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Abstract. Coordination between multiple agents can be found in many
areas of industry or society. Despite a few recent advances, this prob-
lem remains challenging due to its combinatorial nature. First, with an
exponentially scaling action set, it is challenging to search effectively
and find the right balance between exploration and exploitation. Sec-
ond, performing maximization over all agents’ actions jointly is com-
putationally intractable. To tackle these challenges, we exploit the side
information and loose couplings, i.e., conditional independence between
agents, which is often available in coordination tasks. We make several
key contributions in this paper. First, the repeated multi-agent coordi-
nation problem is formulated as a multi-agent contextual bandit prob-
lem to balance the exploration-exploitation trade-off. Second, a novel
algorithm called MACUCB is proposed, which uses a modified zoom-
ing technique to improve the context exploitation process and a variable
elimination technique to efficiently perform the maximization through
exploiting the loose couplings. Third, two enhancements to MACUCB
are proposed with improved theoretical guarantees. Fourth, we derive
theoretical bounds on the regrets of each of the algorithms. Finally, to
demonstrate the effectiveness of our methods, we apply MACUCB and
its variants to a realistic cloudlet resource rental problem. In this prob-
lem, cloudlets must coordinate their computation resources in order to
optimize the quality of service at a low cost. We evaluate our approaches
on a real-world dataset and the results show that MACUCB and its
variants significantly outperform other benchmarks.

Keywords: Multi-agent contextual bandit · Multi-agent coordination ·
Loose couplings · Cloudlet computing.

1 Introduction

Many real-life problems could be considered as multi-agent coordination prob-
lems, which require agents to coordinate their actions repeatedly to optimize a
global utility. It is an important issue in multi-agent systems, with a wide range
of application domains. Examples include robotic systems [12], traffic light con-
trol [22] and maintenance planning [19]. However, the size of the joint action
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set scales exponentially with the number of agents. Thus, how to optimally co-
ordinate in repeated settings becomes an extremely challenging task for several
reasons: First, as agents are unaware of the expected payoffs associated with
different joint actions, they must explore to learn these values. With a large
joint action set, inefficient algorithms will spend a large proportion of time in
exploring sub-optimal actions, resulting in high regret. Second, it is not triv-
ial to perform the optimization over an exponentially growing action set since
computation and storage grow exponentially in the number of agents.

Fortunately, loose couplings exist in many coordination problems, meaning
that each agent’s action only has a direct impact on a subset of adjacent agents.
Therefore, the global utility can break down into local utilities that only depend
upon a small subset of agents. In addition, most real-life applications have side
information, which can be highly informative of which type of actions should be
taken in the future, especially when the action set is very large. Thus, we are
interested in multi-agent coordination problems where a set of loosely coupled
agents repeatedly observe state (side information) and have to perform actions
jointly such that the expected global utility is maximized.

Multi-agent coordination problems have long been of great interest given
their importance. Some reinforcement learning studies also consider coordina-
tion problems with loose couplings [8, 10, 13, 18]. However, reinforcement learn-
ing focuses on sequential decision-making problems while ours is a single-stage
setting. Moreover, most model-free learning works only concentrate on empiri-
cal results with no theoretical guarantee [13]. Our work is most relevant to [3,
21], which also exploit the loose couplings in multi-agent multi-armed settings.
However, their works fail to link side information with rewards of actions, nei-
ther do they exploit the similarities across agents. Our learning problem is of a
combinatorial nature. In this sense, it is related to combinatorial bandits, which
extend the classical multi-armed bandit (MAB) framework by allowing multiple
plays at each round [4, 5, 7, 9]. Similar to our settings, Qin et al. [15] study a
contextual combinatorial bandits, with semi-bandit feedback [1], where action
space grows exponentially and side information as well as the outcomes of all
actions played are observable [15]. However, their work does not restrict the set
of actions played, makes it not applicable to our problem, where each agent can
only play a single action from its own action set. Different from previous works,
we exploit the side information and loose couplings to address these issues and
provide several key contributions. First, we formulate the repeated multi-agent
coordination problem as a multi-agent contextual bandit problem to balance the
exploration-exploitation tradeoff in the joint actions of multiple agents. Second,
we present a novel algorithm called MACUCB, which combines a modified zoom-
ing technique [20] and a variable elimination algorithm [3, 16, 17] to adaptively
exploit the context information and address the unavoidable scalability issues in
multi-agent settings. Third, we propose two enhancements to our base algorithm
with improved bound guarantees. One is to share context space among agents
and the other algorithm takes advantage of the full feedback information. Fourth,
we show that the regret of MACUCB and its two variants are bounded. Finally,
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Fig. 1. A map of the United States showing cities with cloudlet infrastructures (upper-
right corner). A map of Chicago with cloudlet Deployment locations (left)

