; at each time point t the optimal offer x∗

a (t) that ι(t) can make is
marked; the dashed lines are sellers’ optimal offer if there is only one seller

– Bilateral bargaining with outside option: In our mechanism the buyer gains no less
than in bilateral bargaining with outside option in which an agent can leave the bilateral
negotiation it is currently carrying on and negotiate with a different opponent [10]. We
report an example. Consider the situation where there are two sellers with the same
reservation price RPs and any deadline no smaller than 2. In bilateral bargaining with
outside option the agreement price is strictly larger than RPs, instead in our protocol
the agreement price is exactly RPs.

– VCG auction: Since VCG auction does not take into account any temporal issues (no
deadline and no discount factor), we limit our comparison to the agreement price. In
VCGmechanism the agreement price is exactly RPS2

2
, whereas in our bargaining model

the buyer’s agreement price falls between [RPS1
2
,RPS2

2
]. That is, the buyer achieved

higher utility within our model which is also efficient.

3.3 Equilibrium outcome computation and uncertain information

We initially focus on the computation of the equilibrium outcome with complete informa-
tion. Although agents’ equilibrium strategies depend on the values of the parameters of
all the agents, for a large subset of the space of the parameters the equilibrium outcome
depends on the values of a narrow number of parameters. We have the following theorem
whose proof is in Appendix B.
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Theorem 3 When 1) TS2
2

> 2 if ι(0) = b and 2) (RPs)←S1
2b

≥ RPs for any seller s ∈ S ,
the equilibrium outcome depends only on the parameters of b (i.e., RPb, δb, Tb), S1

2 (i.e.,
RPS1

2
, δS1

2
, TS1

2
), and on the reserve price RPS2

2
of S2

2 . In these situations the equilibrium

outcome can be produced as follows:

1. finding the sequence of the optimal offers under the assumption that S1
2 is the unique

seller, say y(t), and
2. assigning x∗

b(0) = min{y(0), (RPS2
2
)←S1

2
} if ι(0) = b and assigning x∗

S1
2
(0) =

min{y(0),RPS2
2
} if ι(0) = S .

This is to say that the equilibrium outcome does not depend on the values of δS2
2
, TS2

2
, and

on the parameters of all the other sellers. This is of paramount importance since complex
settings with a high degree of uncertainty can be easily solved when 1) TS2

2
> 2 if ι(0) = b

and 2) (RPs)←S1
2b

≥ RPs for any seller s ∈ S . Indeed, the above algorithm produces the
equilibrium outcome even when δSi

2
with i > 1, TSi

2
with i > 1, and RPSi

2
with i > 2 are

uncertain. We can write the condition (RPS2
2
)←S1

2b
≥ RPS2

2
as

(RPb − RPS1
2
) ≥ (RPS2

2
− RPS1

2
)
1 − δbδS1

2

1 − δb
.

It can be easily observed that, in common real-world settings where RPb�RPS2
2
and δS1

2
is

close to 1, the above condition is satisfied.
Now, we focus on the uncertainty over b’s and S1

2 ’s parameters. The values of these
parameters affect the equilibrium outcome and therefore in presence of uncertainty over
them we need to compute agents’ equilibrium strategies to derive the equilibrium outcome.
Currently, the literature provides algorithms to compute agents’ equilibrium strategies only
in bilateral settings without outside option with one-sided uncertainty over deadlines [20].
We recall that, since the number of available actions is infinite, no algorithms such as
Lemke-Howson [41] can be employed to compute a sequential equilibrium.

When RPS2
2

≤ (RPS2
2
)←S1

2b
, the algorithm presented in [20] can be easily extended to

capture uncertainty in one-to-many bargaining. More precisely, we have that:

– when Tb is uncertain, whereas TS1
2
is certain, then agents’ equilibrium strategies can

be produced by employing the algorithm presented in [20] where the buyer is b and
the seller is S1

2 and upper bounding the optimal offers to RPS2
2
if ι(0) = b and to

(RPS2
2
)←S1

2
if ι(t) = S;

– when TS1
2
is uncertain, whereas Tb is certain, then agents’ equilibrium strategies can be

computed.

Settings with a higher degree of uncertainty, such as when both Tb and TS1
2
are uncertain,

need further exploration.
The results discussed above show that the analytical complexity of one-to-many bar-

gaining is drastically less complicated than that of bilateral bargaining with outside option.
This allows one to drastically reduce the search space and makes the computation easy.
Therefore, one-to-many bargaining seems more appropriate for real-world settings when
computational issues should be considered.
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4 Many-to-many alternating-offers negotiation

4.1 Negotiation mechanism

In this section, we propose a bargaining model for many-to-many negotiation where m

buyer agents B = {b1, . . . ,bm} negotiate n seller agents S = {s1, . . . , sn}. In this case,
both buyers and sellers face competition and multiple contracting opportunities. Again, we
assume that the items sold by the sellers or bought by buyers are equal, and each agent
has only one item to buy or sell. For ease of analysis, we assume that the reserve price of
each buyer is no less than the reserve price of each seller, i.e., RPbj

≥ RPsi . However, our
analysis can be extended to handle the case where some buyers’ reserve prices are lower
than some sellers’ reserve prices where the negotiation mechanism can be still efficient.

In the many-to-many negotiation case, each agent concurrently negotiates with many
trading partners. Agent bj ’s concurrent negotiation includes at most n threads 
bj ,S =
{
bj ,si |si ∈ S}, where 
bj ,si represents the negotiation thread between bj and seller si . We
still assume that, at each time, either the buyers propose to all the sellers (ι(t) = B) or the
sellers propose to all the buyers (ι(t) = S). Similarly, let B=t be the set of buyers than t , i.e.,
B=t = {bj |Tbj

= t}. Let Bt be the set of buyers whose deadlines are not shorter deadline
than t and Bi

t (Bi=t ) is the buyer with the ith highest reserve price in Bt (B=t ).
We still use action confirm to avoid one agent’s making more than one final agreement.

Buyers and sellers’ action space and agents’ legal actions at each time are the same as
that in one-to-many negotiation. The utility functions of the buyer agents are exactly those
defined in the previous section. However, we need to refine the utility function of si as it
can potentially sell more items, but it has only one item to sell. We redefine si’s utility as
follows. If si has reached more than one final agreement, it gets a utility of −∞. Otherwise,
it’s utility is the same as that in bilateral negotiation. Therefore, si will make at most one
final agreement.

4.2 Agents’ equilibrium strategies

The negotiation deadline for the negotiation between agent bj and seller si is Tbj ,si =
min(Tbj

, Tsi ). The negotiation deadline for the agent bj is Tbj ,S = maxsi∈S Tbj ,si . Let
x∗
bj ,si

(t) be bj ’s optimal offer to agent si at t if ι(t) = B and x∗
si ,bj

(t) be si’s optimal offer
to agent bj at time t if ι(t) = S .

Lemma 2 It is each agent’s dominant strategy to propose the same price to all the trading
partners at each time t .

Proof The proof is the same as the proof of Lemma 1.

Then we use x∗
bj

(t) for short to represent bj ’s optimal offer at t if ι(t) = B and use x∗
si (t)

to represent si’s optimal offer at time t if ι(t) = S .

Lemma 3 In equilibrium, agents of the same type should have the same equilibrium
winning price (a price acceptable to agents of the different type).

Proof Let’s prove this by contradiction. Assume two buyers have different winning prices
at some time t , i.e., the lowest price acceptable to any seller. Then the seller who is willing to
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accept the lower winning price should change to accept the higher winning price. Therefore,
the two winning prices are not in equilibrium.

The main difficulty in deriving agents’ equilibrium strategies in many-to-many negotia-
tion is due to the existence of agents will shorter deadlines and tie-breaking. Assume that
we are solving a subgame starting from time t and the buyers will make offers at time t . For
ease of analysis, here we assume that Bt+2 and St+2 are bargaining in the subgame, i.e., no
agent with deadline no less than t + 2 has make an agreement in the previous negotiation
from the beginning to time t . For computing buyers’ equilibrium offers at time t in the sub-
game, buyers need to propagate the sellers’ equilibrium offers at time t + 1 which depend
on the set of buyers which will continue to negotiate at time t + 1 as at time t + 1, sellers
S=t+2 with deadline t +2 are willing to accept any offer that is not higher than their reserve
prices. It is possible that k buyers’ offers are accepted by sellers in S=t+2 and it follows that
0 ≤ k ≤ min{Bt+2, |S=t+2|}. Given each possible k, we can first compute the equilibrium
of the subgame starting from time t + 1 with |B| − k buyers.

Given a k value, we still need to decide the set of k buyers whose offers will be accepted
by sellers in S=t+2 in equilibrium. Here we assume that sellers S=t+2 will accept buyers’
offers (we call these buyers ‘buyers minimizing seller equilibrium winning offer’) so that
sellers’ equilibrium winning offer at time t + 1 is the smallest. Let x∗

S(t + 1, k,Bt+3) be
the sellers’ lowest equilibrium winning offer at time t + 1 to |Bt+3| − k buyers in Bt+3.
We can try all subsets of buyers of size |Bt+3| − k. The next question is how to find value
0 ≤ k ≤ min{|Bt+2|, |S=t+2|} such that the derived strategy for the subgame from time
t is an equilibrium. While we can try different k values and compute the equilibria in the
subgames and check whether we can construct equilibrium strategies, we can see that it is
not necessary to enumerate different values of k. Consider the following example subgame
from time t : 1) there are two sellers with deadline t + 2 and their reserve prices are 10; 2)
there are another 2 sellers with deadline longer than t + 2 and their reserve prices are 5;
and 3) there are only two buyers with deadlines longer than t + 2. For this example, the
only possible equilibrium is the one with k = 0 as if one of the sellers with deadline t + 2
makes an agreement, some sellers with deadline longer than t +2 fail to make an agreement,
which is impossible in an equilibrium as sellers with deadline longer than t +2 have smaller
reserve prices (thus the buyers have an incentive to propose a price less than 10 which will
be accepted). Therefore, in an equilibrium, the value if k (call it k∗) is the minimum of
|S=t+2| and the number of sellers in S=t+2 which are among the first |Bt+2| sellers in St+2
assuming that St+2 are ordered in increasing order of their reserve prices.

For the case that the sellers St+2 are making offers to Bt+2 (still assuming no agent
has made any agreement before time t) at time t for the subgame starting from time t , we
can compute sellers’ equilibrium offers in the same way. We still assume that k∗ buyers in
B=t+2 will accept sellers’ offers (we call these sellers ‘sellers maximizing buyer equilibrium
winning offer’) so that buyers’ equilibrium winning offer at time t + 1 is the highest. We
can find k∗ in consideration the reserve prices of B=t+2 and Bt+2 in the same way as we
discussed above.

We state the following theorem about agents’ equilibrium strategy whose proof is in
Appendix C. Before presenting the theorem, we define Yi (Y i) as the ith smallest (largest)
value in the value set Y .

