

Alternating-offers bargaining in one-to-many and many-to-many settings

Bo An 1 · Nicola Gatti 2 · Victor Lesser 3

Published online: 19 April 2016 © Springer International Publishing Switzerland 2016

Abstract Automating negotiations in markets where multiple buyers and sellers operate is a scientific challenge of extraordinary importance. One-to-one negotiations are classically studied as bilateral bargaining problems, while one-to-many and many-to-many negotiations are studied as auctioning problems. This paper aims at bridging together these two approaches, analyzing agents' strategic behavior in one-to-many and many-to-many negotiations when agents follow the alternating-offers bargaining protocol (Rubinstein Econometrica **50**(1), 97–109, 1982). First, we extend this protocol, proposing a novel mechanism that captures the peculiarities of these settings. Then, we analyze agents' equilibrium strategies in complete information bargaining and we find that for a large subset of the space of the parameters, the equilibrium outcome depends on the values of a narrow number of parameters. Finally, we study incomplete information bargaining with one-sided uncertainty regarding agents' reserve prices and we provide an algorithm based on the combination of game theoretic analysis and search techniques which finds agents' equilibrium in pure strategies when they exist.

Keywords Automated negotiation · Equilibrium strategy · One-to-many · Many-to-many

This work was done while Bo An was a PhD student in the Department of Computer Science, University of Massachusetts, Amherst.

 Bo An boan@ntu.edu.sg
 Nicola Gatti ngatti@elet.polimi.it

> Victor Lesser lesser@cs.umass.edu

- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
- ² Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy
- ³ Department of Computer Science, University of Massachusetts, Amherst, MA, USA

Mathematics Subject Classifications (2010) 91A10 · 91A80

1 Introduction

Automated negotiation is an important research area bridging together economics, game theory, and artificial intelligence. It has received a prominent attention in recent years [24] and its importance is widely acknowledged since intelligent agents that negotiate with each other on behalf of human users are expected to lead to more efficient negotiations [35]. A very common class of negotiation is bargaining, which refers to a situation in which individual agents have the possibility of concluding a mutually beneficial agreement which could not be imposed without all individuals' approval. A bargaining theory is an exploration of the relation between the outcome of bargaining and the characteristics of the situation. Cooperative bargaining theory (axiomatic approach) initiated by Nash [29] is concerned with the outcome of bargaining given the list of properties the outcomes are required to satisfy. In the non-cooperative bargaining theory (strategic approach), the outcome is an equilibrium of an explicit model of the bargaining process. The strategic bargaining has received more attention following Rubinstein's path-breaking work [33]. In the non-cooperative bargaining theory literature, most work focuses on bilateral bargaining. A variety of negotiation aspects have been studied, e.g., uncertainty [3, 9], outside options [18], multi-issue negotiation [14]. In addition to bilateral negotiation, one-tomany and many-to-many negotiations are also very important and widely exist in many application domains like e-commerce as well as in human society. A crucial problem is that there is no satisfactory analysis of concurrent one-to-many negotiation and many-tomany negotiation.

The situation where an agent has multiple contracting opportunities and faces competition from other agents widely exists in service-oriented computing [5, 39], sensor networks [4, 7, 26], and Grid resource management [38]. As an example, consider negotiation management [1] for Collaborating, Autonomous Stream Processing systems (CLASP) [11], which has been designed and prototyped in the context of System S project [23] within IBM Research to enable sophisticated stream processing. There are multiple sites running the System S software, each with their own administration and limited processing capabilities. Considering that a site receives a job. After planning [32], the site finds that using only its local resources, it cannot satisfy all resource requirements of the plan. Then, the site negotiates with other sites to acquire resources needed using its negotiation management component [1]. For each resource, there can be multiple providers and the site concurrently negotiates with different resource providers to construct agreements for these resources. There could be other sites requiring the same resource. Thus, each negotiating site needs to take the resource competition into account. In the literature, an auction is widely used for one-to-many negotiation and for many-to-many negotiation, market mechanisms like matching or two-sided auction seem more intuitively appropriate. The difference between negotiation and market mechanisms, especially auction, is blurred with the arrival of the Internet and electronic commerce [25]. Negotiation has been treated as a key component of e-commerce and has been applied to e-commerce, manufacturing planning, and distributed vehicle routing. While auction is the most widely implemented and discussed mechanism, only recently the complex, multidimensional, and combinatorial auctions have gained the interest of researchers and foremost practitioners. Negotiations have been somewhat neglected as a possible market mechanism. The proliferation and acceptance of web and Internet technologies made the replacement of some negotiated transactions with auctions

not only possible but also efficient. Negotiation-based mechanisms however, still remain the preferred choice when the good and service attributes are ill defined and there are criteria other than price (e.g., reputation, trust, relation and future contracts) [21]. In addition, no third party like auctioneer is needed in bargaining. Strategic agents may prefer bargaining as they can exploit other agents by using learning, collusion, and other bargaining techniques. In this paper, we compared the outcomes the agents achieve in our model with respect to those achieved with other economic mechanisms, e.g. with the VCG auction.¹

Even if an agent interacts with many agents, a common assumption in this literature is that an agent can pursue only one negotiation at a time [18]. The result is that an agent may terminate a current negotiation in disagreement, in spite of possible gains from trade in order to pursue a more attractive outside alternative. Therefore, the presumption that an agent can pursue only one negotiation at a time appears to be restrictive. When an agent is negotiating with one trading partner, other trading partners are called outside options. While there has been much experimental work (e.g., [6, 30, 37]) on one-to-many and many-to-many negotiations in which an agent synchronously negotiates with multiple agents in discrete time, to our best knowledge, this paper is the first work to provide a game theoretical analysis of agents' strategic interactions in concurrent one-to-many and many-to-many negotiations. The analysis can provide insights and suggestions for designing negotiation agents in practical electronic marketplaces in which agents are involved in concurrent negotiations.

The focus of this work is on analyzing agents' strategic behavior in one-to-many and many-to-many negotiations in which agents are negotiating with multiple trading partners and, at the same time, are facing competition from trading competitors. In this paper, negotiating agents make offers following the alternating-offers protocol, which was first analyzed by Rubinstein [33], which has been widely used in the bargaining theory literature, e.g., [8, 20, 34, 36], just to name a few. The alternating-offers protocol captures the most important features of bargaining: bargaining consists of a sequence of offers and decisions to accept or reject these offers. In this paper, we extend the alternating-offers protocol to capture the peculiarities of these settings. The subgame perfect equilibrium for complete information setting is presented and equilibrium properties, such us uniqueness, are discussed. Furthermore, we provide an algorithm to compute the sequential equilibrium in the incomplete information setting where there is uncertainty regarding the reserve price of an agent. The main goal of this paper is to begin to understand which factors are affecting agents' bargaining position relative to others when each agent is negotiating with multiple trading partners simultaneously.

A central research topic in bargaining theory is understanding bargaining power, which is related to the relative abilities of agents in a situation to exert influence over each other. In bilateral bargaining, each agent's bargaining power is affected by its reserve price, patience attitude, deadline, etc. When many buyers and sellers are involved in negotiation, it is important to investigate how the market competition will affect agents' equilibrium bargaining strategies. With a large number of buyers and sellers, a single agent is unlikely to have much influence on the market equilibrium. Our analysis shows that both bargaining order and market competition affect agents' bargaining power. An agent's bargaining power increases with the number of trading partners (agents of a different type) and decreases with the number of trading competitors.

¹The Vickrey–Clarke–Groves mechanism (VCG) is an auction mechanism that, given the private valuations of the agents over the allocations, returns the allocation maximizing the social welfare and a profile of payments, one per agent, such that reporting the true valuations is a dominant equilibrium strategy for every agent.

This paper also considers the effect of incomplete information in one-to-many negotiation and many-to-many negotiation. One crucial challenge in bargaining theory is the development of algorithmic techniques to find equilibria in presence of information incompleteness [9, 20]. The microeconomic literature provides a number of closed form results with very narrow uncertainty settings in bilateral bargaining. For instance, Rubinstein [34] considered bilateral infinite horizon bargaining with uncertainty over two possible discount factors. Gatti et al. [20] analyzed bilateral bargaining with one-sided uncertain deadlines. The only known result about bargaining with uncertain reserve prices is due to Chatterjee and Samuelson [12, 13] where they studied bilateral infinite horizon bargaining with two-type uncertainty over the reservation values. Our previous paper [2, 3] presented a search based approach which includes choice rule enumeration (a choice rule specifies whether different agent types will behave in the same way or in different ways at a decision making point) and equilibrium strategy calculation given a set of choice rules. Some work (e.g., [19]) attempts to provide one-to-one bargain mechanism allowing agent to change the agent with which an agent is negotiating have been explored. However, these attempts do not allow agent to negotiate simultaneously with multiple agents. In this paper, we consider two-type uncertainty about the reserve price of an agent while the reserve prices of other agents are common knowledge. In this paper, we extend our approach for bilateral bargaining to search sequential equilibrium while each agent is negotiating with multiple agents.

The assumptions made in this paper are not more restrictive than related work in the literature. The assumption of the existence of deadline and reserve price in bargaining is widely used in the literature (e.g., [17, 20, 31, 34]). Computing agents' equilibrium strategies in incomplete information bargaining is extremely difficult and most related work only considers one type of uncertainty. For instance, Rubinstein [34] considered bilateral bargaining with uncertainty over two possible discount factors. Gatti et al. [20] analyzed bilateral bargaining with one-sided uncertain deadlines. In this paper, we consider the uncertain information about the reserve price of an agent while assuming complete information of other negotiation parameters. As in most related work, we consider the negotiation over a single issue, price of a good. However, our analysis can be easily extended to the multi-attribute negotiations in which the attributes are negotiated simultaneously [20].

While many-to-many negotiation is a generalization of one-to-many negotiation and bilateral negotiation, we start from the simplest model and then iteratively consider more complex negotiation models. In this way, it is easier for us to understand the factors affecting agents' bargaining power. The rest of this paper proceeds as follows: We start with bilateral negotiation in Section 2. Section 3 discusses one-to-many negotiation and Section 4 investigates many-to-many negotiation. Section 5 discusses how to handle uncertainty of agents' reserve prices. Section 6 concludes this paper and outlines future research directions.

2 Bilateral alternating-offers negotiation

We follow [20] to describe the non-cooperative bargaining problem between a buyer **b** and a seller **s**. All the agents enter the market at time 0. The seller agent wants to sell a single indivisible good for some quantity of a divisible good ("money"). The buyer agent wants to buy the indivisible good provided by the seller. The characteristics of a transaction that are relevant to an agent are the price x and the number of periods t after the agent's entry into the market that the transaction is concluded.

We study a discrete time (indexed by integers 0, 1, 2, ...) bilateral negotiation. A finite horizon alternating-offers bargaining protocol is utilized for the negotiation on one continuous issue (price of a good). Formally, the buyer **b** and the seller **s** can act at times $t \in \mathbb{N}$. The player function $\iota : \mathbb{N} \to \{\mathbf{b}, \mathbf{s}\}$ returns the agent that acts at time t and is such that $\iota(t) \neq \iota(t + 1)$, i.e., a pair of agents bargain by making offers in alternate fashion. For ease of analysis, this paper focuses on single-issue negotiation rather than multiple-issue negotiation. However, our model can be easily extended to handle multi-issue negotiation as in [20].

Possible actions $\sigma_{\ell(t)}^t$ of agent $\iota(t)$ at any time point t > 0 are: 1) *offer*[x], where $x \in \mathbb{R}$ is the proposed price for the good; 2) *exit*, which implies that negotiation between **b** and **s** fails; and 3) *accept*, which implies that **b** and **s** make an agreement. At time point t = 0 the only allowed actions are 1) and 2). If $\sigma_{\iota(t)}^t = accept$ the bargaining stops and the outcome is (x, t), where x is the value such that $\sigma_{\iota(t-1)}^{t-1} = offer[x]$. This is to say that the agents agree on the value x at time point t. If $\sigma_{\iota(t)}^t = exit$ the bargaining stops and the outcome is *NoAgreement*. Otherwise the bargaining continues to the next time point.

Each agent $\mathbf{a} \in \{\mathbf{b}, \mathbf{s}\}$ has a utility function $U_{\mathbf{a}} : (\mathbb{R} \times \mathbb{N}) \cup NoAgreement \rightarrow \mathbb{R}$, which represents its gain over the possible bargaining outcomes. Each utility function $U_{\mathbf{a}}$ depends on \mathbf{a} 's reserve price $\mathbb{RP}_{\mathbf{a}} \in \mathbb{R}^+$, temporal discount factor $\delta_{\mathbf{a}} \in (0, 1]$, and deadline $T_{\mathbf{a}} \in \mathbb{N}, T_{\mathbf{a}} > 0$. For ease of analysis, we assume that agents have different reserve prices throughout this paper.

If the outcome of the bargaining is (x, t), then the utility function $U_{\mathbf{a}}$ is defined as:

$$U_{\mathbf{a}}(x,t) = \begin{cases} (\mathrm{RP}_{\mathbf{a}} - x) \cdot \delta_{\mathbf{a}}^{t} & \text{if } t \leq T_{\mathbf{a}} \text{ and } \mathbf{a} \text{ is a buyer} \\ (x - \mathrm{RP}_{\mathbf{a}}) \cdot \delta_{\mathbf{a}}^{t} & \text{if } t \leq T_{\mathbf{a}} \text{ and } \mathbf{a} \text{ is a seller} \\ -\epsilon & \text{otherwise} \end{cases}$$

If the outcome is *NoAgreement*, then $U_{\mathbf{a}}(NoAgreement) = 0$. Notice that the assignment of a strictly negative value (we have chosen by convention the value $\epsilon > 0$) to $U_{\mathbf{a}}$ after agent \mathbf{a} 's deadline allows one to capture the essence of the deadline: an agent, after its deadline, strictly prefers to exit the negotiation rather than to reach any agreement. Finally, we assume the feasibility of the problem, i.e., $RP_{\mathbf{b}} \ge RP_{\mathbf{s}}$, and the rationality of the agents, i.e., each agent will act to maximize its utility. $[RP_{\mathbf{s}}, RP_{\mathbf{b}}]$ is the zone of potential agreements.

With complete information the appropriate solution concept for the game we are dealing with is the subgame perfect equilibrium. In subgame perfect equilibrium, agents' strategies are in equilibrium in every possible subgame. Such a solution can be found by backward induction [20].

Initially, it is determined that the game rationally stops at the time point $T = \min(T_{\mathbf{b}}, T_{\mathbf{s}})$. The equilibrium outcome of every subgame starting from $t \ge T$ is *NoAgreement*, since at least one agent will exit from negotiation. Therefore, at t = T agent $\iota(T)$ would accept any offer x which gives it a utility not worse than *NoAgreement*, namely, any offer x such that $U_{\iota(T)}(x, T) \ge 0$. From t = T - 1 back to t = 0 it is possible to find the optimal offer agent $\iota(t)$ can make at t, if it makes an offer, and the offers that it would accept. $x^*(t)$ denotes the optimal offer of agent $\iota(t)$ at t. $x^*(t)$ is the offer such that, if t < T - 1, agent $\iota(t + 1)$ is indifferent at t + 1 between accepting it and rejecting it to make its optimal offer $x^*(t + 1)$ and, if t = T - 1, agent $\iota(t + 1)$ is indifferent at t + 1 between accepting it and making *exit*. Formally, $x^*(t)$ is such that $U_{\iota(t+1)}(x^*(t), t) = U_{\iota(t+1)}(x^*(t + 1), t+1)$ if t < T - 1 and $U_{\iota(t+1)}(x^*(t), t) = 0$ if t = T - 1. The offers agent $\iota(t)$ would accept at t are all those offers that give it a utility no worse than the utility given by offering $x^*(t)$. strategy of any sub-game starting from $0 \le t < T$ prescribes that agent $\iota(t)$ offers $x^*(t)$ at t and agent $\iota(t+1)$ accepts it at t+1.

Backward propagation is used to provide a recursive formula for $x^*(t)$: given value xand agent **a**, we call backward propagation of value x for agent **a** the value y such that $U_{\mathbf{a}}(y, t - 1) = U_{\mathbf{a}}(x, t)$; we employ the arrow notation $x_{\leftarrow \mathbf{a}}$ for backward propagations. Formally, $x_{\leftarrow \mathbf{b}} = \operatorname{RP}_{\mathbf{b}} - (\operatorname{RP}_{\mathbf{b}} - x) \cdot \delta_{\mathbf{b}}$ and $x_{\leftarrow \mathbf{s}} = \operatorname{RP}_{\mathbf{s}} + (x - \operatorname{RP}_{\mathbf{s}}) \cdot \delta_{\mathbf{s}}$. If a value xis backward propagated n times for agent **a**, we write $x_{\leftarrow n[\mathbf{a}]}$, e.g. $x_{\leftarrow 2[\mathbf{a}]} = (x_{\leftarrow \mathbf{a}})_{\leftarrow \mathbf{a}}$. If a value is backward propagated for more than one agent, we list them left to right in the subscript, e.g., $x_{\leftarrow \mathbf{b}2[\mathbf{s}]} = ((x_{\leftarrow \mathbf{b}})_{\leftarrow \mathbf{s}})_{\leftarrow \mathbf{s}}$. The values of $x^*(t)$ can be calculated recursively from t = T - 1 back to t = 0 as follows:

$$x^{*}(t) = \begin{cases} \mathsf{RP}_{\iota(t+1)} & \text{if } t = T - 1\\ (x^{*}(t+1))_{\leftarrow \iota(t+1)} & \text{if } t < T - 1 \end{cases}$$

It can be easily observed that $x_{\leftarrow \mathbf{b}} \ge x$ as $x_{\leftarrow \mathbf{b}} - x = \operatorname{RP}_{\mathbf{b}} - (\operatorname{RP}_{\mathbf{b}} - x) \cdot \delta_{\mathbf{b}} - x = (1 - \delta_{\mathbf{b}})(\operatorname{RP}_{\mathbf{b}} - x) \ge 0$, and $x_{\leftarrow \mathbf{s}} \le x$ as $x_{\leftarrow \mathbf{s}} - x = \operatorname{RP}_{\mathbf{s}} + (x - \operatorname{RP}_{\mathbf{s}}) \cdot \delta_{\mathbf{s}} - x = (\delta_{\mathbf{s}} - 1)(x - \operatorname{RP}_{\mathbf{s}}) \le 0$. In addition, if $x \le \operatorname{RP}_{\mathbf{b}}$, it follows that $x_{\leftarrow \mathbf{b}} \le \operatorname{RP}_{\mathbf{b}}$. Similarly, If $x \ge \operatorname{RP}_{\mathbf{s}}$, $x_{\leftarrow \mathbf{s}} \ge \operatorname{RP}_{\mathbf{s}}$.

Finally, agents' equilibrium strategies can be defined on the basis of $x^*(t)$ as follows:

$$\sigma_{\mathbf{b}}^{*}(t) = \begin{cases} t = 0 & offer[x^{*}(0)] \\ 0 < t < T & \begin{cases} \text{if } \sigma_{\mathbf{s}}(t-1) = offer[x] \text{ with } x \le (x^{*}(t))_{\leftarrow \mathbf{b}} \text{ accept} \\ \text{otherwise} & offer[x^{*}(t)] \end{cases} \\ T \le t \le T_{\mathbf{b}} & \begin{cases} \text{if } \sigma_{\mathbf{s}}(t-1) = offer[x] \text{ with } x \le \operatorname{RP}_{\mathbf{b}} \text{ accept} \\ \text{otherwise} & exit \end{cases} \\ \tau_{\mathbf{b}} < t & exit \end{cases} \\ \sigma_{\mathbf{s}}^{*}(t) = \begin{cases} t = 0 & offer[x^{*}(0)] \\ 0 < t < T & \begin{cases} \text{if } \sigma_{\mathbf{b}}(t-1) = offer[x] \text{ with } x \ge (x^{*}(t))_{\leftarrow \mathbf{s}} \text{ accept} \\ \text{otherwise} & offer[x^{*}(t)] \end{cases} \\ \tau \le t \le T_{\mathbf{s}} & \begin{cases} \text{if } \sigma_{\mathbf{b}}(t-1) = offer[x] \text{ with } x \ge (x^{*}(t))_{\leftarrow \mathbf{s}} \text{ accept} \\ \text{otherwise} & offer[x^{*}(t)] \end{cases} \\ \tau \le t \le T_{\mathbf{s}} & \begin{cases} \text{if } \sigma_{\mathbf{b}}(t-1) = offer[x] \text{ with } x \ge \operatorname{RP}_{\mathbf{s}} \text{ accept} \\ \text{otherwise} & exit \end{cases} \end{cases} \end{cases} \end{cases}$$

Therefore, at equilibrium, the two agents will reach an agreement at the time t = 1 and the agreement price is $x^*(0)$. Agents' bargaining power depends on the order of proposing: the agent $\iota(T-1)$ that will act at the time point before the deadline has a stronger bargaining power, and the agent $\iota(T)$ gets a utility of 0.

3 One-to-many alternating-offers negotiation

3.1 Negotiation mechanism

In this section, we extend the alternating-offers protocol to capture the situation wherein there is one buyer agent **b** and a set $S = {s_1, ..., s_n}$ of *n* seller agents such that: 1) the items sold by the sellers are the same, 2) all the sellers have exactly one item to sell, and 3) the buyer is interested in buying exactly one item.

Our mechanism extends the alternating-offers protocol allowing the buyer to carry on more simultaneous negotiations, each one with a different seller. As in [6, 30, 37], a buyer synchronously negotiates with multiple sellers in discrete time. We use the term "negotiation thread" for the single bargaining between **b** and a seller s_i and we denote it by $\Im_{\mathbf{b}, s_i}$. Furthermore, we denote by $\iota(\Im_{\mathbf{b}, \mathbf{s}_i}, t)$ the agent that acts at *t* in the negotiation thread $\Im_{\mathbf{b}, \mathbf{s}_i}$.

We assume that if $\iota(\Im_{\mathbf{b},\mathbf{s}_i}, t) = \mathbf{b}$ then $\iota(\Im_{\mathbf{b},\mathbf{s}_j}, t) = \mathbf{b}$ for all *j*. That is, **b** simultaneously acts in all the negotiation threads. Therefore, if **b** is proposing at time *t*, $\iota(t) = \mathbf{b}$. Otherwise, $\iota(t) = S$.

