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ABSTRACT
Reinforcement learning (RL) techniques have shown great success
in many challenging quantitative trading tasks, such as portfolio
management and algorithmic trading. Especially, intraday trad-
ing is one of the most profitable and risky tasks because of the
intraday behaviors of the financial market that reflect billions of
rapidly fluctuating capitals. However, a vast majority of existing RL
methods focus on the relatively low frequency trading scenarios
(e.g., day-level) and fail to capture the fleeting intraday investment
opportunities due to two major challenges: 1) how to effectively
train profitable RL agents for intraday investment decision-making,
which involves high-dimensional fine-grained action space; 2) how
to learn meaningful multi-modality market representation to under-
stand the intraday behaviors of the financial market at tick-level.

Motivated by the efficient workflow of professional human intra-
day traders, we propose DeepScalper, a deep reinforcement learn-
ing framework for intraday trading to tackle the above challenges.
Specifically, DeepScalper includes four components: 1) a dueling Q-
network with action branching to deal with the large action space
of intraday trading for efficient RL optimization; 2) a novel reward
function with a hindsight bonus to encourage RL agents making
trading decisions with a long-term horizon of the entire trading
day; 3) an encoder-decoder architecture to learn multi-modality
temporal market embedding, which incorporates both macro-level
and micro-level market information; 4) a risk-aware auxiliary task
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to maintain a striking balance between maximizing profit and min-
imizing risk. Through extensive experiments on real-world market
data spanning over three years on six financial futures (2 stock
index and 4 treasury bond), we demonstrate that DeepScalper sig-
nificantly outperforms many state-of-the-art baselines in terms
of four financial criteria. Furthermore, we conduct a series of ex-
ploratory and ablative studies to analyze the contributions of each
component in DeepScalper.

CCS CONCEPTS
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ologies → Machine learning; • Applied computing → Elec-
tronic commerce.
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1 INTRODUCTION
The financial market, an ecosystem that involves over 90 trillion1
market capitals globally in 2020, attracts the attention of hundreds
of millions of investors to pursue desirable financial assets and
achieve investment goals. Recent years have witnessed significant
development of quantitative trading [1], due to its instant and ac-
curate order execution, and capability of analyzing and processing
large amount of temporal financial data. Especially, intraday trad-
ing2, where traders actively long/short pre-selected financial assets
(at least a few times per day) to seize intraday trading opportunities,

1https://data.worldbank.org/indicator/CM.MKT.LCAP.CD/
2https://www.investopedia.com/articles/trading/05/011705.asp

https://doi.org/10.1145/3511808.3557283
https://doi.org/10.1145/3511808.3557283


CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Sun et al.

Bid Ask
Qty Price Price Qty
100 9.9 10.0 450
30 9.8 10.1 200
150 9.7 10.2 100

Intraday Trader

OHLCV

Risk 
Management

profit
Price Qty
9.9 +3

LOB

Data Analysis
short-term

long-term

Figure 1: Workflow of professional human intraday trader

becomes one of the most profitable and risky quantitative trading
tasks with the growth of discount brokerages (lower commission
fee).

Traditional intraday trading strategies use finance knowledge
to discover trading opportunities with heuristic rules. For instance,
momentum [24] trading is designed based on the assumption that
the trend of financial assets in the past has the tendency to con-
tinue in the future. Mean reversion [4] focusing on the investment
opportunities at the turning points. However, rule-based traditional
methods exhibit poor generalization ability and only perform well
in certain market conditions [7]. Another paradigm is to trade based
on financial prediction. Many advanced machine learning models
such as GCN [13], Transformer [8] and LGBM [19] have been in-
troduced for predicting future prices [9]. Many other data sources
such as economic news [15], frequency of price [43], social media
[38] and investment behaviors [5] have been added as additional
information to further improve prediction performance. However,
the high volatility and noisy nature of the financial market make
it extremely difficult to accurately predict future prices [10]. Fur-
thermore, there is a noticeable gap between prediction signals and
profitable trading actions [13]. Thus, the overall performance of
prediction-based methods is not satisfying as well.

Similar to other application scenarios of reinforcement learning
(RL), quantitative trading also interacts with the environment (fi-
nancial market) and maximizes the accumulative profit. Recently,
RL has been considered as an attractive approach to quantitative
trading as it allows training agents to directly output profitable
trading actions with better generalization ability across various
market conditions [21]. Although there have been many successful
RL-based quantitative trading methods [11, 35, 39], a vast majority
of existing methods focus on the relatively low-frequency trading
scenarios (e.g., day-level) and fail to capture the fleeting intraday
investment opportunities. To design profitable RL methods for in-
traday trading, there are two major challenges. First, different from
the low-frequency scenarios, intraday trading involves a much
larger high-dimensional fine-grained action space to represent the
price and quantity of orders for more accurate control of the finan-
cial market. Second, we need to learn meaningful multi-modality
intraday market representation, which takes macro-level market,
micro-level market and risk into consideration.

Considering the workflow of a professional human intraday
trader (Figure 1), the trader first collects bothmicro-level andmacro-
level market information to analyze the market status. Then, he
predicts the short-term and long-term price trend based on the mar-
ket status. Later on, he conducts risk management and makes final

trading decisions (when and how much to long/short at what price).
Among many successful trading firms, this workflow plays a key
role for designing robust and profitable intraday trading strategies.
Inspired by it, we propose DeepScalper, a novel RL framework for
intraday trading to tackle the above challenges by mimicking the
information collection, short-term and long-term market analysis
and risk management procedures of human intraday traders. Our
main contributions are three-fold:

• We apply the dueling Q-Network with action branching
to effectively optimize intraday trading agents with high-
dimensional fine-grained action space. A novel reward func-
tionwith hindsight bonus is designed to encourage RL agents
making trading decisions with a long-term horizon of the
entire trading day.