Theorem 4 In the many-to-many negotiation subgame at time t with buyers B and sellers
S (assuming all agents have deadline no less than t + 2), the sequences of equilibrium
offers x∗

bj
(t) = min(RPbj

, x∗
B(t)) and x∗

si (t) = max(RPsi , x
∗
S(t)) where x∗

B(t) and x∗
S(t)
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are equilibrium winning offers defined as (for brevity, RP
S |Bt+2 |+1

t+2

is defined as +∞ and

RP
B|St+2 |+1

t+2

is defined as −∞ when |St+2| = |Bt+2|):

x∗
B(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RPS |BT |
T

t =T −2& |BT |≤|ST |
RPB|ST |+1

T

t =T −2& |BT |> |ST |
max

{
RPB|St+2 |+1

t+2
,
{{(x∗

si (t + 1, k∗,B))←si

|si ∈ St+3} ∪ {RPsi |si ∈ S=t+2}
}

|St+2|
}

t <T −2& |Bt+2|> |St+2|
min

{
RPS |Bt+2 |+1

t+2
,
{{(x∗

si (t + 1, k∗,B))←si |si ∈ St+3}∪
{RPsi |si ∈ S=t+2}|Bt+2|

}
t <T −2& |Bt+2|≤|St+2|

}

x∗
S (t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RPB|ST |
T

t =T −2& |ST |≤|BT |
RPS |BT |+1

T

t =T −2& |ST |> |BT |
min

{
RPS |Bt+2 |+1

t+2
,
{{(x∗

bj
(t + 1, k∗,S))←bj

|bj ∈ Bt+3} ∪ {RPbj
|bj ∈ B=t+2}

}|Bt+2|} t <T −2& |St+2|> |Bt+2|
max

{
RPB|St+2 |+1

t+2
,
{{(x∗

bj
(t + 1, k∗,S))←bj

|bj ∈ Bt+3}∪
{RPbj

|bj ∈ B=t+2}|St+2|} t <T −2& |St+2|≤|Bt+2|
}

Agents’ equilibrium strategies are similar to those discussed in Section 3, but σbj ,si
prescribes that:

– At time t , a buyer bj can accept the offer x made by si if 1) x ≤ (x∗
bj

(t))←bj
when

t < Tbj
−1; or 2) x ≤ RPbj

when t = Tbj
−1. If there are multiple highest acceptable

offers at time t = Tbj
− 1, the buyer accepts the seller’s offer if the seller is not one

of the sellers maximizing buyer equilibrium winning offer at time t + 1. In case of ties,
we assume a simple tie-breaking mechanism (e.g., based on reserve price) for matching
buyers and sellers.

– bj confirms an accept of si at t if si is the seller which should accept bj ’s offer at time
t + 1 by the tie-breaking mechanism.

and σsi ,bj
can be defined in the same way.

The computational complexity of the backward induction is O(2min(m,n)T ) as the back-
ward induction will go through all combinations of subsets of buyers or sellers while
computing the equilibrium strategy at each time point. It is easy to see that the bargaining
agreement in the many-to-many negotiation is

(
x∗
B(0), 2

)
if ι(0) = B and is

(
x∗
S(0), 2

)
if

ι(0) = S . In addition, when the number of buyers is not equal to the number of sellers,
the market competition affects the equilibrium price in the following way: if the number
of buyers is less than the number of sellers, the buyers have larger bargaining power which
increases with the number of sellers and decreases with the number of buyers. In contrast,
if the number of buyers is larger than the number of sellers, the buyers have less bargaining
power. The proposing order also affects the equilibrium price.

Figure 2 shows an example of backward induction construction in many-to-many nego-
tiation. The setting in Fig. 2 is the same as that in Fig. 1 except that there is another buyer b′
with parameters RPb′ = 0.9, δb′ = 0.7, and Tb′ = 6. We report in the figure for any time t

the optimal offer x∗
B(t) or x∗

S(t). At time t = 4, b′ can make an offer to compete with buyer
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Fig. 2 Backward induction construction. At each time t the optimal offer x∗
B(t) or x∗

S (t) is marked

b. Thus we have x∗
B(4) = {(x∗

s1(5))←s1 , (x
∗
s2(5))←s2}2 = {0.14, 0.2}2 = 0.2. The process

continues to the initial time point t = 0 where x∗
B(0) = 0.40992.

While there is two-sided competition in the market, market mechanisms like double auc-
tion can be used for resource allocation. The double auction is one of the most common
exchange institutions where both sellers and buyers submit bids which are then ranked
highest to lowest to generate demand and supply profiles. Double auctions permit multiple
buyers and sellers to bid to exchange a designated commodity. Some double auction mech-
anisms (e.g., BBDA [16]) have been applied to trading in markets. A market mechanism is
efficient if the goods are transferred to agents that value them most.

Theorem 5 The many-to-many negotiation is efficient.

Proof This result is straightforward. Assume there are sellers si and sj such that RPsi >

RPsj . It is impossible that seller si makes an agreement but seller sj fails as seller sj can
make an offer lower than RPsi and thus gains a contract with positive revenue.

In a market consisting of two sets of agents, matching algorithms can also be used to
solve agents’ conflicts of resource requirements. Then we require a matching to be stable,
i.e., it left no pair of agents on opposite sides of the market who were not matched to each
other but would both prefer to be. Many-to-many negotiation allows one to avoid studying
matching mechanisms since each agent is implicitly matched with all its trading partners.
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4.3 Considerations on settings with uncertain information

In this section we provide some considerations on the preliminary analysis of many-to-many
bargaining with uncertainty over agents’ parameters. The result discussed in Section 3.3
can be treated as a special case for many-to-many bargaining. With more buyers, the
agreement price will increase due to the increasing competition between buyers. For the
bargaining between buyers B and sellers S , it can be found from Theorem 4 that the agree-
ment price depends on the reserve price of at least min{|B|, |S|} buyers and min{|B|, |S|}
sellers. Although the many-to-many bargaining setting is intrinsically very complicated,
the problem of finding the equilibrium outcome can be drastically simplified in some
special cases.

Theorem 6 In the following many-to-many bargaining scenarios in which |B| < |S|, the
negotiation outcome only depends on the parameters of B and at most |B| + 1 sellers:

1. The sellers having a reserve price no higher than the RPS |B|+1
2

have the same deadline

T ′ such that ι(T ′) = S .
2. At each time t , the seller set St+2 includes all the sellers with a reserve price no higher

than RP
S |Bt+2 |+1
2

.

Proof Case 1: At time T ′ − 2, the value of x∗
S(T ′ − 2) should be no higher than RPS |B|+1

2
and is independent of the reserve prices of sellers having a reserve price higher
than RPS |B|+1

2
. At time t = T ′ − 3, the value of x∗

B(t) will also be no higher than

RPS |B|+1
2

. Recursively, we can find that the value of x∗
B(t) at time t < T ′ − 3

will be no higher than RPS |B|+1
2

and is independent of the reserve prices of sellers

having a reserve price higher than RPS |B|+1
2

.

Case 2: We can prove the result in the same way as in the proof of Case 1.

Thus, the negotiation outcome only depends on a small number of parameters in some
special cases. The complexity of solving complete information bargaining and incomplete
information bargaining can be reduced.

5 Uncertainty about reserve prices

Bargaining with uncertainty is a challenging problem (even for the bilateral setting) due to
a number of reasons. First, the appropriate solution concept for an extensive-form incom-
plete information game is Kreps and Wilson’s sequential equilibrium [27]. In a sequential
equilibrium there is a sort of circularity between the belief system and strategies: strategies
must be sequentially rational given the belief system and belief system must be consistent
with respect to strategies. The circularity makes it difficult to find out a sequential equi-
librium. For example, the strategies found by backward induction method (e.g., [14, 15])
are not guaranteed to be sequentially rational given the designed system of beliefs [20].
Second, in bargaining problems, agents’ strategy space is continuous, which makes the it
impossible to apply this operational research inspired algorithms (e.g., [28]) which focus on
games with finite number of strategies. The literature provides approaches for very restric-
tive cases. Gatti et al. [20] analyzed bilateral bargaining with one-sided uncertain deadlines.
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Our previous paper [2] presented a search based approach for finding sequential equilibrium
in bilateral bargaining with two-type uncertainty.

In this section we analyze agents’ rational strategies in concurrent negotiation with
incomplete information. More specifically, we focus on the situation that one buyer b is
negotiating with a number of sellers S and there is two-type uncertainty about the buyer’s
reserve price. We extend our algorithm for bilateral bargaining to handle concurrent negoti-
ation. Uncertainty with reserve prices is similar to uncertainty with discounting factors, our
solution can be applied to many-to-many negotiation with uncertain discounting factors.
We also discuss how to extend our analysis to many-to-many negotiation and multi-type
uncertainty at the end of this section.

5.1 Introducing uncertainty

With uncertain information, the appropriate solution concept for an extensive-form game
is Kreps and Wilson’s sequential equilibrium [27]. A sequential equilibrium is a pair a =
〈μ, σ 〉 (also called an assessment) where μ is a belief system that specifies how agents’
beliefs evolve during the game and σ specifies agents’ strategies. At an equilibrium μ must
be consistent with respect to σ and σ must be sequentially rational given μ.

In this section we assume that the buyer b can be of two types: buyer bh with a reserve
price RPh and buyer bl with a reserve price RPl such that RPh > RPl . We assume that each
seller s has the initial belief about the type of the buyer b. Thus, the initial belief of any
seller s on b is μ(0) = 〈�0

b, P
0
b 〉 where �0

b = {bh,bl} and P 0
b = {ω0

bh
, ω0

bl
} where ω0

bh

(ω0
bl
, respectively) is the priori probability that b is of type bh (bl , respectively). It follows

that ω0
bh

+ω0
bl

= 1. During bargaining, seller s’s belief will evolve using the Bayes rule. It’s
easy to see that in incomplete information bargaining, it’s still a weekly dominant strategy
for the buyer b to make the same offer to all the sellers. Therefore, different sellers’ beliefs
about the type of buyer b will always be the same at any time t . The belief of s on the type
of b at time t is μ(t). The probability assigned by s to b = bh at time t is denoted ωt

bh
; the

probability assigned to b = bl is ωt
bl

= 1 − ωt
bh
. Given an assessment a = 〈μ, σ 〉, there

are two possible bargaining outcomes: outcome obh
if b = bh and obl

if b = bl . We denote
bargaining outcome as o = 〈obh

, obl
〉.