We modify the alternating-offers mechanism by introducing an action *confirm* to avoid agents' non-reasonable behaviors. In the following we show an example of non-reasonable behavior in absence of such action. The sellers' action space is $A = \{offer[x], accept, exit, confirm\}$, whereas the buyer's action space is the Cartesian product $\times_{i=1}^{n} A$. Legal actions for the buyer are all the pure strategies $\sigma_{\mathbf{b}} = \langle \sigma_{\mathbf{b},\mathbf{s}_1}, \ldots, \sigma_{\mathbf{b},\mathbf{s}_n} \rangle$ such that: if $\sigma_{\mathbf{s}_i}(t-1) \neq accept$, then $\sigma_{\mathbf{b},\mathbf{s}_i}(t) \in \{offer[x], accept, exit\}$ except when t = 0, accept is not available, otherwise $\sigma_{\mathbf{b},\mathbf{s}_i}(t) \in \{confirm, exit\}$. Legal actions for the sellers are defined analogously: if $\sigma_{\mathbf{b},\mathbf{s}_i}(t-1) \neq accept$, then $\sigma_{\mathbf{s}_i}(t) \in \{offer[x], accept, exit\}$ except when t = 0, accept is not available, otherwise $\sigma_{\mathbf{s}_i}(t) \in \{confirm, exit\}$. The action confirm is allowed only after making the action accept.

The outcome of a single negotiation thread $\mathfrak{I}_{\mathbf{b},\mathbf{s}_i}$ is *NoAgreement* if either **b** or \mathbf{s}_i made *exit*, whereas it is an agreement (x, t) if $\sigma_{t(\mathfrak{I}_{\mathbf{b},\mathbf{s}_i},t)}(t) = confirm$, where x is such that $\sigma_{t(\mathfrak{I}_{\mathbf{b},\mathbf{s}_i},t-2)}(t-2) = offer[x]$. Notice that, in absence of the action *confirm*, if **b** makes offers to multiple sellers and all these accept, **b** must buy multiple items. In presence of the action *confirm*, **b** is in the position to choose only one contract. Summarily, in our mechanism the following process is needed for implementing an agreement: one agent proposes a price, the other agent accepts the offer, then the first agent confirms the contract made by the second agent. Without loss of generality, we assume that each seller's deadline is no less than 2, i.e., $T_{\mathbf{s}_i} \ge 2$.

The utility functions of the seller agents are exactly those defined in the previous section. However, we need to refine the utility function of **b**. This is because **b** can potentially buy more items, but is interested in only one item. We redefine **b**'s utility as follows. If **b** has reached more than one agreement, let (x_{first}, t_{first}) be the agreement such that, for any other agreement (x_j, t_j) , (1) $t_{first} \le t_j$ and (2) $x_{first} \le x_j$ if $t_{first} = t_j$. Let i_{first} be the seller involved in the agreement (x_{first}, t_{first}) . Agent **b**'s utility is defined over the set of agreements it reached:

$$U_{\mathbf{b}}(\{(x_i, t_i)\}) = \begin{cases} (\mathbf{RP}_{\mathbf{b}} - x_{first}) \cdot \delta_{\mathbf{b}}^{t_{first}} - \sum_{j \neq i_{first}} x_j & \text{if } t_{first} \leq T_{\mathbf{b}} \\ -\epsilon & \text{otherwise} \end{cases}$$

That is, **b** receives a positive utility from the first agreement, whereas all the other agreements reduce **b**'s utility. This will induce a rational buyer to reach at most one agreement.

3.2 Agents' equilibrium strategies

Let $S_{=t}$ be the set of sellers whose deadline is t, i.e., $S_{=t} = \{\mathbf{s}_i | T_{\mathbf{s}_i} = t\}$. Let S_t be the set of sellers which have no shorter deadline than t, i.e., $S_t = \{\mathbf{s}_i | T_{\mathbf{s}_i} \ge t\} = \bigcup_{t' \ge t} S_{=t'}$. Without loss of generality, we assume that the sellers S_t are ranked according to their reserve prices. We denote by S_t^i ($S_{=t}^i$) the seller with the i^{th} lowest reserve price in S_t ($S_{=t}$). Let $x_{\mathbf{b},\mathbf{s}_i}^*(t)$ be **b**'s optimal offer to \mathbf{s}_i at time t if $\iota(\Im_{\mathbf{b},\mathbf{s}_i}, t) = \mathbf{b}$ and $x_{\mathbf{s}_i,\mathbf{b}}^*(t)$ be \mathbf{s}_i 's optimal offer to agent **b** at time t if $\iota(\Im_{\mathbf{b},\mathbf{s}_i}, t) = \mathbf{s}_i$.

The negotiation deadline for the negotiation thread between **b** and \mathbf{s}_i is $T_{\mathbf{b},\mathbf{s}_i} = \min(T_{\mathbf{b}}, T_{\mathbf{s}_i})$. After $T_{\mathbf{b},\mathbf{s}_i}$, at least one agent will have no interest in reaching agreements. Obviously, the negotiation deadline for **b** is $T = \max_{\mathbf{s}_i \in S} \{T_{\mathbf{b},\mathbf{s}_i}\}$. We state the following lemma that allows us to reduce the complexity of the problem.

Lemma 1 It is **b**'s weakly dominant strategy to make the same offer to all the sellers in S_{t+2} at each time t.

Proof At t we consider only S_{t+2} since all the other sellers will not be interested in reaching agreements at t+2 and later. Consider the time point t wherein $\iota(t) = \mathbf{b}$. On the equilibrium path, at t agent **b** will expect to reach exactly one agreement, say $(x_{\mathbf{b}}^*(t+2), t+2)$, with a specific seller, say \mathbf{s}^* . Obviously, \mathbf{s}^* is the seller that will accept the highest offer. If **b** makes offers higher than $x_{\mathbf{b}}^*(t)$ to the other sellers, then these sellers will not accept such offers and therefore **b** cannot improve its utility. Analogously, if **b** makes offers lower than $x_{\mathbf{b}}^*(t)$ to the other sellers, it cannot improve its utility.

According to Lemma 1 we can assume, without loss of generality, that $x_{\mathbf{b},\mathbf{s}_i}^*(t) = x_{\mathbf{b},\mathbf{s}_j}^*(t)$ for all $\mathbf{s}_i, \mathbf{s}_j$. For simplicity, we denote such offer by $x_{\mathbf{b}}^*(t)$. We state the following theorem whose proof is reported in Appendix A.

Theorem 1 In the one-to-many negotiation, the sequences of equilibrium offers $x_{\mathbf{b}}^*$ and $x_{\mathbf{s}_i}^*$ are:

$$\begin{aligned} x_{\mathbf{b}}^{*}(t) &= \begin{cases} \operatorname{RP}_{\mathcal{S}_{t+2}^{1}} & t = T - 2 \text{ or } t = T_{\mathcal{S}_{t+2}^{1}} - 2 \\ \min\{(x_{\mathcal{S}_{t+2}^{1}}^{*}(t+1))_{\leftarrow \mathcal{S}_{t+2}^{1}}, \operatorname{RP}_{\mathcal{S}_{t+2}^{2}}\} \ t < T - 2 \text{ and } t \neq T_{\mathcal{S}_{t+2}^{1}} - 2 \end{cases}, \\ x_{\mathbf{s}_{i}}^{*}(t) &= \begin{cases} \max\{\operatorname{RP}_{\mathbf{s}_{i}}, \operatorname{RP}_{\mathcal{S}_{T}^{2}}\} & t = T - 2 \\ \max\{\operatorname{RP}_{\mathbf{s}_{i}}, \min\{\operatorname{RP}_{\mathcal{S}_{t+2}^{2}}, (x_{\mathbf{b}}^{*}(t+1))_{\leftarrow \mathbf{b}}\}\} \ t < T - 2 \end{cases}. \end{aligned}$$

Agent's equilibrium strategies are similar to those discussed in Section 2, but $\sigma_{\mathbf{b},\mathbf{s}_i}$ prescribes that:

- **b** accepts the offer x made by \mathbf{s}_i at t if: $x \leq (x_{\mathbf{b}}^*(t))_{\leftarrow \mathbf{b}}$ and x is the lowest received offer. If more than one seller has offered x, than **b** accepts the offer made by the seller with the lowest reserve price;
- **b** confirms an accept of \mathbf{s}_i at t if: $\sigma_{\mathbf{b}}(t-2) = offer[x]$ with $x \leq (x^*_{\mathbf{b}}(t))_{\leftarrow 2[\mathbf{b}]}$ and, among all the sellers that have accepted $\sigma_{\mathbf{b}}(t-2)$, \mathbf{s}_i is the one with the lowest reserve price;

and $\sigma_{\mathbf{b},\mathbf{s}_i}$ prescribes that:

- \mathbf{s}_i confirms the accept of \mathbf{b} at t if: $\sigma_{\mathbf{s}_i}(t-2) = offer[x]$ with $x \ge \max\{(x^*_{\mathbf{s}_i}(t))_{t \in 2[\mathbf{s}_i]}, \mathbb{RP}_{\mathbf{s}_i}\}$.

The computational complexity of the backward induction is $\mathcal{O}(nT)$ as the backward induction will go through all the time points and at each time point, each agent has at most three possible optimal actions. The equilibrium agreement is reached at t = 2 between **b** and S_2^1 and it is $(x_b^*(0), 2)$ if $\iota(0) = \mathbf{b}$ and $(x_{S_2^1}^*(0), 2)$ otherwise. It can be easily observed that $\operatorname{RP}_{S_2^1} \leq x_b^*(0), x_{S_2^1}^*(0) \leq \operatorname{RP}_{S_2^2}$. The result about agreement price is intuitive in the following sense: obviously, the agreement price cannot be lower than each seller's reserve price. But it also cannot be higher than the second lowest price as, if so, there is at least another seller who is willing to sell for less and make an agreement with the buyer. Therefore, market competition guarantees that the buyer can make an agreement by paying no more than $\operatorname{RP}_{S_2^2}$. The lower bound of agreement is due to the proposing ordering and agents'

deadlines. For example, if T = 2 and the buyer proposes at time t = 0, the buyer will propose $\operatorname{RP}_{S_2^1}$ and the agent S_2^1 will accept the offer at time t = 1. We can see that the market competition plays an important role in affecting negotiation results. The buyer can make an agreement with price at most $\operatorname{RP}_{S_2^2}$. With more sellers, the buyer can get better (at least not worse) negotiation result.

Let us remark an observation. Consider the situation wherein $\iota(0) = S$ and $x_{S_2^1}^* = \operatorname{RP}_{S_2^2}$. Although both S_2^1 and S_2^2 have the same equilibrium offer, i.e., $\operatorname{RP}_{S_2^2}$, the equilibrium strategy of **b** prescribes that **b** must accept only the offer made by S_2^1 . In the case **b** accepts the offer by S_2^2 or randomizes over accepting those offers, S_2^{1*} soptimal action at t = 0 does not exist, being $\lim_{\varepsilon \to 0} (S_2^2 - \varepsilon)$ with $\varepsilon \neq 0$. We can state the following theorem which is a direct consequence of the above observation and of the equilibrium uniqueness in bilateral alternating-offers.

Theorem 2 Agents' strategies on the equilibrium path are unique except when $\operatorname{RP}_{S_2^1} = \operatorname{RP}_{s_i}$ for more than one *i*.

Notice that, when the reserve price of more sellers is equal to $\text{RP}_{S_2^1}$, all these sellers will offer their reserve price and **b** can accept any single offer among these. However, it can be easily observed that all the equilibria are equivalent in terms of agents' payoffs, **b** receiving the same utility in all the equilibria. As we assume that agents have different reserve prices, the equilibrium is unique.

Figure 1 shows an example of backward induction construction with $\operatorname{RP}_{\mathbf{b}} = 1$, $\operatorname{RP}_{\mathbf{s}_1} = 0$, $\operatorname{RP}_{\mathbf{s}_2} = 0.2$, $\delta_{\mathbf{b}} = 0.8$, $\delta_{\mathbf{s}_1} = 0.7$, $\delta_{\mathbf{s}_2} = 0.8$, $T_{\mathbf{b}} = 10$, $T_{\mathbf{s}_1} = 11$, $T_{\mathbf{s}_2} = 7$. We report in the figure for any time point *t* the optimal offer $x_{\mathbf{a}}^*(t)$ that $\iota(t)$ can make; the dashed lines are sellers' optimal offers if there is only one seller. The time point from which we can apply the backward induction method is T = 10 at which **b** will confirm the agreement made at t = 9. At t = 9 agent \mathbf{s}_1 will accept any offer equal to or higher than its reserve price $\operatorname{RP}_{\mathbf{s}_1} = 0$. The optimal offer $x_{\mathbf{b}}^*(8)$ of **b** at t = 8 is thus $\operatorname{RP}_{\mathbf{s}_1} = 0$. \mathbf{s}_1 's optimal offer $x_{\mathbf{s}_1}^*(7)$ at t = 7 is $(x_{\mathbf{b}}^*(8))_{\leftarrow \mathbf{b}} = \operatorname{RP}_{\mathbf{b}} - (\operatorname{RP}_{\mathbf{b}} - x_{\mathbf{b}}^*(8))\delta_{\mathbf{b}} = 0.2$. **b**'s optimal offer at time t = 6 is then $x_{\mathbf{b}}^*(6) = (x_{\mathbf{s}_1}^*(7))_{\leftarrow \mathbf{s}_1} = 0.14$. At time t = 5, another seller \mathbf{s}_2 can make an offer (note that t = 5 is the last time \mathbf{s}_2 can make an offer as it needs another two rounds to accept and confirm an agreement). \mathbf{s}_1 and \mathbf{s}_2 will compete with each other and their optimal offers aren't $(x_{\mathbf{b}}^*(6))_{\leftarrow \mathbf{b}} = 0.312$ as one seller has an incentive to choose a lower price if the other seller choose $(x_{\mathbf{b}}^*(6))_{\leftarrow \mathbf{b}} = 0.312$. The equilibrium optimal price for the two sellers is $x_{\mathbf{s}_1}^*(5) = x_{\mathbf{s}_2}^*(5) = \operatorname{RP}_{\mathcal{S}_{1-5+2}}^2 = \operatorname{RP}_{\mathbf{s}_2} = 0.2$. The process continues to the initial time point t = 0 where **b**'s optimal offer is $x_{\mathbf{b}}^*(0) = 0.14$.

There are some other mechanisms which can be used to implement contracts between buyer **b** and sellers S. Here we compare our model with the following mechanisms:

- Bilateral bargaining without outside option: Rubinstein's bilateral bargaining does not offer any mechanism to capture competition between sellers. In order to compare outcomes from bilateral bargaining with respect to outcomes from our mechanism, suppose that **b** is able to choose the seller with which to negotiate. In our mechanism the buyer **b** gains as in bilateral bargaining without outside option when the sequence of optimal offers $x^*(t)$ in the bilateral negotiation between **b** and S_2^1 is such that $x_i^*(t) \leq \text{RP}_{S_2^2}$, otherwise the buyer **b** gains more in our mechanism.

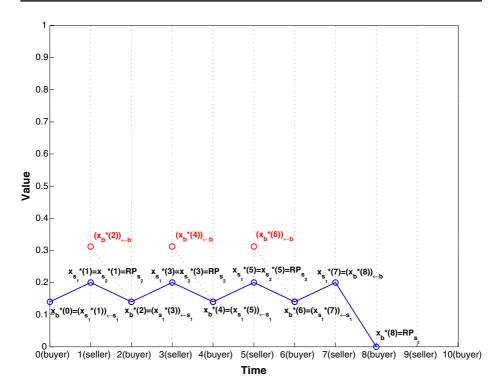


Fig. 1 Backward induction construction with $\text{RP}_{\mathbf{b}} = 1$, $\text{RP}_{\mathbf{s}_1} = 0$, $\text{RP}_{\mathbf{s}_2} = 0.2$, $\delta_{\mathbf{b}} = 0.8$, $\delta_{\mathbf{s}_1} = 0.7$, $\delta_{\mathbf{s}_2} = 0.8$, $T_{\mathbf{b}} = 10$, $T_{\mathbf{s}_1} = 11$, $T_{\mathbf{s}_2} = 7$; at each time point *t* the optimal offer $x_{\mathbf{a}}^*(t)$ that $\iota(t)$ can make is marked; the dashed lines are sellers' optimal offer if there is only one seller

- Bilateral bargaining with outside option: In our mechanism the buyer gains no less than in bilateral bargaining with outside option in which an agent can leave the bilateral negotiation it is currently carrying on and negotiate with a different opponent [10]. We report an example. Consider the situation where there are two sellers with the same reservation price RP_s and any deadline no smaller than 2. In bilateral bargaining with outside option the agreement price is strictly larger than RP_s , instead in our protocol the agreement price is exactly RP_s .
- VCG auction: Since VCG auction does not take into account any temporal issues (no deadline and no discount factor), we limit our comparison to the agreement price. In VCG mechanism the agreement price is exactly $\text{RP}_{S_2^2}$, whereas in our bargaining model the buyer's agreement price falls between $[\text{RP}_{S_2^1}, \text{RP}_{S_2^2}]$. That is, the buyer achieved higher utility within our model which is also efficient.

3.3 Equilibrium outcome computation and uncertain information

We initially focus on the computation of the equilibrium outcome with complete information. Although agents' equilibrium strategies depend on the values of the parameters of all the agents, for a large subset of the space of the parameters the equilibrium outcome depends on the values of a narrow number of parameters. We have the following theorem whose proof is in Appendix B. **Theorem 3** When 1) $T_{S_2^2} > 2$ if $\iota(0) = \mathbf{b}$ and 2) (RP_s) $_{\leftarrow S_2^1 \mathbf{b}} \ge \text{RP}_s$ for any seller $\mathbf{s} \in S$, the equilibrium outcome depends only on the parameters of \mathbf{b} (i.e., RP_b, $\delta_{\mathbf{b}}$, $T_{\mathbf{b}}$), S_2^1 (i.e., RP_{S_2^1}, $\delta_{S_2^1}$, $T_{S_2^1}$), and on the reserve price RP_{S_2^2} of S_2^2 . In these situations the equilibrium outcome can be produced as follows:

- 1. finding the sequence of the optimal offers under the assumption that S_2^1 is the unique seller, say y(t), and
- 2. assigning $x_{\mathbf{b}}^*(0) = \min\{y(0), (\operatorname{RP}_{S_2^2})_{\leftarrow S_2^1}\}$ if $\iota(0) = \mathbf{b}$ and assigning $x_{S_2^1}^*(0) = \min\{y(0), \operatorname{RP}_{S_2^2}\}$ if $\iota(0) = S$.

This is to say that the equilibrium outcome does not depend on the values of $\delta_{S_2^2}$, $T_{S_2^2}$, and on the parameters of all the other sellers. This is of paramount importance since complex settings with a high degree of uncertainty can be easily solved when 1) $T_{S_2^2} > 2$ if $\iota(0) = \mathbf{b}$ and 2) (RP_s)_{$\leftarrow S_2^1 \mathbf{b} \ge \mathbf{RP_s}$ for any seller $\mathbf{s} \in S$. Indeed, the above algorithm produces the equilibrium outcome even when $\delta_{S_2^i}$ with i > 1, $T_{S_2^i}$ with i > 1, and $\operatorname{RP}_{S_2^i}$ with i > 2 are uncertain. We can write the condition (RP_{S_2^2})_{$\leftarrow S_2^1 \mathbf{b} \ge \operatorname{RP}_{S_2^2}$ as}}

$$(\mathrm{RP}_{\mathbf{b}} - \mathrm{RP}_{\mathcal{S}_{2}^{1}}) \ge (\mathrm{RP}_{\mathcal{S}_{2}^{2}} - \mathrm{RP}_{\mathcal{S}_{2}^{1}}) \frac{1 - \delta_{\mathbf{b}} \delta_{\mathcal{S}_{2}^{1}}}{1 - \delta_{\mathbf{b}}}.$$

It can be easily observed that, in common real-world settings where $\operatorname{RP}_{\mathcal{S}_2^2}$ and $\delta_{\mathcal{S}_2^1}$ is close to 1, the above condition is satisfied.

Now, we focus on the uncertainty over **b**'s and S_2^1 's parameters. The values of these parameters affect the equilibrium outcome and therefore in presence of uncertainty over them we need to compute agents' equilibrium strategies to derive the equilibrium outcome. Currently, the literature provides algorithms to compute agents' equilibrium strategies only in bilateral settings without outside option with one-sided uncertainty over deadlines [20]. We recall that, since the number of available actions is infinite, no algorithms such as Lemke-Howson [41] can be employed to compute a sequential equilibrium.

When $\operatorname{RP}_{S_2^2} \leq (\operatorname{RP}_{S_2^2})_{\leftarrow S_2^1 \mathbf{b}}$, the algorithm presented in [20] can be easily extended to capture uncertainty in one-to-many bargaining. More precisely, we have that:

- when $T_{\mathbf{b}}$ is uncertain, whereas $T_{S_2^1}$ is certain, then agents' equilibrium strategies can be produced by employing the algorithm presented in [20] where the buyer is **b** and the seller is S_2^1 and upper bounding the optimal offers to $\operatorname{RP}_{S_2^2}$ if $\iota(0) = \mathbf{b}$ and to $(\operatorname{RP}_{S_2^2})_{\leftarrow S_2^1}$ if $\iota(t) = S$;
- when $T_{S_2^1}$ is uncertain, whereas $T_{\mathbf{b}}$ is certain, then agents' equilibrium strategies can be computed.

Settings with a higher degree of uncertainty, such as when both T_b and $T_{S_2^1}$ are uncertain, need further exploration.

The results discussed above show that the analytical complexity of one-to-many bargaining is drastically less complicated than that of bilateral bargaining with outside option. This allows one to drastically reduce the search space and makes the computation easy. Therefore, one-to-many bargaining seems more appropriate for real-world settings when computational issues should be considered.