• We propose an multi-modality encoder-decoder architecture
to learn meaningful temporal intraday market embedding,
which incorporates both micro-level and macro-level market
information. Furthermore, we design a risk-aware auxiliary
task to keep balance between profit and risk.

• Through extensive experiments on real-world market data
spanning over three years on six financial futures, we show
that DeepScalper significantly outperforms many state-of-
the-art baseline methods in terms of four financial crite-
ria and demonstrate DeepScalper’s practical applicability to
intraday trading with a series of exploratory and ablative
studies.

2 RELATEDWORK
2.1 Traditional Finance Methods
Technical analysis [25], which believes that past price and volume
data have the ability to reflect future market conditions [10], is the
foundation of traditional finance methods. Millions of technical
indicators are designed to generate trading signals [18]. Momentum
[14] and mean reversion [28] are two well-known types of tradi-
tional finance methods based on technical analysis. Momentum
trading assumes the trend of financial assets in the past has the
tendency to continue in the future. Time Series Momentum [24]
and Cross Sectional Momentum [16] are two classic momentum
strategies. In contrast, mean reversion strategies such as Bollinger
bands [4] assume that the price of financial assets will finally revert
to the long-term mean.

However, traditional finance methods are not perceptive enough
to capture fleeting intraday patterns and only perform well in cer-
tain market conditions [7]. In recent years, many advanced machine
learning methods have significantly outperformed traditional fi-
nance methods.

2.2 Prediction-Based Methods
As for prediction-based methods, they first formulate quantitative
trading as a supervised learning task to predict the future return
(regression) or price movement (classification). Later on, trading
decisions are generated by the prediction results with a heuristic
strategy generator (e.g., top-k in [40]). Specifically, Wang et al. [34]
combine attention mechanism with LSTM to model correlated time
steps. To improve the robustness of LSTM, Feng et al. [12] apply
adversarial training techniques for stock prediction. Zhang et al.
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[43] propose a novel State Frequency Memory (SFM) recurrent
network with Discrete Fourier Transform (DFT) to discover multi-
frequency patterns in stock markets. Liu et al. [20] introduce a
multi-scale two-way neural network to predict the stock trend. Sun
et al. [32] propose an ensemble learning framework to train mixture
of trading experts.

However, the high volatility and noisy nature of the financial mar-
ket make it extremely difficult to accurately predict future prices
[10]. Furthermore, there is a noticeable gap between prediction
signals and profitable trading actions [13]. Thus, the overall perfor-
mance of prediction-based methods is not satisfying as well.

2.3 Reinforcement Learning Methods
Recent years have witnessed the successful marriage of reinforce-
ment learning and quantitative trading as RL allows training agents
to directly output profitable trading actions with better generaliza-
tion ability across various market conditions [31]. Neuneier [26]
make the first attempt to learn trading strategies using Q-learning.
Moody and Saffell [23] propose a policy-based method, namely
recurrent reinforcement learning (RRL), for quantitative trading.
However, traditional RL approaches have difficulties in selecting
market features and learning good policy in large scale scenarios.
To tackle these issues, many deep RL approaches have been pro-
posed to learn market embedding through high dimensional data.
Jiang et al. [17] use DDPG to dynamically optimize cryptocurrency
portfolios. Deng et al. [7] apply fuzzy learning and deep learning
to improve financial signal representation. Yu et al. [41] propose a
model-based RL framework for daily frequency portfolio trading.
Liu et al. [21] propose an adaptive DDPG-based framework with
imitation learning. Ye et al. [39] proposed a State-Augmented RL
(SARL) framework based on DPG with financial news as additional
states.

Although there are many efforts on utilizing RL for quantita-
tive trading, a vast majority of existing RL methods focus on the
relatively low-frequency scenarios (e.g., day-level) and fail to cap-
ture the fleeting intraday investment opportunities. We propose
DeepScalper to fill this gap by mimicking the workflow of human
intraday traders.

3 PROBLEM FORMULATION
In this section, we first introduce necessary preliminaries and the
objective of intraday trading. Next, we provide a Markov Decision
Process (MDP) formulation of intraday trading.

3.1 Intraday Trading
Intraday trading is a fundamental quantitative trading task, where
traders actively long/short one pre-selected financial asset within
the same trading day to maximize future profit. Below are some
necessary definitions for understanding the problem:

Definition 1. (OHLCV) OHLCV is a type of bar chart directly
obtained from the financial market. OHLCV vector at time 𝑡 is
denoted as x𝑡 = (𝑝𝑜𝑡 , 𝑝ℎ𝑡 , 𝑝𝑙𝑡 , 𝑝𝑐𝑡 , 𝑣𝑡 ), where 𝑝𝑜𝑡 is the open price, 𝑝ℎ𝑡
is the high price, 𝑝𝑙𝑡 is the low price, 𝑝𝑐𝑡 is the close price and 𝑣𝑡 is
the volume.

Definition 2. (Technical Indicator) A technical indicator indicates
a feature calculated by a formulaic combination of the original
OHLCV to uncover the underlying pattern of the financial market.
We denote the technical indicator vector at time 𝑡 : y𝑡 =

⋃
𝑘 𝑦

𝑘
𝑡 ,

where 𝑦𝑘𝑡 = 𝑓𝑘 (x𝑡−ℎ, ..., x𝑡 , 𝜃𝑘 ), 𝜃𝑘 is the parameter of technical
indicator 𝑘 .

Definition 3. (Limit Order) A limit order is an order placed to
long/short a certain number of shares at a specific price. It is de-
fined as a tuple 𝑙 = (𝑝𝑡𝑎𝑟𝑔𝑒𝑡 ,±𝑞𝑡𝑎𝑟𝑔𝑒𝑡 ), where 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 represents
the submitted target price, 𝑞𝑡𝑎𝑟𝑔𝑒𝑡 represents the submitted target
quantity, and ± represents the trading direction (long/short).

