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ABSTRACT
There have beenmany studies on improving the efficiency of shared
learning in Multi-Task Learning (MTL). Previous works focused on
the “micro" sharing perspective for a small number of tasks, while
in Recommender Systems (RS) and many other AI applications, we
often need to model a large number of tasks. For example, when
using MTL to model various user behaviors in RS, if we differentiate
new users and new items from old ones, the number of tasks will
increase exponentially with multidimensional relations. This work
proposes a Multi-Faceted Hierarchical MTL model (MFH) that ex-
ploits the multidimensional task relations in large scale MTLs with
a nested hierarchical tree structure. MFH maximizes the shared
learning through multi-facets of sharing and improves the perfor-
mance with heterogeneous task tower design. For the first time,
MFH addresses the “macro” perspective of shared learning and
defines a “switcher” structure to conceptualize the structures of
macro shared learning. We evaluate MFH and SOTA models in a
large industry video platform of 10 billion samples and hundreds
of millions of monthly active users. Results show that MFH outper-
forms SOTA MTL models significantly in both offline and online
evaluations across all user groups, especially remarkable for new
users with an online increase of 9.1% in app time per user and 1.85%
in next-day retention rate. MFH currently has been deployed in
WeSee, Tencent News, QQ Little World and Tencent Video, several
products of Tencent. MFH is especially beneficial to the cold-start
problems in RS where new users and new items often suffer from a
“local overfitting" phenomenon that we first formalize in this paper.
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1 INTRODUCTION
Recommender systems (RS) arewidely applied in online applications[1,
2, 5, 8, 28]. To better model user preference and increase satisfaction,
there has been an increasing trend of using Multi-Task Learning
(MTL) to simultaneously predict various user feedbacks. Compared
to Single Task Learning (STL), MTL learns multiple tasks simul-
taneously in one model instead of one model per task. With the
forthcoming era of immersive short videos such as TikTok, Reels
and Triller, this trend has been accelerated as in full screen mode
there are more parallel user feedbacks of more comparable impor-
tance to user experience (an example short-video App is shown in
Fig. 1) whereas in the list page era there is a dominant impression-
click behavior thread. The mainstream RS ranking scheme applies
MTL to predict various specific user behaviors and predefined task
labels as accurately as possible[17, 19, 20, 32], followed by a fusion
model that aims to characterize the overall user satisfaction based
on the outputs of the MTL model.
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Share

Play Completion Ratio
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Subscribe

Figure 1: Immersive Short-Video App WeSee. Parallel user
feedbacks such as subscribe, click profile, like, comment,
share and play completion ratio are indicated on the screen.

Previous research on MTL focused on improving the shared
learning with a small group of tasks [3, 19, 21, 25, 27]. These efforts
span from the simplest hard parameter sharing [3] to sophisticated
structures such as MMOE [19] and PLE [27]. On the other hand,
there are often many more tasks beneficial to be modeled together
in real world applications. For example in immersive short-video
applications, users generate richer and more subtle feedbacks such

https://doi.org/10.1145/3511808.3557140
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as time spent, likes, subscription, comments, sharing, and many
predefined labels such as 3s skip (swipe away within 3 seconds)
and 80% completion ratio. Joint learning these tasks with MTL has
the benefit of better representation learning with more sufficient
supervision and more shared learning among tasks. Furthermore,
in RS and many other applications, large scale MTL is also fre-
quently demanded when we have different value ranges of certain
properties exhibiting very different correlation patterns with the
predicted label. Despite that these feature regions may lack data
samples, it is often important to improve the model’s accuracy in
those regions as they can be regions of higher business value, or
regions important for the long-term value such as growth (e.g.,
new users, new content facing the cold-start situation) and con-
tent ecosystem. Normally, these property values are simply treated
as sample features to the model. However, this often results in
local overfitting in certain feature regions, especially when we
have imbalanced and insufficient data samples. While we can split
the different user/item/context regions into independent tasks, the
number of tasks will exponentially increase as these are orthogonal
dimensions that independently divide the samples.

Current MTL technologies do not scale well with more tasks,
which explains why we observe the common industrial practice of
employing 2 or even 3 MTL models in the ranking service to handle
a total of 10-20 tasks where each MTL model normally handles 2-6
tasks. However, this practical approach is essentially a compromise
between MTL and STL. Existing MTL learning structures such
as MMOE and PLE handle well with two or a small number of
tasks. With a large number of tasks, we will show later that simply
plugging in more tasks with a flat branching connection using these
structures can hardly yield significant improvement.

In this work, we propose a novel Multi-Faceted Hierarchical
multi-task learning model (MFH) that aims at providing efficient
multi-task learning for a large number of tasks through scalable
cooperative learning design. The main contributions include:

• A new MTL model MFH is proposed to better address the
challenge of scalable efficient multi-task learning with three
major characteristics: Multi-Faceted, Hierarchical and Het-
erogeneous. The multifaceted and hierarchical design com-
bined together introduces multidimensional implicit induc-
tion biases and results in much more efficient shared learn-
ing, thus greatly alleviating the local overfitting and the data
scarcity issue for tasks with few samples. In addition, the
MFH network is more heterogeneity-friendly and provides
great flexibility for the model to better customize the tasks
and generate further improvement.

• Extensive offline experiments are carried out to evaluate the
effectiveness of MFH on industrial and public benchmark
datasets. Online A/B test results in WeSee APP with tens of
millions of DAU (Daily Active Users) also demonstrate the
significant improvement of MFH over SOTA MTL models in
real-world applications, with 2.14% increase in app-time per
user and 0.19% increase in retention rate. The improvement
is much more significant with new users as 9.10% increase in
app-time per user and 1.85% increase in retention rate. Cur-
rently MFH has already been deployed in the online search
and recommendation systems of several major products of

Tencent: WeSee, Tencent News, QQ Little World and Ten-
cent Video. The main source codes and additional technical
results can be found in the Appendix.1

• Micro and macro perspectives of network design for coop-
erative learning in MTL are brought to attention for better
understanding of the previous efforts on MTL and what is
demanded for better scalability. Also a local overfitting phe-
nomenon is introduced. These concepts are important to
understand the core issues of scalable MTL.

2 RELATEDWORK
In this section, we briefly review MTL models, applications of MTL
and major related work on improving the shared learning efficiency
in MTL. Multi-Task Learning [3, 31] is a general learning frame-
work that improves the model generalization through cooperative
learning between tasks. It explores the commonalities and differ-
ences between different tasks to facilitate the joint learning. MTL
has been successfully applied to a wide range of applications, from
RS [2, 8, 11, 27] to NLP [6, 26], and CV [10, 15, 22].