4 Many-to-many alternating-offers negotiation

4.1 Negotiation mechanism

In this section, we propose a bargaining model for many-to-many negotiation where *m* buyer agents $\mathcal{B} = \{\mathbf{b}_1, \ldots, \mathbf{b}_m\}$ negotiate *n* seller agents $\mathcal{S} = \{\mathbf{s}_1, \ldots, \mathbf{s}_n\}$. In this case, both buyers and sellers face competition and multiple contracting opportunities. Again, we assume that the items sold by the sellers or bought by buyers are equal, and each agent has only one item to buy or sell. For ease of analysis, we assume that the reserve price of each buyer is no less than the reserve price of each seller, i.e., $\text{RP}_{\mathbf{b}_j} \ge \text{RP}_{\mathbf{s}_i}$. However, our analysis can be extended to handle the case where some buyers' reserve prices are lower than some sellers' reserve prices where the negotiation mechanism can be still efficient.

In the many-to-many negotiation case, each agent concurrently negotiates with many trading partners. Agent \mathbf{b}_j 's concurrent negotiation includes at most *n* threads $\mathfrak{I}_{\mathbf{b}_j,\mathbf{S}_i} = \{\mathfrak{I}_{\mathbf{b}_j,\mathbf{s}_i} | \mathbf{s}_i \in S\}$, where $\mathfrak{I}_{\mathbf{b}_j,\mathbf{s}_i}$ represents the negotiation thread between \mathbf{b}_j and seller \mathbf{s}_i . We still assume that, at each time, either the buyers propose to all the sellers ($\iota(t) = \mathcal{B}$) or the sellers propose to all the buyers ($\iota(t) = \mathcal{S}$). Similarly, let $\mathcal{B}_{=t}$ be the set of buyers than *t*, i.e., $\mathcal{B}_{=t} = \{\mathbf{b}_j | T_{\mathbf{b}_j} = t\}$. Let \mathcal{B}_t be the set of buyers whose deadlines are not shorter deadline than *t* and \mathcal{B}_t^i ($\mathcal{B}_{=t}^i$) is the buyer with the *i*th highest reserve price in \mathcal{B}_t ($\mathcal{B}_{=t}$).

We still use action *confirm* to avoid one agent's making more than one final agreement. Buyers and sellers' action space and agents' legal actions at each time are the same as that in one-to-many negotiation. The utility functions of the buyer agents are exactly those defined in the previous section. However, we need to refine the utility function of \mathbf{s}_i as it can potentially sell more items, but it has only one item to sell. We redefine \mathbf{s}_i 's utility as follows. If \mathbf{s}_i has reached more than one final agreement, it gets a utility of $-\infty$. Otherwise, it's utility is the same as that in bilateral negotiation. Therefore, \mathbf{s}_i will make at most one final agreement.

4.2 Agents' equilibrium strategies

The negotiation deadline for the negotiation between agent \mathbf{b}_j and seller \mathbf{s}_i is $T_{\mathbf{b}_j,\mathbf{s}_i} = \min(T_{\mathbf{b}_j}, T_{\mathbf{s}_i})$. The negotiation deadline for the agent \mathbf{b}_j is $T_{\mathbf{b}_j,\mathcal{S}} = \max_{\mathbf{s}_i \in \mathcal{S}} T_{\mathbf{b}_j,\mathbf{s}_i}$. Let $x^*_{\mathbf{b}_j,\mathbf{s}_i}(t)$ be \mathbf{b}_j 's optimal offer to agent \mathbf{s}_i at t if $\iota(t) = \mathcal{B}$ and $x^*_{\mathbf{s}_i,\mathbf{b}_j}(t)$ be \mathbf{s}_i 's optimal offer to agent \mathbf{b}_i at time t if $\iota(t) = \mathcal{S}$.

Lemma 2 It is each agent's dominant strategy to propose the same price to all the trading partners at each time t.

Proof The proof is the same as the proof of Lemma 1.

Then we use $x_{\mathbf{b}_{j}}^{*}(t)$ for short to represent \mathbf{b}_{j} 's optimal offer at t if $\iota(t) = \mathcal{B}$ and use $x_{\mathbf{s}_{i}}^{*}(t)$ to represent \mathbf{s}_{i} 's optimal offer at time t if $\iota(t) = \mathcal{S}$.

Lemma 3 In equilibrium, agents of the same type should have the same equilibrium winning price (a price acceptable to agents of the different type).

Proof Let's prove this by contradiction. Assume two buyers have different winning prices at some time t, i.e., the lowest price acceptable to any seller. Then the seller who is willing to

accept the lower winning price should change to accept the higher winning price. Therefore, the two winning prices are not in equilibrium. \Box

The main difficulty in deriving agents' equilibrium strategies in many-to-many negotiation is due to the existence of agents will shorter deadlines and tie-breaking. Assume that we are solving a subgame starting from time t and the buyers will make offers at time t. For ease of analysis, here we assume that \mathcal{B}_{t+2} and \mathcal{S}_{t+2} are bargaining in the subgame, i.e., no agent with deadline no less than t + 2 has make an agreement in the previous negotiation from the beginning to time t. For computing buyers' equilibrium offers at time t in the subgame, buyers need to propagate the sellers' equilibrium offers at time t + 1 which depend on the set of buyers which will continue to negotiate at time t + 1 as at time t + 1, sellers $\mathcal{S}_{=t+2}$ with deadline t + 2 are willing to accept any offer that is not higher than their reserve prices. It is possible that k buyers' offers are accepted by sellers in $\mathcal{S}_{=t+2}$ and it follows that $0 \le k \le \min{\{\mathcal{B}_{t+2}, |\mathcal{S}_{=t+2}|\}}$. Given each possible k, we can first compute the equilibrium of the subgame starting from time t + 1 with $|\mathcal{B}| - k$ buyers.

Given a k value, we still need to decide the set of k buyers whose offers will be accepted by sellers in $S_{=t+2}$ in equilibrium. Here we assume that sellers $S_{=t+2}$ will accept buyers' offers (we call these buyers 'buyers minimizing seller equilibrium winning offer') so that sellers' equilibrium winning offer at time t + 1 is the smallest. Let $x_{S}^{*}(t + 1, k, \mathcal{B}_{t+3})$ be the sellers' lowest equilibrium winning offer at time t + 1 to $|\mathcal{B}_{t+3}| - k$ buyers in \mathcal{B}_{t+3} . We can try all subsets of buyers of size $|\mathcal{B}_{t+3}| - k$. The next question is how to find value $0 \le k \le \min\{|\mathcal{B}_{t+2}|, |\mathcal{S}_{=t+2}|\}$ such that the derived strategy for the subgame from time t is an equilibrium. While we can try different k values and compute the equilibria in the subgames and check whether we can construct equilibrium strategies, we can see that it is not necessary to enumerate different values of k. Consider the following example subgame from time t: 1) there are two sellers with deadline t + 2 and their reserve prices are 10; 2) there are another 2 sellers with deadline longer than t + 2 and their reserve prices are 5; and 3) there are only two buyers with deadlines longer than t + 2. For this example, the only possible equilibrium is the one with k = 0 as if one of the sellers with deadline t + 2makes an agreement, some sellers with deadline longer than t+2 fail to make an agreement, which is impossible in an equilibrium as sellers with deadline longer than t + 2 have smaller reserve prices (thus the buyers have an incentive to propose a price less than 10 which will be accepted). Therefore, in an equilibrium, the value if k (call it k^*) is the minimum of $|\mathcal{S}_{=t+2}|$ and the number of sellers in $\mathcal{S}_{=t+2}$ which are among the first $|\mathcal{B}_{t+2}|$ sellers in \mathcal{S}_{t+2} assuming that S_{t+2} are ordered in increasing order of their reserve prices.

For the case that the sellers S_{t+2} are making offers to B_{t+2} (still assuming no agent has made any agreement before time *t*) at time *t* for the subgame starting from time *t*, we can compute sellers' equilibrium offers in the same way. We still assume that k^* buyers in $B_{=t+2}$ will accept sellers' offers (we call these sellers 'sellers maximizing buyer equilibrium winning offer') so that buyers' equilibrium winning offer at time t + 1 is the highest. We can find k^* in consideration the reserve prices of $B_{=t+2}$ and B_{t+2} in the same way as we discussed above.

We state the following theorem about agents' equilibrium strategy whose proof is in Appendix C. Before presenting the theorem, we define \mathcal{Y}_i (\mathcal{Y}^i) as the *i*th smallest (largest) value in the value set \mathcal{Y} .

Theorem 4 In the many-to-many negotiation subgame at time t with buyers \mathcal{B} and sellers \mathcal{S} (assuming all agents have deadline no less than t + 2), the sequences of equilibrium offers $x_{\mathbf{b}_i}^*(t) = \min(\mathrm{RP}_{\mathbf{b}_i}, x_{\mathcal{B}}^*(t))$ and $x_{\mathbf{s}_i}^*(t) = \max(\mathrm{RP}_{\mathbf{s}_i}, x_{\mathcal{S}}^*(t))$ where $x_{\mathcal{B}}^*(t)$ and $x_{\mathcal{S}}^*(t)$

are equilibrium winning offers defined as (for brevity, $\operatorname{RP}_{\mathcal{S}_{t+2}^{|\mathcal{B}_{t+2}|+1}}$ is defined as $+\infty$ and $\operatorname{RP}_{\mathcal{B}}|_{\mathcal{S}_{t+2}^{t+2|+1}}$ is defined as $-\infty$ when $|\mathcal{S}_{t+2}| = |\mathcal{B}_{t+2}|$):

$$x_{\mathcal{B}}^{*}(t) = \begin{cases} \operatorname{RP}_{\mathcal{S}_{T}^{|\mathcal{B}_{T}|}} & t = T - 2 \& |\mathcal{B}_{T}| \leq |\mathcal{S}_{T}| \\ \operatorname{RP}_{\mathcal{B}_{T}^{|\mathcal{S}_{T}|+1}} & t = T - 2 \& |\mathcal{B}_{T}| > |\mathcal{S}_{T}| \\ \max \left\{ \operatorname{RP}_{\mathcal{B}_{t+2}^{|\mathcal{S}_{t+2}|+1}}, \left\{ \left\{ (x_{\mathbf{s}_{i}}^{*}(t+1,k^{*},\mathcal{B}))_{\leftarrow \mathbf{s}_{i}} \right\} \\ |\mathbf{s}_{i} \in \mathcal{S}_{t+3} \right\} \cup \left\{ \operatorname{RP}_{\mathbf{s}_{i}} |\mathbf{s}_{i} \in \mathcal{S}_{=t+2} \right\} \right\}_{|\mathcal{S}_{t+2}|} \right\} & t < T - 2 \& |\mathcal{B}_{t+2}| > |\mathcal{S}_{t+2}| \\ \min \left\{ \operatorname{RP}_{\mathcal{S}_{t+2}^{|\mathcal{B}_{t+2}|+1}}, \left\{ \left\{ (x_{\mathbf{s}_{i}}^{*}(t+1,k^{*},\mathcal{B}))_{\leftarrow \mathbf{s}_{i}} |\mathbf{s}_{i} \in \mathcal{S}_{t+3} \right\} \cup \right. \\ \left\{ \operatorname{RP}_{\mathbf{s}_{i}} |\mathbf{s}_{i} \in \mathcal{S}_{=t+2} \right\}_{|\mathcal{B}_{t+2}|} \right\} & t < T - 2 \& |\mathcal{B}_{t+2}| \leq |\mathcal{S}_{t+2}| \\ \left\{ \operatorname{RP}_{\mathcal{S}_{i}^{|\mathcal{B}_{T}|+1}} & t = T - 2 \& |\mathcal{S}_{T}| \leq |\mathcal{B}_{T}| \\ \operatorname{RP}_{\mathcal{S}_{T}^{|\mathcal{B}_{T}|+1}} & t = T - 2 \& |\mathcal{S}_{T}| > |\mathcal{B}_{T}| \\ \min \left\{ \operatorname{RP}_{\mathcal{S}_{t+2}^{|\mathcal{B}_{t+2}|+1}}, \left\{ \left\{ (x_{\mathbf{b}_{j}}^{*}(t+1,k^{*},\mathcal{S}))_{\leftarrow \mathbf{b}_{j}} \\ |\mathbf{b}_{j} \in \mathcal{B}_{t+3} \right\} \cup \left\{ \operatorname{RP}_{\mathbf{b}_{j}} |\mathbf{b}_{j} \in \mathcal{B}_{=t+2} \right\} \right\}^{|\mathcal{B}_{t+2}|} \\ \max \left\{ \operatorname{RP}_{\mathcal{B}_{t+2}^{|\mathcal{S}_{t+2}|+1}}, \left\{ \left\{ (x_{\mathbf{b}_{j}^{*}(t+1,k^{*},\mathcal{S}))_{\leftarrow \mathbf{b}_{j}} \\ |\mathbf{a}_{i+2} & t < T - 2 \& |\mathcal{S}_{i+2}| > |\mathcal{B}_{i+2}| \\ \left\{ \operatorname{RP}_{\mathbf{b}_{j}} |\mathbf{b}_{j} \in \mathcal{B}_{=t+2} \right\}^{|\mathcal{S}_{t+2}|} \right\} \\ t < T - 2 \& |\mathcal{S}_{t+2}| \leq |\mathcal{B}_{t+2}| \right\} \end{cases}$$

Agents' equilibrium strategies are similar to those discussed in Section 3, but $\sigma_{\mathbf{b}_j,\mathbf{s}_i}$ prescribes that:

- At time t, a buyer \mathbf{b}_j can accept the offer x made by \mathbf{s}_i if 1) $x \leq (x_{\mathbf{b}_j}^*(t))_{\leftarrow \mathbf{b}_j}$ when $t < T_{\mathbf{b}_j} 1$; or 2) $x \leq \operatorname{RP}_{\mathbf{b}_j}$ when $t = T_{\mathbf{b}_j} 1$. If there are multiple highest acceptable offers at time $t = T_{\mathbf{b}_j} 1$, the buyer accepts the seller's offer if the seller is not one of the sellers maximizing buyer equilibrium winning offer at time t + 1. In case of ties, we assume a simple tie-breaking mechanism (e.g., based on reserve price) for matching buyers and sellers.
- \mathbf{b}_j confirms an accept of \mathbf{s}_i at t if \mathbf{s}_i is the seller which should accept \mathbf{b}_j 's offer at time t + 1 by the tie-breaking mechanism.

and $\sigma_{\mathbf{s}_i,\mathbf{b}_i}$ can be defined in the same way.

The computational complexity of the backward induction is $\mathcal{O}(2^{\min(m,n)}T)$ as the backward induction will go through all combinations of subsets of buyers or sellers while computing the equilibrium strategy at each time point. It is easy to see that the bargaining agreement in the many-to-many negotiation is $(x_{\mathcal{B}}^*(0), 2)$ if $\iota(0) = \mathcal{B}$ and is $(x_{\mathcal{S}}^*(0), 2)$ if $\iota(0) = \mathcal{S}$. In addition, when the number of buyers is not equal to the number of sellers, the market competition affects the equilibrium price in the following way: if the number of buyers is less than the number of sellers, the buyers have larger bargaining power which increases with the number of sellers and decreases with the number of buyers. In contrast, if the number of buyers is larger than the number of sellers, the buyers have less bargaining power. The proposing order also affects the equilibrium price.

Figure 2 shows an example of backward induction construction in many-to-many negotiation. The setting in Fig. 2 is the same as that in Fig. 1 except that there is another buyer **b**' with parameters $\text{RP}_{\mathbf{b}'} = 0.9$, $\delta_{\mathbf{b}'} = 0.7$, and $T_{\mathbf{b}'} = 6$. We report in the figure for any time *t* the optimal offer $x_{\mathcal{B}}^*(t)$ or $x_{\mathcal{S}}^*(t)$. At time t = 4, **b**' can make an offer to compete with buyer

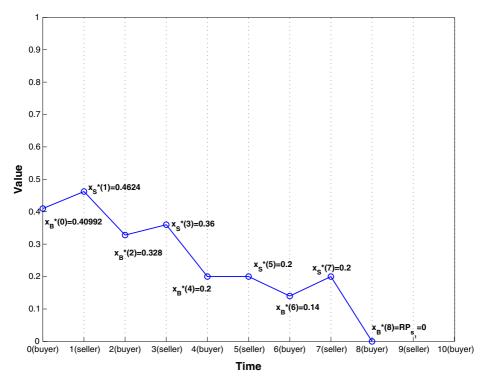


Fig. 2 Backward induction construction. At each time t the optimal offer $x_{\mathcal{B}}^{*}(t)$ or $x_{\mathcal{S}}^{*}(t)$ is marked

b. Thus we have $x_{\mathcal{B}}^*(4) = \{(x_{s_1}^*(5))_{\leftarrow s_1}, (x_{s_2}^*(5))_{\leftarrow s_2}\}_2 = \{0.14, 0.2\}_2 = 0.2$. The process continues to the initial time point t = 0 where $x_{\mathcal{B}}^*(0) = 0.40992$.

While there is two-sided competition in the market, market mechanisms like double auction can be used for resource allocation. The double auction is one of the most common exchange institutions where both sellers and buyers submit bids which are then ranked highest to lowest to generate demand and supply profiles. Double auctions permit multiple buyers and sellers to bid to exchange a designated commodity. Some double auction mechanisms (e.g., BBDA [16]) have been applied to trading in markets. A market mechanism is *efficient* if the goods are transferred to agents that value them most.

Theorem 5 The many-to-many negotiation is efficient.

Proof This result is straightforward. Assume there are sellers \mathbf{s}_i and \mathbf{s}_j such that $\operatorname{RP}_{\mathbf{s}_i} > \operatorname{RP}_{\mathbf{s}_j}$. It is impossible that seller \mathbf{s}_i makes an agreement but seller \mathbf{s}_j fails as seller \mathbf{s}_j can make an offer lower than $\operatorname{RP}_{\mathbf{s}_i}$ and thus gains a contract with positive revenue.

In a market consisting of two sets of agents, matching algorithms can also be used to solve agents' conflicts of resource requirements. Then we require a matching to be *stable*, i.e., it left no pair of agents on opposite sides of the market who were not matched to each other but would both prefer to be. Many-to-many negotiation allows one to avoid studying matching mechanisms since each agent is implicitly matched with all its trading partners.

4.3 Considerations on settings with uncertain information

In this section we provide some considerations on the preliminary analysis of many-to-many bargaining with uncertainty over agents' parameters. The result discussed in Section 3.3 can be treated as a special case for many-to-many bargaining. With more buyers, the agreement price will increase due to the increasing competition between buyers. For the bargaining between buyers \mathcal{B} and sellers \mathcal{S} , it can be found from Theorem 4 that the agreement price depends on the reserve price of at least min{ $|\mathcal{B}|, |\mathcal{S}|$ } buyers and min{ $|\mathcal{B}|, |\mathcal{S}|$ } sellers. Although the many-to-many bargaining setting is intrinsically very complicated, the problem of finding the equilibrium outcome can be drastically simplified in some special cases.

Theorem 6 In the following many-to-many bargaining scenarios in which $|\mathcal{B}| < |\mathcal{S}|$, the negotiation outcome only depends on the parameters of \mathcal{B} and at most $|\mathcal{B}| + 1$ sellers:

- 1. The sellers having a reserve price no higher than the $\operatorname{RP}_{S_2^{|\mathcal{B}|+1}}$ have the same deadline T' such that $\iota(T') = \mathcal{S}$.
- 2. At each time t, the seller set S_{t+2} includes all the sellers with a reserve price no higher than $\operatorname{RP}_{S_2^{|\mathcal{B}_{t+2}|+1}}$.
- *Proof Case 1*: At time T' 2, the value of $x_{\mathcal{S}}^*(T' 2)$ should be no higher than $\operatorname{RP}_{S_2^{|\mathcal{B}|+1}}$ and is independent of the reserve prices of sellers having a reserve price higher than $\operatorname{RP}_{S_2^{|\mathcal{B}|+1}}$. At time t = T' 3, the value of $x_{\mathcal{B}}^*(t)$ will also be no higher than $\operatorname{RP}_{S_2^{|\mathcal{B}|+1}}$. Recursively, we can find that the value of $x_{\mathcal{B}}^*(t)$ at time t < T' 3 will be no higher than $\operatorname{RP}_{S_2^{|\mathcal{B}|+1}}$ and is independent of the reserve prices of sellers having a reserve price higher than $\operatorname{RP}_{S_2^{|\mathcal{B}|+1}}$.
- Case 2: We can prove the result in the same way as in the proof of Case 1.

Thus, the negotiation outcome only depends on a small number of parameters in some special cases. The complexity of solving complete information bargaining and incomplete information bargaining can be reduced.

5 Uncertainty about reserve prices

Bargaining with uncertainty is a challenging problem (even for the bilateral setting) due to a number of reasons. First, the appropriate solution concept for an extensive-form incomplete information game is Kreps and Wilson's *sequential equilibrium* [27]. In a sequential equilibrium there is a sort of circularity between the belief system and strategies: strategies must be *sequentially rational* given the belief system and belief system must be *consistent* with respect to strategies. The circularity makes it difficult to find out a sequential equilibrium. For example, the strategies found by backward induction method (e.g., [14, 15]) are not guaranteed to be sequentially rational given the designed system of beliefs [20]. Second, in bargaining problems, agents' strategy space is continuous, which makes the it impossible to apply this operational research inspired algorithms (e.g., [28]) which focus on games with finite number of strategies. The literature provides approaches for very restrictive cases. Gatti et al. [20] analyzed bilateral bargaining with one-sided uncertain deadlines. Our previous paper [2] presented a search based approach for finding sequential equilibrium in bilateral bargaining with two-type uncertainty.

In this section we analyze agents' rational strategies in concurrent negotiation with incomplete information. More specifically, we focus on the situation that one buyer **b** is negotiating with a number of sellers S and there is two-type uncertainty about the buyer's reserve price. We extend our algorithm for bilateral bargaining to handle concurrent negotiation. Uncertainty with reserve prices is similar to uncertainty with discounting factors, our solution can be applied to many-to-many negotiation with uncertain discounting factors. We also discuss how to extend our analysis to many-to-many negotiation and multi-type uncertainty at the end of this section.

5.1 Introducing uncertainty

With uncertain information, the appropriate solution concept for an extensive-form game is Kreps and Wilson's *sequential equilibrium* [27]. A sequential equilibrium is a pair $a = \langle \mu, \sigma \rangle$ (also called an assessment) where μ is a belief system that specifies how agents' beliefs evolve during the game and σ specifies agents' strategies. At an equilibrium μ must be *consistent* with respect to σ and σ must be *sequentially rational* given μ .