With pure strategies, buyer types’ possible behaviors regarding whether they behave in
the same way on the equilibrium path at each decision making node are finite. We use the
term “choice rule” to characterize agents’ strategies regarding whether they behave in the
same way at a specific decision making point. Easily, at a decision making node bl and bh

can make the same offer (in this case, choice rules are said pooling) or can make different
offers (in this case, choice rules are said separating). On the basis of this consideration,
we can make some assumptions over the belief system without loosing generality. On the
equilibrium path μ(t) = 〈�t

b, P
t
b〉 of s on b at any time t is one the following. After a time

point t where buyer types’ choice rule is pooling, μ(t + 1) = μ(t), i.e., �t+1
b = �t

b and
P t+1
b = P t

b. After a time point t where buyer types’ choice rule is separating, there could
be two possible beliefs: if the equilibrium offer of bh has been observed, then �t+1

b = {bh}
(s believes b = bh with certainty), which implies ωt+1

bh
= 1 and ωt+1

bl
= 0; if instead the

equilibrium offer of bl has been observed, �t+1
b = {bl} (s believes b = bl with certainty),

which implies ωt
bh

= 0 and ωt+1
bl

= 1. As is customary in economic studies [34], we
consider only stationary systems of beliefs, i.e., if a seller s believes a b’s type with zero
probability at time point t , then it will continue to believe such a type with zero probability
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at any time point t ′ > t . We need also specify the belief system off the equilibrium path, i.e.,
when an agent makes an action that is not optimal. We use the optimistic conjectures [34].
That is, when b acts off the equilibrium strategy, agent s will believe that agent b is of its
“weakest” type, i.e., the type against which each seller would gain the most. This choice is
directed to assure the existence of the equilibrium for the largest subset of the space of the
parameters. In our case, the weakest type is bl (we prove it in the following section). We can
therefore specify μ(t) by specifying �t

b. We will write μ(t) = {bh,bl}, or μ(t) = {bh}, or
μ(t) = {bl}.

5.2 Off the equilibrium path optimal strategies

Before analyzing equilibrium strategies when the buyer can be of two types, we provide the
optimal strategies in the situations s believes the buyer of one single type. There are two
cases: 1) Seller s has the right belief about the type of the buyer b. In this case, agents’ equi-
librium strategies are the equilibrium strategies of the corresponding complete information
bargaining discussed in Section 3. Let xc

bh
(t) (xc

bl
(t), respectively) be agents’ optimal offer

at time t when b is of type bh (bl , respectively) in this case. That is, if ι(t) = b, xc
bh

(t) is
b’s optimal offer x∗

b(t) at time t in complete information bargaining when it is of type bh. If
ι(t) = S , xc

bh
(t) is S’s lowest optimal offer x∗

S(t) at t in complete information bargaining
when b is of type bh. 2) Seller s has the wrong belief about the type of the buyer b, i.e., bh

is believed to be bl and bl is believed to be bh.

Lemma 4 xc
bh

(t) ≥ xc
bl

(t).

Proof We can proof the results from the proof of Theorem 1:

Case 1 (ι(T ) = s). It follows that xc
bh

(T −2) = xc
bl

(T −2) = RPS2
T
. Then we have xc

bh
(T −

3) = min{(xc
bh

(T − 2))←S1
T −1

,RPS2
T −1

} = min{(xc
bl

(T − 2))←S1
T −1

,RPS2
T −1

} =
xc
bl

(T − 3). At time t = T − 4, we have xc
bh

(t) = min{RPS2
t+2

, (xc
bh

(t + 1))←b} =
min{RPS2

t+2
,RPh(1−δb)+δbx

c
bh

(t +1)} ≥ min{RPS2
t+2

,RPh(1−δb)+δbx
c
bl

(t +
1)} = xc

bl
(t). Recursively, we have xc

bh
(t) ≥ xc

bl
(t) for t < T − 4.

Case 2 (ι(T ) = b). It follows that xc
bh

(T − 2) = RPS1
T

= xc
bl

(T − 2). Then at time T − 3,

we have xc
bh

(T − 3) = min{RPS2
T −1

, (xc
bh

(T − 2))←b} = min{RPS2
T −1

,RPh(1 −
δb) + δbx

c
bh

(T − 2)} ≥ min{RPS2
T −1

,RPh(1− δb) + δbx
c
bl

(T − 2)} = xc
bl

(T − 3).

Recursively, we have xc
bh

(t) ≥ xc
bl

(t) for t < T − 3.

We can see that bh is weaker than bl in terms of its offering price at each time point in
complete information bargaining. Furthermore, we can get RPh − xc

bh
(t) ≥ RPl − xc

bl
(t)

following the same procedure in the proof of Lemma 4. RPh − xc
bh

(0) is the gain (utility) of
bh in complete information bargaining and RPl−xc

bl
(0) is the gain (utility) of bl in complete

information bargaining.

Lemma 5 xc
bh

(t) ≤ (xc
bh

(t + 1))←bh
and xc

bl
(t) ≤ (xc

bl
(t + 1))←bl

.

Proof We can get this result by following the same procedure in the proof of Lemma 4.
This result indicates that the buyer will accept sellers’ lowest equilibrium price in complete
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information bargaining, i.e., agents will reach a final agreement at time t − 2 in complete
information bargaining.

Agents’ optimal strategies when any seller s has the wrong belief about the type of the
buyer b are shown in the following theorem:

Theorem 7 If seller s has the wrong belief about the type of b, the optimal strategies of any
seller s are those in complete information bargaining. The optimal strategies σ ∗

bh
(t)|{bl} of

buyer bh when it’s believed to be bl are:

σ ∗
bh

(t)|{bl} =
{
accept y if y ≤ (xc

bl
(t))←bh

offer xc
bl

(t) otherwise

The optimal strategies σ ∗
bl

(t)|{bh} of the buyer bl when it’s believed to be bh are:

σ ∗
bl

(t)|{bh} =
{
accept y if y ≤ min{(xc

bh
(t))←bl

,RPl}
offer min{xc

bh
(t),RPl} otherwise

Proof Case 1 (bh is believed to be bl). If sellers’ lowest offer at time t − 2 is xc
bl

(t − 1),
buyer bh’s optimal strategy is to accept it as the minimum price that the seller
would accept at time t +1, i.e., xc

bl
(t), gives bh a utility lesser than xc

bl
(t −1) since

(xc
bl

(t))←bh
> (xc

bl
(t))←bl

≥ xc
bl

(t − 1). If the seller acts off the equilibrium path
and offers a price y lower than xc

bl
(t − 1), the optimal strategy of bh is obviously

to accept y. If the seller offers a price y higher than xc
bl

(t −1), the optimal strategy
of bh is to accept y only if y ≤ (xc

bl
(t))←bh

, otherwise bh’s optimal strategy is to
reject y and to offer xc

bl
(t). Note that xc

bh
(t) ≤ RPh and xc

bl
(t) ≤ RPh.

Case 2 (bl is believed to be bh). This case is more complicated as sellers’ lowest offer
xc
bh

(t − 1) at time t on its equilibrium path may be not acceptable to bl as
when bl offers xc

bh
(t) at time t , it follows that (xc

bh
(t))←bl

< (xc
bh

(t))←bh
and

(xc
bh

(t))←bh
≥ xc

bh
(t −1) (Lemma 5). In addition, bl may not offer xc

bh
(t) if xc

bh
(t)

is higher than RPl . Therefore, bl’s optimal offer at time t is min{xc
bh

(t),RPl}.
Thus, bl will accept an offer y at time t such that y ≤ min{(xc

bh
(t))←bl

,RPl}.

5.3 Overview of our approach

Our algorithm combines game theoretical analysis and state space search techniques and it
is sound and complete. Our approach is based on the following two observations: 1) with
pure strategies, agents’ possible choice rules regarding whether different buyer types will
behave in the same way or in different ways at a decision making point are finite, and
2) given a system of choice rules (each time point is assigned a choice rule) we are able
to derive theoretically the agents’ optimal strategies (by a Bayesian extension of backward
induction) and to check whether or not a sequential equilibrium there is with such tree of
belief systems.

By applying state space search, we enumerate all possible choice systems, each specify-
ing buyer types’ choice rule at all decision making points along the negotiation horizon. By
exploiting game theoretical analysis we design a pair composed of choice rules and belief
system for each possible choice rule. More precisely, we design a pair for pooling choice
rule and a pair for separating choice rule. These pairs are parameterized: agents’ optimal
offers and acceptance at time t depend on the agents’ strategies in the following time points
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till the end of the bargaining. Furthermore, we assign each pair some conditions: if they are
satisfied, then there is a sequential equilibrium in the subgame starting from time t . For each
choice system, we employ a Bayesian extension of backward induction to derive agents’
optimal strategies. Agents’ optimal strategies at time t is built on agents’ equilibrium strate-
gies from time t + 1 to T . In summary, we employ a forward-backward approach to find
sequential equilibria: we search forward to find all the choice systems and we construct
backward agents’ equilibrium strategies and belief systems.

Given s’s belief on the type of b, different buyer types can choose different choice rules:
either behave in the same way or behave in different ways. While it is very involved to
compute sequential equilibria considering all the options at each decision making point, we
explicitly fix the choice rule at each decision making point and then compute the sequen-
tial equilibrium of the bilateral game where buyer types’ choices are specified in the choice
system. To guarantee the completeness of our approach, we enumerate all possible choice
systems. Our approach can be treated as a way of shifting the difficulty of finding a sequen-
tial equilibrium in a bargaining game where the buyer has multiple choices to finding a
sequential equilibrium in multiple bargaining games in which the buyer’s choice is fixed.

We explain our approach through a bilateral bargaining example with two-type uncer-
tainty where ι(0) = b and T = 4. As there are two types, there exist only two choice rules:
1) different buyer types behave in the same way (i.e., make the same offer) or 2) different
buyer types behave in different ways (i.e., make different offers). Once the buyer chooses to
differentiate its two types at time point t , the later bargaining becomes complete informa-
tion bargaining. At time t = 0, the belief of s on the type of b is {bh,bl} and b’s different
types can choose to make the same offer or make different offers. If b chooses the separat-
ing rule, seller s will update its belief at time t = 1 and bargaining from time t = 1 to the
deadline becomes complete information bargaining. If b chooses the pooling rule at time
t = 0, seller s’s belief at time t = 1 will still be {bh,bl}. Then at time t = 2, buyer types
can still choose to behave in the same way or behave in different ways. No matter what the
choice rule is at time t = 2, b has no choice at its deadline t = 4. There are totally three
choice systems: 1) different buyer types always use the pooling choice rule; 2) different
buyer types apply the pooling choice rule at time t = 0 and apply the separating choice rule
at time t = 2; and 3) different buyer types apply the separating choice rule at time t = 0.

Given a choice system, we adopt a modified backward induction approach to compute
the sequential equilibrium. In the rest of this section, we first consider two special situations
where buyer types always choose the pooling choice rule or always choose the separating
choice rule. Then we construct sequential equilibria for general cases based on our analysis
of the two special situations.