we empirically compare our algorithms with other state-of-the-art methods in
a cloudlet resource rental problem and show that MACUCB and its variants
achieve much lower empirical regret.

2 Motivation Scenario

In this section, we use the cloudlet resource rental problem as a motivating
example, while our model can be applied to a variety of multi-agent coordination
scenarios.

Although mobile devices are getting more powerful recently, they still fall
short to execute complex rich media applications like Pokémon Go. Computing
offloading through the cloud is an effective way to solve this problem. However,
cloud servers are usually located in the far distance, resulting in high latencies.
In such context, cloudlets, deployed geographically near mobile users, have been
proposed to provide services with low-latency responses. Foreseeing tremendous
opportunities, many companies are expanding their investments in this field. For
example, as shown in the upper-right corner of Figure 1, Vapor IO will have its
Kinetic Edge live in 20 US metropolitan markets. Now assume Niantic, the appli-
cation service provider (ASP) of Pokémon Go has decided to rent computation
resources to deploy its application in Chicago. Let us see how the user experience
of Pokémon Go players in Chicago will be affected by the rental decisions. As
depicted in Figure 2, many players require for cloudlet services at the same time.
Then, each cloudlet needs to decide how much resources to rent considering the
side information e.g. past user demand pattern and the current time.

For example, assume that ASP makes rental decisions as shown in Figure 2.
Since the ASP rents sufficient computation resources, the computation tasks of
users 1 to 3 are offloaded to the Cloudlet 1, leading to low latency. Therefore, the
user experience at Cloudlet 1 is high. However, due to limited or no computing
resources rented at Cloudlet 2 and Cloudlet n, the tasks of mobile users 5, k− 2
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to k are rejected. Then these tasks have to be offloaded to Cloud via a macro
base station (MBS) through congested backbone Internet (dash line), resulting
in high service delay and bad user experience at these cloudlets. Therefore, joint
rental decisions at multiple cloudlets have to be carefully decided in order to get
excellent overall user experience with a low cost, which is measured in terms of
time-saving in task processing.

Note that cloudlets are in fact loosely coupled, thus the global utility can
be decomposed into local ones. For example, Figure 1 shows the daily activities
of mobile user 1. As can be seen, this user spends most of the time in the
blue region. Thus, given that mobile users can only access the nearest cloudlet,
he/she will mostly be served by cloudlets (C1, C2, C3) located in that particular
region. Therefore, user experience in each region only depends on a small subset
of cloudlets.

However, there are lots of challenges involved in this scenario: First, the user
demand, which is the main factor determining the benefit of rental decisions,
is unknown ahead of time. Second, service demand and resource rental options
might be different at different cloudlets as the market size and demand elasticity
often vary across geographic locations. Thus, simply treating these cloudlets as
a single agent might not work well. Third, the number of joint rental options
increase exponentially with the number of cloudlets, making it not trivial to
compute the optimal solution.

Fortunately, side information that combines contextual knowledge with his-
torical data could be highly informative in the prediction of the future. Thus, in
this paper, we model the scenario as a multi-agent contextual bandit problem
and take advantage of the side information and loose couplings to address these
challenges.
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Fig. 2. An example of the cloudlet resource rental problem
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3 Problem Description

We consider repeated interactions for a horizon of T rounds and the computation
resource rental problem can be modelled as a tuple N = 〈C,X ,A,S,F〉

– C = {i} (|C| = n) is the set of n agents (e.g. cloudlets).
– X = X1 × · · · × Xn is the joint context space, which is the cross-product of

the context space of individual context space Xi = {xi}. The joint context
at time t is denoted by xt = (x1,t, . . . , xn,t). In the cloudlet resource rental
problem, side information xi,t can be user factor (e.g. past demand pat-
terns), temporal factor (e.g. current time) or other relevant factors related
to cloudlet i in round t.