In this section we assume that the buyer **b** can be of two types: buyer \mathbf{b}_h with a reserve price RP_h and buyer \mathbf{b}_l with a reserve price RP_l such that $\operatorname{RP}_h > \operatorname{RP}_l$. We assume that each seller **s** has the initial belief about the type of the buyer **b**. Thus, the initial belief of any seller **s** on **b** is $\mu(0) = \langle \Delta_{\mathbf{b}}^0, P_{\mathbf{b}}^0 \rangle$ where $\Delta_{\mathbf{b}}^0 = \{\mathbf{b}_h, \mathbf{b}_l\}$ and $P_{\mathbf{b}}^0 = \{\omega_{\mathbf{b}_h}^0, \omega_{\mathbf{b}_l}^0\}$ where $\omega_{\mathbf{b}_h}^0$ ($\omega_{\mathbf{b}_l}^0$, respectively) is the *priori* probability that **b** is of type \mathbf{b}_h (\mathbf{b}_l , respectively). It follows that $\omega_{\mathbf{b}_h}^0 + \omega_{\mathbf{b}_l}^0 = 1$. During bargaining, seller **s**'s belief will evolve using the Bayes rule. It's easy to see that in incomplete information bargaining, it's still a weekly dominant strategy for the buyer **b** to make the same offer to all the sellers. Therefore, different sellers' beliefs about the type of buyer **b** will always be the same at any time *t*. The belief of **s** on the type of **b** at time *t* is $\mu(t)$. The probability assigned by **s** to $\mathbf{b} = \mathbf{b}_h$ at time *t* is denoted $\omega_{\mathbf{b}_h}^t$; the probability assigned to $\mathbf{b} = \mathbf{b}_l$ is $\omega_{\mathbf{b}_l}^t = 1 - \omega_{\mathbf{b}_h}^t$. Given an assessment $a = \langle \mu, \sigma \rangle$, there are two possible bargaining outcomes: outcome $o_{\mathbf{b}_h}$ if $\mathbf{b} = \mathbf{b}_h$ and $o_{\mathbf{b}_l}$ if $\mathbf{b} = \mathbf{b}_l$. We denote bargaining outcome as $o = \langle o_{\mathbf{b}_h}, o_{\mathbf{b}_l} \rangle$.

With pure strategies, buyer types' possible behaviors regarding whether they behave in the same way on the equilibrium path at each decision making node are finite. We use the term "choice rule" to characterize agents' strategies regarding whether they behave in the same way at a specific decision making point. Easily, at a decision making node \mathbf{b}_l and \mathbf{b}_h can make the same offer (in this case, choice rules are said *pooling*) or can make different offers (in this case, choice rules are said *separating*). On the basis of this consideration, we can make some assumptions over the belief system without loosing generality. On the equilibrium path $\mu(t) = \langle \Delta_{\mathbf{b}}^t, P_{\mathbf{b}}^t \rangle$ of **s** on **b** at any time *t* is one the following. After a time point t where buyer types' choice rule is pooling, $\mu(t+1) = \mu(t)$, i.e., $\Delta_{\mathbf{b}}^{t+1} = \Delta_{\mathbf{b}}^{t}$ and $P_{\mathbf{b}}^{t+1} = P_{\mathbf{b}}^{t}$. After a time point t where buyer types' choice rule is separating, there could be two possible beliefs: if the equilibrium offer of \mathbf{b}_h has been observed, then $\Delta_{\mathbf{b}}^{t+1} = {\mathbf{b}_h}$ (s believes $\mathbf{b} = \mathbf{b}_h$ with certainty), which implies $\omega_{\mathbf{b}_h}^{t+1} = 1$ and $\omega_{\mathbf{b}_l}^{t+1} = 0$; if instead the equilibrium offer of \mathbf{b}_l has been observed, $\Delta_{\mathbf{b}}^{t+1} = \{\mathbf{b}_l\}$ (s believes $\mathbf{b} = \mathbf{b}_l$ with certainty), which implies $\omega_{\mathbf{b}_{l}}^{t} = 0$ and $\omega_{\mathbf{b}_{l}}^{t+1} = 1$. As is customary in economic studies [34], we consider only stationary systems of beliefs, i.e., if a seller s believes a b's type with zero probability at time point t, then it will continue to believe such a type with zero probability

at any time point t' > t. We need also specify the belief system off the equilibrium path, i.e., when an agent makes an action that is not optimal. We use the *optimistic conjectures* [34]. That is, when **b** acts off the equilibrium strategy, agent **s** will believe that agent **b** is of its "weakest" type, i.e., the type against which each seller would gain the most. This choice is directed to assure the existence of the equilibrium for the largest subset of the space of the parameters. In our case, the weakest type is **b**_l (we prove it in the following section). We can therefore specify $\mu(t)$ by specifying $\Delta_{\mathbf{b}}^t$. We will write $\mu(t) = \{\mathbf{b}_h, \mathbf{b}_l\}$, or $\mu(t) = \{\mathbf{b}_h\}$, or $\mu(t) = \{\mathbf{b}_l\}$.

5.2 Off the equilibrium path optimal strategies

Before analyzing equilibrium strategies when the buyer can be of two types, we provide the optimal strategies in the situations **s** believes the buyer of one single type. There are two cases: 1) Seller **s** has the right belief about the type of the buyer **b**. In this case, agents' equilibrium strategies are the equilibrium strategies of the corresponding complete information bargaining discussed in Section 3. Let $x_{\mathbf{b}_h}^c(t)$ ($x_{\mathbf{b}_l}^c(t)$, respectively) be agents' optimal offer at time t when **b** is of type \mathbf{b}_h (\mathbf{b}_l , respectively) in this case. That is, if $\iota(t) = \mathbf{b}$, $x_{\mathbf{b}_h}^c(t)$ is **b**'s optimal offer $x_{\mathbf{b}}^*(t)$ at time t in complete information bargaining when it is of type \mathbf{b}_h . If $\iota(t) = S$, $x_{\mathbf{b}_h}^c(t)$ is S's lowest optimal offer $x_S^*(t)$ at t in complete information bargaining when **b** is of type \mathbf{b}_h . 2) Seller **s** has the wrong belief about the type of the buyer **b**, i.e., \mathbf{b}_h is believed to be \mathbf{b}_l and \mathbf{b}_l is believed to be \mathbf{b}_h .

Lemma 4 $x_{\mathbf{b}_{h}}^{c}(t) \ge x_{\mathbf{b}_{l}}^{c}(t)$.

Proof We can proof the results from the proof of Theorem 1:

Case 1 $(\iota(T) = \mathbf{s})$. It follows that $x_{\mathbf{b}_{h}}^{c}(T-2) = x_{\mathbf{b}_{l}}^{c}(T-2) = \operatorname{RP}_{\mathcal{S}_{T}^{2}}$. Then we have $x_{\mathbf{b}_{h}}^{c}(T-3) = \min\{(x_{\mathbf{b}_{h}}^{c}(T-2))_{\leftarrow \mathcal{S}_{T-1}^{1}}, \operatorname{RP}_{\mathcal{S}_{T-1}^{2}}\} = \min\{(x_{\mathbf{b}_{l}}^{c}(T-2))_{\leftarrow \mathcal{S}_{T-1}^{1}}, \operatorname{RP}_{\mathcal{S}_{T-1}^{2}}\} = x_{\mathbf{b}_{l}}^{c}(T-3)$. At time t = T - 4, we have $x_{\mathbf{b}_{h}}^{c}(t) = \min\{\operatorname{RP}_{\mathcal{S}_{l+2}^{2}}, (x_{\mathbf{b}_{h}}^{c}(t+1))_{\leftarrow \mathbf{b}}\} = \min\{\operatorname{RP}_{\mathcal{S}_{l+2}^{2}}, \operatorname{RP}_{h}(1-\delta_{\mathbf{b}}) + \delta_{\mathbf{b}}x_{\mathbf{b}_{h}}^{c}(t+1)\} \ge \min\{\operatorname{RP}_{\mathcal{S}_{l+2}^{2}}, \operatorname{RP}_{h}(1-\delta_{\mathbf{b}}) + \delta_{\mathbf{b}}x_{\mathbf{b}_{l}}^{c}(t+1)\} = x_{\mathbf{b}_{h}}^{c}(t)$. Recursively, we have $x_{\mathbf{b}_{h}}^{c}(t) \ge x_{\mathbf{b}_{h}}^{c}(t)$ for t < T - 4.

1)} = $x_{\mathbf{b}_{l}}^{c_{1}(T)}$. Recursively, we have $x_{\mathbf{b}_{h}}^{c}(t) \ge x_{\mathbf{b}_{l}}^{c}(t)$ for t < T - 4. Case 2 $(\iota(T) = \mathbf{b})$. It follows that $x_{\mathbf{b}_{h}}^{c}(T-2) = \operatorname{RP}_{\mathcal{S}_{1}^{T}} = x_{\mathbf{b}_{l}}^{c}(T-2)$. Then at time T - 3, we have $x_{\mathbf{b}_{h}}^{c}(T-3) = \min\{\operatorname{RP}_{\mathcal{S}_{T-1}^{2}}, (x_{\mathbf{b}_{h}}^{c}(T-2))_{\leftarrow \mathbf{b}}\} = \min\{\operatorname{RP}_{\mathcal{S}_{T-1}^{2}}, \operatorname{RP}_{h}(1 - \delta_{\mathbf{b}}) + \delta_{\mathbf{b}}x_{\mathbf{b}_{h}}^{c}(T-2)\} \ge \min\{\operatorname{RP}_{\mathcal{S}_{T-1}^{2}}, \operatorname{RP}_{h}(1 - \delta_{\mathbf{b}}) + \delta_{\mathbf{b}}x_{\mathbf{b}_{l}}^{c}(T-2)\} = x_{\mathbf{b}_{l}}^{c}(T-3)$. Recursively, we have $x_{\mathbf{b}_{h}}^{c}(t) \ge x_{\mathbf{b}_{l}}^{c}(t)$ for t < T - 3.

We can see that \mathbf{b}_h is weaker than \mathbf{b}_l in terms of its offering price at each time point in complete information bargaining. Furthermore, we can get $\operatorname{RP}_h - x_{\mathbf{b}_h}^c(t) \ge \operatorname{RP}_l - x_{\mathbf{b}_l}^c(t)$ following the same procedure in the proof of Lemma 4. $\operatorname{RP}_h - x_{\mathbf{b}_h}^c(0)$ is the gain (utility) of \mathbf{b}_h in complete information bargaining and $\operatorname{RP}_l - x_{\mathbf{b}_l}^c(0)$ is the gain (utility) of \mathbf{b}_l in complete information bargaining.

Lemma 5
$$x_{\mathbf{b}_{h}}^{c}(t) \leq (x_{\mathbf{b}_{h}}^{c}(t+1))_{\leftarrow \mathbf{b}_{h}}$$
 and $x_{\mathbf{b}_{h}}^{c}(t) \leq (x_{\mathbf{b}_{h}}^{c}(t+1))_{\leftarrow \mathbf{b}_{h}}$.

Proof We can get this result by following the same procedure in the proof of Lemma 4. This result indicates that the buyer will accept sellers' lowest equilibrium price in complete

information bargaining, i.e., agents will reach a final agreement at time t - 2 in complete information bargaining.

Agents' optimal strategies when any seller s has the wrong belief about the type of the buyer b are shown in the following theorem:

Theorem 7 If seller **s** has the wrong belief about the type of **b**, the optimal strategies of any seller **s** are those in complete information bargaining. The optimal strategies $\sigma_{\mathbf{b}_h}^*(t)|\{\mathbf{b}_l\}$ of buyer **b**_h when it's believed to be **b**_l are:

$$\sigma_{\mathbf{b}_{h}}^{*}(t)|\{\mathbf{b}_{l}\} = \begin{cases} accept \ y & \text{if } y \leq (x_{\mathbf{b}_{l}}^{c}(t))_{\leftarrow \mathbf{b}_{h}} \\ offer \ x_{\mathbf{b}_{l}}^{c}(t) \ otherwise \end{cases}$$

The optimal strategies $\sigma_{\mathbf{b}_l}^*(t)|\{\mathbf{b}_h\}$ of the buyer \mathbf{b}_l when it's believed to be \mathbf{b}_h are:

$$\sigma_{\mathbf{b}_{l}}^{*}(t)|\{\mathbf{b}_{h}\} = \begin{cases} accept \ y & \text{if } y \leq \min\{(x_{\mathbf{b}_{h}}^{c}(t))_{\leftarrow \mathbf{b}_{l}}, \operatorname{RP}_{l}\} \\ offer \ \min\{x_{\mathbf{b}_{h}}^{c}(t), \operatorname{RP}_{l}\} \ otherwise \end{cases}$$

- *Proof* Case 1 (**b**_h is believed to be **b**_l). If sellers' lowest offer at time t 2 is $x_{b_l}^c(t 1)$, buyer **b**_h's optimal strategy is to accept it as the minimum price that the seller would accept at time t + 1, i.e., $x_{b_l}^c(t)$, gives **b**_h a utility lesser than $x_{b_l}^c(t-1)$ since $(x_{b_l}^c(t))_{\leftarrow \mathbf{b}_h} > (x_{b_l}^c(t))_{\leftarrow \mathbf{b}_l} \ge x_{b_l}^c(t-1)$. If the seller acts off the equilibrium path and offers a price y lower than $x_{b_l}^c(t-1)$, the optimal strategy of **b**_h is obviously to accept y. If the seller offers a price y higher than $x_{b_l}^c(t-1)$, the optimal strategy of **b**_h is to accept y only if $y \le (x_{b_l}^c(t))_{\leftarrow \mathbf{b}_h}$, otherwise **b**_h's optimal strategy is to reject y and to offer $x_{b_l}^c(t)$. Note that $x_{b_h}^c(t) \le \text{RP}_h$ and $x_{b_l}^c(t) \le \text{RP}_h$.
- Case 2 (\mathbf{b}_l is believed to be \mathbf{b}_h). This case is more complicated as sellers' lowest offer $x_{\mathbf{b}_h}^c(t-1)$ at time t on its equilibrium path may be not acceptable to \mathbf{b}_l as when \mathbf{b}_l offers $x_{\mathbf{b}_h}^c(t)$ at time t, it follows that $(x_{\mathbf{b}_h}^c(t))_{\leftarrow \mathbf{b}_l} < (x_{\mathbf{b}_h}^c(t))_{\leftarrow \mathbf{b}_h}$ and $(x_{\mathbf{b}_h}^c(t))_{\leftarrow \mathbf{b}_h} \ge x_{\mathbf{b}_h}^c(t-1)$ (Lemma 5). In addition, \mathbf{b}_l may not offer $x_{\mathbf{b}_h}^c(t)$ is higher than \mathbb{RP}_l . Therefore, \mathbf{b}_l 's optimal offer at time t is $\min\{x_{\mathbf{b}_h}^c(t), \mathbb{RP}_l\}$. Thus, \mathbf{b}_l will accept an offer y at time t such that $y \le \min\{(x_{\mathbf{b}_h}^c(t))_{\leftarrow \mathbf{b}_l}, \mathbb{RP}_l\}$.

5.3 Overview of our approach

Our algorithm combines game theoretical analysis and state space search techniques and it is sound and complete. Our approach is based on the following two observations: 1) with pure strategies, agents' possible choice rules regarding whether different buyer types will behave in the same way or in different ways at a decision making point are finite, and 2) given a system of choice rules (each time point is assigned a choice rule) we are able to derive theoretically the agents' optimal strategies (by a Bayesian extension of backward induction) and to check whether or not a sequential equilibrium there is with such tree of belief systems.

By applying state space search, we enumerate all possible choice systems, each specifying buyer types' choice rule at all decision making points along the negotiation horizon. By exploiting game theoretical analysis we design a pair composed of choice rules and belief system for each possible choice rule. More precisely, we design a pair for pooling choice rule and a pair for separating choice rule. These pairs are parameterized: agents' optimal offers and acceptance at time t depend on the agents' strategies in the following time points till the end of the bargaining. Furthermore, we assign each pair some conditions: if they are satisfied, then there is a sequential equilibrium in the subgame starting from time t. For each choice system, we employ a Bayesian extension of backward induction to derive agents' optimal strategies. Agents' optimal strategies at time t is built on agents' equilibrium strategies from time t + 1 to T. In summary, we employ a forward-backward approach to find sequential equilibria: we search forward to find all the choice systems and we construct backward agents' equilibrium strategies and belief systems.

Given s's belief on the type of b, different buyer types can choose different choice rules: either behave in the same way or behave in different ways. While it is very involved to compute sequential equilibria considering all the options at each decision making point, we explicitly fix the choice rule at each decision making point and then compute the sequential equilibrium of the bilateral game where buyer types' choices are specified in the choice system. To guarantee the completeness of our approach, we enumerate all possible choice systems. Our approach can be treated as a way of shifting the difficulty of finding a sequential equilibrium in a bargaining game where the buyer has multiple choices to finding a sequential equilibrium in multiple bargaining games in which the buyer's choice is fixed.

We explain our approach through a bilateral bargaining example with two-type uncertainty where $\iota(0) = \mathbf{b}$ and T = 4. As there are two types, there exist only two choice rules: 1) different buyer types behave in the same way (i.e., make the same offer) or 2) different buyer types behave in different ways (i.e., make different offers). Once the buyer chooses to differentiate its two types at time point t, the later bargaining becomes complete information bargaining. At time t = 0, the belief of **s** on the type of **b** is $\{\mathbf{b}_h, \mathbf{b}_l\}$ and **b**'s different types can choose to make the same offer or make different offers. If **b** chooses the separating rule, seller **s** will update its belief at time t = 1 and bargaining from time t = 1 to the deadline becomes complete information bargaining. If **b** chooses the pooling rule at time t = 0, seller **s**'s belief at time t = 1 will still be $\{\mathbf{b}_h, \mathbf{b}_l\}$. Then at time t = 2, buyer types can still choose to behave in the same way or behave in different ways. No matter what the choice rule is at time t = 2, **b** has no choice at its deadline t = 4. There are totally three choice systems: 1) different buyer types always use the pooling choice rule; 2) different buyer types apply the pooling choice rule at time t = 0 and apply the separating choice rule at time t = 2; and 3) different buyer types apply the separating choice rule at time t = 0.

Given a choice system, we adopt a modified backward induction approach to compute the sequential equilibrium. In the rest of this section, we first consider two special situations where buyer types always choose the pooling choice rule or always choose the separating choice rule. Then we construct sequential equilibria for general cases based on our analysis of the two special situations.

5.4 Always use pooling choice rule

In this section we study agents' equilibrium strategies when different buyer types always behave in the same way at each decision making point. Accordingly, sellers' beliefs will always be its initial belief. We start considering a bargaining with deadline T = 3. There are two situations: $\iota(0) = S$ or $\iota(0) = \mathbf{b}$. We first consider the former case in which both \mathbf{b}_h and \mathbf{b}_l will propose $x_{\mathbf{b}_h}^*(1) = x_{\mathbf{b}_l}^*(1) = \operatorname{RP}_{S_3^1}$ at time t = 1. Any seller $\mathbf{s} \in S_2$ will propose its best offer based on its initial belief at t = 0. It's easy to see that the in equilibrium 1) seller S_2^1 will not propose a price higher than $\operatorname{RP}_{S_2^2}$, and 2) sellers other than S_2^1 will propose their reserve prices. If buyer \mathbf{b} is of type \mathbf{b}_h , seller S_2^1 's optimal offer is $x_{\mathbf{b}_h}^*(0) = \min{\operatorname{RP}_{S_2^2}, (x_{\mathbf{b}_h}^*(1))_{\leftarrow \mathbf{b}_h}}$. If buyer \mathbf{b} is of type \mathbf{b}_l , seller S_2^1 's optimal offer is $x_{\mathbf{b}_l}^*(0) = \min\{\operatorname{RP}_{S_2^2}, (x_{\mathbf{b}_l}^*(1))_{\leftarrow \mathbf{b}_l}\}$. It follows that $x_{\mathbf{b}_l}^*(0) \le x_{\mathbf{b}_h}^*(0)$. Thus, at time t = 0. S_2^1 has two choices: 1) $x_{\mathbf{b}_l}^*(0)$ with an expected utility $EU_{S_2^1}(x_{\mathbf{b}_l}^*(0)) = U_{S_2^1}(x_{\mathbf{b}_l}^*(0), 2)$ since both buyer types will accept the offer $x_{\mathbf{b}_l}^*(0)$ at time t = 1; 2) $x_{\mathbf{b}_h}^*(0)$ with an expected utility $EU_{S_2^1}(x_{\mathbf{b}_h}^*(0))$ where $EU_{S_2^1}(x_{\mathbf{b}_h}^*(0))$ is given by

$$EU_{\mathcal{S}_{2}^{1}}(x_{\mathbf{b}_{h}}^{*}(0)) = \begin{cases} \omega_{\mathbf{b}_{h}}^{0} U_{\mathcal{S}_{2}^{1}}(x_{\mathbf{b}_{h}}^{*}(0), 2) + 0 & T_{\mathcal{S}_{2}^{1}} = 2\\ \omega_{\mathbf{b}_{h}}^{0} U_{\mathcal{S}_{2}^{1}}(x_{\mathbf{b}_{h}}^{*}(0), 2) + \omega_{\mathbf{b}_{l}}^{0} U_{\mathcal{S}_{2}^{1}}(x_{\mathbf{b}_{l}}^{*}(1), 3) & T_{\mathcal{S}_{2}^{1}} = 3 \text{ and } x_{\mathbf{b}_{l}}^{*}(0) \neq x_{\mathbf{b}_{h}}^{*}(0)\\ U_{\mathcal{S}_{2}^{1}}(x_{\mathbf{b}_{l}}^{*}(0), 2) & T_{\mathcal{S}_{2}^{1}} = 3 \text{ and } x_{\mathbf{b}_{l}}^{*}(0) = x_{\mathbf{b}_{h}}^{*}(0) \end{cases}$$

With incomplete information, we need to introduce the notion of *equivalent* value (price) of an offer, which is the value to be propagated backward. In one-to-many negotiation, only the seller with the lowest reserve price can gain a positive utility. Thus, we only need to consider the equivalent price of the optimal offer of agent S_{t+2}^1 at time *t*. Let $e_{S_{t+2}^1}^t$ the equivalent price of the optimal offer of agent S_{t+2}^1 in the subgame beginning from time *t* where it begins to bargain. Formally, $e_{S_2^1}^0$ is a price such that $U_{S_2^1}(e_{S_2^1}^0, 2) = \max\{EU_{S_2^1}(x_{\mathbf{b}_h}^*(0)), EU_{S_2^1}(x_{\mathbf{b}_h}^*(0))\}$. The negotiation outcome will be:

- 1. If $EU_{S_2^1}(x_{\mathbf{b}_l}^*(0)) \ge EU_{S_2^1}(x_{\mathbf{b}_h}^*(0))$, S_2^1 will offer $x_{\mathbf{b}_l}^*(0)$ at time t = 0 and it will accepted by the buyer independent the its type.
- 2. If $EU_{S_2^1}(x_{\mathbf{b}_l}^*(0)) < EU_{S_2^1}(x_{\mathbf{b}_h}^*(0))$ and S_2^1 has a deadline 3, S_2^1 will offer $x_{\mathbf{b}_h}^*(0)$ at time t = 0 and it will accepted by the buyer if it is of type \mathbf{b}_h . Otherwise, buyer \mathbf{b}_l will propose $x_{\mathbf{b}_l}^*(1)$ at time 1 and an agreement will be made at time 3 between buyer \mathbf{b}_l and seller S_2^1 .
- 3. If $EU_{S_2^1}(x_{\mathbf{b}_l}^*(0)) < EU_{S_2^1}(x_{\mathbf{b}_h}^*(0))$ and S_2^1 has a deadline 2, S_2^1 will offer $x_{\mathbf{b}_h}^*(0)$ at time t = 0 and it will accepted by the buyer if it is of type \mathbf{b}_h . Otherwise, buyer \mathbf{b}_l will propose $x_{\mathbf{b}_l}^*(1)$ at time 1 and an agreement will be made at time 3 between buyer \mathbf{b}_l and seller S_3^1 .