There are many studies on improving the shared learning effi-
ciency in MTL. Shared-bottom [3] is the first simple structure for
task sharing which cannot handle task conflicts well. Cross-Stitch
Network [21] and Sluice Network [25] both learn static weights
of linear combinations to fuse representations for different tasks
selectively. MOE [14] first introduces expert modules and uses a
gating network to fuse the expert outputs for upper task towers.
MMOE [19] extends MOE to utilize task-specific gates to provide
customized fusion for each task. M3oE [30] extends the customized
gates in MMOE with multi-head gates. PLE [27] further improves
the shared learning efficiency by differentiating task-specific ex-
perts and shared experts, and adopting a progressive routing mecha-
nism. On top of PLE, MSSM [9] trains a field-level sparse connection
to provide more flexible feature combination for different tasks, and
replaces the gates with a matrix multiplied by a mask vector. Also
focusing on the feature processing part of MTL, [12] uses multiple
transformers to handle different user behavior sequences and ap-
plies MMOE on top, the “facet” there means type of user behaviors,
different from aspect of task correlation as in this paper.

All works mentioned above focus on small groups of tasks and
are often evaluated with 2 tasks. There still lacks model design
exploiting the structure of the task relation graph for a large num-
ber of tasks. [16] tries to balance the training of task objectives
through a Pareto efficient framework that dynamically adjust the
loss weights of the tasks. ESMM [20] constructs a joint loss of
CTCVR based on CTR and CVR’s task relations. Recently ESMM
is generalized in [29] to model the task relations with a Bayesian
Graph and construct joint losses as in ESMM along the paths in
the graph. However, many tasks cannot be modeled in a Bayesian
graph, e.g., in many applications with a large number of mutually
exclusive tasks splitting the user groups or item groups, modeling
these tasks with a Bayesian graph is not an option. More impor-
tantly, the major difference is that [16], [29] and ESMM exploit task
relations in loss design, instead of the learning network design as
in this work, thus the benefit is on sample efficiency instead of
shared learning efficiency. To the best of our knowledge, our work

1https://github.com/xinjianli6/MFH
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is the first to address large groups of tasks and exploit semantic
task relation structure in network design for MTL in RS.

Another thread of research applies neural architecture search
(NAS) [33] and other AutoML methods to learn efficient MTL ar-
chitectures [4, 18, 24]. However, as the searching cost is expensive,
instead of general scope network optimization simplified assump-
tions are imposed on the search scope of network structures.

3 LARGE SCALE MTL MODEL EFFICIENCY
In this section, we first introduce the preliminary background and
illustrate the problem setup, then we describe the baseline models,
and lastly explain the challenges for large scale MTL.

3.1 MTL Ranking in an Industrial RS
We first introduce a real-world recommender system in WeSee, a
short-video playing APP of Tencent, which serves tens of millions of
users every day for immersive videowatching experience. For a user
request, the recommender system generates a recommended list
of videos from a ten-million-scale candidate pool, then present the
recommendations on the user’s mobile screen one video at a time
as shown in Fig. 1. Each recommended video will start autoplay and
the user may take various actions such as keepwatching, swipe, like,
comment and share. In particular, if the user swipes up the current
video, the system will show the next video from the list. When all
videos of the recommended list are presented, a new request will
be triggered to generate another list. The goal of the system is to
recommend favorable videos that maximize user satisfaction which
is normally quantified by total app time.

Interactive
Task

MTL Model

Play Task
MTL Model

Fusion
Model

MTL Ranking 
Service

Ranked
video list

Multi-Task 
Fusion Service

ො𝑦𝑐𝑚𝑝𝑙
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ො𝑦𝐿𝑅
ො𝑦𝐹𝑅
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Figure 2: The MTL Ranking Framework

As in most industrial recommender systems, the recommender
system adopts a two-stage design that contains two core processes
[7], candidate recall and ranking. The ranking system aims to rank
thousands of recalled candidate videos and select the top ones for
presentation and is composed of two parts [27]: a deep MTL model
and an Evolution Strategy (ES)/ Reinforcement Learning (RL) fusion
model. The MTL model jointly outputs the likelihood of various
user behaviors and the goal is to predict the concrete signals as
accurately as possible. The fusion model then synthetically char-
acterizes the overall user satisfaction score based on the concrete
signals that the MTL model predicts. In our practice, there are two
MTL models, a Play Task Group MTL and an Interactive Task Group
MTL each dealing with a different group of tasks. The overall MTL
ranking framework is shown in Fig. 2. We use the play task group
as an example to study the MTL models.

The play task group MTL focuses on three important tasks that
are highly related to the video watch time, i.e., Play Completion
Ratio prediction, Play Finish Rate prediction, and Play Skip Rate

prediction. For simplicity, we denote the three tasks by Cmpl, Finish
and Skip respectively. Specifically, the Cmpl task is a regression
task that predicts the completion ratio of a video view, defined as:

𝑦𝑐𝑚𝑝𝑙 =
𝑤𝑎𝑡𝑐ℎ 𝑡𝑖𝑚𝑒

𝑣𝑖𝑑𝑒𝑜 𝑙𝑒𝑛𝑔𝑡ℎ
(1)

The watch time of a video view may often exceed the video length
due to the rewatch and auto-replay nature of immersive short-video
APPs, thus𝑦𝑐𝑚𝑝𝑙 ∈ [0,∞). To handle exceptional cases, we truncate
𝑦𝑐𝑚𝑝𝑙 to ensure it is below a certain threshold.

The Finish task is a binary classification task that predicts the
probability of watching a video to the end.

𝑦𝑓 𝑖𝑛𝑖𝑠ℎ =

{
1, if𝑤𝑎𝑡𝑐ℎ 𝑡𝑖𝑚𝑒 ≥ 𝑣𝑖𝑑𝑒𝑜 𝑙𝑒𝑛𝑔𝑡ℎ

0, otherwise
(2)

The Skip task is a binary classification task that predicts the proba-
bility of quick skipping a video within a short time.

𝑦𝑠𝑘𝑖𝑝 =

{
1, if𝑤𝑎𝑡𝑐ℎ 𝑡𝑖𝑚𝑒 ≤ 𝑐 seconds
0, otherwise

(3)

where 𝑐 is a small constant number.
The three tasks model users’ watching behaviors from slightly

different perspectives. The Cmpl task reflects a user’s commitment
to a video continuously, while the Finish and Skip tasks focus on
modeling users’ positive and negative viewing experience, respec-
tively. The three tasks are jointly learned within one MTL model.