5.4 Always use pooling choice rule

In this section we study agents’ equilibrium strategies when different buyer types always
behave in the same way at each decision making point. Accordingly, sellers’ beliefs will
always be its initial belief. We start considering a bargaining with deadline T = 3. There
are two situations: ι(0) = S or ι(0) = b. We first consider the former case in which
both bh and bl will propose x∗

bh
(1) = x∗

bl
(1) = RPS1

3
at time t = 1. Any seller s ∈ S2

will propose its best offer based on its initial belief at t = 0. It’s easy to see that the in
equilibrium 1) seller S1

2 will not propose a price higher than RPS2
2
, and 2) sellers other than

S1
2 will propose their reserve prices. If buyer b is of type bh, seller S1

2 ’s optimal offer is
x∗
bh

(0) = min{RPS2
2
, (x∗

bh
(1))←bh

}. If buyer b is of type bl , seller S1
2 ’s optimal offer is
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x∗
bl

(0) = min{RPS2
2
, (x∗

bl
(1))←bl

}. It follows that x∗
bl

(0) ≤ x∗
bh

(0). Thus, at time t = 0. S1
2

has two choices: 1) x∗
bl

(0) with an expected utility EUS1
2
(x∗

bl
(0)) = US1

2
(x∗

bl
(0), 2) since

both buyer types will accept the offer x∗
bl

(0) at time t = 1; 2) x∗
bh

(0) with an expected utility
EUS1

2
(x∗

bh
(0)) where EUS1

2
(x∗

bh
(0)) is given by

EUS1
2
(x∗

bh
(0)) =

⎧
⎪⎨

⎪⎩

ω0
bh

US1
2
(x∗

bh
(0), 2) + 0 TS1

2
= 2

ω0
bh

US1
2
(x∗

bh
(0), 2) + ω0

bl
US1

2
(x∗

bl
(1), 3) TS1

2
= 3 and x∗

bl
(0) �= x∗

bh
(0)

US1
2
(x∗

bl
(0), 2) TS1

2
= 3 and x∗

bl
(0) = x∗

bh
(0)

With incomplete information, we need to introduce the notion of equivalent value (price)
of an offer, which is the value to be propagated backward. In one-to-many negotiation,
only the seller with the lowest reserve price can gain a positive utility. Thus, we only
need to consider the equivalent price of the optimal offer of agent S1

t+2 at time t . Let
et

S1
t+2

the equivalent price of the optimal offer of agent S1
t+2 in the subgame beginning

from time t where it begins to bargain. Formally, e0S1
2
is a price such that US1

2
(e0S1

2
, 2) =

max{EUS1
2
(x∗

bh
(0)), EUS1

2
(x∗

bl
(0))}. The negotiation outcome will be:

1. If EUS1
2
(x∗

bl
(0)) ≥ EUS1

2
(x∗

bh
(0)), S1

2 will offer x∗
bl

(0) at time t = 0 and it will
accepted by the buyer independent the its type.

2. If EUS1
2
(x∗

bl
(0)) < EUS1

2
(x∗

bh
(0)) and S1

2 has a deadline 3, S1
2 will offer x∗

bh
(0) at time

t = 0 and it will accepted by the buyer if it is of type bh. Otherwise, buyer bl will
propose x∗

bl
(1) at time 1 and an agreement will be made at time 3 between buyer bl and

seller S1
2 .

3. If EUS1
2
(x∗

bl
(0)) < EUS1

2
(x∗

bh
(0)) and S1

2 has a deadline 2, S1
2 will offer x∗

bh
(0) at time

t = 0 and it will accepted by the buyer if it is of type bh. Otherwise, buyer bl will
propose x∗

bl
(1) at time 1 and an agreement will be made at time 3 between buyer bl and

seller S1
3 .

Now consider the case ι(0) = b. At time t = 1, sellers S3 will reason about their
equilibrium (optimal) strategies. If S3 includes only one seller S1

3 , it can choose between
the offer RPh and RPl . While offering RPh, it can get an expected utility EUS1

3
(RPh) =

ω0
bh

US1
3
(RPh, T ) as bl will not accept the offer RPh. While offering RPl , it can get an

expected utility EUS1
3
(RPl ) = US1

3
(RPl , T ). Let e1S1

3
the equivalent price of the optimal

offer of agent S1
3 in the subgame beginning from time 1 where it begins to bargain. Formally,

e1S1
3
is a price such that US1

3
(e1S1

3
, T ) = max{EUS1

3
(RPh), EUS1

3
(RPl )}. If S3 includes more

than one seller, seller S1
3 ’s optimal offer at time t = 1 is RPS2

3
due to the competition

between sellers. Thus, the equivalent price of the optimal offer of agent S1
3 in this case is

RPS2
3
. Given e1S1

3
, (e1S1

3
)←S1

3
is the lowest offer agent S1

3 would accept at time t = 1 with

the initial belief. Therefore, the optimal offer of the buyer at time t = 0 is

x∗
b(0) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

RPS1
2

TS1
2

= 2

min

{(

e1S1
3

)

←S1
3

,RPS2
2

}

TS1
2

�= 2 and |S2| > 1
(

e1S1
3

)

←S1
3

TS1
2

�= 2 and |S2| = 1
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Note that if TS1
2

�= 2 (i.e., S1
3 = S1

2 ), |S2| = 1, and (e1S1
3
)←S1

3
> RPl , it is not rational

for bl to offer (e1S1
3
)←S1

3
. In this case, there is no sequential rational strategy while always

using the pooling choice rule. If |S2| > 1, it is rational for both buyer types to offer the
above specified optimal price as it is impossible to have RPS2

2
> RPl . Agents’ equilibrium

strategies when T = 3 and ι(T ) = S are specified in the following theorem.

Theorem 8 Assume that T = 3 and ι(0) = b, if RPl ≥ (e1S1
3
)←s when TS1

2
�= 2 and

|S2| = 1, there is one and only one sequentially rational pure strategy profile given the
system of beliefs

μ(1) =
{

�0
b if σ ∗

b (0) = offer x∗
b(0){bh} otherwise

The strategies σ ∗
bh

(0) and σ ∗
bl

(0) are: σ ∗
bh

(0) = σ ∗
bl

(0) = offer x∗
b(0). The strategy

σ ∗
s (1) is: 1) σ ∗

s (1) = accept y if y ≥ RPs if Ts = 2; 2) σ ∗
s (1) = accept y if y ≥

max{(e1S1
3
)←S1

3
,RPs} if Ts �= 2, TS1

2
�= 2, and |S2| = 1; σ ∗

s (1) = accept y if y ≥
max{min{(e1S1

3
)←S1

3
,RPS2

2
},RPs} if Ts �= 2, TS1

2
�= 2, and |S2| > 1. b will confirm the

agreement with seller which has the lowest reserve price at time t = 2.

Proof We analyze the strategies on the equilibrium path. We assume that the buyer behaves
according to the prescribed equilibrium strategies and we analyze the optimal strategy of
the seller. There are three different situations. For any seller with a deadline 2, it will receive
any offer no less than its reserve price. If there is only one seller which has a deadline 3,
the seller can accept (e1S1

3
)←s and gain Us((e

1
S1
3
)←s, T − 1) or reject it and make an offer.

However, the maximum expected utility the seller can have from the subgame from time 1
is just Us(e

1
S1
3
, T ) = Us((e

1
S1
3
)←s, T − 1). Thus, the seller’s optimal strategy is to accept

(e1S1
3
)←s. In the third case (i.e., Ts �= 2, TS1

2
�= 2, and |S2| > 1), seller S1

3 will accept the

offer min{(e1S1
3
)←S1

3
,RPS2

2
} given that it cannot gain a higher utility by rejecting the offer

(e1S1
3
)←S1

3
. In addition, given the competition between sellers, seller S1

3 has to accept the

offer RPS2
2
.

We assume that the sellers behave according to the prescribed equilibrium strategies and
we analyze the optimal strategy of the buyer. There are three situations. If TS1

2
= 2, it’s

both buyer types’ optimal strategy to offer RPS1
2
. For the case TS1

2
�= 2 and |S2| = 1, we

start considering the strategy of bh. If bh offers (e1S1
3
)←S1

2
, it gains Ubh

((e1S1
3
)←S1

2
, T − 1).

If bh offers a price y higher than (e1S1
3
)←S1

2
, the seller will reject it and propose the price

RPbh
. Then bh’s final utility Ubh

(RPbh
, T ) is not higher than Ubh

((e1S1
3
)←S1

2
, T − 1). If bh

proposes a price y lower than (e1S1
3
)←S1

2
, the seller will accept it and it gains a utility lower

than Ubh
((e1S1

3
)←S1

2
, T −1). Similarly, we can get that bl has no incentive to propose a price

not equal to (e1S1
3
)←S1

2
. In the same way, we can prove that the optimal offer for both buyer

types is min{(e1S1
3
)←S1

3
,RPS2

2
} in the situation such that TS1

2
�= 2 and |S2| > 1.
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If RPl < (e1S1
3
)←S1

2
when TS1

2
�= 2 and |S2| = 1, there is no sequential rational pure

strategy in our belief system since it supposes that both the buyer’s types behave in the
same way, whereas the optimal strategy of bl is to not propose (e1S1

3
)←S1

2
as it will get a

negative utility by doing so. Fig. 3 shows an example of backward induction construction
with T = 3, ι(T ) = S = {s}, RPh = 100, ω0

bh
= 0.7, RPl = 60, ω0

bl
= 0.3, RPs = 10,

δs = δb = 0.6. At time t = 1, s can offer either 60 or 100: If it offers 60, its expected utility
is (60 − 10)0.62 = 18; If it offers 100, its expected utility is 0.7(100 − 10)0.62 = 22.68.
Thus, the optimal offer of s at time t = 1 is 100 and the equivalent price is e1S1

3
= 73 as

(73 − 10)0.62 = 22.68. Then we have (e1S1
3
)←s = 47.8. As RPl > (e1S1

3
)←s, there is a

sequential equilibrium within the belief system while always using the pooling choice rule.
If we change RPl to 30 (Fig. 4). At time t = 1, s can offer either 30 or 100. If it offers 30, its
expected utility is (30−10)0.62 = 7.2. Thus, the optimal offer of s at time t = 1 is 100 and
the equivalent price is e1S1

3
= 73. Then we have (e1S1

3
)←s = 47.8. As RPl < (e1S1

3
)←s, there

is no sequential rational strategy within the belief system while always using the pooling
choice rule.

We now consider an arbitrary deadline T . We apply the backward induction starting
from deadline T and inductively determine agents’ equilibrium strategies. Let et

S1
t+2

be the
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Fig. 3 Backward induction construction with T = 2, ι(T ) = b, RPh = 100, ω0
bh

= 0.7, RPl = 60,

ω0
bl

= 0.3, RPs = 10, δs = δb = 0.6
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Fig. 4 Backward induction construction with the same setting as in Fig. 3 except RPl = 30

equivalent price of the optimal offer of S1
t+2 at time t when ι(t) = S . First we consider the

case ι(T ) = S . At any time t such that ι(t) = b, b’s optimal offer is

x∗
b(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

RPS1
t+2

TS1
t+2

= t + 2

min

{(

et+1
S1

t+3

)

←S1
t+3

,RPS2
t+2

}

TS1
t+2

�= t + 2 and |St+2| > 1
(

et+1
S1

t+3

)

←S1
t+3

TS1
t+2

�= t + 2 and |St+2| = 1

At time T − 2, the equivalent price eT −2
S1

T

is defined as follows. If ST includes only one

seller S1
T , it can choose between the offer RPh and RPl . While offering RPh, it can get an

expected utility EUS1
T
(RPh) = ω0

bh
US1

T
(RPh, T ) as bl will not accept the offer RPh. While

offering RPl , it can get an expected utility EUS1
T
(RPl ) = US1

T
(RPl , T ). eT −2

S1
T

is a price

such that US1
T −2

(eT −2
S1

T

, T ) = max{EUS1
T −2

(RPh), EUS1
T −2

(RPl )}. If ST includes more than

one seller, seller S1
T ’s optimal offer at time T − 2 is RPS2

T
due to the competition. Thus, the

equivalent price of the optimal offer of agent S1
T in this case is eT −2

S1
T

= RPS2
T
.