Definition 4. (Limit Order Book) As shown in Figure 2, a limit
order book (LOB) contains public available aggregate information
of limit orders by all market participants. It is widely used as market
microstructure [22] in finance to represent the relative strength
between buy and sell side. We denote an 𝑚 level LOB at time 𝑡
as b𝑡 = (𝑝𝑏1𝑡 , 𝑝

𝑎1
𝑡 , 𝑞

𝑏1
𝑡 , 𝑞

𝑎1
𝑡 , ..., 𝑝

𝑏𝑚
𝑡 , 𝑝

𝑎𝑚
𝑡 , 𝑞

𝑏𝑚
𝑡 , 𝑞

𝑎𝑚
𝑡 ), where 𝑝𝑏𝑖𝑡 is the

level 𝑖 bid price, 𝑝𝑎𝑖𝑡 is the level 𝑖 ask price, 𝑞𝑏𝑖𝑡 and 𝑞
𝑎𝑖
𝑡 are the

corresponding quantities.

Definition 5. (Matching System) The matching system is an elec-
tronic system that matches the buy and sell orders for the financial
market. It is usually used to execute orders for different traders in
the exchange.

Definition 6. (Position) Position 𝑝𝑜𝑠𝑡 at time 𝑡 is the amount and
direction of a financial asset owned by traders. It represents a long
(short) position when 𝑝𝑜𝑠𝑡 is positive (negative).

Definition 7. (Net Value) Net value is the normalised sum of cash
and value of financial assets held by a trader. The net value at time
𝑡 is denoted as 𝑛𝑡 = (𝑐𝑡 + 𝑝𝑐𝑡 ×

��𝑝𝑜𝑠𝑡 ��)/𝑐1, where 𝑐𝑡 is the cash at
time 𝑡 and 𝑐1 is the initial amount of cash.

In real-world intraday trading, traders are allocated some cash into
the account at the beginning of each trading day. During the trading
time, traders analyze the market and make their trading decisions.
Then, they submit their orders (desired price and quantity) to the
matching system. The matching system will execute orders at best
available price (possibly at multiple price when market liquidation
is not enough for large orders) and then return execution results to
traders. At the end of the trading day, traders close all remaining
positions at market price to avoid overnight risk and hold 100% cash
again. The objective of intraday trading is tomaximize accumulative
profit for a period of multiple continuous trading days (e.g., half a
year).

Comparing to conventional low-frequency trading scenarios,
intraday trading is more challenging since intraday traders need
to capture the tiny price fluctuation with much less responsive
time (e.g., 1 min). In addition, intraday trading involves a large
fine-grained trading action space that represents a limit order to
pursue more accurate control of the market.

3.2 MDP Formulation
We formulate intraday trading as a MDP, which is constructed by a
5-tuple (S,A,𝑇 , 𝑅,𝛾). Specifically, S is a finite set of states. A is a
finite set of actions. 𝑇 : S × A × S −→ [0, 1] is a state transaction
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Figure 2: A snapshot of 4-level limit order book (LOB)

function, which consists of a set of conditional transition proba-
bilities between states. 𝑅 : S × A −→ R is the reward function,
where R is a continuous set of possible rewards and 𝑅 indicates the
immediate reward of taking an action in a state. 𝛾 ∈ [0, 1) is the
discount factor. A (stationary) policy 𝜋 : S × A −→ [0, 1] assigns
each state 𝑠 ∈ S a distribution over actions, where 𝑎 ∈ A has
probability 𝜋 (𝑎 |𝑠). In intraday trading, O,A, 𝑅 are set as follows.

State. Due to the particularity of the financial market, the state
𝑠𝑡 ∈ S at time 𝑡 can be divided into three parts: macro-level market
state 𝑠𝑎𝑡 ∈ S𝑎 , micro-level market state 𝑠𝑖𝑡 ∈ S𝑖 and trader’s private
state set 𝑠𝑝𝑡 ∈ S𝑝 . Specifically, we use a vector yt of 11 technical
indicators and the original OHLCV vector xt as macro-level state
following [40], the historical LOB sequence (bt-h, ..., bt) with length
ℎ+1 as micro-level state and trader’s private state zt = (𝑝𝑜𝑠𝑡 , 𝑐𝑡 , 𝑡𝑡 ),
where 𝑝𝑜𝑠𝑡 , 𝑐𝑡 and 𝑡𝑡 are the current position, cash and remaining
time. The entire set of states can be denoted as S = (S𝑎,S𝑖 ,S𝑝 ).
Compared to previous formulations, we introduce the LOB and
trader’s private state as additional information to effectively capture
intraday trading opportunities.

Action. Previous works [7, 21] lie in low-frequency trading
scenarios, which generally stipulate that the agent trades a fixed
quantity at market price and applies a coarse action space with
three options (long, hold, and short). However, when focusing on
relatively high-frequency trading scenarios (e.g., intraday trading),
tiny price fluctuation (e.g., 1 cent) is of vital importance to final
profit that makes the market price execution and fixed quantity as-
sumptions unacceptable. In the real-world financial market, traders
have the freedom to decide both the target price and the quantity
by submitting limit orders. We use a more realistic two-dimensional
fine-grained action space for intraday trading, which represents
a limit order as a tuple (𝑝𝑡𝑎𝑟𝑔𝑒𝑡 ,±𝑞𝑡𝑎𝑟𝑔𝑒𝑡 ). 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 is the target
price, 𝑞𝑡𝑎𝑟𝑔𝑒𝑡 is the target quantity and ± is the trading direction
(long/short). It is also worth pointing out that when the quantity is
zero, it indicates that we skip the current time step with no order
placement.