There are three different groups of users: new users, low-activity
users and high-activity users. The activity level is determined ac-
cording to total video watch time of the user. High-activity users
are users with more than 60 min watch time. Naturally there are far
fewer data samples for new/low-activity users than for high-activity
users. New users have higher business value weights.

In general, we can easily have an MTL problem where certain
properties of the samples support orthogonal splitting of the origi-
nal tasks. For example, different user groups, different item groups,
and different contexts such as time, location, and moving patterns
all support dividing the original tasks into many more tasks.

3.1.1 Local Overfitting. In our practice a local overfitting phenom-
enon is observed. By local overfitting, we mean that the model
is overfitted in part of the input space or the degree of overfit-
ting in part of the input space is much more serious than other
regions. In the MTL ranking of our system, existing models exhibit
overfitting on all tasks for new/low-activity users, in contrast to
high-activity users. Intuitively, this is because the training samples
of new/low-activity users are much fewer than that of high-activity
users and the model parameters trained with such imbalanced data
are dominated by the data pattern of high-activity users. Thus the
predictions on new/low-activity users are negatively affected by
high-activity users, leading to unsatisfactory recommendation re-
sults and user experience. However, cold-start, i.e., addressing the
recommendation for new users or new items, is a problem of great
business value for retention and growth. Models are often devel-
oped separately for cold-start in industrial practice. This is far from
an ideal approach as the cold-start model still suffers from few data
samples, additional training/serving cost, and more importantly
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Figure 3: The MTL Switcher and Example Instantiations
the common patterns shared between different user groups are not
transferred to benefit the minority groups.

Furthermore, this local overfitting phenomenon is not just lim-
ited to the cold-start problem of new users. In general, any feature
regions that exhibit different patterns from the main regions and
have much less data samples may suffer from local overfitting, e.g.,
new items, new users and minority contexts. Also local overfitting
overlaps with the fairness issue in RS as broadly studied in [23] in
such a way that local overfitting can be one of the technical issues
that caused fairness problems across different group of users.

3.2 Micro Perspective Cooperative Learning
In the past years, most MTL works in RS focus on task groups of
small size. PreviousMTLmodels mainly study themicro perspective
of shared learning and do not address large scale MTL. Next, we
formally introduce the micro level cooperative learning with a
switcher concept, then describe the baseline models using previous
SOTA methods in our problem setup.

3.2.1 Micro level cooperative learning structure - MTL Switcher. To
illustrate the micro level coordinated learning structures in MTL,
we introduce a concept called switcher in deep learning models.
As depicted in Fig. 3, a switcher is a neural architecture that takes
one input and branching out multiple (≥ 2) latent outputs. The
input of the switcher can be any type of features, embeddings or
intermediate latent representations in the network, and its outputs
are some latent representations that will be fed into upper-level
networks such as any hidden layer in the network or particularly
specific task tower in deep MTL models. As discussed in [27], MTL
needs to jointly address representation learning and information
routing. Abstractly, switchers can be used to deal with the micro
level cooperative learning of diverting one input to multiple inter-
mediate latent outputs. As we see in Fig. 3, MTL structures such
as shared-bottom, MMOE, PLE are merely switchers of different
types.2 Previous MTL research has been focusing on switcher inno-
vations improving the micro level cooperative learning efficiency
and does not work on MTLs with a large number of tasks.

3.2.2 Baseline Models. There is a dilemma for our problem: the
minority user groups of new users and low-activity users share
the same task tower with high-activity users. Thus the network
parameters will be mostly under the influence of high-activity users
given the imbalanced samples, yielding unsatisfying performance
for new/low-activity users. On the other hand, if we separate dif-
ferent user groups into different models, we will lose the opportu-
nity of transferring the knowledge shared between different user

2Note that in the shared-bottom case the bottom layer could downgrade to zero layer
as the hard sharing scheme which simply shares the input directly to the branches.

groups. A natural idea to address the cold start and local overfitting
issues is to split original task’s feature regions into independent
tasks with the overfitting regions as separated tasks. For exam-
ple, we can split the Cmpl task into three new tasks: New&Cmpl,
Low&Cmpl, High&Cmpl, representing Cmpl for new users, Cmpl
for low-activity users, and Cmpl for high-activity users respectively.
This will give the overfitting regions more customized optimization
independently without loss of accuracy on the major regions. We
present a few task splitting variations in the baseline models.

Baseline 3-task Model: Figure 4a illustrates a baseline flat 3-task
model with one switcher and three towers that correspond to the
three tasks Skip, Cmpl, and Finish, respectively. Note that the base-
line 3-taskmodel may have different versions, depending on the spe-
cific switcher architecture it adopts.3 In our case when the switcher
upgrades from simple to more complex SOTA ones, i.e., Shared-
bottom → MMOE → PLE, corresponding performance improve-
ments are observed. Thus the baseline 3-task model uses PLE as
the switcher structure.

Cmpl
Output

Skip
Output

Finish
Output

Input

Skip
Tower

Cmpl
Tower

Finish
Tower

(a) Flat 3-task model

Skip
Output

Input
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(b) Flat 5-task model
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Figure 4: Baseline MTL models
Flat 5-task and 9-task Models: To improve the performance on the

new user and low-activity user groups, we attempt to further divide
a prediction task into three sub-tasks according to the division
of user groups, i.e., prediction on new users, prediction on low-
activity users, and prediction on high-activity users. We implement
a partially-divided baseline flat 5-task model (Fig. 4b) by dividing
only the Cmpl task into three sub tasks New&Cmpl, Low&Cmpl
and High&Cmpl, and a fully divided baseline flat 9-task model (Fig.
4c) by dividing all tasks in the same way.

3.3 Challenges in Large Scale MTL
Despite the different SOTA networks we tried in the baseline mod-
els, the cold start and local overfitting problems still largely remain
unsolved as shown in later experiments. In this subsection we dis-
cuss the necessity of macro-perspective network design for shared
learning in large scale MTLs and the main challenges.

3.3.1 Shared Learning efficiency in Large Scale MTL. With a large
number of unbalanced tasks that have multi-aspects of correlations,
is the traditional MTL structure well prepared to scale efficiently?
This is a natural question to ask.