At time t < T − 2, there are two cases. If there is only one seller in St+2, i.e.,
St+2 = {S1

t+2}, S1
t+2 has two choices: propose (x∗

b(t+1))←bh
or (x∗

b(t+1))←bl
. In this case,



Alternating-offers bargaining in one-to-many... 91

et

S1
t+2

satisfies US1
t+2

(et

S1
t+2

, t + 2) = max{EUS1
t+2

((x∗
b(t + 1))←bh

), EUS1
t+2

((x∗
b(t +

1))←bl
)}whereEUS1

t+2
((x∗

b(t+1))←bl
) = US1

t+2
((x∗

b(t+1))←bl
, t+2) andEUS1

t+2
((x∗

b(t+
1))←bh

) = ω0
bh

US1
t+2

((x∗
b(t + 1))←bh

, t + 2) + ω0
bl

US1
t+2

(x∗
b(t + 1), t + 3).

If St+2 includes more than one seller, i.e., |St+2| > 1, S1
t+2 has two choices: propose

min{RPS2
t+2

, (x∗
b(t + 1))←bh

} or min{RPS2
t+2

, (x∗
b(t + 1))←bl

}. In this case, et

S1
t+2

satisfies

US1
t+2

(et

S1
t+2

, t + 2) = max{EUS1
t+2

(min{RPS2
t+2

, (x∗
b(t + 1))←bh

}), EUS1
t+2

(min{RPS2
t+2

,

(x∗
b(t + 1))←bl

})} where EUS1
t+2

(min{RPS2
t+2

, (x∗
b(t + 1))←bl

}) = US1
t+2

(min{RPS2
t+2

,

(x∗
b(t + 1))←bl

}, t + 2), EUS1
t+2

(min{RPS2
t+2

, (x∗
b(t + 1))←bh

}) = ω0
bh

US1
t+2

(min{RPS2
t+2

,

(x∗
b(t + 1))←bh

}, t + 2) + ω0
bl

US1
t+2

(x∗
b(t + 1), t + 3) if min{RPS2

t+2
, (x∗

b(t +
1))←bh

} �= min{RPS2
t+2

, (x∗
b(t + 1))←bl

}, and EUS1
t+2

(min{RPS2
t+2

, (x∗
b(t + 1))←bh

}) =
US1

t+2
(min{RPS2

t+2
, (x∗

b(t +1))←bh
}, t +2) if min{RPS2

t+2
, (x∗

b(t +1))←bh
} = min{RPS2

t+2
,

(x∗
b(t + 1))←bl

}.
In a signaling game, there are often multiple equilibrium outcomes and these equilibria

are not equivalent from the point of view of utility of each agent and social welfare (i.e., the
sum of utilities of all agents). The multiplicity of equilibria means that, without refinement,
equilibrium theory provides few clear predictions. A number of refinements (e.g., pareto
efficiency) has been proposed [40]. In this work, we didn’t consider the pooling choice
rule in which all buyer types make an offer that will be rejected since, given the same
equilibrium strategies in the subgame, the equilibrium outcome when all buyer types make
an acceptable offer pareto dominates the equilibrium outcome when all buyer types make a
rejectable offer.

Now we consider the case ι(T ) = b. b’s optimal offer x∗
b(T − 2) at time T − 2 is RPS1

T
.

b’s optimal offer x∗
b(t) and equivalent price et

S1
t+2

at time t < T − 2 can be calculated in

the same way as in the case ι(T ) = S . Following Theorem 8, the condition of existence
includes RPl ≥ x∗

b(t) and x∗
b(t) ≤ (x∗

b(t
′))←(t ′−t)[bl ] at any time t < T −1, i.e., the optimal

offer at time t is better than the later optimal offers.

Theorem 9 The one-to-many bargaining has a unique sequentially rational pure strategy
profile given the following belief system where μ(t + 1) is given by

– If μ(t) = {bh} or μ(t) = {bl}, μ(t + 1) = μ(t).
– μ(t) = μ(0) and there are four cases. 1) If t = 0 and σb(t) = offerx∗

b(t),
μ(t + 1) = μ(0) = {bh,bl}; 2) If t > 0 and b rejects y ∈ ((x∗

b(t))←bh
,+∞]

and σb(t) = offer x∗
b(t), μ(t + 1) = μ(0) = {bh, bl}; 3) If t > 0 and b rejects

y ∈ ((x∗
b(t))←bl

, (x∗
b(t))←bh

] and σb(t) = offer x∗
b(t), μ(t + 1) = {bl}; 4) otherwise,

μ(t + 1) = {bh}.
if RPl ≥ x∗

b(t) and x∗
b(t) ≤ (x∗

b(t
′))←(t ′−t)[bl ] at any time t < T − 1. The equilibrium

strategies σ ∗
s (t)|{bh,bl} of agent s are:

– accept y if y ≥ x∗
b(t);

– offermin{RPs, argmaxy∈{(x∗
b(t+1))←bh

,(x∗
b(t+1))←bl

}}EUs(y) if y <x∗
b(t) and |St+2|=1;

– offermin{RPs, argmaxy∈{min{RPS2
t+2

,(x∗
b(t+1))←bh

},min{RPS2
t+2

,(x∗
b(t+1))←bl

}}}EUs(y) if

y < x∗
b(t) and |St+2| > 1;
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and the equilibrium strategies of the buyer are:

σ ∗
bh

(t)|{bh,bl} =
{
accept y if y ≤ (x∗

b(t))←bh

offer x∗
b(t) otherwise

σ ∗
bl

(t)|{bh,bl} =
{
accept y if y ≤ (x∗

b(t))←bl

offer x∗
b(t) otherwise

Agents’ equilibrium strategies when μ(t) is a singleton is given by Section 5.2.

Proof The sequential rationality is easily seen from the backward construction. Consistency
can be proved by the assessment sequence an = (μn, σn) where σn is the fully mixed
strategy profile such that for the sellers and bh there is probability 1 − 1/n of performing
the action prescribed by the equilibrium strategy profile and the remaining probability 1/n

is uniformly distributed among the other allowed actions; while for bl , there is probability
1 − 1/n2 of performing the action prescribed by the equilibrium strategy profile and the
remaining probability 1/n2 is uniformly distributed among the other allowed actions, and
μn is the system of beliefs obtained applying Bayes rule starting from the same priori
probability distribution P 0

b . As n → ∞, the above mixed strategy profile converges to the
equilibrium strategy profile. In addition, the beliefs generated by the mixed strategy profile
converges to the priori probability distribution. Thus, the assessment is consistent.

5.5 Always use separating choice rule

In this section we consider a different belief system in which two buyer types behave in
different ways. Then the sellers will learn the buyer’s type after it observes the buyer’s first
offer. Therefore, if ι(0) = b (ι(0) = S , respectively), each seller s will learn b’s type at
beginning of time point t = 1 (t = 2, respectively) and the later bargaining is complete
information bargaining.

We start by considering a bargaining with an arbitrary deadline T and ι(0) = b. Different
from the approach in the previous section where we start backward induction from the
deadline, we move forward from time t = 0. Let the equilibrium offers of bh and bl at time
0 be x and y such that x �= y. If seller S1

2 accepts both offers x and y, at least one type has
an incentive to offer min{x, y}. Therefore, the offer min{x, y} will be rejected by S1

2 . There
are two cases: x > y and x < y. First we consider the case x < y. Then bh will make a low
offer (e.g., −1) which be rejected by S1

2 . Then at time 1, S1
3 will make the offer xc

bh
(1) and

bh will accept it. The optimal offer x∗
bl

(0) of bl at time t = 0 is

x∗
bl

(0) =

⎧
⎪⎨

⎪⎩

RPS1
2

TS1
2

= 2

min{(x∗
bl

(1))←S1
2
,RPS2

2
} TS1

2
�= 2 and |S2| > 1

(x∗
bl

(1))←S1
2

TS1
2

�= 2 and |S2| = 1

We can find that x∗
bl

(0) = xc
bl

(0). At time t = 1, the optimal offer of seller S1
3 is

x∗
bh

(1) = xc
bh

(1). bh has no incentive to behave as bl if (xc
bh

(1))←bh
< xc

bl
(0). There are

two situations. If TS1
2

= 2, xc
bl

(0) = RPS1
2

< RPS1
3

≤ (RPS1
3
)←bh

≤ (xc
bh

(1))←bh
. If

TS1
2

�= 2, we have xc
bl

(0) ≤ (xc
bl

(1))←S1
2

≤ (xc
bl

(1))←bl
≤ (xc

bh
(1))←bh

. Thus, if x < y,
the equilibrium is not sequential rational as bh has an incentive to behave as bl .

Then we consider the case x > y. By convention that the equilibrium offer of bl is
−1 which will be rejected by each seller. The optimal offer of bh is the lowest price agent
S1
2 would accept at time 1 believing its opponent bh is obviously xc

bh
(0). The existence

of a such equilibrium depends on two conditions: bh must have no incentive to behave
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as bl , i.e., xc
bh

(0) ≤ (xc
bl

(1))←bh
, and bl must have no incentive to behave as bh, i.e.,

(xc
bl

(1))←bl
≤ xc

bh
(0).

Theorem 10 One-to-many bargaining such that ι(0) = b has one and only one stationary
sequential equilibrium profile in pure strategies given the system of beliefs:

μ(1) =
{ {bl} if σb(0) = offer − 1

{bh} otherwise

if xc
bh

(0) ≤ (xc
bl

(1))←bh
and (xc

bl
(1))←bl

≤ xc
bh

(0). The equilibrium strategies of agent b
are: σ ∗

bh
(0)|{bh,bl} = offer xc

bh
(0), σ ∗

bl
(0)|{bh,bl} = offer − 1. Agents’ strategies when

μ(t) is singleton are specified in Section 5.2.

Now we consider the case ι(0) = S . Sellers S2 know that at time t = 1 bh will
offer xc

bh
(1) and bl will offer offer −1. If S2 contains only one seller, S1

2 has two

choices: propose (xc
bh

(1))←bh
or (xc

bl
(2))←2[bl ]. In this case, e0S1

2
satisfies US1

2
(e0S1

2
, 2) =

max{EUS1
2
((xc

bh
(1))←bh

), EUS1
2
((xc

bl
(2))←2[bl ])} where EUS1

2
(xc

bh
(1)←bh

) = ω0
bh

US1
2

((xc
bh

(1))←bh
, 2) + ω0

bl
US1

2
(xc

bl
(2), 4) and EUS1

2
((xc

bl
(2))←2[bl ]) = US1

2
((xc

bl
(2))←2[bl ],

2). If there is more than one seller in S2, i.e., |St+2| > 1, S1
2 has two choices: propose

min{RPS2
2
, (xc

bh
(1))←bh

} or min{RPS2
2
, (xc

bl
(2))←2[bl ]}. In this case, e0S1

2
satisfies US1

2

(e0S1
2
, 2) = max{EUS1

2
(min{RPS2

2
, (xc

bh
(1))←bh

}), EUS1
2
((xc

bl
(2))←2[bl ])} where EUS1

2

(min{RPS2
2
, (xc

bh
(1))←bh

}) = ω0
bh

US1
2
(min{RPS2

2
, (xc

bh
(1))←bh

}, 2) + ω0
bl

US1
2
(xc

bl
(2), 4)

and EUS1
2
(min{RPS2

2
, (xc

bl
(2))←2[bl ]}) = US1

2
(min{RPS2

2
, (xc

bl
(2))←2[bl ]}, 2). S1

2 will
choose the offer which gives it the highest expected utility at time 0.