Now consider the case $\iota(0) = \mathbf{b}$. At time t = 1, sellers S_3 will reason about their equilibrium (optimal) strategies. If S_3 includes only one seller S_3^1 , it can choose between the offer RP_h and RP_l. While offering RP_h, it can get an expected utility $EU_{S_3^1}(RP_h) = \omega_{\mathbf{b}_h}^0 U_{S_3^1}(RP_h, T)$ as \mathbf{b}_l will not accept the offer RP_h. While offering RP_l, it can get an expected utility $EU_{S_3^1}(RP_l) = U_{S_3^1}(RP_l, T)$. Let $e_{S_3^1}^1$ the equivalent price of the optimal offer of agent S_3^1 in the subgame beginning from time 1 where it begins to bargain. Formally, $e_{S_3^1}^1$ is a price such that $U_{S_3^1}(e_{S_3^1}^1, T) = \max\{EU_{S_3^1}(RP_h), EU_{S_3^1}(RP_l)\}$. If S_3 includes more than one seller, seller S_3^1 's optimal offer at time t = 1 is RP_{S_3^2} due to the competition between sellers. Thus, the equivalent price of the optimal offer of agent S_3^1 in this case is RP_{S_3^2}. Given $e_{S_3^1}^1$, $(e_{S_3^1}^1)_{\leftarrow S_3^1}$ is the lowest offer agent S_3^1 would accept at time t = 1 with the initial belief. Therefore, the optimal offer of the buyer at time t = 0 is

$$x_{\mathbf{b}}^{*}(0) = \begin{cases} \mathsf{RP}_{\mathcal{S}_{2}^{1}} & T_{\mathcal{S}_{2}^{1}} = 2\\ \min\left\{ \left(e_{\mathcal{S}_{3}^{1}}^{1}\right)_{\leftarrow \mathcal{S}_{3}^{1}}, \mathsf{RP}_{\mathcal{S}_{2}^{2}} \right\} & T_{\mathcal{S}_{2}^{1}} \neq 2 \text{ and } |\mathcal{S}_{2}| > 1\\ \left(e_{\mathcal{S}_{3}^{1}}^{1}\right)_{\leftarrow \mathcal{S}_{3}^{1}} & T_{\mathcal{S}_{2}^{1}} \neq 2 \text{ and } |\mathcal{S}_{2}| = 1 \end{cases}$$

Note that if $T_{S_2^1} \neq 2$ (i.e., $S_3^1 = S_2^1$), $|S_2| = 1$, and $(e_{S_3^1}^1)_{\leftarrow S_3^1} > RP_l$, it is not rational for **b**_l to offer $(e_{S_3^1}^1)_{\leftarrow S_3^1}$. In this case, there is no sequential rational strategy while always using the pooling choice rule. If $|S_2| > 1$, it is rational for both buyer types to offer the above specified optimal price as it is impossible to have $RP_{S_2^2} > RP_l$. Agents' equilibrium strategies when T = 3 and $\iota(T) = S$ are specified in the following theorem.

Theorem 8 Assume that T = 3 and $\iota(0) = \mathbf{b}$, if $\operatorname{RP}_l \ge (e_{S_3}^1) \leftarrow \mathbf{s}$ when $T_{S_2^1} \neq 2$ and $|S_2| = 1$, there is one and only one sequentially rational pure strategy profile given the system of beliefs

$$\mu(1) = \begin{cases} \Delta_{\mathbf{b}}^{0} & \text{if } \sigma_{\mathbf{b}}^{*}(0) = offer \, x_{\mathbf{b}}^{*}(0) \\ \{\mathbf{b}_{h}\} & otherwise \end{cases}$$

The strategies $\sigma_{\mathbf{b}_{h}}^{*}(0)$ and $\sigma_{\mathbf{b}_{l}}^{*}(0)$ are: $\sigma_{\mathbf{b}_{h}}^{*}(0) = \sigma_{\mathbf{b}_{l}}^{*}(0) = offer x_{\mathbf{b}}^{*}(0)$. The strategy $\sigma_{\mathbf{s}}^{*}(1)$ is: 1) $\sigma_{\mathbf{s}}^{*}(1) = accept y$ if $y \ge \operatorname{RP}_{\mathbf{s}}$ if $T_{\mathbf{s}} = 2$; 2) $\sigma_{\mathbf{s}}^{*}(1) = accept y$ if $y \ge \max\{(e_{S_{1}^{1}}^{1})_{\leftarrow S_{1}^{1}}, \operatorname{RP}_{\mathbf{s}}\}$ if $T_{\mathbf{s}} \ne 2$, $T_{S_{2}^{1}} \ne 2$, and $|S_{2}| = 1$; $\sigma_{\mathbf{s}}^{*}(1) = accept y$ if $y \ge \max\{\min\{(e_{S_{1}^{1}}^{1})_{\leftarrow S_{1}^{1}}, \operatorname{RP}_{S_{2}^{2}}\}, \operatorname{RP}_{\mathbf{s}}\}$ if $T_{\mathbf{s}} \ne 2$, $T_{S_{2}^{1}} \ne 2$, and $|S_{2}| > 1$. **b** will confirm the agreement with seller which has the lowest reserve price at time t = 2.

Proof We analyze the strategies on the equilibrium path. We assume that the buyer behaves according to the prescribed equilibrium strategies and we analyze the optimal strategy of the seller. There are three different situations. For any seller with a deadline 2, it will receive any offer no less than its reserve price. If there is only one seller which has a deadline 3, the seller can accept $(e_{S_1}^1)_{\leftarrow s}$ and gain $U_s((e_{S_1}^1)_{\leftarrow s}, T-1)$ or reject it and make an offer. However, the maximum expected utility the seller can have from the subgame from time 1 is just $U_s(e_{S_3}^1, T) = U_s((e_{S_3}^1)_{\leftarrow s}, T-1)$. Thus, the seller's optimal strategy is to accept $(e_{S_3}^1)_{\leftarrow s}$. In the third case (i.e., $T_s \neq 2$, $T_{S_2^1} \neq 2$, and $|S_2| > 1$), seller S_3^1 will accept the offer min $\{(e_{S_3^1}^1)_{\leftarrow S_3^1}, \operatorname{RP}_{S_2^2}\}$ given that it cannot gain a higher utility by rejecting the offer $(e_{S_3^1}^1)_{\leftarrow S_3^1}$. In addition, given the competition between sellers, seller S_3^1 has to accept the offer $\operatorname{RP}_{S_2^2}$.

We assume that the sellers behave according to the prescribed equilibrium strategies and we analyze the optimal strategy of the buyer. There are three situations. If $T_{S_2^1} = 2$, it's both buyer types' optimal strategy to offer $\operatorname{RP}_{S_2^1}$. For the case $T_{S_2^1} \neq 2$ and $|S_2| = 1$, we start considering the strategy of \mathbf{b}_h . If \mathbf{b}_h offers $(e_{S_3^1}^1)_{\leftarrow S_2^1}$, it gains $U_{\mathbf{b}_h}((e_{S_3^1}^1)_{\leftarrow S_2^1}, T-1)$. If \mathbf{b}_h offers a price y higher than $(e_{S_3^1}^1)_{\leftarrow S_2^1}$, the seller will reject it and propose the price $\operatorname{RP}_{\mathbf{b}_h}$. Then \mathbf{b}_h 's final utility $U_{\mathbf{b}_h}(\operatorname{RP}_{\mathbf{b}_h}, T)$ is not higher than $U_{\mathbf{b}_h}((e_{S_3^1}^1)_{\leftarrow S_2^1}, T-1)$. If \mathbf{b}_h proposes a price y lower than $(e_{S_3^1}^1)_{\leftarrow S_2^1}$, the seller will accept it and it gains a utility lower than $U_{\mathbf{b}_h}((e_{S_3^1}^1)_{\leftarrow S_2^1}, T-1)$. Similarly, we can get that \mathbf{b}_l has no incentive to propose a price not equal to $(e_{S_3^1}^1)_{\leftarrow S_2^1}$. In the same way, we can prove that the optimal offer for both buyer types is $\min\{(e_{S_4^1}^1)_{\leftarrow S_3^1}, \operatorname{RP}_{S_2^2}\}$ in the situation such that $T_{S_2^1} \neq 2$ and $|S_2| > 1$. If $\operatorname{RP}_l < (e_{S_3^1}^1)_{\leftarrow S_2^1}$ when $T_{S_2^1} \neq 2$ and $|S_2| = 1$, there is no sequential rational pure strategy in our belief system since it supposes that both the buyer's types behave in the same way, whereas the optimal strategy of \mathbf{b}_l is to not propose $(e_{S_3^1}^1)_{\leftarrow S_2^1}$ as it will get a negative utility by doing so. Fig. 3 shows an example of backward induction construction with T = 3, $\iota(T) = S = \{\mathbf{s}\}$, $\operatorname{RP}_h = 100$, $\omega_{\mathbf{b}_h}^0 = 0.7$, $\operatorname{RP}_l = 60$, $\omega_{\mathbf{b}_l}^0 = 0.3$, $\operatorname{RP}_{\mathbf{s}} = 10$, $\delta_{\mathbf{s}} = \delta_{\mathbf{b}} = 0.6$. At time t = 1, \mathbf{s} can offer either 60 or 100: If it offers 60, its expected utility is $(60 - 10)0.6^2 = 18$; If it offers 100, its expected utility is $0.7(100 - 10)0.6^2 = 22.68$. Thus, the optimal offer of \mathbf{s} at time t = 1 is 100 and the equivalent price is $e_{S_3^1}^1 = 73$ as $(73 - 10)0.6^2 = 22.68$. Then we have $(e_{S_3^1}^1)_{\leftarrow \mathbf{s}} = 47.8$. As $\operatorname{RP}_l > (e_{S_3^1}^1)_{\leftarrow \mathbf{s}}$, there is a sequential equilibrium within the belief system while always using the pooling choice rule. If we change RP_l to 30 (Fig. 4). At time t = 1, \mathbf{s} can offer either 30 or 100. If it offers 30, its expected utility is $(30 - 10)0.6^2 = 7.2$. Thus, the optimal offer of \mathbf{s} at time t = 1 is 100 and the equivalent price is $e_{S_3^1}^1 = 73$. Then we have $(e_{S_3^1}^1)_{\leftarrow \mathbf{s}} = 47.8$. As $\operatorname{RP}_l < (e_{S_3^1}^1)_{\leftarrow \mathbf{s}}$, there is no sequential rational strategy within the belief system while always using the pooling choice rule.

We now consider an arbitrary deadline T. We apply the backward induction starting from deadline T and inductively determine agents' equilibrium strategies. Let $e_{S^1}^t$ be the

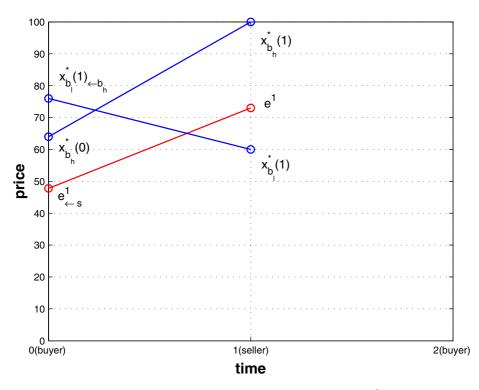


Fig. 3 Backward induction construction with T = 2, $\iota(T) = \mathbf{b}$, $\operatorname{RP}_h = 100$, $\omega_{\mathbf{b}_h}^0 = 0.7$, $\operatorname{RP}_l = 60$, $\omega_{\mathbf{b}_l}^0 = 0.3$, $\operatorname{RP}_{\mathbf{s}} = 10$, $\delta_{\mathbf{s}} = \delta_{\mathbf{b}} = 0.6$

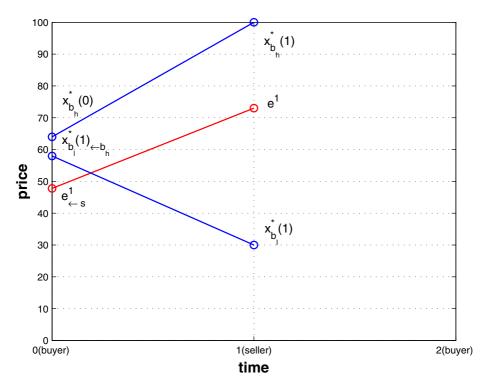


Fig. 4 Backward induction construction with the same setting as in Fig. 3 except $RP_l = 30$

equivalent price of the optimal offer of S_{t+2}^1 at time *t* when $\iota(t) = S$. First we consider the case $\iota(T) = S$. At any time *t* such that $\iota(t) = \mathbf{b}$, **b**'s optimal offer is

$$x_{\mathbf{b}}^{*}(t) = \begin{cases} \operatorname{RP}_{\mathcal{S}_{l+2}^{1}} & T_{\mathcal{S}_{l+2}^{1}} = t+2 \\ \min\left\{ \left(e_{\mathcal{S}_{l+3}^{1}}^{t+1} \right)_{\leftarrow \mathcal{S}_{l+3}^{1}}, \operatorname{RP}_{\mathcal{S}_{l+2}^{2}} \right\} & T_{\mathcal{S}_{l+2}^{1}} \neq t+2 \text{ and } |\mathcal{S}_{t+2}| > 1 \\ \left(e_{\mathcal{S}_{l+3}^{1}}^{t+1} \right)_{\leftarrow \mathcal{S}_{l+3}^{1}} & T_{\mathcal{S}_{l+2}^{1}} \neq t+2 \text{ and } |\mathcal{S}_{t+2}| = 1 \end{cases}$$

At time T - 2, the equivalent price $e_{S_T}^{T-2}$ is defined as follows. If S_T includes only one seller S_T^1 , it can choose between the offer RP_h and RP_l . While offering RP_h , it can get an expected utility $EU_{S_T^1}(\operatorname{RP}_h) = \omega_{\mathbf{b}_h}^0 U_{S_T^1}(\operatorname{RP}_h, T)$ as \mathbf{b}_l will not accept the offer RP_h . While offering RP_l , it can get an expected utility $EU_{S_T^1}(\operatorname{RP}_l) = U_{S_T^1}(\operatorname{RP}_l, T)$. $e_{S_T^1}^{T-2}$ is a price such that $U_{S_{T-2}^1}(e_{S_T^1}^{T-2}, T) = \max\{EU_{S_{T-2}^1}(\operatorname{RP}_h), EU_{S_{T-2}^1}(\operatorname{RP}_l)\}$. If S_T includes more than one seller, seller S_T^1 's optimal offer at time T - 2 is $\operatorname{RP}_{S_T^2}$ due to the competition. Thus, the equivalent price of the optimal offer of agent S_T^1 in this case is $e_{S_T^1}^{T-2} = \operatorname{RP}_{S_T^2}$.

At time t < T - 2, there are two cases. If there is only one seller in S_{t+2} , i.e., $S_{t+2} = \{S_{t+2}^1\}, S_{t+2}^1$ has two choices: propose $(x_{\mathbf{b}}^*(t+1))_{\leftarrow \mathbf{b}_l}$ or $(x_{\mathbf{b}}^*(t+1))_{\leftarrow \mathbf{b}_l}$. In this case,

 $e_{\mathcal{S}_{t+2}^{1}}^{t} \text{ satisfies } U_{\mathcal{S}_{t+2}^{1}}(e_{\mathcal{S}_{t+2}^{1}}^{t}, t+2) = \max\{EU_{\mathcal{S}_{t+2}^{1}}((x_{\mathbf{b}}^{*}(t+1))_{\leftarrow \mathbf{b}_{h}}), EU_{\mathcal{S}_{t+2}^{1}}((x_{\mathbf{b}}^{*}(t+1))_{\leftarrow \mathbf{b}_{l}})\} \text{ where } EU_{\mathcal{S}_{t+2}^{1}}((x_{\mathbf{b}}^{*}(t+1))_{\leftarrow \mathbf{b}_{l}}) = U_{\mathcal{S}_{t+2}^{1}}((x_{\mathbf{b}}^{*}(t+1))_{\leftarrow \mathbf{b}_{l}}, t+2) \text{ and } EU_{\mathcal{S}_{t+2}^{1}}((x_{\mathbf{b}}^{*}(t+1))_{\leftarrow \mathbf{b}_{h}}, t+2) + \omega_{\mathbf{b}_{l}}^{0}U_{\mathcal{S}_{t+2}^{1}}(x_{\mathbf{b}}^{*}(t+1), t+3).$

If S_{t+2} includes more than one seller, i.e., $|S_{t+2}| > 1$, S_{t+2}^1 has two choices: propose $\min\{\operatorname{RP}_{S_{t+2}^2}, (x_{\mathbf{b}}^*(t+1))_{\leftarrow \mathbf{b}_h}\}$ or $\min\{\operatorname{RP}_{S_{t+2}^2}, (x_{\mathbf{b}}^*(t+1))_{\leftarrow \mathbf{b}_l}\}$. In this case, $e_{S_{t+2}^1}^t$ satisfies $U_{S_{t+2}^1}(e_{S_{t+2}^1}^t, t+2) = \max\{EU_{S_{t+2}^1}(\min\{\operatorname{RP}_{S_{t+2}^2}, (x_{\mathbf{b}}^*(t+1))_{\leftarrow \mathbf{b}_l}\}), EU_{S_{t+2}^1}(\min\{\operatorname{RP}_{S_{t+2}^2}, (x_{\mathbf{b}}^*(t+1))_{\leftarrow \mathbf{b}_l}\}))$ where $EU_{S_{t+2}^1}(\min\{\operatorname{RP}_{S_{t+2}^2}, (x_{\mathbf{b}}^*(t+1))_{\leftarrow \mathbf{b}_l}\}) = U_{S_{t+2}^1}(\min\{\operatorname{RP}_{S_{t+2}^2}, (x_{\mathbf{b}}^*(t+1))_{\leftarrow \mathbf{b}_l}\})) = U_{S_{t+2}^1}(\min\{\operatorname{RP}_{S_{t+2}^2}, (x_{\mathbf{b}}^*(t+1))_{\leftarrow \mathbf{b}_l}\}) = U_{S_{t+2}^1}(\min\{\operatorname{RP}_{S_{t+2}^2}, (x_{\mathbf{b}}^*(t+1))_{\leftarrow \mathbf{b}_l}\})) = U_{S_{t+2}^1}(\min\{\operatorname{RP}_{S_{t+2}^2}, (x_{\mathbf{b}}^*(t+1))_{\leftarrow \mathbf{b}_l}\}) = U_{S_{t+2}^1}(\min\{\operatorname{RP}_{S_{t+2}^2}, (x_{\mathbf{b}}^*(t+1))_{\leftarrow \mathbf{b}_l}\}) = U_{S_{t+2}^1}(\min\{\operatorname{RP}_{S_{t+2}^2}, (x_{\mathbf{b}}^*(t+1))_{\leftarrow \mathbf{b}_l}\}) = U_{S_{t+2}^1}(\min\{\operatorname{RP}_{S_{t+2}^2}, (x_{\mathbf{b}}^*(t+1))_{\leftarrow \mathbf{b}_l}\}) = \min\{\operatorname{RP}_{S_{t+2}^2}, (x_{\mathbf{b}}^*(t+1))_{\leftarrow \mathbf{b}_l}\} = \min\{\operatorname{RP}_{S_{t+2}^2}, (x_{\mathbf{b}^*(t+1))_{\leftarrow \mathbf{b}_l}\} = \min\{\operatorname{RP}_{S_{t+2}^2}$

In a signaling game, there are often multiple equilibrium outcomes and these equilibria are not equivalent from the point of view of utility of each agent and social welfare (i.e., the sum of utilities of all agents). The multiplicity of equilibria means that, without refinement, equilibrium theory provides few clear predictions. A number of refinements (e.g., pareto efficiency) has been proposed [40]. In this work, we didn't consider the pooling choice rule in which all buyer types make an offer that will be rejected since, given the same equilibrium strategies in the subgame, the equilibrium outcome when all buyer types make an acceptable offer pareto dominates the equilibrium outcome when all buyer types make a rejectable offer.

Now we consider the case $\iota(T) = \mathbf{b}$. **b**'s optimal offer $x_{\mathbf{b}}^*(T-2)$ at time T-2 is $\operatorname{RP}_{S_T^1}$. **b**'s optimal offer $x_{\mathbf{b}}^*(t)$ and equivalent price $e_{S_{l+2}^1}^t$ at time t < T-2 can be calculated in the same way as in the case $\iota(T) = S$. Following Theorem 8, the condition of existence includes $\operatorname{RP}_l \ge x_{\mathbf{b}}^*(t)$ and $x_{\mathbf{b}}^*(t) \le (x_{\mathbf{b}}^*(t'))_{\leftarrow (t'-t)[\mathbf{b}_l]}$ at any time t < T-1, i.e., the optimal offer at time *t* is better than the later optimal offers.