With more tasks, the traditional MTL models are incapable of
providing sufficient shared learning efficiency. Offline evaluation
3In the rest of this paper, we will describe other MTL models using abstract switchers
in the same way.
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results of Table 1 in Section 5 show that the flat 5-task and 9-
task models make limited improvement compared to baseline 3-
task model in terms of prediction accuracy. In other words, simply
splitting the original 3 tasks into 5 tasks or 9 tasks and plugging
in a flat sharing structure with the SOTA MTL models of PLE or
MMOE can hardly generate significant performance gains, while
in the case of small group such as 1 or 2 tasks, modeling more
tasks normally generates performance gains. This shows that the
majority dominance over minority is beyond the scope of micro
level switchers and the performance gain of modeling more tasks
in MTL with traditional methods is diminishing with more tasks.

3.3.2 Macro Level Cooperative Learning Structure. Themacro learn-
ing structure concerns with the macro scale information sharing
among tasks. One straightforward macro learning structure will be
a flat branching structure as in all baseline models shown in Fig. 4,
an opposite alternative can be a chain structure like the asymmetric
sharing [27]. For the same macro level structure, any micro level
switcher can be used for local diverting, i.e., differences in switchers
do not make any difference on macro learning structures.

Large scaleMTLs raise the importance of macro level cooperative
learning structures. There are no common baselines for macro level
network design. And the simple flat macro structure does not per-
form so well in large scale MTLs for several reasons. First, there are
a large number of tasks with multi-aspects of correlations, whereas
traditional methods do not exploit the multi-aspects of correlation
in the macro level structure design to maximize the extent of shared
learning; Second, for large scale MTLs, traditional networks with
the simple flat sharing structure have difficulty in directly extract-
ing out all tasks’ latent information demands without any hierarchy.
We need newmacro structures that can increase the depth of shared
learning; Thirdly, in large scale MTLs, the tasks are often highly
unbalanced in terms of both data samples and the complexity of
feature-label patterns. Traditional MTLs with homogeneous task
tower structures are not efficient in such scenarios.

Thus, large scale MTLs demands better innovative macro struc-
ture design for efficient shared learning. This work focuses on the
macro perspective of shared learning. To the best of our knowledge,
we are the first to differentiate the micro and macro perspective
of shared learning and the first to study the macro perspective
network design for shared learning in MTL.

4 MULTI-FACETED HIERARCHICAL MTL
This section presents our solution model - MFH. We first introduce
the notion of “facet” for tasks, then present a hierarchical MTL
model and the MFH model. For the sake of readability, we employ
the 9-task play task group MTL problem as an example to describe
our models and later generalize to a general 𝑁 -faceted MTL.

4.1 Multi-Faceted Hierarchical MTL (MFH)
4.1.1 Facets of Tasks. We introduce a concept of facet for tasks.
Facets are orthogonal dimensions that every task has. There are
several partitions for each facet that can divide tasks into groups.
For example in the 9-task problem setup, each task simultaneously
has two facets, i.e., user behavior facet = {Cmpl, Finish, Skip} and
user group facet = {New, Low-activity, High-activity}, where each
facet contains three partitions.

Level 0
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Tower

New & Cmpl
Tower

Low & Cmpl
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Tower
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Input
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Figure 5: Hierarchical MTL (H-MTL) Model
The combination of any two partitions from the two facets de-

fines a specific task. Facets provide prior structures for the correla-
tion between tasks. There are correlations along each facet’s aspect
and tasks sharing common facet partitions have stronger correla-
tions. For example, in the 9-task MTL task New&Cmpl shares the
same user group facet partition of new users with tasks New&Finish
and New&Skip, and at the same time shares the same user be-
haviour facet of play completion ratio with tasks Low&Cmpl and
High&Cmpl. In general, the number of facets could be three or
even more, e.g., the popularity of the video or the video length can
each be another new facet. The number of tasks exponentially in-
creases as more facets are introduced. Thus, not only limited to the
cold-start scenarios, this type of multifaceted multi-task problem is
actually commonly seen in industrial practice and poses new chal-
lenges on how to scale the cooperative learning in the multifacet
MTL setup from the macro perspective.

4.1.2 Hierarchical MTL. In this subsection, we introduce a Hier-
archical MTL (H-MTL) model for the 9-task problem. As depicted
in Fig. 5, H-MTL utilizes a two-level tree architecture to model the
task relationships in both facets and share the facet latent repre-
sentations between tasks in a hierarchical fashion. At level 0, a
switcher is adopted to learn the task relationship in the user be-
havior facet based on the input features, which connects to three
MLPs (Multilayer Perceptrons) at level 1 that correspond to three
partitions of the user behavior facet: Skip, Cmpl and Finish, re-
spectively. Each MLP outputs a hidden representation to feed an
MTL switcher which learns the task relationship in the user group
facet conditioned on a particular partition of the user behavior
facet, and connects to three task tower networks that correspond
to the combination of this user behavior and one of the three user
groups (i.e., new, low-activity and high-activity). Each task tower
network concentrates on the corresponding task and predicts the
final score for that task. Formally, the output of a specific task, e.g.,
Task New&Skip, can be abstractly formulated as:

𝑂𝑢𝑡𝑝𝑢𝑡𝑁𝑒𝑤&𝑆𝑘𝑖𝑝 = 𝑇𝑜𝑤𝑒𝑟𝑁𝑒𝑤&𝑆𝑘𝑖𝑝 (𝑆𝑤𝑖𝑡𝑐ℎ𝑒𝑟
𝑁𝑒𝑤&𝑆𝑘𝑖𝑝
𝑆𝑘𝑖𝑝

(

𝑀𝐿𝑃𝑆𝑘𝑖𝑝 (𝑆𝑤𝑖𝑡𝑐ℎ𝑒𝑟
𝑆𝑘𝑖𝑝

𝐼𝑛𝑝𝑢𝑡
(𝐼𝑛𝑝𝑢𝑡)))) (4)

where 𝑆𝑤𝑖𝑡𝑐ℎ𝑒𝑟𝑌
𝑋
indicates the corresponding output of 𝑆𝑤𝑖𝑡𝑐ℎ𝑒𝑟𝑋

for (hidden) Task 𝑌 , and in general the MLP can downgrade to zero
layer in which case the lower level switcher will feed directly to
the upper level switchers.

From the macro cooperative learning perspective, H-MTL avoids
to branch out directly from the input to all tasks as the baseline
flat 9-task model does. Instead, it adopts a hierarchical structure
with multi-level tree sharing among tasks. At each level, switchers
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Figure 6: Multi-Faceted Hierarchical MTL Model(MFH)
are used to branch out semantic representations for the upper level
sub-trees. In general, the tree starts from level 0 to level 𝑘 ≤ 𝑁 − 1
when we have 𝑁 facets. Different permutations of the facets form
different trees. For example, we can divide by user groups first then
further divide by user behaviours.