– A = A1 × · · · × An is the joint action set, defined as the cross-product of
the individual action sets Ai = {ai}. The joint action at time t is denoted
by at = (a1,t, . . . , an,t). In the resource rental problem, an action ai ∈ Ai

denotes the number of virtual machines rented at cloudlet i.
– S is the individual score function. For each agent i, Si is defined on context

and action set, i.e., Si : Ai×Xi → [0, 1]. The observed value of the score is de-
noted by s(ai,t, xi,t) and its expected value by µ(ai,t, xi,t) = E

(
s(ai,t, xi,t)

)
.

In the motivation scenario, it evaluates the service quality of cloudlet i (in
terms of achieved delay reduction) minus rental cost.

– F measures the expected global utility. In particular, in the motivation sce-
nario, it measures the improvement in service quality minus the cost associ-
ated with the rental decisions.

In this paper, we consider multi-agent coordination problems in which the
expected global utility function satisfies two properties. Firstly, the expected
global utility can be represented as a function of the joint action and the score
expectation vector, i.e., F(a,µ), where µ =

{
{µ(ai, xi)}ai∈Ai

}
i∈C denotes the

score expectation vector of all actions of all agents in set C. More specifi-
cally, the expected utility at time t is F(at,µt) = F

({
µ(ai,t, xi,t)

}
i∈C

)
, where{

µ(ai,t, xi,t)
}
i∈C is an n-dimensional vector restricted on the action ai,t taken

by each agent i. For example, as shown in Figure 2, the expected overall user
experience is determined by the rental decisions and the corresponding expected
local scores obtained at each cloudlet.

Secondly, since agents are loosely coupled, they could be decomposed into
m possible overlapping subsets Cj . Correspondingly, the expected global utility
could break down into m local expected utility functions f j , i.e., F(a,µ) =∑m

j=1 f
j(aj ,µj), where aj and µj are the local joint action and local score

expectation vector respectively. For instance, as mentioned in the motivation
scenario, the overall experience can be decomposed into regional ones. Often, the
loose couplings structure can be illustrated using a coordination graph (CoG)
[10, 13].

In each round t, agents observe the joint context xt and are asked to choose
a joint action at. Once the decision is made, agents observe the local scores
{s(ai,t, xi,t)}i∈C and receive a global utility. The objective is to maximize the
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expected cumulative global utility
∑T

t=1 F(at,µt) over T rounds. It is equivalent
to minimize the expected cumulative regret RegT , defined as the difference in
cumulative global utility between the joint actions we selected and the best

actions a∗t , where a∗t , argmaxa∈A F(a,µt). Let aj
t

∗
= {a∗i,t}i∈Cj be the best

action restricted on agents in set Cj . Then the objective is to minimize the
expected cumulative regret RegT

RegT =

T∑
t=1

m∑
j=1

f j(aj
t

∗
,µj

t )− f j(a
j
t ,µ

j
t )

Before carrying out our analysis, let us make some natural assumptions about
score functions and utility functions.

Lipschitz Score Functions Consider a metric space of context of any agent
i (Xi,D), where D defines the distance on Xi. The local score function is Lipschitz
with respect to metric D. More specifically, ∀i,∀ai,t ∈ Ai, and ∀v,w ∈ Xi, score
function Si satisfies ∣∣Si (ai,t,v)− Si (ai,t,w)

∣∣ ≤ D (v,w) (1)

Without loss of generality, we assume that the diameter of Xi is not more than
1, i.e., ∀i, supu,v∈Xi

D(u,v) ≤ 1. Consider the motivation scenario. It is natural
to assume that, when renting the same number of virtual machines, cloudlets
with similar contexts (e.g. demand patterns) have similar score ratings.