Theorem 9 The one-to-many bargaining has a unique sequentially rational pure strategy profile given the following belief system where $\mu(t + 1)$ is given by

- If $\mu(t) = \{\mathbf{b}_h\}$ or $\mu(t) = \{\mathbf{b}_l\}, \ \mu(t+1) = \mu(t).$
- $\mu(t) = \mu(0)$ and there are four cases. 1) If t = 0 and $\sigma_{\mathbf{b}}(t) = offerx_{\mathbf{b}}^{*}(t)$, $\mu(t+1) = \mu(0) = \{\mathbf{b}_{h}, \mathbf{b}_{l}\}; 2$ If t > 0 and \mathbf{b} rejects $y \in ((x_{\mathbf{b}}^{*}(t))_{\leftarrow \mathbf{b}_{h}}, +\infty]$ and $\sigma_{\mathbf{b}}(t) = offerx_{\mathbf{b}}^{*}(t), \ \mu(t+1) = \mu(0) = \{\mathbf{b}_{h}, \mathbf{b}_{l}\}; 3$ If t > 0 and \mathbf{b} rejects $y \in ((x_{\mathbf{b}}^{*}(t))_{\leftarrow \mathbf{b}_{l}}, (x_{\mathbf{b}}^{*}(t))_{\leftarrow \mathbf{b}_{h}}]$ and $\sigma_{\mathbf{b}}(t) = offerx_{\mathbf{b}}^{*}(t), \ \mu(t+1) = \{\mathbf{b}_{l}\}; 4$ otherwise, $\mu(t+1) = \{\mathbf{b}_{h}\}.$

if $\operatorname{RP}_l \ge x_{\mathbf{b}}^*(t)$ and $x_{\mathbf{b}}^*(t) \le (x_{\mathbf{b}}^*(t'))_{\leftarrow (t'-t)[\mathbf{b}_l]}$ at any time t < T - 1. The equilibrium strategies $\sigma_{\mathbf{s}}^*(t)|\{\mathbf{b}_h, \mathbf{b}_l\}$ of agent \mathbf{s} are:

- accept y if $y \ge x_{\mathbf{b}}^*(t)$;
- offer min{RPs, arg max_{y \in {(x_{b}^{*}(t+1)) \leftarrow b_{b}, (x_{b}^{*}(t+1)) \leftarrow b_{l}}} EU_{s}(y) if $y < x_{b}^{*}(t)$ and $|S_{t+2}| = 1$;}
- offer min{RP_s, arg max_{y \in {min{RP}_{S_{t+2}^2}}, (x_{\mathbf{b}}^*(t+1))_{\leftarrow \mathbf{b}_h}}, min{RP_{S_{t+2}^2}, (x_{\mathbf{b}}^*(t+1))_{\leftarrow \mathbf{b}_l}}} EU_{\mathbf{s}}(y) if $y < x_{\mathbf{b}}^*(t) \text{ and } |S_{t+2}| > 1;$}

and the equilibrium strategies of the buyer are:

$$\sigma_{\mathbf{b}_{h}}^{*}(t)|\{\mathbf{b}_{h},\mathbf{b}_{l}\} = \begin{cases} accept \ y & \text{if } y \leq (x_{\mathbf{b}}^{*}(t))_{\leftarrow \mathbf{b}_{h}} \\ offer \ x_{\mathbf{b}}^{*}(t) \ otherwise \end{cases}$$

$$\sigma_{\mathbf{b}_{l}}^{*}(t)|\{\mathbf{b}_{h},\mathbf{b}_{l}\} = \begin{cases} accept \ y & \text{if } y \leq (x_{\mathbf{b}}^{*}(t))_{\leftarrow \mathbf{b}_{l}} \\ offer \ x_{\mathbf{b}}^{*}(t) \ otherwise \end{cases}$$

Agents' equilibrium strategies when $\mu(t)$ is a singleton is given by Section 5.2.

Proof The sequential rationality is easily seen from the backward construction. Consistency can be proved by the assessment sequence $a_n = (\mu_n, \sigma_n)$ where σ_n is the fully mixed strategy profile such that for the sellers and \mathbf{b}_h there is probability 1 - 1/n of performing the action prescribed by the equilibrium strategy profile and the remaining probability 1/n is uniformly distributed among the other allowed actions; while for \mathbf{b}_l , there is probability $1 - 1/n^2$ of performing the action prescribed by the equilibrium strategy profile and the remaining probability $1/n^2$ is uniformly distributed among the other allowed actions; while for \mathbf{b}_l , there is probability $1/n^2$ is uniformly distributed among the other allowed actions, and μ_n is the system of beliefs obtained applying Bayes rule starting from the same *priori* probability distribution $P_{\mathbf{b}}^0$. As $n \to \infty$, the above mixed strategy profile converges to the equilibrium strategy profile. In addition, the beliefs generated by the mixed strategy profile converges to the priori probability distribution. Thus, the assessment is consistent.

5.5 Always use separating choice rule

In this section we consider a different belief system in which two buyer types behave in different ways. Then the sellers will learn the buyer's type after it observes the buyer's first offer. Therefore, if $\iota(0) = \mathbf{b} (\iota(0) = S$, respectively), each seller **s** will learn **b**'s type at beginning of time point t = 1 (t = 2, respectively) and the later bargaining is complete information bargaining.

We start by considering a bargaining with an arbitrary deadline T and $\iota(0) = \mathbf{b}$. Different from the approach in the previous section where we start backward induction from the deadline, we move forward from time t = 0. Let the equilibrium offers of \mathbf{b}_h and \mathbf{b}_l at time 0 be x and y such that $x \neq y$. If seller S_2^1 accepts both offers x and y, at least one type has an incentive to offer min $\{x, y\}$. Therefore, the offer min $\{x, y\}$ will be rejected by S_2^1 . There are two cases: x > y and x < y. First we consider the case x < y. Then \mathbf{b}_h will make a low offer (e.g., -1) which be rejected by S_2^1 . Then at time 1, S_3^1 will make the offer $x_{\mathbf{b}_h}^c(1)$ and \mathbf{b}_h will accept it. The optimal offer $x_{\mathbf{b}_h}^*(0)$ of \mathbf{b}_l at time t = 0 is

$$x_{\mathbf{b}_{l}}^{*}(0) = \begin{cases} \operatorname{RP}_{\mathcal{S}_{2}^{1}} & T_{\mathcal{S}_{2}^{1}} = 2\\ \min\{(x_{\mathbf{b}_{l}}^{*}(1))_{\leftarrow \mathcal{S}_{2}^{1}}, \operatorname{RP}_{\mathcal{S}_{2}^{2}}\} & T_{\mathcal{S}_{2}^{1}} \neq 2 \text{ and } |\mathcal{S}_{2}| > 1\\ (x_{\mathbf{b}_{l}}^{*}(1))_{\leftarrow \mathcal{S}_{2}^{1}} & T_{\mathcal{S}_{2}^{1}} \neq 2 \text{ and } |\mathcal{S}_{2}| = 1 \end{cases}$$

We can find that $x_{\mathbf{b}_l}^*(0) = x_{\mathbf{b}_l}^c(0)$. At time t = 1, the optimal offer of seller S_3^1 is $x_{\mathbf{b}_h}^*(1) = x_{\mathbf{b}_h}^c(1)$. by has no incentive to behave as \mathbf{b}_l if $(x_{\mathbf{b}_h}^c(1))_{\leftarrow \mathbf{b}_h} < x_{\mathbf{b}_l}^c(0)$. There are two situations. If $T_{S_2^1} = 2$, $x_{\mathbf{b}_l}^c(0) = \operatorname{RP}_{S_2^1} < \operatorname{RP}_{S_3^1} \leq (\operatorname{RP}_{S_3^1})_{\leftarrow \mathbf{b}_h} \leq (x_{\mathbf{b}_h}^c(1))_{\leftarrow \mathbf{b}_h}$. If $T_{S_2^1} \neq 2$, we have $x_{\mathbf{b}_l}^c(0) \leq (x_{\mathbf{b}_l}^c(1))_{\leftarrow S_2^1} \leq (x_{\mathbf{b}_l}^c(1))_{\leftarrow \mathbf{b}_l} \leq (x_{\mathbf{b}_h}^c(1))_{\leftarrow \mathbf{b}_h}$. Thus, if x < y, the equilibrium is not sequential rational as \mathbf{b}_h has an incentive to behave as \mathbf{b}_l .

Then we consider the case x > y. By convention that the equilibrium offer of \mathbf{b}_l is -1 which will be rejected by each seller. The optimal offer of \mathbf{b}_h is the lowest price agent S_2^1 would accept at time 1 believing its opponent \mathbf{b}_h is obviously $x_{\mathbf{b}_h}^c(0)$. The existence of a such equilibrium depends on two conditions: \mathbf{b}_h must have no incentive to behave

as \mathbf{b}_l , i.e., $x_{\mathbf{b}_h}^c(0) \leq (x_{\mathbf{b}_l}^c(1))_{\leftarrow \mathbf{b}_h}$, and \mathbf{b}_l must have no incentive to behave as \mathbf{b}_h , i.e., $(x_{\mathbf{b}_l}^c(1))_{\leftarrow \mathbf{b}_l} \leq x_{\mathbf{b}_h}^c(0)$.

Theorem 10 One-to-many bargaining such that $\iota(0) = \mathbf{b}$ has one and only one stationary sequential equilibrium profile in pure strategies given the system of beliefs:

$$\mu(1) = \begin{cases} \{\mathbf{b}_l\} & \text{if } \sigma_{\mathbf{b}}(0) = offer - 1\\ \{\mathbf{b}_h\} & otherwise \end{cases}$$

if $x_{\mathbf{b}_{h}}^{c}(0) \leq (x_{\mathbf{b}_{l}}^{c}(1))_{\leftarrow \mathbf{b}_{h}}$ and $(x_{\mathbf{b}_{l}}^{c}(1))_{\leftarrow \mathbf{b}_{l}} \leq x_{\mathbf{b}_{h}}^{c}(0)$. The equilibrium strategies of agent **b** are: $\sigma_{\mathbf{b}_{h}}^{*}(0)|\{\mathbf{b}_{h}, \mathbf{b}_{l}\} = offer \ x_{\mathbf{b}_{h}}^{c}(0), \sigma_{\mathbf{b}_{l}}^{*}(0)|\{\mathbf{b}_{h}, \mathbf{b}_{l}\} = offer \ -1$. Agents' strategies when $\mu(t)$ is singleton are specified in Section 5.2.

Now we consider the case $\iota(0) = S$. Sellers S_2 know that at time t = 1 **b**_h will offer $x_{\mathbf{b}_h}^c(1)$ and **b**_l will offer offer -1. If S_2 contains only one seller, S_2^1 has two choices: propose $(x_{\mathbf{b}_h}^c(1))_{\leftarrow \mathbf{b}_h}$ or $(x_{\mathbf{b}_l}^c(2))_{\leftarrow 2[\mathbf{b}_l]}$. In this case, $e_{S_2^1}^0$ satisfies $U_{S_2^1}(e_{S_2^1}^0, 2) = \max\{EU_{S_2^1}((x_{\mathbf{b}_h}^c(1))_{\leftarrow \mathbf{b}_h}), EU_{S_2^1}((x_{\mathbf{b}_l}^c(2))_{\leftarrow 2[\mathbf{b}_l]})\}$ where $EU_{S_2^1}(x_{\mathbf{b}_h}^c(1)_{\leftarrow \mathbf{b}_h}) = \omega_{\mathbf{b}_h}^0 U_{S_2^1}(x_{\mathbf{b}_l}^c(2))_{\leftarrow 2[\mathbf{b}_l]})$ and $EU_{S_2^1}((x_{\mathbf{b}_h}^c(2))_{\leftarrow 2[\mathbf{b}_l]}) = U_{S_2^1}((x_{\mathbf{b}_l}^c(2))_{\leftarrow 2[\mathbf{b}_l]})$. If there is more than one seller in S_2 , i.e., $|S_{t+2}| > 1$, S_2^1 has two choices: propose min $\{\mathrm{RP}_{S_2^2}, (x_{\mathbf{b}_h}^c(1))_{\leftarrow \mathbf{b}_h}\}$ or min $\{\mathrm{RP}_{S_2^2}, (x_{\mathbf{b}_l}^c(2))_{\leftarrow 2[\mathbf{b}_l]}\}$. In this case, $e_{S_2^1}^0$ satisfies $U_{S_2^1}(e_{S_2^1}^0, (x_{\mathbf{b}_h}^c(1))_{\leftarrow \mathbf{b}_h}\}) = \omega_{\mathbf{b}_h}^0 U_{S_2^1}(x_{\mathbf{b}_h}^c(1))_{\leftarrow \mathbf{b}_h}\}$. But we choices: propose min $\{\mathrm{RP}_{S_2^2}, (x_{\mathbf{b}_h}^c(1))_{\leftarrow \mathbf{b}_h}\}$ or min $\{\mathrm{RP}_{S_2^2}, (x_{\mathbf{b}_h}^c(1))_{\leftarrow \mathbf{b}_h}\}$. But is case, $e_{S_2^1}^0$ satisfies $U_{S_2^1}(e_{S_2^1}^c, (x_{\mathbf{b}_h}^c(1))_{\leftarrow \mathbf{b}_h}\}) = \omega_{\mathbf{b}_h}^0 U_{S_2^1}(\min\{\mathrm{RP}_{S_2^2}, (x_{\mathbf{b}_h}^c(1))_{\leftarrow \mathbf{b}_h}\})$. But is case, $e_{S_2^1}^0$ satisfies $U_{S_2^1}(\min\{\mathrm{RP}_{S_2^2}, (x_{\mathbf{b}_h}^c(1))_{\leftarrow \mathbf{b}_h}\}) = \omega_{\mathbf{b}_h}^0 U_{S_2^1}(\min\{\mathrm{RP}_{S_2^2}, (x_{\mathbf{b}_h}^c(1))_{\leftarrow \mathbf{b}_h}\})$. But is case, $e_{S_2^1}^0$ satisfies $U_{S_2^1}(x_{\mathbf{b}_h}^c, (2))_{\leftarrow 2[\mathbf{b}_l]}\}$ and $EU_{S_2^1}(\min\{\mathrm{RP}_{S_2^2}, (x_{\mathbf{b}_h}^c(2))_{\leftarrow 2[\mathbf{b}_l]}\}) = U_{S_2^1}(\min\{\mathrm{RP}_{S_2^2}, (x_{\mathbf{b}_h}^c(2))_{\leftarrow 2[\mathbf{b}_l]}\}, 2) + \omega_{\mathbf{b}_l}^0 U_{S_2^1}(x_{\mathbf{b}_l}^c, 2)$. Solutions are constructed with offer which gives it the highest expected utility at time 0.

Theorem 11 Assume that the following belief system is used: if **b** rejects sellers' offer $y \in ((x_{\mathbf{b}_l}^*(2))_{\leftarrow 2[\mathbf{b}_l]}, +\infty)$ and offers -1 at time l, then $\mu(2) = \{\mathbf{b}_l\}$. Otherwise, $\mu(2) = \{\mathbf{b}_h\}$. One-to-many bargaining such that $\iota(0) = S$ has a unique stationary sequential equilibrium profile in pure strategies if $x_{\mathbf{b}_h}^c(1) \leq (x_{\mathbf{b}_l}^c(2))_{\leftarrow \mathbf{b}_h}$ and $(x_{\mathbf{b}_l}^c(2))_{\leftarrow \mathbf{b}_l} \leq x_{\mathbf{b}_h}^c(1)$. The equilibrium strategies of agents are:

 $\sigma_{\mathbf{s}}^{*}(0)|\{\mathbf{b}_{h},\mathbf{b}_{l}\}=offer \min\{\mathrm{RP}_{\mathbf{s}},$

 $\operatorname{argmax}_{y \in \{\min\{\operatorname{RP}_{S_{2}^{2}}, (x_{\mathbf{b}_{h}}^{c}(1)) \leftarrow \mathbf{b}_{h}\}, \min\{\operatorname{RP}_{S_{2}^{2}}, (x_{\mathbf{b}_{l}}^{c}(2)) \leftarrow 2[\mathbf{b}_{l}]\}\}} EU_{\mathbf{s}}(y)\}$

 $\sigma_{\mathbf{b}_{h}}^{*}(1)|\{\mathbf{b}_{h},\mathbf{b}_{l}\} = \begin{cases} accept \ y & \text{if } y \leq (x_{\mathbf{b}_{h}}^{c}(1))_{\leftarrow \mathbf{b}_{h}} \\ offer \ x_{\mathbf{b}_{h}}^{c}(1) \ otherwise \end{cases}$ $\sigma_{\mathbf{b}_{l}}^{*}(1)|\{\mathbf{b}_{h},\mathbf{b}_{l}\} = \begin{cases} accept \ y & \text{if } y \leq (x_{\mathbf{b}_{l}}^{c}(2))_{\leftarrow 2[\mathbf{b}_{l}]} \\ offer \ -1 \ otherwise \end{cases}$

Agents' strategies when $\mu(t)$ is singleton are those in complete information bargaining.

We can observe that the conditions for the existence of the above equilibrium are defined at the beginning of bargaining and the existence of the above equilibrium does not require the existence of a such equilibrium in later negotiation. Consider the sequential equilibrium when buyer types always choose different actions in the bilateral bargaining in Fig. 3. We

93

have $x_{\mathbf{b}_{h}}^{c}(0) = 64$ and $x_{\mathbf{b}_{l}}^{c}(1) = 60$. \mathbf{b}_{h} has no incentive to behave as \mathbf{b}_{l} since $x_{\mathbf{b}_{h}}^{c}(0) = 64 < 76 = (x_{\mathbf{b}_{l}}^{c}(1))_{\leftarrow \mathbf{b}_{h}}$, and \mathbf{b}_{l} has no incentive to behave as \mathbf{b}_{h} since $(x_{\mathbf{b}_{l}}^{c}(1))_{\leftarrow \mathbf{b}_{l}} = 60 < 64 = x_{\mathbf{b}_{h}}^{c}(0)$. However, there is no sequential equilibrium within the belief system for the bilateral bargaining in Fig. 4. We have $x_{\mathbf{b}_{h}}^{c}(0) = 64$ and $x_{\mathbf{b}_{l}}^{c}(1) = 30$. However, this strategy is not rational for \mathbf{b}_{h} as it has an incentive to behave as prescribed for \mathbf{b}_{l} since $x_{\mathbf{b}_{h}}^{c}(0) = 64 \ge 58 = (x_{\mathbf{b}_{h}}^{c}(1))_{\leftarrow \mathbf{b}_{h}}$.

5.6 Combining pooling and separating choice rules

In this section we consider agents' equilibrium strategies while employing a belief system which combines the pooling choice rule and the separating choice rule. The only reasonable combination is to employ the pooling choice rule from time 0 to some time $\tau \leq T$ and to employ the separating choice rule from time τ to the deadline *T*. The reason is simple: once different buyer types behave in different ways, each seller **s** will learn the type of the buyer and then agents conduct complete information bargaining. Then we have the following result and its proof is trivial.

Theorem 12 For a finite horizon bargaining with two possible reserve prices of the buyer, if there is no sequential equilibrium in pure strategies, there is no sequential equilibrium in pure strategies within the belief system which employs both pooling and separating choice rules.

Theorem 13 For a finite horizon bargaining with two possible reserve prices of the buyer, there may be no sequential equilibrium in pure strategies.

Proof As the deadline of the bilateral bargaining in Fig. 4 is 2, if there is a sequential equilibrium in pure strategies, the choice rule at time t = 0 can only be pooling or separating. As there is no pure strategy sequential equilibrium in both cases, there is no pure strategy sequential equilibrium while applying both choice rules for the bilateral bargaining in Fig. 4. Thus, there is no pure strategy sequential equilibrium for the bilateral bargaining in Fig. 4 (Theorem 12).

There may be more than one sequential equilibrium for a bilateral bargaining problem with two possible types of reserve price. For example, there are two sequential equilibria for the bilateral bargaining in Fig. 3: one with only using the pooling choice rule and one with only using the separating choice rule.

If there is a pure strategy sequential equilibrium, there should be a time point τ such that there is a sequential equilibrium for subgame $\Gamma^{[\tau,T]}$ which only uses the separating choice rule and a sequential equilibrium for subgame $\Gamma^{[0,\tau]}$ which only uses the pooling choice rule. Let the system of beliefs and equilibrium strategies for the subgame $\Gamma^{[\tau,T]}$ and $\sigma^{*,[\tau,T]}$, respectively. Let the system of beliefs and equilibrium strategies for the subgame $\Gamma^{[0,\tau]}$ be $\mu^{[0,\tau]}$ and $\sigma^{*,[0,\tau]}$, respectively. The two equilibria form a sequential equilibrium.

Theorem 14 If there is a τ such that

- 1. $\iota(\tau) = \mathcal{S};$
- 2. There is a separating choice rule based sequential equilibrium $\langle \mu^{[\tau,T]}, \sigma^{*,[\tau,T]} \rangle$ for subgame $\Gamma^{[\tau,T]}$. Let e^{τ} be S^{1}_{t+2} 's equivalent price at time τ ;

3. There is a pooling choice rule based sequential equilibrium $\langle \mu^{[0,\tau]}, \sigma^{*,[0,\tau]} \rangle$ for subgame $\Gamma^{[0,\tau]}$ such that $S^1_{\tau+2}$ accepts $x^*_{\mathbf{b}}(\tau-1)$ at time τ ;

$$x_{\mathbf{b}}^{*}(\tau-1) = \begin{cases} \mathsf{RP}_{\mathcal{S}_{\tau+1}^{1}} & T_{\mathcal{S}_{\tau-1}^{1}} = \tau+1\\ \min\{(e_{\mathcal{S}_{\tau+2}^{1}}^{\tau})_{\leftarrow \mathcal{S}_{\tau+1}^{1}}, \mathsf{RP}_{\mathcal{S}_{\tau+1}^{2}}\} & T_{\mathcal{S}_{\tau+1}^{1}} \neq \tau+1 \text{ and } |\mathcal{S}_{\tau+1}| > 1\\ (e_{\mathcal{S}_{\tau+2}^{1}}^{\tau})_{\leftarrow \mathcal{S}_{\tau+1}^{1}} & T_{\mathcal{S}_{\tau+1}^{1}} \neq \tau+1 \text{ and } |\mathcal{S}_{\tau+1}| = 1 \end{cases}$$

then $\langle \{\mu^{[0,\tau]}, \mu^{[\tau,T]}\}, \{\sigma^{*,[0,\tau]}, \sigma^{*,[\tau,T]}\} \rangle$ form a pure strategy sequential equilibrium.