Theorem 11 Assume that the following belief system is used: if b rejects sellers’ offer y ∈
((x∗

bl
(2))←2[bl ], +∞) and offers −1 at time 1, then μ(2) = {bl}. Otherwise, μ(2) = {bh}.

One-to-many bargaining such that ι(0) = S has a unique stationary sequential equilib-
rium profile in pure strategies if xc

bh
(1) ≤ (xc

bl
(2))←bh

and (xc
bl

(2))←bl
≤ xc

bh
(1). The

equilibrium strategies of agents are:

σ ∗
s (0)|{bh, bl} = offer min{RPs,

argmaxy∈{min{RPS2
2
,(xc

bh
(1))←bh

},min{RPS2
2
,(xc

bl
(2))←2[bl ]}}EUs(y)}

σ ∗
bh

(1)|{bh,bl} =
{
accept y if y ≤ (xc

bh
(1))←bh

offer xc
bh

(1) otherwise

σ ∗
bl

(1)|{bh,bl} =
{
accept y if y ≤ (xc

bl
(2))←2[bl ]

offer − 1 otherwise

Agents’ strategies when μ(t) is singleton are those in complete information bargaining.

We can observe that the conditions for the existence of the above equilibrium are defined
at the beginning of bargaining and the existence of the above equilibrium does not require
the existence of a such equilibrium in later negotiation. Consider the sequential equilibrium
when buyer types always choose different actions in the bilateral bargaining in Fig. 3. We
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have xc
bh

(0) = 64 and xc
bl

(1) = 60. bh has no incentive to behave as bl since xc
bh

(0) =
64 < 76 = (xc

bl
(1))←bh

, and bl has no incentive to behave as bh since (xc
bl

(1))←bl
=

60 < 64 = xc
bh

(0). However, there is no sequential equilibrium within the belief system
for the bilateral bargaining in Fig. 4. We have xc

bh
(0) = 64 and xc

bl
(1) = 30. However,

this strategy is not rational for bh as it has an incentive to behave as prescribed for bl since
xc
bh

(0) = 64 ≥ 58 = (xc
bl

(1))←bh
.

5.6 Combining pooling and separating choice rules

In this section we consider agents’ equilibrium strategies while employing a belief system
which combines the pooling choice rule and the separating choice rule. The only reason-
able combination is to employ the pooling choice rule from time 0 to some time τ ≤ T

and to employ the separating choice rule from time τ to the deadline T . The reason is sim-
ple: once different buyer types behave in different ways, each seller s will learn the type
of the buyer and then agents conduct complete information bargaining. Then we have the
following result and its proof is trivial.

Theorem 12 For a finite horizon bargaining with two possible reserve prices of the buyer,
if there is no sequential equilibrium in pure strategies, there is no sequential equilibrium
in pure strategies within the belief system which employs both pooling and separating
choice rules.

Theorem 13 For a finite horizon bargaining with two possible reserve prices of the buyer,
there may be no sequential equilibrium in pure strategies.

Proof As the deadline of the bilateral bargaining in Fig. 4 is 2, if there is a sequential equi-
librium in pure strategies, the choice rule at time t = 0 can only be pooling or separating.
As there is no pure strategy sequential equilibrium in both cases, there is no pure strategy
sequential equilibrium while applying both choice rules for the bilateral bargaining in Fig. 4.
Thus, there is no pure strategy sequential equilibrium for the bilateral bargaining in Fig. 4
(Theorem 12).

There may be more than one sequential equilibrium for a bilateral bargaining problem
with two possible types of reserve price. For example, there are two sequential equilibria
for the bilateral bargaining in Fig. 3: one with only using the pooling choice rule and one
with only using the separating choice rule.

If there is a pure strategy sequential equilibrium, there should be a time point τ such
that there is a sequential equilibrium for subgame 
[τ,T ] which only uses the separating
choice rule and a sequential equilibrium for subgame 
[0,τ ] which only uses the pooling
choice rule. Let the system of beliefs and equilibrium strategies for the subgame 
[τ,T ]
be μ[τ,T ] and σ ∗,[τ,T ], respectively. Let the system of beliefs and equilibrium strategies
for the subgame 
[0,τ ] be μ[0,τ ] and σ ∗,[0,τ ], respectively. The two equilibria form a
sequential equilibrium.

Theorem 14 If there is a τ such that

1. ι(τ ) = S;
2. There is a separating choice rule based sequential equilibrium 〈μ[τ,T ], σ ∗,[τ,T ]〉 for

subgame 
[τ,T ]. Let eτ be S1
t+2’s equivalent price at time τ ;
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3. There is a pooling choice rule based sequential equilibrium 〈μ[0,τ ], σ ∗,[0,τ ]〉 for
subgame 
[0,τ ] such that S1

τ+2 accepts x∗
b(τ − 1) at time τ ;

x∗
b(τ − 1) =

⎧
⎪⎪⎨

⎪⎪⎩

RPS1
τ+1

TS1
τ−1

= τ + 1

min{(eτ

S1
τ+2

)←S1
τ+1

,RPS2
τ+1

} TS1
τ+1

�= τ + 1 and |Sτ+1| > 1

(eτ

S1
τ+2

)←S1
τ+1

TS1
τ+1

�= τ + 1 and |Sτ+1| = 1

then 〈{μ[0,τ ], μ[τ,T ]}, {σ ∗,[0,τ ], σ ∗,[τ,T ]}〉 form a pure strategy sequential equilibrium.

The proof is omitted: Sequential rationality is obvious given the backward induction
construction and consistency can be proved in the same way as in Theorem 9.

If there is a sequential equilibrium for such a τ value in Theorem 14, the equilibrium
is unique for the specific τ given the backward induction process. Therefore, to find out a
sequential equilibrium, we just need to search all the possible values of τ ≤ T . If there is
no sequential equilibrium for all values of τ , we can conclude that there is no sequential
equilibrium. The computational complexity of finding a sequential equilibrium for a specific
value of τ is O(|S|T ) where n is the number of possible types. Thus, the computational
complexity of finding sequential equilibrium for a bilateral bargaining with two possible
types of reserve price is O(|S|T 2).

We show how to compute agents’ equilibrium offers on the equilibrium path while using
both the pooling choice rule and separating choice rule. We use the example in Fig. 3 and
change the deadline to T = 5. First we consider the choice system in which the pool-
ing choice rule is used at both time t = 0 and t = 2. The optimal offer of s at time
t = 3 is 100 and the equivalent price is e3 = 73. At t = 2, both buyer type will offer
(e3)←s = 47.8. At t = 1, s can offer 1) (47.8)←bh

= 68.68, which will give s an expected
utility with 0.7(68.68 − 10)0.62 + 0.3(47.8 − 10)0.63 = 17.2368; 2) (47.8)←bl

= 52.68,
which will give s an expected utility with (52.68− 10)0.62 = 15.3648. Therefore, the opti-
mal offer of s at t = 1 is (47.8)←bh

= 68.68 and the equivalent price is e1S1
3

= 57.88.

At t = 0, both buyer type will offer (e1S1
3
)←s = 38.728. It’s easy to see that all equi-

librium existence conditions are satisfied. Thus, there is a sequential equilibrium with the
choice system.

Next we consider the choice system in which the separating choice rule is used at time
t = 0. First we assume the existence of sequential equilibrium and we have x∗

bh
(0) = 51.04

and x∗
bl

(1) = 48. bh has no incentive to behave as bl since x∗
bh

(0) = 51.04 < 68.8 =
(x∗

bl
(1))←bh

. However, bl has an incentive to behave as bh since (x∗
bl

(1))←bl
= 52.8 >

51.04 = x∗
bh

(0). Therefore, there is no sequential equilibrium with this choice system.
Finally, we consider the choice system in which the pooling choice rule is used at time

t = 0 and the separating choice rule is used at time t = 2. We first consider the subgame
starting from t = 2, which is equivalent to the bargaining game in Fig. 3. Thus, there is a
sequential equilibrium for the subgame with the separting choice rule in which bh’s optimal
offer at time t = 2 is x∗

bh
(2) = 64, bl’s optimal offer at time t = 2 is RPs, and s will offer

x∗
bl

(3) = 60 at time t = 3 if it receives offer RPs at time t = 2. Then we consider the
subgame from the beginning to time t = 2. At t = 1, s can offer 1) (64)←bh

= 78.4, which
will give s an expected utility 0.7(78.4− 10)0.62 + 0.3(60− 10)0.64 = 19.1808 (note that
if b is of type bl , it will offer RPs at time t = 2 and make an agreement with s at time
t = 4); 2) (x∗

bl
(3))←2[bl ] = 60, which will give s an expected utility (60 − 10)0.62 = 18.

Therefore, the optimal offer of s at t = 1 is 78.4 and the equivalent price is e1S1
3

= 63.28.
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At t = 0, both buyer type will offer (e1S1
3
)←s = 41.968, which is lower than both types’

reserve prices. Thus, there is a sequential equilibrium within this choice system.

5.7 Multiple types of reserve prices

In this section we consider how to extend our analysis to handle finitely many reserve prices
for the buyer b. The presence of many types increases the computational complexity of the
procedure to find equilibrium strategies and requires more stringent equilibrium existence
conditions. When there are only two types and the two buyer types behave in different
ways at a time point, the only possibility is that the type with higher reserve price offers an
acceptable price and the other type offer a price that will be rejected. With more types, the
buyer has more options of differentiating its types: some buyer types make an acceptable
offer while the other buyer types make an offer that will be rejected by the sellers.

We show the complication introduced by the presence of multiple types through the
following example: The initial belief of each seller s on the type of b is μ(0) = 〈�0

b, P
0
b 〉

where �0
b = {b1,b2, b3}. We assume that the deadline of each agent is 5 and ι(0) = b. At

time t = 0, buyer b has the following options (choice rules): 1) b1, b2, and b3 make the
same offer; 2) One buyer type makes an offer acceptable to seller S1

2 , while the other two
buyer types make an offer that will be rejected by S1

2 ; and 3) Two buyer types make an offer
acceptable to seller S1

2 , while the other buyer type makes an offer that will be rejected by
S1
2 . At time t = 1, sellers will act according to its updated belief about the type of b. For

example, if b chooses option 1, each seller s’s belief at time t = 1 is �0
b. If b chooses one

choice rule belonging to option 2 in which b1 and b2 make an offer acceptable to seller S1
2 ,

but b3 makes an offer that will be rejected by S1
2 , a seller s’s belief at time t = 1 is either

{b3} or {b1,b2}.
If buyer b chooses option 1 at time t = 0, it still has three options at time t = 2 as

at time t = 0. Assume that buyer b chooses the choice rule in which b1 and b2 make an
offer acceptable to seller S1

2 , but b3 makes an offer that will be rejected by S1
2 . For the

sellers’ belief set {b1, b2}, b has two options: 1) b1 and b2 make the same offer; 2) one
buyer type makes an offer acceptable to seller S1

2 , while the other makes an offer that will
be rejected by S1

2 . When a belief set contains only one type, bargaining becomes complete
information bargaining.