4.1.3 Multi-Faceted Hierarchical MTL (MFH). Although the H-MTL
model captures the hierarchical task relationships, we have to
choose a particular tree corresponding to one specific permutation
of the facets. However, facets are important explicit dimensions that
reflect the task correlations independently. The tasks have different
correlation groups along each facet simultaneously.

To further improve the adequacy of information sharing and
cooperative learning among the tasks, we propose a more com-
prehensive model, named Multi-Faceted Hierarchical MTL (MFH).
MFH is essentially composed of multiple H-MTL trees that are
nested together. With the 9 task problem as an example, as shown
in Fig. 6, at level 0, the switcher network learns the inter-facet task
relationship between two facets, and branches out to the two facets’
MLPs at level 1. The upper-level structures of MFH can be simply
regarded as the combination of two variants of the H-MTL model.
In particular, each tower network combines the hidden outputs
from two different paths connected to the input, and outputs the
predicted score for a specific task. For example, the output of Task
New&Skip can be abstractly formulated as:

𝑂𝑢𝑡𝑝𝑢𝑡𝑁𝑒𝑤&𝑆𝑘𝑖𝑝 = 𝑇𝑜𝑤𝑒𝑟𝑁𝑒𝑤&𝑆𝑘𝑖𝑝 (

𝑆𝑤𝑖𝑡𝑐ℎ𝑒𝑟
𝑁𝑒𝑤&𝑆𝑘𝑖𝑝
𝑆𝑘𝑖𝑝

(𝑀𝐿𝑃𝑆𝑘𝑖𝑝 (𝑆𝑤𝑖𝑡𝑐ℎ𝑒𝑟
𝑆𝑘𝑖𝑝

𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟
(

𝑀𝐿𝑃𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 (𝑆𝑤𝑖𝑡𝑐ℎ𝑒𝑟𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝐼𝑛𝑝𝑢𝑡 (𝐼𝑛𝑝𝑢𝑡))))) +

𝑆𝑤𝑖𝑡𝑐ℎ𝑒𝑟
𝑁𝑒𝑤&𝑆𝑘𝑖𝑝
𝑁𝑒𝑤

(𝑀𝐿𝑃𝑁𝑒𝑤 (𝑆𝑤𝑖𝑡𝑐ℎ𝑒𝑟𝑁𝑒𝑤
𝐺𝑟𝑜𝑢𝑝

(

𝑀𝐿𝑃𝐺𝑟𝑜𝑢𝑝 (𝑆𝑤𝑖𝑡𝑐ℎ𝑒𝑟
𝐺𝑟𝑜𝑢𝑝

𝐼𝑛𝑝𝑢𝑡
(𝐼𝑛𝑝𝑢𝑡)))))) (5)

where 𝑆𝑤𝑖𝑡𝑐ℎ𝑒𝑟𝑌
𝑋
indicates the corresponding output of 𝑆𝑤𝑖𝑡𝑐ℎ𝑒𝑟𝑋

for (hidden) Task 𝑌 , and + denotes a generic combination operation
that can be linear combination, concatenation or even applying
gate/attention net to fuse, we use linear combination in this work.

Compared to the H-MTLmodel, MFH further improves the learn-
ing efficiency by firstly modeling three-fold task relationship by
extending to three levels of MTL switchers, i.e., the inter-facet
relationship, the first-order intra-facet relationship, and the second-
order intra-facet relationship in the context of a particular partition
of another facet. Second, it enables each task to share semantic
information simultaneously with multiple sets of strong correlated
tasks according to the shared facet partitions. With MFH, we can
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Figure 7: Generalized Version of the MFH Model

expand to any number of orthogonal trees of different facet permu-
tations and nest the intermediate and leaf nodes as they cross. This
maximizes the representation learning through multi-dimensional
intersecting paths that support more shared learning.

Behavior MLP User MLP

Level 0

Level 1

Skip MLP Cmpl MLP Finish MLP New MLP Low MLP High MLP

Input

Output

Tower
S&C&N

Popularity  MLP

Cold MLP Hot MLP

Output

Tower
C&C&N

Output

Tower
F&C&N

Output

Tower
S&H&N

Output

Tower
C&H&N

Output

Tower
F&H&N

Output

Tower
S&C&L

Output

Tower
C&C&L

Output

Tower
F&C&L

Output

Tower
S&H&L

Output

Tower
C&H&L

Output

Tower
F&H&L

Output

Tower
S&C&H

Output

Tower
C&C&H

Output

Tower
F&C&H

Output

Tower
S&H&H

Output

Tower
C&H&H

Output

Tower
F&H&H

Level 2

Figure 8: 3 Facets MFH Model

4.2 Generalize to 𝑁 -faceted Multi-Task Setting
In this subsection, we generalize the MFH model to a generic 𝑁 -
faceted multi-task problem setup. Let 𝐹𝑖 denote the 𝑖-th facet, and
𝐹
𝑗
𝑖
denote the 𝑗-th partition of facet 𝐹𝑖 . Facet 𝐹𝑖 contains 𝑀𝑖 > 1

partitions. For simplicity of presentation, we assume that all facets
have𝑀 partitions. Then, there would be in total 𝑠 ≤ 𝑀𝑁 tasks in
this multi-task setting. Each task is associated with one element
of the Cartesian product of the 𝑁 facets, denoted by a 𝑁 -tuple,
(𝐹 𝑗1

1 , ..., 𝐹
𝑗𝑁
𝑁

), where 𝑗1, ..., 𝑗𝑁 ∈ {1, ..., 𝑀}. Given these definitions,
we illustrate the generalized version of MFH model in Fig. 7.

Specifically, the level 0 switcher (i.e., the root node) expands the
N facets MLPs 𝐹𝑖 MLP, 𝑖 from 1 to N. The level 1 switchers expand
each facet to its M partition MLPs. In general, for any 𝑘 < 𝑁 − 1,
level 𝑘 contains𝐶𝑘−1

𝑁
×𝑀𝑘−1 switchers and they expand to𝐶𝑘

𝑁
×𝑀𝑘

MLPs and switchers at level 𝑘 + 1. Each MLP at level 𝑘 + 1 has a
unique code formed by a combination of 𝑘 unique facets each with
a specific partition. Upper MLPs and lower MLPs are connected
through the lower level switchers if the upper level MLP’s code
contains the lower level MLP’s code as a subcode. In general, we
can choose to expand the multi-facet network to any level of 𝑘 ,
1 < 𝑘 < 𝑁 − 1, then connecting directly to the 𝑠 ≤ 𝑀𝑁 towers for
output tasks. We can have at most𝑀𝑁 tasks but do not necessarily
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need to split all tasks if there is not high business value or special
pattern for the considered input regions.