The proof is omitted: Sequential rationality is obvious given the backward induction construction and consistency can be proved in the same way as in Theorem 9.

If there is a sequential equilibrium for such a τ value in Theorem 14, the equilibrium is unique for the specific τ given the backward induction process. Therefore, to find out a sequential equilibrium, we just need to search all the possible values of $\tau \leq T$. If there is no sequential equilibrium for all values of τ , we can conclude that there is no sequential equilibrium. The computational complexity of finding a sequential equilibrium for a specific value of τ is $\mathcal{O}(|\mathcal{S}|T)$ where *n* is the number of possible types. Thus, the computational complexity of finding sequential equilibrium for a bilateral bargaining with two possible types of reserve price is $\mathcal{O}(|\mathcal{S}|T^2)$.

We show how to compute agents' equilibrium offers on the equilibrium path while using both the pooling choice rule and separating choice rule. We use the example in Fig. 3 and change the deadline to T = 5. First we consider the choice system in which the pooling choice rule is used at both time t = 0 and t = 2. The optimal offer of **s** at time t = 3 is 100 and the equivalent price is $e^3 = 73$. At t = 2, both buyer type will offer $(e^3)_{\leftarrow s} = 47.8$. At t = 1, **s** can offer 1) $(47.8)_{\leftarrow b_h} = 68.68$, which will give **s** an expected utility with $0.7(68.68 - 10)0.6^2 + 0.3(47.8 - 10)0.6^3 = 17.2368; 2)$ $(47.8)_{\leftarrow b_l} = 52.68$, which will give **s** an expected utility with $(52.68 - 10)0.6^2 = 15.3648$. Therefore, the optimal offer of **s** at t = 1 is $(47.8)_{\leftarrow b_h} = 68.68$ and the equivalent price is $e^1_{S_3^+} = 57.88$. At t = 0, both buyer type will offer $(e^1_{S_3^+})_{\leftarrow s} = 38.728$. It's easy to see that all equilibrium existence conditions are satisfied. Thus, there is a sequential equilibrium with the choice system.

Next we consider the choice system in which the separating choice rule is used at time t = 0. First we assume the existence of sequential equilibrium and we have $x_{\mathbf{b}_h}^*(0) = 51.04$ and $x_{\mathbf{b}_l}^*(1) = 48$. \mathbf{b}_h has no incentive to behave as \mathbf{b}_l since $x_{\mathbf{b}_h}^*(0) = 51.04 < 68.8 = (x_{\mathbf{b}_l}^*(1))_{\leftarrow \mathbf{b}_h}$. However, \mathbf{b}_l has an incentive to behave as \mathbf{b}_h since $(x_{\mathbf{b}_l}^*(1))_{\leftarrow \mathbf{b}_h} = 52.8 > 51.04 = x_{\mathbf{b}_h}^*(0)$. Therefore, there is no sequential equilibrium with this choice system.

Finally, we consider the choice system in which the pooling choice rule is used at time t = 0 and the separating choice rule is used at time t = 2. We first consider the subgame starting from t = 2, which is equivalent to the bargaining game in Fig. 3. Thus, there is a sequential equilibrium for the subgame with the separating choice rule in which \mathbf{b}_h 's optimal offer at time t = 2 is $\mathbf{x}_{\mathbf{b}_h}^*(2) = 64$, \mathbf{b}_l 's optimal offer at time t = 2 is \mathbf{RP}_s , and \mathbf{s} will offer $\mathbf{x}_{\mathbf{b}_l}^*(3) = 60$ at time t = 3 if it receives offer \mathbf{RP}_s at time t = 2. Then we consider the subgame from the beginning to time t = 2. At t = 1, \mathbf{s} can offer 1) $(64)_{\leftarrow \mathbf{b}_h} = 78.4$, which will give \mathbf{s} an expected utility $0.7(78.4 - 10)0.6^2 + 0.3(60 - 10)0.6^4 = 19.1808$ (note that if \mathbf{b} is of type \mathbf{b}_l , it will offer \mathbf{RP}_s at time t = 2 and make an agreement with \mathbf{s} at time t = 4); 2) $(\mathbf{x}_{\mathbf{b}_l}^*(3))_{\leftarrow 2[\mathbf{b}_l]} = 60$, which will give \mathbf{s} an expected utility $(60 - 10)0.6^2 = 18$. Therefore, the optimal offer of \mathbf{s} at t = 1 is 78.4 and the equivalent price is $e_{S1}^1 = 63.28$.

At t = 0, both buyer type will offer $(e_{S_3^1}^1)_{\leftarrow s} = 41.968$, which is lower than both types' reserve prices. Thus, there is a sequential equilibrium within this choice system.

5.7 Multiple types of reserve prices

In this section we consider how to extend our analysis to handle finitely many reserve prices for the buyer **b**. The presence of many types increases the computational complexity of the procedure to find equilibrium strategies and requires more stringent equilibrium existence conditions. When there are only two types and the two buyer types behave in different ways at a time point, the only possibility is that the type with higher reserve price offers an acceptable price and the other type offer a price that will be rejected. With more types, the buyer has more options of differentiating its types: some buyer types make an acceptable offer while the other buyer types make an offer that will be rejected by the sellers.

We show the complication introduced by the presence of multiple types through the following example: The initial belief of each seller **s** on the type of **b** is $\mu(0) = \langle \Delta_{\mathbf{b}}^0, P_{\mathbf{b}}^0 \rangle$ where $\Delta_{\mathbf{b}}^0 = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$. We assume that the deadline of each agent is 5 and $\iota(0) = \mathbf{b}$. At time t = 0, buyer **b** has the following options (choice rules): 1) **b**_1, **b**_2, and **b**_3 make the same offer; 2) One buyer type makes an offer acceptable to seller S_2^1 , while the other two buyer types make an offer that will be rejected by S_2^1 ; and 3) Two buyer types make an offer acceptable to seller S_2^1 , while the other two buyer types make an offer that will be rejected by S_2^1 . At time t = 1, sellers will act according to its updated belief about the type of **b**. For example, if **b** chooses option 1, each seller **s**'s belief at time t = 1 is $\Delta_{\mathbf{b}}^0$. If **b** chooses one choice rule belonging to option 2 in which **b**_1 and **b**_2 make an offer acceptable to seller S_2^1 , but **b**_3 makes an offer that will be rejected by S_2^1 , a seller **s**'s belief at time t = 1 is either $\{\mathbf{b}_3\}$ or $\{\mathbf{b}_1, \mathbf{b}_2\}$.

If buyer **b** chooses option 1 at time t = 0, it still has three options at time t = 2 as at time t = 0. Assume that buyer **b** chooses the choice rule in which **b**₁ and **b**₂ make an offer acceptable to seller S_2^1 , but **b**₃ makes an offer that will be rejected by S_2^1 . For the sellers' belief set {**b**₁, **b**₂}, **b** has two options: 1) **b**₁ and **b**₂ make the same offer; 2) one buyer type makes an offer acceptable to seller S_2^1 , while the other makes an offer that will be rejected by S_2^1 . When a belief set contains only one type, bargaining becomes complete information bargaining.

Therefore, we can compute agents' sequential equilibrium strategies for the multi-type case based on our analysis of the two-type situation. Our approach involves searching all possible choice systems (each specifying agents' choice rule at each time point when the buyer is offering, i.e., whether different buyer types will behave in the same way or not) and computing agents' optimal strategies for each choice system.

5.8 Many-to-many setting

In this section we consider extending our analysis of one-to-many incomplete information bargaining to many-to-many incomplete information bargaining in which there is a twotype uncertainty regarding the type of a buyer $\mathbf{b} \in \mathcal{B}$ while the types of other buyers $\mathcal{B} - \mathbf{b}$ and sellers \mathcal{S} are known to all agents. Adding other buyers will change the strategy of each buyer and each seller since all agents need to take into account the competition between the buyers. However, the increase of buyers will not change the choice rule at each information set and the number of choice systems. Therefore, we just need to adopt the analysis in Section 4 to find out agents' optimal strategies when there is competition between buyers. Assume that at time t + 1 where $\iota(t + 1) = \mathcal{B}$, buyer types of **b** make the same offer $x_{\mathbf{b}}^*(t + 1)$, i.e., the pooling choice rule was chosen at time t + 1. Let the price of any other buyer $\mathbf{b}' \in \mathcal{B} - \mathbf{b}$ be $x_{\mathbf{b}'}^*(t + 1)$. When there is only one buyer, seller \mathcal{S}_{t+2}^1 will propose a price no lower than the offer of other sellers. Since seller \mathcal{S}_{t+2}^1 is uncertain of the type of the buyer, there are two options for seller \mathcal{S}_{t+2}^1 . When there are multiple buyers, we can apply the result in Theorem 4 to find out \mathcal{S} 's highest equilibrium offer $x_{\mathcal{S}}^*(t)$ (or $x_{\mathbf{b}_h}^*(t)$) when **b** is of different types. Formally, when **b** can be of type $\mathbf{b}_h, x_{\mathcal{S}}^*(t)$ is given by

- $\left\{ (x_{\mathbf{b}}^{*}(t+1))_{\leftarrow \mathbf{b}_{h}} \cup \{ (x_{\mathbf{b}'}^{*}(t+1))_{\leftarrow \mathbf{b}'} | \mathbf{b}' \in \mathcal{B}_{t+3} \mathbf{b} \} \cup \{ \operatorname{RP}_{\mathbf{b}'} | \mathbf{b}' \in \mathcal{B}_{=t+2} \} \right\}^{|\mathcal{S}_{t+2}|} \text{ if } \\ |\mathcal{S}_{t+2}| \le |\mathcal{B}_{t+2}|;$
- $\min \left\{ \operatorname{RP}_{b_{t+2}|l} (\mathbf{x}_{b}^{*}(t+1))_{t+2} | \mathbf{b}_{t+2}| \mathbf{b}_{t+2} \right\} (\mathbf{x}_{b}^{*}(t+1))_{t+2} | \mathbf{b}_{t+2}| \mathbf{b}_{t+2} | \mathbf{b}_{t+2}| \mathbf{b}$

In the same way, we can define the value $x_{\mathcal{S}}^*(t)$ (or $x_{\mathbf{b}_l}^*(t)$) when **b** is of type \mathbf{b}_l . Each winning seller will choose one price from $x_{\mathbf{b}_h}^*(t)$ and $x_{\mathbf{b}_l}^*(t)$ which can give it the highest expected utility. The equivalent price of each winning seller's offer can be computed based on the highest expected utility. If **b** chooses the separating rule at time t + 1, i.e., \mathbf{b}_l makes an offer which will be rejected but \mathbf{b}_h makes an acceptable offer. In this case, the value of $x_{\mathcal{S}}^*(t)$ can be computed in the same way as the buyer adopts the pooling choice rule except that the back propagated value $(x_{\mathbf{b}}^*(t+1))_{\leftarrow \mathbf{b}_l}$ needs to be replaced by $(x_{\mathbf{b}_l}^c(t+2))_{\leftarrow 2[\mathbf{b}_l]}$ since $x_{\mathbf{b}}^*(t+1)$ will be rejected.

Now we analyze how to compute buyers' equilibrium offers at time *t* given sellers' equivalent offers at time t + 1. If the buyer adopts the pooling choice rule, we can apply the result in Theorem 4 to find out buyers' equilibrium offers. If the buyer adopts the separating choice rule, \mathbf{b}_l will make an offer (i.e., -1) that will be rejected and the offer of \mathbf{b}_h will be accepted (if it is possible). Each buyer's optimal offer depends on the offer of other buyers. Thus, buyers will make proposals in Bayesian-Nash equilibrium at time *t*. Buyers' equilibrium strategies at time *t* include the strategy of \mathbf{b}_h , \mathbf{b}_l , and other buyers. The utility of a buyer $\mathbf{b}' \in \mathcal{B}_{t+2} - \mathbf{b}$ is $\omega_{\mathbf{b}_h}^0 U_{\mathbf{b}'}(\mathbf{b}_h) + \omega_{\mathbf{b}_l}^0 U_{\mathbf{b}'}(\mathbf{b}_l)$ where $U_{\mathbf{b}'}(\mathbf{b}_h) (U_{\mathbf{b}'}(\mathbf{b}_l))$ is the utility of \mathbf{b}' when the buyer \mathbf{b} is of type \mathbf{b}_h (\mathbf{b}_l).

6 Conclusion

This paper analyzes agents' strategic behavior in concurrent one-to-many negotiation and many-to-many negotiation when agents follow the alternating-offers protocol. The contributions of this paper can be summarized as follows:

- We extend the alternating-offers protocol to handle multiple trading opportunities and market competition. We provide an algorithm based on backward induction to compute the subgame perfect equilibrium of concurrent one-to-many negotiation and manyto-many negotiation. We observe that agents' bargaining power are affected by the proposing ordering and market competition.
- For the complete information setting, we show that the computational complexity when there are many buyers and many sellers in our protocol exponentially increases with the number of buyers and sellers. We find that for a large subset of the space of the parameters, agents' equilibrium strategies depend on the values of a narrow number of parameters. The computation of the equilibrium for realistic ranges of the parameters in one-to-many settings reduces to the computation of the equilibrium either in one-to-one

settings with uncertainty or in one-to-many settings without uncertainty. We also compare the efficiency of the negotiation mechanism with that of some other mechanisms like VCG auction.

We provide an algorithm to find a pure strategy sequential equilibrium in one-to-many negotiation and many-to-many negotiation where there is uncertainty regarding the reserve price of one agent. Our algorithm combines together game theoretic analysis with state space search techniques and it is sound and complete. Our algorithm has a polynomial complexity.

One major motivation of the study of bargaining theory is designing successful bargaining agents in practical dynamic markets where agents often have to negotiate with multiple trading partners while facing the competition from agents of the same type. Although constraints, complexity, and uncertainty make it impractical to develop optimal negotiation strategies, our analysis can still give us some insights into the bargaining problems. This paper provides some useful guidelines for designing negotiation agents. For example, market competition plays a central role in deciding the market equilibrium, agents need to make the same offer to all the trading partners at each time.

Another future research direction is theoretically analyzing agents' strategic behavior in one-to-many negotiation and many-to-many negotiation when agents have incomplete information about more than one agent's reserve prices, and discounting factors. Moreover, another level of uncertainty which comes with one-to-many and many-to-many negotiation is that an agent may only have probabilistic information about the number of trading parters and trading competitors. When each trader privately knows its own preferences, it may have an incentive to misrepresent its preference in order to influence the market equilibrium in its favor and it will learn the other agents' preferences during the bargaining process. A number of bargaining models [17, 20, 31, 34] have studied incomplete information bargaining and some surprising results show that learning won't happen in some situations (e.g., [31]). It would be interesting to investigate an agent's incentive to misrepresent its preference in a market where a single agent's influence on the market equilibrium will decrease with the increase of the scale of the market. It is also interesting to study one-to-many negotiation between human beings and agents [22].

Appendix A: Proof of Theorem 1

Proof First compute agents' optimal offers using backward induction. Let $x_{\mathcal{S}}^*(t) = \min_{\mathbf{s}_i \in \mathcal{S}_{t+2}} x_{\mathbf{s}_i}^*(t)$ be \mathcal{S} 's highest optimal offer at t. It follows that $x_{\mathbf{s}_i}^*(t) = \max\{\operatorname{RP}_{\mathbf{s}_i}, x_{\mathcal{S}}^*(t)\}$. At time point T, the game for the buyer **b** rationally stops. The equilibrium outcome of every subgame starting from $t \ge T$ is *NoAgreement*. Therefore, at t = T agent $\iota_{\mathfrak{D}_{\mathbf{b},\mathbf{s}_i}}(T)$ would only confirm the best agreement proposed by agent $\iota_{\mathfrak{D}_{\mathbf{b},\mathbf{s}_i}}(T-1)$. At time t = T - 1, $\iota_{\mathfrak{D}_{\mathbf{b},\mathbf{s}_i}}(T-1)$ will accept the best offer by agent $\iota_{\mathfrak{D}_{\mathbf{b},\mathbf{s}_i}}(T-2)$, if $\iota_{\mathfrak{D}_{\mathbf{b},\mathbf{s}_i}}(T-1)$ can get a utility not worse than *NoAgreement* by accepting the best offer. Note that at time T - 1 and T, no agent will propose a price as it takes at least three time points to implement a final contract.

Assume that $\iota_{\mathfrak{I}_{\mathbf{b},\mathbf{s}_{i}}}(t) = \mathbf{b}$. If t = T - 2 or $t = T_{\mathcal{S}_{t+2}^{1}} - 2$, **b**'s optimal price is $\operatorname{RP}_{\mathcal{S}_{t+2}^{1}}$ and seller \mathcal{S}_{t+2}^{1} will accept it as its deadline is approaching. At t < T - 2, $\min_{\mathbf{s}_{i} \in \mathcal{S}_{t+3}} ((x_{\mathbf{s}_{i}}^{*}(t+1))_{\leftarrow \mathbf{s}_{i}})$ is surely acceptable to some sellers in \mathcal{S}_{t+3} . We also need to

consider sellers $S_{t+2} - S_{t+3}$ with deadline t + 2, who are willing to accept any offer which is no less than their reserve prices. Therefore, **b**'s optimal offer at time *t* is

$$x_{\mathbf{b}}^{*}(t) = \min\{\min_{\mathbf{s}_{i} \in \mathcal{S}_{t+3}} \left((x_{\mathbf{s}_{i}}^{*}(t+1))_{\leftarrow \mathbf{s}_{i}} \right), \min_{\mathbf{s}_{i} \in \mathcal{S}_{t+2} - \mathcal{S}_{t+3}} \operatorname{RP}_{\mathbf{s}_{i}} \}$$
(1)

It is easy to see that $x_{S_{l+3}^{1}}^{*}(t+1) \le x_{S_{l+3}^{2}}^{*}(t+1) = \operatorname{RP}_{S_{l+3}^{2}}^{*}(t+1)$. It follows that $\min_{\mathbf{s}_{i} \in S_{l+3}} ((x_{\mathbf{s}_{i}}^{*}(t+1))_{\mathbf{s}_{i}}) = (x_{S_{l+3}^{1}}^{*}(t+1))_{\mathbf{s}_{i+3}^{1}}$. As $t \ne T_{S_{l+2}^{1}} - 2$, equation (1) can be rewritten as $\min\{(x_{S_{l+2}^{1}}^{*}(t+1))_{\mathbf{s}_{l+2}^{1}}, \operatorname{RP}_{S_{l+2}^{2}}\}$. Therefore, $x_{\mathbf{b}}^{*}(t) = \min\{(x_{S_{l+2}^{1}}^{*}(t+1))_{\mathbf{s}_{l+2}^{1}}, \operatorname{RP}_{S_{l+2}^{2}}\}$ if t < T - 2 and $t \ne T_{S_{l+2}^{1}} - 2$.

Assume that $\iota_{\Im_{\mathbf{b},\mathbf{s}_i}}(t) = \mathbf{s}_i$. At time t = T - 2, the acceptable offer to buyer **b** is $\operatorname{RP}_{S_T^2}$ as all sellers in S_T^2 compete with each other to get a contract. Thus, \mathbf{s}_i 's optimal offer is $\max\{\operatorname{RP}_{\mathbf{s}_i}, \operatorname{RP}_{S_T^2}\}$. At time t < T - 2, the acceptable offer to buyer **b** is $(x_{\mathbf{b}}^*(t+1))_{\leftarrow \mathbf{b}}$. However, \mathbf{s}_i needs to consider the competition among sellers then \mathbf{s}_i 's winning price should be no higher than $\operatorname{RP}_{S_{1,2}^2}$. Then \mathbf{s}_i 's optimal offer is $\max\{\operatorname{RP}_{\mathbf{s}_i}, \min\{\operatorname{RP}_{S_{1,2}^2}, (x_{\mathbf{b}}^*(t+1))_{\leftarrow \mathbf{b}}\}\}$.

Finally, agents' optimal actions can be easily defined on the basis of $x_{\mathbf{b}}^*(t)$ and $x_{\mathbf{s}_i}^*(t)$. When an agent decides to make an offer, it always proposes it optimal offer $(x_{\mathbf{b}}^*(t) \text{ or } x_{\mathbf{s}_i}^*(t))$. Buyer **b** will accept an offer $\sigma_{\mathbf{s}_i}(t-1)$ if $\sigma_{\mathbf{s}_i}(t-1) \leq (x_{\mathbf{b}}^*(t)) \leftarrow \mathbf{b}$ and $\sigma_{\mathbf{s}_i}(t-1)$ is no higher than other sellers' offers at time t-1. It is possible that several sellers propose a same acceptable offer. The tie can be broken by choosing the lowest offer from the seller with the lowest reserve price (note that we assume that sellers have different reserve prices). If at time t-1, seller \mathbf{s}_i agrees with \mathbf{b} 's offer $\sigma_{\mathbf{b},\mathbf{s}_i}(t-2)$, **b** will confirm the agreement if $\sigma_{\mathbf{b},\mathbf{s}_i}(t-2) \leq \sigma_{\mathbf{b},\mathbf{s}_j}(t-2)$ if \mathbf{s}_j also agrees with \mathbf{b} 's offer at time t-1. Again, there could be more than one agreement with the same lowest price. To make sure that **b** only makes one final agreement, **b** confirms the agreement from the seller with the lowest reserve price. The optimal actions of all the sellers can be defined analogously. For simplicity, we consider just agents' strategies on the equilibrium path.

Appendix B: Proof of Theorem 3

²For convenience, $\operatorname{RP}_{\mathcal{S}_{t+1}^2} = \infty$ if $|\mathcal{S}_{t+1}| < 2$.