Reward. We define the reward function as the change of ac-
count P&L, which shows the value fluctuation (profit & loss) of the
account:

𝑟𝑡 = (𝑝𝑐𝑡+1 − 𝑝𝑐𝑡 ) × 𝑝𝑜𝑠𝑡︸                  ︷︷                  ︸
𝑖𝑛𝑠𝑡𝑎𝑛𝑡 𝑝𝑟𝑜 𝑓 𝑖𝑡

−𝛿 × 𝑝𝑐𝑡 ×
��𝑝𝑜𝑠𝑡 − 𝑝𝑜𝑠𝑡−1

��︸                         ︷︷                         ︸
𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑓 𝑒𝑒

where 𝑝𝑐𝑡 is the close price at time 𝑡 , 𝛿 is the transaction fee rate
and 𝑝𝑜𝑠𝑡 is the position at time 𝑡 .

4 DEEPSCALPER
In this section, we introduce DeepScalper (an overview in Fig-
ure 3) for intraday trading. We describe the four components of
DeepScalper: 1) RL optimization with action branching; 2) reward
function with a hindsight bonus; 3) intraday market embedding; 4)
risk-aware auxiliary task orderly.

4.1 RL Optimization with Action Branching
Comparing to conventional low-frequency trading scenarios, in-
traday trading tries to seize the fleeting tiny price fluctuation with
much less responsive time. To provide more accurate trading de-
cisions, intraday trading involves a much larger two-dimensional
(price and quantity) fine-grained action space. However, learning
from scratch for tasks with large action spaces remains a critical
challenge for RL algorithms [3, 42]. For intraday trading, while
human traders can usually detect the subset of feasible trading
actions in a given market condition, RL agents may attempt inferior
actions, thus wasting computation time and leading to capital loss.

As possible intraday trading actions can be naturally divided
into two components (e.g., desired price and quantity), we propose
to adopt the Branching Dueling Q-Network (BDQ) [33] for decision-
making. Particularly, as shown in Figure 3(d), BDQ distributes the
representation of the state-dependent action advantages in both the
price and quantity branches. Later, it simultaneously adds a single
additional branch to estimate the state-value function. Finally, the
advantages and the state value are combined via an aggregating
layer to output the Q-values for each action dimension. During the
inference period, these Q-values are then queried with argmax to
generate a joint action tuple to determine the final trading actions.

Formally, intraday trading is formulated as a sequential decision
making problem with two action dimensions of |𝑝 | = 𝑛𝑝 discrete
relative price levels and |𝑞 | = 𝑛𝑞 discrete quantity proportions.
The individual branch’s Q-value 𝑄𝑑 at state 𝑠 ∈ 𝑆 and the action
𝑎𝑑 ∈ A𝑑 are expressed in terms of the common state value 𝑉 (𝑠)
and the corresponding (state-dependent) action advantage [37]
𝐴𝑑𝑣𝑑 (𝑠, 𝑎𝑑 ) for 𝑑 ∈ {𝑝, 𝑞}:

𝑄𝑑 (𝑠, 𝑎𝑑 ) = 𝑉 (𝑠) + (𝐴𝑑𝑣𝑑 (𝑠, 𝑎𝑑 ) −
1
𝑛

∑︁
𝑎
′
𝑑
∈𝐴𝑑

𝐴𝑑𝑣𝑑 (𝑠, 𝑎
′

𝑑
))

We train our Q-value function approximator as Q-Network with
parameter 𝜃𝑞 based on the one-step temporal-difference learning
with target 𝑦𝑑 in a recursive fashion:

𝑦𝑑 = 𝑟 + 𝛾 max
𝑎′
𝑑
∈𝐴𝑑

𝑄−
𝑑
(𝑠′, 𝑎′

𝑑
, 𝜃𝑞)), 𝑑 ∈ {𝑝, 𝑞}

where 𝑄−
𝑑
denoting the branch 𝑑 of the target network 𝑄− , 𝑟 is the

reward function result and 𝛾 is the discount factor.
Finally, we calculate the following loss function:

𝐿𝑞 (𝜃𝑞) = E(𝑠,𝑎,𝑟,𝑠′ )∼𝐷 [ 1
𝑁

∑︁
𝑑∈{𝑝,𝑞}

(𝑦𝑑 −𝑄𝑑 (𝑠, 𝑎𝑑 , 𝜃𝑞))2]

where𝐷 denotes a prioritized experience replay buffer. 𝑎 denotes
the joint-action tuple (𝑝, 𝑞). By differentiating the Q-Network loss
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Figure 3: An overview of the proposed DeepScalper framework. We show four individual building blocks: (a) micro-level
encoder, (b) macro-level encoder, (c) risk-aware auxiliary task, and (d) RL optimization with action branching.

function with respect to 𝜃𝑞 , we get the following gradient:

▽𝜃𝑞𝐿𝑞 (𝜃𝑞) = E(𝑠,𝑎,𝑟,𝑠′ )∼𝐷 [(𝑟 + 𝛾 max
𝑎
′
𝑑
∈𝐴𝑑

𝑄𝑑 (𝑠
′
, 𝑎

′

𝑑
, 𝜃𝑞)

−𝑄𝑑 (𝑠, 𝑎𝑑 , 𝜃𝑞)) ▽𝜃𝑞 𝑄𝑑 (𝑠, 𝑎𝑑 , 𝜃𝑞)]

In practice, we optimize the loss function by stochastic gradient
descent, rather than computing the full expectations in the above
gradient, to maintain computational efficiency.

buy
sell

get positive return

miss increasing trend

Figure 4: Illustration of themotivation of the hindsight bonus

4.2 Reward Function with Hindsight Bonus
One major issue for training directly with the profit & loss reward
is that RL agents tend to pay too much attention to the short-
term price fluctuation [36]. Although the agent performs well in
capturing local trading opportunities, ignoring the overall long-
term price trend could lead to significant loss. Here, we design a
novel reward function with a hindsight bonus to tackle this issue.
To demonstrate the motivation of the hindsight bonus, considering
a pair of buy/sell actions in Figure 4, the trader feels happy at the
point of selling the stock, since the price of the stock increases.
However, this sell decision is actually a bad decision in the long run.