Fig. 8 shows a 3-facet MFH of 18 tasks for the Play Task Group
with an additional facet of video popularity, differentiating new
items and old ones. This jointly models the complete cold-start
problem for both new users and new items.

4.3 Heterogeneity of MFH
MFH is more heterogeneity-friendly than flat MTL. In Fig. 7, MFH’s
task towers and MLPs can all be designed heterogeneously. The size
of the task towers can be customized to better fit a special task. For
example, we can use smaller size MLP layers for task towers with
less training samples. We can do this for the intermediate MLPs
that correspond to tasks of less data samples as well. MFH is more
flexible on heterogeneity as the common shared root is thinner and
there are various granularities of sharing that can be customized to
be heterogeneous. In addition to the structure, different tasks can
also have customized input features only available for themselves.

Paired up with a generic fusion algorithm, MFH’s heterogeneity
can serve as a component of a universal ranking that unifies the
ranking of heterogeneous candidates in a broader context, e.g.,
mixed ranking with video contents, ads and live broadcast.

5 EXPERIMENTS
Offline and online experiments are performed on both a large-scale
industrial recommender system and a public benchmark dataset to
evaluate the effectiveness of the proposed models.
Table 1: Performance on Play Tasks. The improvements of
MFH over baseline 3-task are shown in brackets.

Models PCR MSE PFR AUC PSR AUC
New User Group

baseline 3-task .5167 .7784 .7968
flat 5-task .5184 .7770 .7973
flat 9-task .5162 .7799 .7965
H-MTL 9-task .5156 .7801 .7989
MFH 9-task .5138(-0.56%) .7813(+0.37%) .8003(+0.44%)

Low-Activity User Group
baseline 3-task .4807 .7977 .8179
flat 5-task .4832 .7929 .8174
flat 9-task .4796 .7990 .8178
H-MTL 9-task .4792 .8001 .8186
MFH 9-task .4776(-0.64%) .8006(+0.36%) .8198(+0.23%)

High-Activity User Group
baseline 3-task .4085 .8177 .8548
flat 5-task .4087 .8170 .8552
flat 9-task .4079 .8181 .8536
H-MTL 9-task .4073 .8183 .8549
MFH 9-task .4070(-0.37%) .8199(+0.27%) .8563 (+0.18%)

5.1 Real World Deployment and Evaluation
The proposed models are evaluated on Tencent’s large-scale short
video AppWeSee which serves hundreds of millions monthly active
users for immersive video watching.

5.1.1 Real World Deployment. We first deploy the MFH model in
the RS ranking system of WeSee. An MFH 9-task model for the play
task MTL and an MFH 12-task model for the interactive task MTL
are deployed in the MTL ranking service of the ranking framework

as shown in Fig. 2. The two MFH models jointly predict users’
9 behaviors, then a reinforcement learning model fuses the MTL
outputs into one score for the final ranking. After validation, MFH
has currently been deployed to Tencent News RS, QQ Little World
RS and Tencent Video Search, generating extensive business value.

5.1.2 Offline Evaluations. Dataset: We collect an industrial dataset
through sampling user logs from WeSee APP during a few consec-
utive days. There are 10 billion samples in the dataset. In addition
to labels PCR (Play Completion Ratio), PFR (PLAY Finish Rate),
PSR (Play Skip Rate) as mentioned before, there are also explicit
user feedback labels LR (Like Rate), FR (Follow Rate), CMR (Com-
ment Rate), SR (Share Rate), RCR (Read Comment Rate), RHR (Read
Homepage Rate). The sample distribution on the user groups is
1.57% of new user group, 11.46% of low-activity user group and
86.97% of high-activity user group.

Learning Tasks: There are two MTL learning models to serve
the online ranking. A play task groupMTL that jointly predicts PCR,
PFR and PSR, 3 tasks mostly related to the video playing process.
Another interactive task group MTL that jointly predicts LR, FR,
CMR, SR, RCR and RHR, the explicit user feedback behaviours.

MTL Models: For the play tasks MTL, we evaluate the baseline
3-task MTL (Fig. 4a), flat 5-task MTL (Fig. 4b), flat 9-task MTL (Fig.
4c), H-MTL 9-task (Fig. 5) and MFH 9-task MTL (Fig. 6). For the
interactive tasks MTL, we evaluate the baseline 6-task, H-MTL
12-task and MFH 12-task models.

Since the focus in this work is the macro level task coordination
learning structures, for each MTL model, we tried different MTL
switchers for the micro level shared learning such as hard sharing,
MMOE, CGC [27] and PLE and regard the performance of the best
switcher choice as the performance of the corresponding macro
level MTL structure. As a result, we adopt shared-bottom for level
0 switcher, PLE for level 1 switchers, CGC for level 2 switchers in
H-MTL and MFH, and adopt PLE for switchers in rest of the models.

SOTA Baselines: Note that for both the play tasks MTL and
the interactive tasks MTL, the SOTA models to be compared with
MFH are the baseline flat models. As we explained earlier there
are two aspects of the model design of our problem: for the micro
level design, we adopt the SOTA switcher network PLE for all the
baseline models, including the flat 9-task MTL and the flat 6-task
MTL; for the macro level network design, there are few previous
research on this aspect and the flat branching structure has been
used without an explicit recognition as a macro design choice, thus
the flat structure is in fact the current SOTA for macro level choice.