On the other hand, the expected utility functions depend on the actual prob-
lem instance. It might be simply the sum of the expected scores of actions aj

taken by agents in Cj , i.e., f j(aj
t ,µ

j
t ) =

∑
i∈Cj µ(ai,t, xi,t). It might also be

complicated non-linear utilities. We simply assume that the expected reward f j

satisfies the following two assumptions.
Lipschitz Utility Functions The expected local utility functions f j is Lip-

schitz continuous with respect to the score expectation vector µj . In particular,
there exists a universal constant α > 0 such that, for ∀j and any two score
expectation vector µ̂j and µ̃j , we have∣∣∣f j(aj

t , µ̂
j
t )− f j(a

j
t , µ̃

j
t )
∣∣∣ ≤ α∑

i∈Cj

∣∣∣µ̂(ai,t, xi,t)− µ̃(ai,t, xi,t)
∣∣∣ (2)

Take the cloudlet rental problem as an example. It is intuitive that similar
score ratings at cloudlets lead to similar regional user experience and vice versa.

Monotonic Utility Functions The expected utility functions f j is mono-
tone non-decreasing with respect to the score expectation vector µj . Formally,
for ∀aj

t ∈ Aj , if µ̂(ai,t, xi,t) ≤ µ̃(ai,t, xi,t) for ∀i ∈ Cj , we have

f j(aj
t , µ̂

j
t ) ≤ f j(a

j
t , µ̃

j
t ) (3)

The intuition behind the assumption is that the user experience definitely im-
proves when score ratings at all cloudlets become higher. Additionally, it is not
necessary for cloudlets to possess a direct knowledge of how the expected local
utility functions f j

(
aj ,µj

)
are defined. Instead, we assume there is an oracle,

which takes joint action a and expected score µ as input, and outputs the value
of expected utilities f j

(
aj ,µj

)
.
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4 Algorithms

Algorithm 1: MACUCB

1 for each agent i do
2 for each action a ∈ Ai do
3 Bi,a ← B(o, 1) where o is an arbitrary centre
4 n(Bi,a) = 0; B1

i,a ← {Bi,a}

5 for t = 1, . . . , T do
6 for each agent i do
7 Input context xi,t
8 Relevant← {B ∈ Bt

i : xi,t ∈ domt(B)}
9 for each Bi,a ∈ Relevant do

10 Calculate Brep by Eq. (4) and update st(Bi,a) and Ut(Bi,a) by
Eq. (5)

11 for each action a ∈ Ai do

12 Calculate B̂i,a by Eq. (6) and update µ̂t(a, xi,t) and Ut(a) by
Eq. (7)

13 Calculate at by Eq. (8)
14 Execute at and observe local scores {s(xi,t, ai,t)}i∈C
15 for each agent i do

16 nt+1(B̂i,ai,t) = nt(B̂i,ai,t) + 1

17 sum(B̂i,ai,t) = sum(B̂i,ai,t) + s(xi,t, ai,t)

18 if conft+1(B̂i,ai,t) ≤ R(B̂i,ai,t) then

19 Bnew = Bi,ai,t

(
xi,t,

1
2
R(B̂i,ai,t)

)
20 Bt+1

i,ai,t
= Bt

i,ai,t
∪Bnew; nt

(
Bnew

)
= 0

4.1 Description of MACUCB

The basic idea of MACUCB is as follows: for each round t, the algorithm main-
tains a collection of balls Bti for each agent i, which forms a partition of the
context space Xi. Basically, each ball is a score estimator and the shape of balls
guarantees that all context falling into the partition are within distance r from
the centre. Thus, by Eq. (1), we can control the estimation errors by controlling
the radius of the balls. Therefore, by generating more balls with smaller radius
over time, our estimation becomes more accurate. In detail, when context xi,t
arrives, among all the balls whose domain contains xi,t, the algorithm selects

one ball B̂i,a to estimate the score of each action ai ∈ Ai according to the esti-
mation rule. Specifically, the estimation rule selects the ball (estimator) with
the highest upper confidence bound. Then, based on the estimation, the algo-
rithm plays the joint action at returned by the selection rule which also follows
UCB criterion. Then the observed scores are used to update the estimation. In
the end, a new ball with a smaller radius may be generated for each agent i
according to the generation rule to give a refined partition when we are more
confident about the estimation.
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Now let us introduce some notations and definitions before stating the three
rules. Bti,a denotes the collection of all balls associated with action a of agent i
in round t. Moreover, define Bti as the set containing all balls of agent i in round
t and Bt as the set containing balls of all agents in round t, i.e., Bt ,

⋃
i∈C Bti ,⋃

i∈C
(⋃

a∈Ai
Bti,a

)
.