The trader feels disappointed before 12:00 since he/she misses the
main increasing wave due to the short horizon. It is more reasonable
for RL agents to evaluate one trading action from both short-term
and long-term perspectives. Inspired by this, we add a hindsight
bonus, which is the expected profit for holding the assets for a
longer period of ℎ with a weight term𝑤 , into the reward function
to add a long-term horizon while training intraday RL agents:

𝑟ℎ𝑖𝑛𝑑𝑡 = 𝑟𝑡 +𝑤 × (𝑝𝑐
𝑡+ℎ − 𝑝𝑐𝑡 ) × 𝑝𝑜𝑠𝑡︸                        ︷︷                        ︸

ℎ𝑖𝑛𝑑𝑠𝑖𝑔ℎ𝑡 𝑏𝑜𝑛𝑢𝑠

where 𝑝𝑐𝑡 is the close price at time 𝑡 ,𝑤 is the weight of the hindsight
bonus, ℎ is the horizon of the hindsight bonus and 𝑝𝑜𝑠𝑡 is the
position at time 𝑡 .

Noticeably, we only use the reward function with a hindsight
bonus for training to better understand the market. During the
test period, we continue to use the original reward 𝑟𝑡 to calculate
the profits. Furthermore, the hindsight reward function somehow
ignores details of price fluctuation between 𝑡 + 2 to 𝑡 + ℎ − 1 and
focuses on the trend of this period, which is computational efficient
and shows robust performance in practice.

4.3 Intraday Market Embedding
To learn a meaningful multi-modality intraday market embedding,
we propose an encoder-decoder architecture to represent the mar-
ket from the micro-level and macro-level, respectively.

For micro-level encoder, we choose LOB data and trader’s private
state to learn the micro-level market embedding. LOB is widely
used to analyze the relative strength of the buy and sell side based
on micro-level trading behaviors, and private state of traders is
considered insightful to capture micro-level trading opportuni-
ties [27]. At time 𝑡 , we have a sequence of historical LOB embed-
dings (bt-k, ..., bt) and trader’s private state embedding (zt-k, ..., zt),
where 𝑘 + 1 is the sequence length. As shown in Figure 3(a), we
feed them into two different LSTM layers and concatenate the last
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hidden states hbt and hzt of the two LSTM layers as the micro-level
embedding eit at time 𝑡 .

For macro-level encoder, we pick raw OHLCV data and technical
indicators to learn the macro-level embedding. The intuition here
is that OHLCV reflects the original market status, and technical
indicators offer additional information. At time 𝑡 , we firstly concate-
nate OHLCV vector xt and technical indicator vector yt as input
vt. As shown in Figure 3(b), the concatenated embedding is then
fed into a multilayer perceptron (MLP). The MLP output is applied
as the macro-level embedding eat at time 𝑡 . Finally, we concatenate
micro-level embedding and macro-level embedding together as
the market embedding et. Our market embedding is better than
that of previous work, since it incorporates the micro-level market
information.

4.4 Risk-Aware Auxiliary Task
As risk management is of vital importance for intraday trading, we
propose a risk-aware auxiliary task by predicting volatility to take
into account market risk as shown in Figure 3(c). Volatility is widely
used as a coherent measure of risk that describing the statistical
dispersion of returns in finance [2]. We analyze the reasons why
volatility prediction is an effective auxiliary task to improve the
trading policy learning as follows.

First, it is consistent with the general trading goal, which is to
maximize long-term profit under certain risk tolerance. Second,
future volatility is easier to predict compared to future price. For
instance, considering the day that the president election result will
be announced, nobody can know the result in advance, which will
lead the stock market to increase or decrease. However, everyone
knows that there would be a huge fluctuation in the stock market,
which increases future volatility. Third, predicting future price and
volatility are two closely related tasks. Learning value function
approximation and volatility prediction simultaneously can help
the agent learn a more robust market embedding. The definition
of volatility is the variance of return sequence 𝑦𝑣𝑜𝑙 = 𝜎 (r), where
r is the vector of return at each time step. Volatility prediction is
a regression task with market embedding et as input and 𝑦𝑣𝑜𝑙 as
target. We feed the market embedding into a single layer MLP with
parameters 𝜃𝑣 . The output ˆ𝑦𝑣𝑜𝑙 is the predicted volatility. We train
the network by minimizing the mean squared error.

ˆ𝑦𝑣𝑜𝑙 = 𝑀𝐿𝑃 (𝑒𝑡 , 𝜃𝑣)

𝐿𝑣𝑜𝑙 (𝜃𝑣) = (𝑦𝑣𝑜𝑙 − ˆ𝑦𝑣𝑜𝑙 )2

The overall loss function is defined as:

𝐿 = 𝐿𝑞 + 𝜂 ∗ 𝐿𝑣𝑜𝑙

where 𝐿𝑞 is the Q value loss and 𝜂 is the relative importance of the
auxiliary task.