Case 2 $(\iota(\min\{T_{S_{2}^{1}}, T_{\mathbf{b}}\}) = S)$. Let $t' + 2 = \min\{T_{S_{2}^{1}}, T_{\mathbf{b}}\}$. At time t', there are two situations: 1) $|S_{t'+2}| < 2$, which implies that $x_{S}^{*}(t') = \operatorname{RP}_{\mathbf{b}} = y(t')$; 2) Otherwise, $x_{S}^{*}(t') = \operatorname{RP}_{S_{t'+2}^{*}}$. Therefore, $x_{S}^{*}(t') = \min\{y(t'), \operatorname{RP}_{S_{t'+2}^{2}}\}$. At time t' - 1, it follows that $x_{\mathbf{b}}^{*}(t'-1) = \min\{y(t'-1), (\operatorname{RP}_{S_{t'+2}^{2}}) \leftarrow S_{2}^{1}, \operatorname{RP}_{S_{t'+1}^{1}}\}$. Then at t'-2, we have $x_{S}^{*}(t'-2) = \min\{y(t'-2), (\operatorname{RP}_{S_{t'+2}^{2}}) \leftarrow S_{2}^{1}\mathbf{b}, (\operatorname{RP}_{S_{t'+1}^{1}}) \leftarrow \mathbf{b}, \operatorname{RP}_{S_{t'}^{1}}, \operatorname{RP}_{S_{t'}^{2}}\}$. It is obvious that $(\operatorname{RP}_{S_{t'+1}^{1}}) \leftarrow \mathbf{b} \geq (\operatorname{RP}_{S_{t'+1}^{1}}) \geq \operatorname{RP}_{S_{t'}^{2}}$. As we assume that $(\operatorname{RP}_{s}) \leftarrow S_{2}^{1}\mathbf{b} \geq \operatorname{RP}_{s}$, it follows that $(\operatorname{RP}_{S_{t'+2}^{2}}) \leftarrow S_{2}^{1}\mathbf{b} \geq \operatorname{RP}_{S_{t'}^{2}}$. Then we have $x_{S}^{*}(t'-2) = \min\{y(t'-2), \operatorname{RP}_{S_{t'}^{2}}\}$. Following this procedure, we have 1) if $\iota(0) = S$, $x_{S_{2}^{1}}^{*}(0) = \min\{y(0), \operatorname{RP}_{S_{2}^{2}}\}$; 2) if $\iota(0) = \mathbf{b}$, $x_{\mathbf{b}}^{*}(0) = \min\{y(0), (\operatorname{RP}_{S_{2}^{2}}) \leftarrow S_{2}^{1}\mathbf{b}}\}$ given that $T_{S_{2}^{2}} > 2$.

Appendix C: Proof of Theorem 4

Proof Given Lemmas 2 and 3, we just need to find out the agents' equilibrium winning price at each time point. Let $x_{\mathcal{B}}^*(t)$ ($x_{\mathcal{S}}^*(t)$) be \mathcal{B} 's lowest (\mathcal{S} 's highest) offer which is acceptable to \mathcal{S} (\mathcal{B}) at time t if $\iota(t) = \mathcal{B}$ ($\iota(t) = \mathcal{S}$). It follows that $x_{\mathcal{B}}^*(t) = \max_{\mathbf{b}_j \in \mathcal{B}_{t+2}} x_{\mathbf{b}_j}^*(t)$, $x_{\mathcal{S}}^*(t) = \min_{\mathbf{s}_i \in \mathcal{S}_{t+2}} x_{\mathbf{s}_i}^*(t)$.

Following the idea of backward induction, at $T = \max_{\mathbf{b}_j \in B} T_{\mathbf{b}_j, S}$, the game for all agents rationally stops. The equilibrium outcome of every subgame starting from $t \ge T$ is *NoAgreement*. Therefore, at t = T, agents $\iota(T)$ would only confirm the best agreement proposed by agents $\iota(T-1)$. At time t = T - 1, agents $\iota(T-1)$ will accept the best offer by agents $\iota(T-2)$ if the best offer is no worse than *NoAgreement* by accepting the best offer. At time T - 1 and T, no agent will propose a price as it takes at least three time points to implement a final contract.

At time t = T - 2, agents $\iota(t)$ will strive to make the best offer. There are two situations: $\iota(t) = \mathcal{B}$ or $\iota(t) = \mathcal{S}$. First consider the case $\iota(t) = \mathcal{B}$ and there are two cases: Case 1 ($|\mathcal{B}_T| \leq |\mathcal{S}_T|$): In this case, the supply is no less than demand and buyers have more bargaining power as compared with sellers. It is easy to see that each buyer's optimal price is $\operatorname{RP}_{\mathcal{S}_T^{|\mathcal{B}_T|}}$ as, by doing so, $|\mathcal{B}_T|$ sellers will agree to sell their good and each buyer can get a good. If one buyer pays less than $\operatorname{RP}_{\mathcal{S}_T^{|\mathcal{B}_T|}}$, the sellers will choose another buyers paying $\operatorname{RP}_{\mathcal{S}_T^{|\mathcal{B}_T|}}$. It doesn't make sense that a rational agent will pay more than $\operatorname{RP}_{\mathcal{S}_T^{|\mathcal{B}_T|}}$. If each buyer pays a price less than $\operatorname{RP}_{\mathcal{S}_T^{|\mathcal{B}_T|}}$, each buyer will face a risk of losing an agreement as the number of sellers who are willing to accept the price is less than the number of buyers. Case 2 ($|\mathcal{B}_T| > |\mathcal{S}_T|$): In this case, the supply is less than demand and buyers need to compete with each other to get agreements. It is easy to say that each buyer's optimal price is $\operatorname{RP}_{\mathcal{B}_T^{|\mathcal{S}_T|+1}}$. In the same way, we can get the optimal offer of buyers \mathcal{S}_T at time T - 2: $x_{\mathcal{S}}^*(T-2) = \operatorname{RP}_{\mathcal{B}_T^{|\mathcal{S}_T|}}$ if $|\mathcal{S}_T| \leq |\mathcal{B}_T|$, $x_{\mathcal{S}}^*(T-2) = \operatorname{RP}_{\mathcal{S}_T^{|\mathcal{B}_T|+1}}$ if $|\mathcal{S}_T| > |\mathcal{B}_T|$.

Then we move to the calculation for computing $x_{\mathcal{B}}^*(t)$ and $x_{\mathcal{S}}^*(t)$ given $x_{\mathcal{B}}^*(t+1)$ and $x_{\mathcal{S}}^*(t+1)$. First consider the situation that $\iota(t) = \mathcal{B}$. There are two situations depending on whether there are agents with deadline t + 2. If there is no agent with deadline t + 2, $(x_{\mathbf{s}_i}^*(t+1))_{\leftarrow \mathbf{s}_i}$ is surely acceptable to seller \mathbf{s}_i at time t. Here we consider two cases: 1) $|\mathcal{S}_{t+3}| \geq |\mathcal{B}_{t+3}|$. It is easy to see that, the price $\min_{\mathbf{s}_i \in \mathcal{S}_{t+3}} ((x_{\mathbf{s}_i}^*(t+1))_{\leftarrow \mathbf{s}_i})$

is surely acceptable to sellers in S_{t+3} whose optimal price is $x_{\mathcal{S}}^*(t+1)$ at time t+1. However, we also need to consider the competition among buyers. Therefore, $x_{\mathcal{B}}^*(t) = \{(x_{\mathbf{s}_i}^*(t+1))_{\leftarrow \mathbf{s}_i} | \mathbf{s}_i \in S_{t+3} \}_{|\mathcal{B}_{t+3}|}$ where $\mathcal{Y}_i (\mathcal{Y}^i)$ is the i^{th} smallest (largest) value in the value set \mathcal{Y} . 2) $|S_{t+3}| < |\mathcal{B}_{t+3}|$. As $(x_{\mathbf{s}_i}^*(t+1))_{\leftarrow \mathbf{s}_i} \le x_{\mathbf{s}_i}^*(t+1), x_{\mathcal{B}}^*(t)$ should be no less than $\operatorname{RP}_{\mathcal{B}_{t+3}^{|\mathcal{S}_{t+3}|+1}}$. Therefore, it follows that $x_{\mathcal{B}}^*(t) = \max \left\{ \operatorname{RP}_{\mathcal{B}_{t+3}^{|\mathcal{S}_{t+3}|+1}}, \{(x_{\mathbf{s}_i}^*(t+1))_{\leftarrow \mathbf{s}_i} | \mathbf{s}_i \in S_{t+3} \}_{|\mathcal{S}_{t+3}|} \right\}$.

Now we move to the general case that there are some buyers or sellers with deadline t + 2. For a buyer with deadline t + 2, it is willing to propose its reserve price. For a seller with deadline t + 2, it is willing to accept an offer of its reserve price. Assume that there are some sellers with deadline t + 2 and buyers are proposing at time t. Sellers $S_{=t+2}$ with deadline t + 2 are willing to accept any offer that is no higher than their reserve prices. If such sellers accept buyers' offer made at time t, other sellers will not make offers to such buyers at time t + 1 and thus such buyers will not "participate" negotiation in the future. Therefore, sellers' offers that will be propagated back for computing buyers' equilibrium offers at time t strongly depends which buyers will not continue to negotiate in the future. In this paper we define the tie breaking rules for agents' accepting offers or confirming accepted offers as agents will make the same winning offers. Assume that buyers \mathcal{B}_{t+2} are making offers at time t. For computing buyers' equilibrium offers at time t, buyers need to propagate the sellers' equilibrium offers at time t + 1 which depend on the set of buyers which will continue to negotiate at time t + 1 as at time t + 1, sellers $S_{=t+2}$ with deadline t + 2 are willing to accept any offer that is no higher than their reserve prices. Here we assume that sellers $S_{=t+2}$ will accept buyers' offers (we call these buyers 'buyers minimizing seller equilibrium winning offer') so that sellers' equilibrium winning offer at time t + 1 is the smallest. Let $x_{\mathcal{S}}^*(t + 1, k, \mathcal{B})$ be the sellers' lowest equilibrium winning offer at time t + 1 to $|\mathcal{B}| - k$ buyers in \mathcal{B} . The number k of buyers whose offers will be accepted at time t + 1 depends on the reserve prices of the sellers with deadline t + 2and the reserve prices of the sellers with deadline larger than t + 2. With the k* value in equilibrium, we can get \mathcal{B} 's optimal price at time t < T-2 as follows: 1) if $|\mathcal{S}_{t+2}| < |\mathcal{B}_{t+2}|$, $x_{\mathcal{B}}^{*}(t) = \max \left\{ \operatorname{RP}_{\mathcal{B}_{t+2}^{|\mathcal{S}_{t+2}|+1}}, \left\{ \left\{ (x_{\mathbf{s}_{i}}^{*}(t+1,k^{*},\mathcal{B}))_{\leftarrow \mathbf{s}_{i}} | \mathbf{s}_{i} \in \mathcal{S}_{t+3} \right\} \cup \left\{ \operatorname{RP}_{\mathbf{s}_{i}} | \mathbf{s}_{i} \in \mathcal{S}_{=t+2} \right\} \right\}_{|\mathcal{S}_{t+2}|} \right\};$ 2) otherwise, $x_{\mathcal{B}}^{*}(t) = \min \left\{ \operatorname{RP}_{S_{t+2}^{|\mathcal{B}_{t+2}|+1}}, \left\{ \{ (x_{\mathbf{s}_{i}}^{*}(t+1,k^{*},\mathcal{B}))_{\leftarrow \mathbf{s}_{i}} | \mathbf{s}_{i} \in \mathcal{S}_{t+3} \} \cup \{ \operatorname{RP}_{\mathbf{s}_{i}} | \mathbf{s}_{i} \in \mathcal{S}_{t+3} \} \right\}$ $S_{=t+2}|B_{t+2}|$

In the same way, we can get \mathcal{S} 's optimal price at time t < T-2 as follows: 1) if $|\mathcal{S}_{t+2}| \leq |\mathcal{B}_{t+2}|$, $x_{\mathcal{S}}^*(t) = \max \{ \operatorname{RP}_{\mathcal{B}_{t+2}^{|\mathcal{S}_{t+2}|+1}}, \{ \{ (x_{\mathbf{b}_j}^*(t+1,k^*,\mathcal{S}))_{\leftarrow \mathbf{b}_j} | \mathbf{b}_j \in \mathcal{B}_{t+3} \} \cup \{ \operatorname{RP}_{\mathbf{b}_j} | \mathbf{b}_j \in \mathcal{B}_{t+2} \} | \mathcal{S}_{t+2}^{|\mathcal{S}_{t+2}|} \}$; 2) otherwise, $x_{\mathcal{S}}^*(t) = \min \{ \operatorname{RP}_{\mathcal{S}_{t+2}^{|\mathcal{B}_{t+2}|+1}}, \{ \{ (x_{\mathbf{b}_j}^*(t+1,k^*,\mathcal{S}))_{\leftarrow \mathbf{b}_j} | \mathbf{b}_j \in \mathcal{B}_{t+3} \} \cup \{ \operatorname{RP}_{\mathbf{b}_j} | \mathbf{b}_j \in \mathcal{B}_{t+2} \} \} \}$.

Now we prove that agents have no incentive to deviate from their optimal actions specified in the theorem statement. We analyse the buyer's decision making and the seller's decision making could be analyzed in the same way. At time *t*, for a buyer \mathbf{b}_j such that $t = T_{\mathbf{b}_j} - 1$, the buyer will accept any offer $x \leq \operatorname{RP}_{\mathbf{b}_j}$ as the buyer \mathbf{b}_j has no chance to make offers in the future. Otherwise (i.e., $t < T_{\mathbf{b}_j} - 1$), buyer \mathbf{b}_j can accept the offer *x* made by \mathbf{s}_i at *t* if $x \leq (x^*_{\mathbf{b}_j}(t))_{\leftarrow \mathbf{b}_j}$ as $x^*_{\mathbf{b}_j}(t)$ is buyer \mathbf{b}_j 's equilibrium offer by construction. In the case that multiple offers are acceptable, buyer \mathbf{b}_j will follow the tie-breaking rule as the sellers will follow the rule as well. When the buyer \mathbf{b}_j is making an offer at time *t*, its offer is also optimal. Consider the case that $|\mathcal{S}_{t+2}| < |\mathcal{B}_{t+2}|$, the buyer will not offer more than max $\{\operatorname{RP}_{\mathcal{B}_{t+2}^{|\mathcal{S}_{t+2}|+1}, \{\{(x^*_{\mathbf{s}_i}(t+1, k^*, \mathcal{B}))_{\leftarrow \mathbf{s}_i} | \mathbf{s}_i \in \mathcal{S}_{t+3}\} \cup \{\operatorname{RP}_{\mathbf{s}_i} | \mathbf{s}_i \in \mathcal{S}_{=t+2}\}_{|\mathcal{S}_{t+2}|}\}$. Consider

that case that the buyer's reserve price is higher than the winning equilibrium offer price, the buyer has no incentive to pay more. If it offers less, it will either fail to make a contract or it needs to pay more in the future since we assume that the sellers' equilibrium offers propagated from t + 1 is the smallest. Following this, we can show that each buyer type will follow the "tie-breaking" mechanism. Similarly, we can show that each buyer type's decision making on confirm accepts are also optimal.

References

- An, B., Douglis, F., Ye, F.: Heuristics for negotiation schedules in multi-plan optimization. In: Proc. of the Seventh International Joint Conference on Autonomous Agents and Multi-Agent Systems, pp. 551–558 (2008)
- An, B., Gatti, N., Lesser, V.: Bilateral bargaining with one-sided two-type uncertainty. In: Proc. of the 9th IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT) (2009)
- An, B., Gatti, N., Lesser, V.: Bilateral bargaining with one-sided uncertain reserve prices. J. Autonom. Agents Multi-Agent Syst. 26(3), 420–455 (2013)
- An, B., Lesser, V.: Characterizing contract-based multi-agent resource allocation in networks. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 40(3), 575–586 (2010)
- An, B., Lesser, V., Irwin, D., Zink, M.: Automated negotiation with decommitment for dynamic resource allocation in cloud computing. In: Proc. of the 9th International Joint Conference on Autonomous Agents and Multi-Agent Systems, pp. 981–988 (2010)
- An, B., Lesser, V., Sim, K.M.: Decommitment in multi-resource negotiation. In: Proc. of the International Joint Conference on Autonomous Agents and Multi-Agent Systems(AAMAS), pp. 1553–1556 (2008)
- An, B., Lesser, V., Westbrook, D., Zink, M.: Agent-mediated multi-step optimization for resource allocation in distributed sensor networks. In: Proc. of the 10th International Joint Conference on Autonomous Agents and Multi-Agent Systems, pp. 609–616 (2011)
- An, B., Sim, K.M., Tang, L., Li, S., Cheng, D.: A continuous time negotiation mechanism for software agents. IEEE Trans. Syst. Man Cybern. Part B 36(6), 1261–1272 (2006)
- Ausubel, L., Cramton, P., Deneckere, R.: Handbook of Game Theory, Volume 3, Chapter Bargaining with Incomplete Information, pp. 1897–1945. Elsevier Science (2002)
- 10. Binmore, K., Shaked, A., Sutton, J.: An outside option expirement. Q. J. Econ. 104(4), 753-770 (1989)
- Branson, M., Douglis, F., Fawcett, B., Liu, Z., Riabov, A., Ye, F.: CLASP: Collaborating, autonomous data stream processing systems. In: Proc. of the ACM/IFIP/USENIX 8th International Middleware Conference, pp. 348–367 (2007)
- Chatterjee, K., Samuelson, L.: Bargaining with two-sided incomplete information: an infinite horizon model with alternating offers. Rev. Econ. Stud. 54(2), 175–192 (1987)
- Chatterjee, K., Samuelson, L.: Bargaining under two-sided incomplete information: the unrestricted offers case. Oper. Res. 36, 605–618 (1988)
- Fatima, S.S., Wooldridge, M., Jennings, N.R.: Multi-issue negotiation with deadlines. J. Artif. Intel. Res. 27, 381–417 (2006)
- Fatima, S.S., Wooldridge, M., Jennings, N.R.: On efficient procedures for multi-issue negotiation. In: Proc.of the Trading Agent Design and Analysis and Agent Mediated Electronic Commerce, pp. 71–84 (2006)
- Fudenberg, D., Mobius, M., Szeidl, A.: Existence of equilibrium in large double auctions. J. Econ. Theory 127(1), 550–567 (2007)
- Fudenberg, D., Tirole, J.: Sequential bargaining under incomplete information. Rev. Econ. Stud. 50(2), 221–248 (1983)
- 18. Gantner, A.: Bargaining, search, and outside options. Games Econ. Behav. 62(2), 417-435 (2008)
- Gatti, N.: Extending the alternating-offers protocol in the presence of competition: Models and theoretical analysis. Ann. Math. Artif. Intel. 55(3–4), 189–236 (2008)
- Gatti, N., Giunta, F.D., Marino, S.: Alternating-offers bargaining with one-sided uncertain deadlines: an efficient algorithm. Artif. Intel. 172(8–9), 1119–1157 (2008)
- Gimpel, H., Jennings, N.R., Kersten, G., Okenfels, A., Weinhardt, C.: Negotiation, Auctions, and Market Engineering, Chapter Market Engineering: A Research Agenda, pp. 1–15. Springer (2008)
- Haim, G., Gal, Y.K., Kraus, S., An, B.: Human-computer negotiation in three-player market settings. In: Proc. of the 21st European Conference on Artificial Intelligence (ECAI), pp. 417–422 (2014)

- 23. Jain, N., Amini, L., Andrade, H., King, R., Park, Y., Selo, P., Venkatramani, C.: Design, implementation, and evaluation of the linear road bnchmark on the stream processing core. In: Proc. of the 25th ACM SIGMOD International Conference on Management of Data, pp. 431–442 (2006)
- Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Sierra, C., Wooldridge, M.: Automated negotiation: prospects, methods and challenges. Int. J. Group Decis. Nego. 10(2), 199–215 (2001)
- Kersten, G., Noronha, S., Teich, J.: Are all e-commerce negotiations auctions? In: Proc. of the 4th International Conference on the Design of Cooperative Systems, pp. 535–541 (2000)
- Krainin, M., An, B., Lesser, V.: An application of automated negotiation to distributed task allocation. In: Proc. of the 7th IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp. 138–145 (2007)
- 27. Kreps, D., Wilson, R.: Sequential equilibria. Econometrica 50(4), 863-894 (1982)
- Miltersen, P., Sorensen, T.: Computing sequential equilibria for two-player games. In: Proc. of the ACMCSIAM Symposium on Discrete Algorithm (SODA), pp. 107–116 (2006)
- 29. Nash, J.: The bargaining problem. Econometrica 18(2), 155–162 (1950)
- Nguyen, T.D., Jennings, N.R.: Coordinating multiple concurrent negotiations. In: Proc. of the 3rd Int. Conf. on Autonomous Agents and Multi-Agent Systems, pp. 1064–1071 (2004)
- Perry, M.: An example of price formation in bilateral situations: A bargaining model with incomplete information. Econometrica 54(2), 313–321 (1986)
- Riabov, A., Liu, Z.: Planning for stream processing systems. In: Proc. of the Twentieth National Conference on Artificial Intelligence, pp. 1205–1210 (2005)
- 33. Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50(1), 97–109 (1982)
- Rubinstein, A.: A bargaining model under incomplete information about time preferences. Econometrica 53(5), 1151–1172 (1985)
- Sandholm, T.: Agents in electronic commerce: component technologies for automated negotiation and coalition formation. Autonom. Agents Multi-Agent Syst. 3(1), 73–96 (2000)
- Sandholm, T., Vulkan, N.: Bargaining with deadlines. In: Proc.of the 16th National Conference on Artificial Intelligence (AAAI), pp. 44–51 (1999)
- Sim, K.M.: Equilibria, prudent compromises, and the "waiting" game. IEEE Trans. Syst. Man Cybern. Part B 33(3), 712–724 (2005)
- Sim, K.M.: G-commerce, market-driven g-negotiation agents and grid resource management. IEEE Trans. Syst. Man Cybern. Part B 36(6), 1381–1394 (2006)
- 39. Singh, M.P., Huhns, M.N.: Service-Oriented Computing: Semantics, Processes, Agents. Wiley (2005)
- 40. Sobel, J.: Encyclopedia of complexity and system science, chapter signaling games. Springer (2009)
- von Stengel, B.: Algorithmic Game Theory, Chapter Equilibrium Computation for Two-Player Games in Strategic and Extensive Form. Cambridge Univ. Press (2007)