Experiment Setup: In the experiment, PCR prediction is a re-
gression task trained with MSE loss (Mean Squared Error) and
evaluated with MSE; tasks modeling other actions are all binary
classification tasks trained with cross-entropy loss and evaluated
with AUC. Samples in the first 14 days are used for training and
the rest of samples for testing. For the task towers, we adopt a
two-layer MLP network with RELU activation and heterogeneous
hidden layer sizes: (128,64) for high-activity user tasks and (64, 32)
for new and low-activity user tasks. Since the new user’s user id
does not contain much meaningful information, we remove the id
feature for new users. The experts in the switcher are implemented
with a multi-layer MLP and tuned on the following model-specific
hyper-parameters: number of shared layers, number of experts.
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Table 2: Performance on Interactive Tasks

User Group Models LR AUC FR AUC CR AUC SR AUC RCR AUC RHR AUC

New & Low-Activity
baseline 6-task .8821 .9453 .9495 .9167 .9113 .8723
H-MTL 12-task .8851(+0.34%) .9455(+0.02%) .9541(+0.48%) .9208(+0.45%) .9114(+0.01%) .8800(+0.88%)
MFH 12-task .8866(+0.51%) .9461(+0.08%) .9558(+0.66%) .9239(+0.79%) .9116(+0.03%) .8882(+1.82%)

High-Activity
baseline 6-task .9195 .9484 .9722 .9521 .9417 .9243
H-MTL 12-task .9211(+0.17%) .9515(+0.33%) .9732(+0.10%) .9560(+0.41%) .9425(+0.08%) .9305(+0.67%)
MFH 12-task .9221(+0.28%) .9531(+0.50%) .9758(+0.37%) .9587(+0.70%) .9434(+0.18%) .9327(+0.91%)

Table 3: Online Experiment Evaluation
Models apptime 2nd-day retention
Baseline Flat MTLs - -
MFH +2.14% +0.19%
MFH on new users +9.1% +1.85%

Table 4: Performance of 3-facets MFH vs. 2-facets MFH on
Play Tasks for high-activity users. The relative improve-
ments are shown in brackets.

Cold Start Items
Models PCR MSE PFR AUC PSR AUC
MFH 9-task (2facets) .2387 .8471 .8060
MFH 12-task (3facets) .2363(-1.01%) .8506(+0.41%) .8091(+0.38%)

Non-Cold Start Items
Models PCR MSE PFR AUC PSR AUC
MFH 9-task (2facets) .3896 .8188 .8473
MFH-12task (3facets) .3892(-0.10%) .8199(+0.13%) .8475(+0.02%)

Evaluation with Play Task Models: Table 1 illustrates the
experiment results and we mark the best performance in bold. It is
shown that H-MTL significantly outperforms all flat task models
(baseline 3-task, flat 5-task and flat 9-task) in all tasks and all user
divisions. With the flat task shared learning structure, introducing
more tasks produces slight improvement, but much insufficient
compared to the improvement H-MTL and MFH generate. MFH
further significantly outperforms H-MTL in all tasks and user divi-
sions. Of the improvement H-MTL and MFH generate, it is much
more significant on the new users than on active users.

We also compare the performance between MFH 9-task and flat
9-task in Table 1, as both models have the same 9 tasks and the only
difference isMFH vs. flat onmacro shared learning structure. MFH 9-
task outperforms flat 9-task on all tasks: -0.46%MSE on New&Cmpl,
-0.42% MSE on Low&Cmpl, -0.22% MSE on High&Cmpl; +0.18%
AUC on New&Finish, +0.2% AUC on Low&Finish, +0.22% AUC on
High&Finish; +0.48%AUConNew&Skip, +0.24%AUCon Low&Skip,
+0.32% AUC on High&Skip. This shows MFH manifests significant
performance improvement over baseline flat sharing.

Evaluation with Interactive Task Models: The interactive
tasks include LR (Like Rate), FR (Follow Rate), CR (Comment Rate),
SR (Share Rate), RCR (Read Comment Rate) and RHR (Read Home-
page Rate) 6 tasks. For interactive task MTL, we merge the new user
group and the low-activity user group into one group thus have 12
tasks in total. As in Table 2, H-MTL and MFH achieve significant
improvement over the baseline model on all tasks of all user groups.

5.1.3 Online Evaluation. Online experiments are also conducted
for three weeks. The baseline uses the flat 3-task model for the play
tasks MTL and a flat 6-task model for the interactive tasks MTL,
the experiment group adopts an MFH 9-task model and an MFH
12-task model accordingly. Both the experiment and the control

group have the same RL fusion model adapted to the corresponding
MTL ranking models. Table 3 shows the significant improvement
of MFH and it is worth noting that MFH achieves a remarkable
increase of +9.1% apptime per user on new users.

5.1.4 Lessons Learned. To achieve the full potential of a new algo-
rithm in real world systems, we need to consider the whole system’s
coordination and tune the subtle details patiently. For example,
to avoid a sudden performance gap for new users or low-activity
users when they migrate groups, we include new user samples in all
groups’ task training and low-activity user samples in high-activity
user tasks training while in serving only do inference through the
corresponding user group tasks. Thus the performance is smoother
when users change groups, e.g., new users become low-activity
users. As new users and low-activity users are far less than high-
activity users, the larger user groups’ training is not negatively
affected. Another example is that the MTL ranking service and
the MTF service need to work together to finish the final ranking,
we need to patiently adapt the RL MTF model to the MTL model
change to achieve the full benefit of the MFH model.

5.1.5 Ablation Study. Extensive ablation experiments are conducted
according to the three major innovative designs of Multi-Faceted,
hierarchical and heterogeneity. We first evaluate the ablation effect
of removing Multi-Faceted design, as well as removing both Multi-
faceted and hierarchy design. Comparing H-MTL 9-task model
with MFH 9-task model when we remove Multi-Faceted design,
significant performance decreases are observed for all tasks unani-
mously. Comparing flat 9-task model with MFH 9-task model when
we remove both Multi-Faceted and hierarchical design, even more
significant performance decreases are observed for all tasks unani-
mously. Please refer to Table 7 of Appendix for details.

Next we experiment on the ablation of the hierarchical design.
As MFH can not remove the hierarchical design independent of the
Multi-Faceted design, we observe the performance gap between
flat 9-task model and H-MTL 9-task model. Performance decrease
of the ablation of hierarchical design is observed with details in
Table 8 of the Appendix.

We also conduct experiments ablating the heterogeneity of MFH.
The results are shown in Table 9 of the Appendix where heter-abl
stands for the ablation experiment where we remove all heteroge-
neous designs and adopt a task tower network of two-layer MLP
of size (128,64) as the high-activity user group tasks’ settings for
all user groups, instead of heterogeneous task towers. Compared
to the baseline model, the ablation of heterogeneity decreases the
performance of the tasks to varying degrees as shown in Table 9.