5 EXPERIMENT SETUP
5.1 Datasets and Features
To conduct a comprehensive evaluation of DeepScalper, we eval-
uate it on six financial assets from two real-world datasets (stock
index and treasury bond) spanning over three years in the Chinese

Dataset Freq Number Days From To
Stock index 1min 2 251 19/05/01 20/04/30

Treasury bond 1min 4 662 17/11/29 20/07/17
Table 1: Dataset statistics detailing data frequency, number
of financial assets, trading days and chronological period

Features Calculation Formula
𝑧𝑜𝑝𝑒𝑛, 𝑧ℎ𝑖𝑔ℎ, 𝑧𝑙𝑜𝑤 e.g., 𝑧𝑜𝑝𝑒𝑛 = 𝑜𝑝𝑒𝑛𝑡/𝑐𝑙𝑜𝑠𝑒𝑡 − 1
𝑧𝑐𝑙𝑜𝑠𝑒 , 𝑧𝑎𝑑 𝑗_𝑐𝑙𝑜𝑠𝑒 e.g., 𝑧𝑐𝑙𝑜𝑠𝑒 = 𝑐𝑙𝑜𝑠𝑒𝑡/𝑐𝑙𝑜𝑠𝑒𝑡−1 − 1
𝑧𝑑_5, 𝑧𝑑_10, 𝑧𝑑_15
𝑧𝑑_20, 𝑧𝑑_25, 𝑧𝑑_30

e.g., 𝑧𝑑_5 =
∑4
𝑖=0 𝑎𝑑 𝑗_𝑐𝑙𝑜𝑠𝑒𝑡−𝑖/5

𝑎𝑑 𝑗_𝑐𝑙𝑜𝑠𝑒𝑡
− 1

Table 2: Features to describe macro-level financial markets

market collected from Wind3. We summarize the statistics of the
two datasets in Table 1 and further elaborate on them as follows:

Stock index is a dataset containing the minute-level OHLCV
and 5-level LOB data of two representative stock index futures (IC
and IF) in the Chinese market. IC is a stock index future calculated
based on 500 small and medium market capitalization stocks. IF is
another stock index future that focuses on the top 300 large capi-
talization stocks. For each stock index future, we split the dataset
with May-Dec, 2019 for training and Jan-April, 2020 for testing.

Treasury bond is a dataset containing the minute-level OHLCV
and 5-level LOB data of four treasury bond futures (T01, T02, TF01,
TF02). These treasury bond futures are mainstream treasury bond
futures with the highest liquidity in the Chinese market. For each
treasury bond, we use 2017/11/29 - 2020/4/29 for training and
2020/04/30 - 2020/07/17 for testing.

To describe macro-level financial markets, we generate 11 tempo-
ral features from the original OHLCV as shown in Table 2 following
[40]. 𝑧𝑜𝑝𝑒𝑛 , 𝑧ℎ𝑖𝑔ℎ and 𝑧𝑙𝑜𝑤 represent the relative values of the open,
high, and low prices compared to the close price at the current time
step, respectively. 𝑧𝑐𝑙𝑜𝑠𝑒 and 𝑧𝑎𝑑 𝑗_𝑐𝑙𝑜𝑠𝑒 represent the relative values
of the closing and adjusted closing prices compared to the time step
𝑡 − 1. 𝑧𝑑𝑘 represents a long-term moving average of the adjusted
close prices during the last 𝑘 time steps compared to the current
close price. For micro-level markets, we extract a 20-dimensional
feature vector from the 5-level LOB where each level contains bid,
ask price and bid, ask quantity following [35].

5.2 Evaluation Metrics
We evaluate DeepScalper on four different financial metrics, includ-
ing one profit criterion and three risk-adjusted profit criteria:

• Total Return (TR) is the overall return rate for the entire
trading period. It is defined as 𝑇𝑅 =

𝑛𝑡−𝑛1
𝑛1

, where 𝑛𝑡 is the
final net value and 𝑛1 is the initial net value.

• Sharpe Ratio (SR) [30] considers the amount of extra return
that a trader receives per unit of increased risk. It is defined
as: 𝑆𝑅 = E[r]/𝜎 [r], where r denotes the historical sequence
of the return rate.

• Calmar Ratio (CR) is defined as𝐶𝑅 =
E[r]
𝑀𝐷𝐷

. It is calculated
as the expected return divided by the maximum drawdown

3https://www.wind.com.cn/
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(MDD) of the entire trading period, where MDD measures
the largest loss from any peak to show the worst case.

• Sortino Ratio (SoR) applies the downside deviation (DD)
as the risk measure. It is defined as: 𝑆𝑜𝑅 =

E[r]
𝐷𝐷

, where DD
is the variance of the negative return.

5.3 Baseline
We compare DeepScalper with nine baseline methods consisting of
three traditional finance methods, three prediction-based methods,
and three reinforcement learning methods.
Traditional Finance Methods

• Buy & Hold (BAH), which is usually used to reflect the
market average, indicates the trading strategy that buys
the pre-selected financial assets with full position at the
beginning and holds until the end of the trading period.

• Mean Reversion (MV) [28] is a traditional finance method
designed under the assumption that the price of financial as-
sets will eventually revert to the long-term mean. In practice,
it shows stellar performance under volatile market condi-
tions.

• Time SeriesMomentum (TSM) [24] is an influential momentum-
based method, which long (short) financial assets with in-
creasing (decreasing) trend in the past. This is in line with the
principle that the stronger is always stronger in the financial
market.

Prediction Based Methods

• MLP [29] use the classic multi-layer perceptron for future
return prediction. We apply a three-layer MLP with hidden
size 128.

• GRU [6] use a newer generation of recurrent networks with
gated recurrent units for future return prediction. We apply
a two-layer GRU with hidden size 64.

• LGBM [19] is an efficient implementation of the gradient
boosting decision tree with gradient-based one-side sam-
pling and exclusive feature bundling.

Reinforcement Learning Methods

• DQN [44] applies the deep Q-network with a novel state
representation and reward function for quantitative trading,
which shows stellar performance in more than 50 financial
assets.

• DS-NH is a variant of DeepScalper (DS), which removes the
hindsight bonus from the reward function.