Therefore, we can compute agents’ sequential equilibrium strategies for the multi-type
case based on our analysis of the two-type situation. Our approach involves searching all
possible choice systems (each specifying agents’ choice rule at each time point when the
buyer is offering, i.e., whether different buyer types will behave in the same way or not) and
computing agents’ optimal strategies for each choice system.

5.8 Many-to-many setting

In this section we consider extending our analysis of one-to-many incomplete information
bargaining to many-to-many incomplete information bargaining in which there is a two-
type uncertainty regarding the type of a buyer b ∈ B while the types of other buyers B − b
and sellers S are known to all agents. Adding other buyers will change the strategy of each
buyer and each seller since all agents need to take into account the competition between the
buyers. However, the increase of buyers will not change the choice rule at each information
set and the number of choice systems. Therefore, we just need to adopt the analysis in
Section 4 to find out agents’ optimal strategies when there is competition between buyers.
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Assume that at time t + 1 where ι(t + 1) = B, buyer types of b make the same offer
x∗
b(t + 1), i.e., the pooling choice rule was chosen at time t + 1. Let the price of any other
buyer b′ ∈ B − b be x∗

b′(t + 1). When there is only one buyer, seller S1
t+2 will propose a

price no lower than the offer of other sellers. Since seller S1
t+2 is uncertain of the type of the

buyer, there are two options for seller S1
t+2. When there are multiple buyers, we can apply

the result in Theorem 4 to find out S’s highest equilibrium offer x∗
S(t) (or x∗

bh
(t)) when b

is of different types. Formally, when b can be of type bh, x∗
S(t) is given by

–
{
(x∗

b(t + 1))←bh
∪ {(x∗

b′(t + 1))←b′ |b′ ∈ Bt+3 − b} ∪ {RPb′ |b′ ∈ B=t+2}
}|St+2| if

|St+2| ≤ |Bt+2|;
– min

{
RP

S |Bt+2 |+1
t+2

,
{
(x∗

b(t + 1))←bh
∪ {(x∗

b′(t + 1))←b′ |b′ ∈ Bt+3 − b} ∪ {RPb′ |b′ ∈
B=t+2}

}|Bt+2|} if |St+2| > |Bt+2|.
In the same way, we can define the value x∗

S(t) (or x∗
bl

(t)) when b is of type bl . Each
winning seller will choose one price from x∗

bh
(t) and x∗

bl
(t)which can give it the highest

expected utility. The equivalent price of each winning seller’s offer can be computed based
on the highest expected utility. If b chooses the separating rule at time t + 1, i.e., bl makes
an offer which will be rejected but bh makes an acceptable offer. In this case, the value of
x∗
S(t) can be computed in the same way as the buyer adopts the pooling choice rule except

that the back propagated value (x∗
b(t + 1))←bl

needs to be replaced by (xc
bl

(t + 2))←2[bl ]
since x∗

b(t + 1) will be rejected.
Now we analyze how to compute buyers’ equilibrium offers at time t given sellers’

equivalent offers at time t + 1. If the buyer adopts the pooling choice rule, we can apply
the result in Theorem 4 to find out buyers’ equilibrium offers. If the buyer adopts the sep-
arating choice rule, bl will make an offer (i.e., -1) that will be rejected and the offer of bh

will be accepted (if it is possible). Each buyer’s optimal offer depends on the offer of other
buyers. Thus, buyers will make proposals in Bayesian-Nash equilibrium at time t . Buyers’
equilibrium strategies at time t include the strategy of bh, bl , and other buyers. The utility
of a buyer b′ ∈ Bt+2 − b is ω0

bh
Ub′(bh) + ω0

bl
Ub′(bl ) where Ub′(bh) (Ub′(bl )) is the utility

of b′ when the buyer b is of type bh (bl).

6 Conclusion

This paper analyzes agents’ strategic behavior in concurrent one-to-many negotiation
and many-to-many negotiation when agents follow the alternating-offers protocol. The
contributions of this paper can be summarized as follows:

– We extend the alternating-offers protocol to handle multiple trading opportunities and
market competition. We provide an algorithm based on backward induction to compute
the subgame perfect equilibrium of concurrent one-to-many negotiation and many-
to-many negotiation. We observe that agents’ bargaining power are affected by the
proposing ordering and market competition.

– For the complete information setting, we show that the computational complexity when
there are many buyers and many sellers in our protocol exponentially increases with
the number of buyers and sellers. We find that for a large subset of the space of the
parameters, agents’ equilibrium strategies depend on the values of a narrow number of
parameters. The computation of the equilibrium for realistic ranges of the parameters in
one-to-many settings reduces to the computation of the equilibrium either in one-to-one
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settings with uncertainty or in one-to-many settings without uncertainty. We also com-
pare the efficiency of the negotiation mechanism with that of some other mechanisms
like VCG auction.

– We provide an algorithm to find a pure strategy sequential equilibrium in one-to-many
negotiation and many-to-many negotiation where there is uncertainty regarding the
reserve price of one agent. Our algorithm combines together game theoretic analysis
with state space search techniques and it is sound and complete. Our algorithm has a
polynomial complexity.

One major motivation of the study of bargaining theory is designing successful bargain-
ing agents in practical dynamic markets where agents often have to negotiate with multiple
trading partners while facing the competition from agents of the same type. Although con-
straints, complexity, and uncertainty make it impractical to develop optimal negotiation
strategies, our analysis can still give us some insights into the bargaining problems. This
paper provides some useful guidelines for designing negotiation agents. For example, mar-
ket competition plays a central role in deciding the market equilibrium, agents need to make
the same offer to all the trading partners at each time.

Another future research direction is theoretically analyzing agents’ strategic behavior
in one-to-many negotiation and many-to-many negotiation when agents have incomplete
information about more than one agent’s reserve prices, and discounting factors. Moreover,
another level of uncertainty which comes with one-to-many and many-to-many negotiation
is that an agent may only have probabilistic information about the number of trading parters
and trading competitors. When each trader privately knows its own preferences, it may have
an incentive to misrepresent its preference in order to influence the market equilibrium in its
favor and it will learn the other agents’ preferences during the bargaining process. A number
of bargaining models [17, 20, 31, 34] have studied incomplete information bargaining and
some surprising results show that learning won’t happen in some situations (e.g., [31]). It
would be interesting to investigate an agent’s incentive to misrepresent its preference in a
market where a single agent’s influence on the market equilibrium will decrease with the
increase of the scale of the market. It is also interesting to study one-to-many negotiation
between human beings and agents [22].

Appendix A: Proof of Theorem 1

Proof First compute agents’ optimal offers using backward induction. Let x∗
S(t) =

minsi∈St+2 x∗
si (t) be S’s highest optimal offer at t . It follows that x∗

si (t) = max{RPsi , x∗
S(t)}.

At time point T , the game for the buyer b rationally stops. The equilibrium outcome of
every subgame starting from t ≥ T is NoAgreement . Therefore, at t = T agent ι
b,si

(T )

would only confirm the best agreement proposed by agent ι
b,si
(T − 1). At time t = T − 1,

ι
b,si
(T − 1) will accept the best offer by agent ι
b,si

(T − 2), if ι
b,si
(T − 1) can get a

utility not worse than NoAgreement by accepting the best offer. Note that at time T − 1
and T , no agent will propose a price as it takes at least three time points to implement a
final contract.

Assume that ι
b,si
(t) = b. If t = T − 2 or t = TS1

t+2
− 2, b’s optimal price is

RPS1
t+2

and seller S1
t+2 will accept it as its deadline is approaching. At t < T − 2,

minsi∈St+3

(
(x∗

si (t + 1))←si
)
is surely acceptable to some sellers in St+3. We also need to
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consider sellers St+2 −St+3 with deadline t + 2, who are willing to accept any offer which
is no less than their reserve prices. Therefore, b’s optimal offer at time t is

x∗
b(t)=min{ min

si∈St+3

(
(x∗

si (t + 1))←si
)
, min
si∈St+2−St+3

RPsi } (1)

It is easy to see that x∗
S1

t+3
(t + 1) ≤ x∗

S2
t+3

(t + 1) = RP∗
S2

t+3
(t + 1). It follows that minsi∈St+3

(
(x∗

si (t + 1))←si ) = (x∗
S1

t+3
(t + 1))←S1

t+3
. As t �= TS1

t+2
− 2, equation (1) can be rewritten

as min{(x∗
S1

t+2
(t +1))←S1

t+2
,RPS2

t+2
}. Therefore, x∗

b(t) = min{(x∗
S1

t+2
(t +1))←S1

t+2
,RPS2

t+2
}

if t < T − 2 and t �= TS1
t+2

− 2.

Assume that ι
b,si
(t) = si . At time t = T − 2, the acceptable offer to buyer b is RPS2

T

as all sellers in S2
T compete with each other to get a contract. Thus, si’s optimal offer is

max{RPsi ,RPS2
T
}. At time t < T −2, the acceptable offer to buyer b is (x∗

b(t+1))←b. How-
ever, si needs to consider the competition among sellers then si’s winning price should be
no higher than RPS2

t+2
. Then si’s optimal offer is max{RPsi ,min{RPS2

t+2
, (x∗

b(t + 1))←b}}.
Finally, agents’ optimal actions can be easily defined on the basis of x∗

b(t) and x∗
si (t).

When an agent decides to make an offer, it always proposes it optimal offer (x∗
b(t) or x∗

si (t)).
Buyer b will accept an offer σsi (t − 1) if σsi (t − 1) ≤ (x∗

b(t))←b and σsi (t − 1) is no higher
than other sellers’ offers at time t − 1. It is possible that several sellers propose a same
acceptable offer. The tie can be broken by choosing the lowest offer from the seller with
the lowest reserve price (note that we assume that sellers have different reserve prices). If
at time t − 1, seller si agrees with b’s offer σb,si (t − 2), b will confirm the agreement if
σb,si (t −2) ≤ σb,sj (t −2) if sj also agrees with b’s offer at time t −1. Again, there could be
more than one agreement with the same lowest price. To make sure that b only makes one
final agreement, b confirms the agreement from the seller with the lowest reserve price. The
optimal actions of all the sellers can be defined analogously. For simplicity, we consider just
agents’ strategies on the equilibrium path.