5.1.6 More Tasks and Facets Evaluation: 3-facets MFH. We conduct
offline experiment to evaluate the 3-facets MFH model as shown
in Fig. 8 of Section 4.2. As in practice new items are normally not
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Table 5: Performance on Ali-CCP Dataset

Micro Structure Macro Structure New User Group Low-Activity User Group High-Activity User Group
(Switchers) ctr AUC cvr AUC ctr AUC cvr AUC ctr AUC cvr AUC

MMOE
Flat (2-task) .6127 .6462 .6130 .6355 .6119 .6421
Flat (6-task) .6133(+0.10%) .6462(+0.00%) .6135(+0.08%) .6417(+0.98%) .6131(+0.20%) .6438(+0.26%)

H-MTL (6-task) .6140(+0.21%) .6472(+0.15%) .6137(+0.11%) .6440(+1.34%) .6133(+0.23%) .6446(+0.39%)
MFH-MTL (6-task) .6148(+0.34%) .6496(+0.53%) .6144(+0.23%) .6482(+2.00%) .6138(+0.31%) .6457(+0.56%)

PLE
Flat (2-task) .6139 .6457 .6151 .6408 .6120 .6439
Flat (6-task) .6140(+0.02%) .6466(+0.14%) .6160(+0.15%) .6461(+0.83%) .6135(+0.25%) .6446(+0.11%)

H-MTL (6-task) .6144(+0.08%) .6488(+0.48%) .6165(+0.23%) .6517(+1.70%) .6137(+0.28%) .6450(+0.17%)
MFH-MTL (6-task) .6154(+0.24%) .6494(+0.57%) .6179(+0.46%) .6544(+2.12%) .6144(+0.39%) .6457(+0.28%)

Table 6: Performance on MovieLens Dataset
Micro Structure Macro Structure New User Group Low-Activity User Group High-Activity User Group

(Switchers) ctr AUC rate MSE ctr AUC rate MSE ctr AUC rate MSE

MMOE
Flat (2-task) .7035 .9670 .7194 .9145 .7373 .8082
Flat (6-task) .7044(+0.12%) .9627(−0.44%) .7194(+0.01%) .9113(−0.35%) .7370(−0.03%) .8040(−0.53%)

H-MTL (6-task) .7050(+0.21%) .9537(−1.37%) .7205(+0.15%) .9018(−1.39%) .7415(+0.57%) .8068(−0.18%)
MFH-MTL (6-task) .7072(+0.52%) .9517(-1.58%) .7232(+0.53%) .8988(-1.72%) .7422(+0.67%) .7960(-1.52%)

PLE
Flat (2-task) .7049 .9604 .7209 .9116 .7390 .7957
Flat (6-task) .7065(+0.24%) .9581(−0.24%) .7213(+0.06%) .9102(−0.16%) .7412(+0.30%) .7958(+0.02%)

H-MTL (6-task) .7091(+0.60%) .9576(−0.29%) .7245(+0.50%) .9047(−0.76%) .7440(+0.68%) .7925(−0.39%)
MFH-MTL (6-task) .7098(+0.71%) .9476(-1.33%) .7260(+0.72%) .8926(-2.09%) .7468(+1.06%) .7898(-0.74%)

served to new users and low-activity users for a double blind cold
start with concerns on user experience, we only serve cold start
new items to high-activity usersThus instead of an MFH 18-task
as shown in Fig 8, we have an MFH 12-task of 3 facets, with the
high-activity user group’s 3 tasks divided into 6 tasks, 3 for cold
start content items and 3 for non-cold start items.

The same dataset as above is used to evaluate the offline per-
formance of MFH 12-task vs. the 2 facets MFH 9 tasks. 3 facets
MFH 12-task model achieves similar performance on new users
and low-activity users compared to the 2 facets MFH 9-task model
and achieves significant improvement on high-activity user group
where the 3rd facet is applied. As shown in Table 4, the 3 facets
MFH 12-task model outperforms the 2 facets MFH 9-task model on
all tasks for the high-activity users, for both the non-cold start items
and the cold start items. A great reduction of -1.01% on Cmpl task’s
MSE loss are observed for cold start new items, which is a remark-
ably significant improvement for content cold start as normally
a 0.1% increase of AUC or MSE already generates online metric
improvement significant enough to be observed in A/B testing.

5.2 Evaluation on Public Dataset
5.2.1 Ali-CCP Data. Ali-CCP (Alibaba Click and Conversion Pre-
diction) Dataset4 is a public dataset extracted from Taobao’s Rec-
ommender System. The dataset includes 84 million data samples
equally divided into training set and testing set, which contain 3.4
million clicks and 18 thousand conversions. CTR (Click Through
Rate) and CVR (Conversion Rate) are two tasks modeling the user
actions of click and purchase in the dataset. For users in the dataset,
we divide the users into three groups: new users with 0-15 video
views (vv), low-activity users with 15-50 vv, and high-activity users
with more than 50vv, containing 22%, 18% and 60% users respec-
tively. Since there are a CTR task and a CVR task for every group,
we have a total of 6 tasks.

4https://tianchi.aliyun.com/dataset/dataDetail?dataId=408

5.2.2 MovieLens Data. MovieLens 20Mdataset[13] contains around
20 million ratings of 27,278 movies by 138,493 users.We divide the
users into three groups: new users with 20-36 vv, low-activity users
with 37-99 vv, and high-activity users with more than 99vv, con-
taining 27.12%, 34.9% and 37.98% users respectively. We mock a
CTR task as treating the ratings ≥ 4 star as positive samples and
ratings lower than 4 stars as negative samples. Another task is a
regression task to predict the actual ratings.

5.2.3 Experiment Setup. For both datasets, we try both MMOE
and PLE for the SOTA micro switcher structures. For the macro
structures, a flat 2-task and a flat 6-task Model are used as the
baseline models, compared with an H-MTL 6-task model and an
MFH 6-task Model. For each task in both models, we adopt a two-
layer MLP network of size (64, 32). Similar to Section 5.1.2, the
SOTA models to compare are the MMOE flat and PLE flat models.

5.2.4 Experiment Results. As shown in Table 5 and Table 6, for
both datasets, MFH significantly improves the performance of all
six tasks compared to the baseline flat(2-task) and flat( 6-task) Mod-
els, for both the MMOE and PLE micro switcher structures. For the
same macro structures, micro structure of PLE switcher performs
slightly better than MMOE switcher. The flat(6-task) model only
performs slightly better than the flat(2-task) model compared to
the significant improvement MFH-MTL(6-task) brings, this demon-
strates the task scaling benefit MFH generates.

6 CONCLUSION
In this paper we propose a novel Multi-Faceted Hierarchical multi-
task learning model (MFH), which uses a multi-faceted hierarchical
tree structure to improve the MTL efficiency and scalability from
the macro perspective of task sharing. Offline and online experi-
ment results on the industrial and public datasets show significant
and consistent improvements of MFH over baseline SOTA models.
Researching the possibilities of applying Meta Learning to the MFH
tree structures will be the focus of future work.
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