• DS-NA is a variant of DeepScalper (DS), which removes the
risk-aware auxiliary task.

5.4 Preprocessing and Experiment Setup
For macro-level features, we directly calculate the 11 technical in-
dicators following the formulas in Table 2. For micro-level features,
we divide the order price and quantity of each level by the first-
level price and quantity, respectively, for normalization. For missing
values, we fill the empty price with the previous one and empty
quantity as zero to maintain the consistency of time series data.
To make the evaluation more realistic, we further consider many
practical real-world constraints. The transaction fee rate 𝛿 is set
as 2.3 × 10−5 and 3 × 10−6 for stock index futures and treasury

bond futures respectively, which is consistent with the real-world
scenario4. Since leverage such as margin loans is widely used for
intraday trading, we apply a fixed five-times leverage to amplify
profit and volatility. Time is discretized into 1 min interval and we
assume that the agent can only long/short a financial future at the
end of each minute. The account of RL agents is initialized with
enough cash to buy 50 shares of the asset at the beginning. The
maximum holding position is 50.

We perform all experiments on a Tesla V100 GPU. Grid search
is applied to find the optimal hyperprarameters. We explore the
look-ahead horizon ℎ in [30, 60, 90, 120, 150, 180], importance of
hindsight bonus𝑤 in [1𝑒−3, 5𝑒−3, 1𝑒−2, 5𝑒−2, 1𝑒−1] and importance
of auxiliary task 𝜂 in [0.5, 1.0]. As for neural network architectures,
we search the hidden units of MLP layers and GRU layer in [32, 64,
128] with ReLU as the activation function. we use Adam as the op-
timizer with learning rate 𝛼 ∈ (1𝑒−5, 1𝑒−3) and train DeepScalper
for 5 epochs in all financial assets. Following the iterative training
scheme in [27], we augment traders’ private state repeatedly during
the training to improve data efficiency. We run experiments with 5
different random seeds and report the average performance. It takes
1.5 and 3.5 hours to train and test Deepscalper on each financial
asset in the stock index and treasury bond datasets, respectively.
As for other baselines, we use the default settings in their public
implementations5 6.

6 RESULTS AND ANALYSIS
6.1 Profitability Comparison with Baselines
We compare DeepScalper with 9 state-of-the-art baselines in terms
of four financial metrics in Table 3. We observe that DeepScalper
consistently generates significantly (𝑝 < 0.01) higher performance
than all baselines on 7 out of 8 metrics across the two datasets. In the
stock index dataset, DeepScalper performs best on all four metrics.
Specifically, it outperforms the second best by 30.80%, 33.33%, 21.42%
and 7.50% in terms of TR, SR, CR and SoR, respectively. As for the
treasury bond dataset, DeepScalper outperforms the second best by
14.87%, 7.47%, 30.94% in terms of TR, SR and CR. For SoR, DS-NA
performs slightly better thanDS (2%without statistical significance).
One possible reason is that volatility prediction auxiliary task is
not directly relevant to control downside return variance.

Furthermore, we show the trading day vs. net value trading days
of the test period for each financial future from the two datasets
in Figure 5. We intentionally exclude BAH, DS-NH and DS-NA to
make the figure easy to follow. For traditional methods, we find
that MV achieves decent performance for most financial futures.
In comparison, TSM’s performance is much worse. One possible
reason for TSM’s failure is that there is no evident momentum effect
within the market for intraday trading. For deep learning models,
the overall performance of GRU is better than that of MLP due to
its ability to learn the temporal dependency of indicators. As for
LGBM, it achieves slightly better performance than deep learning
models. The average performance of RL methods is the best.

4China Financial Futures Exchange: http://www.cffex.com.cn/en_new/index.html
5Qlib: https://github.com/microsoft/qlib
6FinRL: https://github.com/AI4Finance-Foundation/FinRL
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Stock Index Treasury Bond
Type Models TR(%)↑ SR↑ CR↑ SoR↑ TR(%)↑ SR↑ CR↑ SoR↑

BAH 5.65 0.15 0.02 0.27 -14.26 -3.42 -0.25 -4.40
FIN MV 8.39 1.18 0.21 2.22 -0.29 -0.59 -0.04 -0.62

TSM -27.62 -2.83 -0.21 -3.08 -3.02 -5.35 -0.31 -6.20
MLP -0.73 ± 7.11 -0.14 ± 1.02 -0.01 ± 0.58 -0.24 ± 1.77 0.59 ± 1.11 1.42 ± 1.30 0.42 ± 0.51 2.33 ± 1.42

PRE GRU 5.66 ± 4.98 1.25 ± 0.66 0.24 ± 0.18 2.40 ± 0.82 1.02 ± 2.10 1.90 ± 1.72 0.55 ± 0.57 3.69 ± 2.09
LGBM 7.62 ± 1.14 1.26 ± 0.22 0.28 ± 0.05 1.59 ± 0.22 1.45 ± 0.17 2.43 ± 0.43 0.58 ± 0.09 3.68 ± 0.52
DQN 7.74 ± 3.52 1.25 ± 0.62 0.28 ± 0.17 1.79 ± 0.91 3.51 ± 1.05 4.01 ± 1.27 1.15 ± 0.39 5.66 ± 1.33

RL DS-NH 8.17 ± 5.07 0.98 ± 0.77 0.17 ± 0.17 1.37 ± 0.88 3.38 ± 1.28 4.42 ± 1.21 1.39 ± 0.45 6.85 ± 1.19
DS-NA 9.74 ± 5.12 1.32 ± 0.76 0.26 ± 0.21 2.19 ± 1.11 4.17 ± 1.44 4.27 ± 0.99 1.38 ± 0.43 7.59 ± 1.49
DS 12.74♣ ± 4.65 1.76♣ ± 0.61 0.34♣ ± 0.16 2.58♣ ± 0.72 4.79♣ ± 0.99 4.75♣ ± 1.25 1.82♣ ± 0.41 7.4 ± 1.22