Appendix B: Proof of Theorem 3

Proof Case 1 (ι(min{TS1
2
, Tb}) = b). Let t ′ + 2 = min{TS1

2
, Tb}. It’s easy to see that

x∗
b(t

′) = RPS1
2

= y(t ′). Then we have x∗
S(t ′ − 1) = min{(RPS1

2
)←b,RPS2

t ′+1
} =

min{y(t ′ − 1),RPS2
t ′+1

}.2 At time t ′ − 2, we have x∗
b(t

′ − 2) = min{(RPS1
2
)←bS1

2
,

(RPS2
t ′+1

)←S1
2
,RPS1

=t ′
} = min{y(t ′ − 2), (RPS2

t ′+1
)←S1

2
,RPS1

=t ′
}. At time t ′ − 3,

we have x∗
S(t ′ − 3) = min{(y(t ′ − 2))←b, (RPS2

t ′+1
)←S1

2b
, (RPS1

=t ′
)←b,RPS2

t ′−1
}.

It’s obvious that (RPS1
=t ′

)←b ≥ (RPS1
=t ′

) ≥ RPS2
t ′−1

. In addition, as we assume

that (RPs)←S1
2b

≥ RPs, it follows that (RPS2
t ′+1

)←S1
2b

≥ RPS2
t ′+1

≥ RPS2
t ′−1

.

Then we have x∗
S(t ′ − 3) = min{y(t ′ − 3),RPS2

t ′−1
}. Following this proce-

dure, we have 1) if ι(0) = S , x∗
S1
2
(0) = min{y(0),RPS2

2
}; 2) if ι(0) = b,

x∗
b(0) = min{y(0), (RPS2

2
)←S1

2
} as (RPS2

3
)←S1

2
= (RPS2

2
)←S1

2
≤ (RPS2

2
) ≤

RPS3
2

≤ RPS1=2
given that TS2

2
> 2.

2For convenience, RPS2
t ′+1

= ∞ if |St ′+1| < 2.
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Case 2 (ι(min{TS1
2
, Tb}) = S). Let t ′ + 2 = min{TS1

2
, Tb}. At time t ′, there are two

situations: 1) |St ′+2| < 2, which implies that x∗
S(t ′) = RPb = y(t ′); 2) Otherwise,

x∗
S(t ′) = RPS2

t ′+2
. Therefore, x∗

S(t ′) = min{y(t ′),RPS2
t ′+2

}. At time t ′ − 1, it

follows that x∗
b(t

′−1) = min{y(t ′−1), (RPS2
t ′+2

)←S1
2
,RPS1

=t ′+1
}. Then at t ′−2, we

have x∗
S(t ′−2) = min{y(t ′−2), (RPS2

t ′+2
)←S1

2b
, (RPS1

=t ′+1
)←b,RPS1

=t ′
,RPS2

t ′
}. It

easy to see that RPS1
=t ′

≥ RPS2
t ′
. It is obvious that (RPS1

=t ′+1
)←b ≥ (RPS1

=t ′+1
) ≥

RPS2
t ′
. As we assume that (RPs)←S1

2b
≥ RPs, it follows that (RPS2

t ′+2
)←S1

2b
≥

RPS2
t ′+2

≥ RPS2
t ′
. Then we have x∗

S(t ′ − 2) = min{y(t ′ − 2),RPS2
t ′
}. Following

this procedure, we have 1) if ι(0) = S , x∗
S1
2
(0) = min{y(0),RPS2

2
}; 2) if ι(0) = b,

x∗
b(0) = min{y(0), (RPS2

2
)←S1

2
} given that TS2

2
> 2.

Appendix C: Proof of Theorem 4

Proof Given Lemmas 2 and 3, we just need to find out the agents’ equilibriumwinning price
at each time point. Let x∗

B(t) (x∗
S(t)) be B’s lowest (S’s highest) offer which is acceptable

to S (B) at time t if ι(t) = B (ι(t) = S). It follows that x∗
B(t) = maxbj ∈Bt+2 x∗

bj
(t),

x∗
S(t) = minsi∈St+2 x∗

si (t) .
Following the idea of backward induction, at T = maxbj ∈B Tbj ,S , the game for all

agents rationally stops. The equilibrium outcome of every subgame starting from t ≥ T is
NoAgreement . Therefore, at t = T , agents ι(T ) would only confirm the best agreement
proposed by agents ι(T − 1). At time t = T − 1, agents ι(T − 1) will accept the best offer
by agents ι(T − 2) if the best offer is no worse than NoAgreement by accepting the best
offer. At time T −1 and T , no agent will propose a price as it takes at least three time points
to implement a final contract.

At time t = T −2, agents ι(t) will strive to make the best offer. There are two situations:
ι(t) = B or ι(t) = S . First consider the case ι(t) = B and there are two cases: Case
1 (|BT | ≤ |ST |): In this case, the supply is no less than demand and buyers have more
bargaining power as compared with sellers. It is easy to see that each buyer’s optimal price
is RPS |BT |

T

as, by doing so, |BT | sellers will agree to sell their good and each buyer can get

a good. If one buyer pays less than RPS |BT |
T

, the sellers will choose another buyers paying

RPS |BT |
T

. It doesn’t make sense that a rational agent will pay more than RPS |BT |
T

. If each

buyer pays a price less than RPS |BT |
T

, each buyer will face a risk of losing an agreement as

the number of sellers who are willing to accept the price is less than the number of buyers.
Case 2 (|BT | > |ST |): In this case, the supply is less than demand and buyers need to
compete with each other to get agreements. It is easy to say that each buyer’s optimal price
is RPB|ST |+1

T

. In the same way, we can get the optimal offer of buyers ST at time T − 2:

x∗
S(T − 2) = RPB|ST |

T

if |ST | ≤ |BT |, x∗
S(T − 2) = RPS |BT |+1

T

if |ST | > |BT |.
Then we move to the calculation for computing x∗

B(t) and x∗
S(t) given x∗

B(t + 1) and
x∗
S(t + 1). First consider the situation that ι(t) = B. There are two situations depend-

ing on whether there are agents with deadline t + 2. If there is no agent with deadline
t + 2, (x∗

si (t + 1))←si is surely acceptable to seller si at time t . Here we consider two
cases: 1) |St+3| ≥ |Bt+3|. It is easy to see that, the price minsi∈St+3

(
(x∗

si (t + 1))←si
)
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is surely acceptable to sellers in St+3 whose optimal price is x∗
S(t + 1) at time t + 1.

However, we also need to consider the competition among buyers. Therefore, x∗
B(t) =

{(x∗
si (t + 1))←si |si ∈ St+3}|Bt+3| where Yi (Y i) is the ith smallest (largest) value in the

value set Y . 2) |St+3| < |Bt+3|. As (x∗
si (t + 1))←si ≤ x∗

si (t + 1), x∗
B(t) should be no less

than RP
B|St+3 |+1

t+3

. Therefore, it follows that x∗
B(t) = max

{
RP

B|St+3 |+1
t+3

, {(x∗
si (t + 1))←si |si ∈

St+3}|St+3|
}
.

Now we move to the general case that there are some buyers or sellers with deadline
t + 2. For a buyer with deadline t + 2, it is willing to propose its reserve price. For a seller
with deadline t + 2, it is willing to accept an offer of its reserve price. Assume that there
are some sellers with deadline t + 2 and buyers are proposing at time t . Sellers S=t+2 with
deadline t + 2 are willing to accept any offer that is no higher than their reserve prices. If
such sellers accept buyers’ offer made at time t , other sellers will not make offers to such
buyers at time t + 1 and thus such buyers will not “participate” negotiation in the future.
Therefore, sellers’ offers that will be propagated back for computing buyers’ equilibrium
offers at time t strongly depends which buyers will not continue to negotiate in the future.
In this paper we define the tie breaking rules for agents’ accepting offers or confirming
accepted offers as agents will make the same winning offers. Assume that buyers Bt+2
are making offers at time t . For computing buyers’ equilibrium offers at time t , buyers
need to propagate the sellers’ equilibrium offers at time t + 1 which depend on the set of
buyers which will continue to negotiate at time t + 1 as at time t + 1, sellers S=t+2 with
deadline t + 2 are willing to accept any offer that is no higher than their reserve prices.
Here we assume that sellers S=t+2 will accept buyers’ offers (we call these buyers ‘buyers
minimizing seller equilibrium winning offer’) so that sellers’ equilibrium winning offer at
time t + 1 is the smallest. Let x∗

S(t + 1, k,B) be the sellers’ lowest equilibrium winning
offer at time t + 1 to |B| − k buyers in B. The number k of buyers whose offers will be
accepted at time t + 1 depends on the reserve prices of the sellers with deadline t + 2
and the reserve prices of the sellers with deadline larger than t + 2. With the k∗ value in
equilibrium, we can getB’s optimal price at time t < T −2 as follows: 1) if |St+2| < |Bt+2|,
x∗
B(t) = max

{
RP

B|St+2 |+1
t+2

,
{{(x∗

si (t +1, k∗,B))←si |si ∈ St+3}∪{RPsi |si ∈ S=t+2}
}

|St+2|
}
;

2) otherwise, x∗
B(t) = min

{
RP

S |Bt+2 |+1
t+2

,
{{(x∗

si (t + 1, k∗,B))←si |si ∈ St+3} ∪ {RPsi |si ∈
S=t+2}|Bt+2|

}
.

In the same way, we can get S’s optimal price at time t < T −2 as follows: 1) if |St+2| ≤
|Bt+2|, x∗

S(t) = max
{
RP

B|St+2 |+1
t+2

,
{{(x∗

bj
(t + 1, k∗,S))←bj

|bj ∈ Bt+3} ∪ {RPbj
|bj ∈

B=t+2}|St+2|}; 2) otherwise, x∗
S(t) = min

{
RP

S |Bt+2 |+1
t+2

,
{{(x∗

bj
(t + 1, k∗,S))←bj

|bj ∈
Bt+3} ∪ {RPbj

|bj ∈ B=t+2}
}|Bt+2|}.

Now we prove that agents have no incentive to deviate from their optimal actions spec-
ified in the theorem statement. We analyse the buyer’s decision making and the seller’s
decision making could be analyzed in the same way. At time t , for a buyer bj such that
t = Tbj

− 1, the buyer will accept any offer x ≤ RPbj
as the buyer bj has no chance to

make offers in the future. Otherwise (i.e., t < Tbj
−1), buyer bj can accept the offer x made

by si at t if x ≤ (x∗
bj

(t))←bj
as x∗

bj
(t) is buyer bj ’s equilibrium offer by construction. In

the case that multiple offers are acceptable, buyer bj will follow the tie-breaking rule as the
sellers will follow the rule as well. When the buyer bj is making an offer at time t , its offer
is also optimal. Consider the case that |St+2| < |Bt+2|, the buyer will not offer more than
max

{
RP

B|St+2 |+1
t+2

,
{{(x∗

si (t+1, k∗,B))←si |si ∈ St+3}∪{RPsi |si ∈ S=t+2}
}

|St+2|
}
. Consider
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that case that the buyer’s reserve price is higher than the winning equilibrium offer price,
the buyer has no incentive to pay more. If it offers less, it will either fail to make a contract
or it needs to pay more in the future since we assume that the sellers’ equilibrium offers
propagated from t + 1 is the smallest. Following this, we can show that each buyer type
will follow the “tie-breaking” mechanism. Similarly, we can show that each buyer type’s
decision making on confirm accepts are also optimal.
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