% Improvement 30.80↑ 33.33↑ 21.42↑ 7.50↑ 14.87↑ 7.47↑ 30.94↑ 2.57↓
Table 3: Profitability comparison (mean and standard deviation of 5 individual runs) with 9 baselines including traditional
finance (FIN), prediction based (PRE) and reinforcement learning (RL) methods. All three FIN models are deterministic methods
without the performance standard deviation. Purple and pink show best & second best results. ♣ indicates improvement over
SOTA baseline is statistically significant (𝑝 < 0.01) under Wilcoxon’s signed rank test.
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Figure 5: Trading day vs. net value curve of different baselines
and DeepScalper on stock index (IC and IF) and treasury
bond (TF01, TF02, T01, T02) datasets. DeepScalper achieves
the highest profit in all six financial assets.

6.2 Model Component Ablation Study
We conduct comprehensive ablation studies on DeepScalper’s in-
vestment profitability benefits from each of its components in Table

Macro Micro Hindsight Volatility TR(%)↑ SR↑√
3.45 4.42√
3.47 4.43√ √
3.62 (+0.15) 4.81 (+0.38)√ √ √
4.05 (+0.58) 5.03 (+0.60)√ √ √
5.36 (+1.89) 5.72 (+1.29)√ √ √ √
6.97 (+3.50) 6.10 (+1.67)

Table 4: Ablation studies over different DeepScalper compo-
nents.

√
indicates adding the component to DeepScalper.

4. First, we observe that the encoder-decoder architecture can learn
better multi-modality market embedding than agents trained with
other macro-level or micro-level market information, which leads
to 0.15% and 0.38 improvement of TR and SR, respectively. Next, we
find that adding the volatility prediction auxiliary task into Deep-
Scalper can further improve performance, indicating that taking
risk into consideration can lead to robust market understanding.
In addition, we observe that the hindsight bonus can significantly
improve DeepScalper’s ability for the evaluation of trading deci-
sions and further enhance profitability. Finally, we add all these
components into DeepScalper and achieve the best performance in
terms of TR and SR. Comprehensive ablation studies demonstrate:
1) each individual component in DeepScalper is effective; 2) these
components are largely orthogonal and can be fruitfully integrated
to further improve performance.

6.3 Effectiveness of Hindsight Bonus
We analyze the effectiveness of the hindsight bonus from two per-
spectives. First, we explore the impact of the hindsight bonus hori-
zon and weight. As shown in Figure 6a, with the increase of 𝑤 ,
the agent tends to trade with a long-term horizon and achieves a
higher profit. DeepScalper with𝑤 = 0.1 achieves the highest profit.
Figure 6b shows the impact of hindsight horizonℎ on DeepScalper’s
performance. We observe that DeepScalper’s total return gradually
increases by moving ℎ from 30 to 180 and decreases when ℎ > 180.
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Figure 6: Hyperparameter sensitivity of hindsight bonus: (a)
effect of importance (b) effect of horizon
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Figure 7: Trading behavior comparison of DS-NH and DS to
show the effectiveness of the hindsight bonus

Moreover, we compare the detailed trading behaviors of agents
trained with and without hindsight bonus on a trading day with
the decreasing trend in Figure 7. The general good intraday trading
strategy for that day is to short at the start of the day and long at the
end of the day. We find that the agent trained without the hindsight
bonus (Figure 7a) performs well in capturing local trading opportu-
nities and overlooks the long-term trend of the entire trading day.
In comparison, an agent trained with the hindsight bonus (Figure
7b) trades a large volume of short actions at the beginning of the
trading day, indicating that it is aware of the decreasing trend in
advance. This kind of trading action is smart, since it captures the
big price gap of the overall trend and somehow ignores the local
gain or loss.

6.4 Effectiveness of Risk-aware Auxiliary Task
Since the financial market is noisy and the RL training process is
unstable, the performance variance among different random seeds is
a major concern of RL-based trading algorithms. Intuitively, taking
market risk into account can help the RL agent behave more stable
with lower performance variance. We run experiments 5 times with
different random seeds and report the relative variance relationship
between RL agents trained with/without the risk-aware auxiliary
task in Figure 8. We find that RL agents trained with the risk-aware
auxiliary task achieve a lower TR variance in all six financial assets
and a lower SR variance in 67% of financial assets. Furthermore,
we test the impact of auxiliary task importance 𝜂 on DeepScalper’s
performance. Naturally, the volatility value scale is smaller than
return, which makes 𝜂 = 1 a decent option to start. In practice, we
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Figure 8: Effect of the auxiliary task on performance variance
(>0 means RL agents trained with the risk-aware auxiliary
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Figure 9: Sensitivity to relative importance 𝜂 in terms of TR,
SR, SoR and CR

test 𝜂 ∈ [0, 0.5, 1] and find the improvement of the auxiliary task is
robust to different importance weights as shown in Figure 9.

7 CONCLUSION
In this article, we focus on intraday trading and propose Deep-
Scalper to mimic the workflow of professional intraday traders.
First, we apply the dueling Q-network with action branching to
efficiently train intraday RL agents. Then, we design a novel re-
ward function with a hindsight bonus to encourage a long-term
horizon to capture the overall price trend. In addition, we design an
encoder-decoder architecture to learn robust market embedding by
incorporating both micro-level and macro-level market information.
Finally, we propose volatility prediction as an auxiliary task to help
agents be aware of market risk while maximizing profit. Extensive
experiments on two stock index futures and four treasury bond
futures demonstrate that DeepScalper significantly outperforms
many advanced methods.
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