For action a of agent i, a ball with center o and radius r is defined by
Bi,a(o, r) = {x ∈ Xi : D(x, o) ≤ r}. For simplicity, it is abbreviated as Bi,a in
the subsequent sections. In addition, let R(Bi,a) denote the radius of ball Bi,a.
Then the domain domt(Bi,a) of the ball Bi,a in round t is defined as a subset

of Bi,a that excludes all balls B′ ∈ Bti,a with a smaller radius, i.e.,domt(Bi,a) ,

Bi,a\
(⋃

B′
i,a∈Bt

i,a:R(B′
i,a)<R(Bi,a)

B′i,a

)
.

Now we are ready to state the three rules.
Estimation rule: The estimation rule has three steps.
(1) Basic estimation We say that Bi,a is a relevant ball of agent i in round
t if xi,t ∈ domt(Bi,a). For each ball Bi,a, it keeps two estimation statistics: the
average score s̄t(Bi,a) and the confidence level conft(Bi,a). Let nt(Bi,a) denote
the number of rounds that Bi,a has been selected before t and sum(Bi,a) be
the sum of payoffs from these rounds. Then the average score s̄t(Bi,a) and the
confidence level conft(Bi,a) are defined as

s̄t(Bi,a) ,
sum(Bi,a)

nt(Bi,a)

conft(Bi,a) ,

√
4 log T

1 + nt(Bi,a)

(2) Refinement To get a more accurate estimation, we perform a refinement
for each relevant ball Bi,a, using statistics from the representative ball Brep

which gives an estimation with minimum uncertainty. It is defined as

Brep , argminB∈Bt
i,a
D(Bi,a, B) + conft(B) +R(B) (4)

Then the refinement is conducted as follows.

st(Bi,a) = s̄t(Brep)

Ut(Bi,a) = D(Brep, Bi,a) + conft(Brep)

+R(Brep) +R(Bi,a)

(5)

where st(Bi,a) and Ut(Bi,a) represent the refined mean and confidence term
respectively.
(3) UCB Estimation. After refinement, the ball B̂i,a with the best upper
confidence bound is selected to give the final estimation of the score. Specifically,
for each action a ∈ Ai, B̂i,a is defined as

B̂i,a , argmaxBi,a∈Relevant st(Bi,a) + Ut(Bi,a) (6)

Then the final estimated mean score µ̂t(a, xi,t) and confidence term Ut(a) are

µ̂t(a, xi,t) = st(B̂i,a) and Ut(a) = Ut(B̂i,a) (7)
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The corresponding score expectation vector µ̂t of all actions of all agents is
µ̂t =

{
{µ̂t(a, xi,t)}a∈Ai

}
i∈C .

Selection rule: The algorithm selects joint action and balls such that

at = argmaxa∈A F
(
a, µ̂t

)
+ Ct(a) (8)

where F
(
a, µ̂t

)
=
∑m

j=1 f
j
(
aj , µ̂j

t

)
and Ct(a) = α

∑m
j=1

∑
i∈Cj Ut(ai). Then{

B̂i,ai,t

}
i∈C

are the corresponding balls selected.

Generation rule: For each agent i, if the ball selected B̂i,ai,t
satisfies the in-

equality
conft+1(B̂i,ai,t

) ≤ R(B̂i,ai,t
).

Then a new ball Bnew is generated with center xi,t and radius 1
2R(B̂i,ai,t). We

call B̂i,ai,t
the parent ball of Bnew.

The detail of the algorithm is presented in Algorithm 1. However, note that it
is not trivial to calculate Eq. (8), since the joint action set A is exponential in the
number of agents. Therefore, MACUCB calls a variable elimination algorithm
(VE) [3, 16, 17] to perform this maximization.

4.2 Description of VE

The basic idea of VE is to exploit loose couplings to break down the problem
into sub-problems, avoiding searching the whole joint action set. For each agent,
we consider the sub-problem containing only local utility functions that have the
agent in scope. Then agents are eliminated in sequence by calculating the value
of agents’ best responses to the neighbors in the sub-problems.

In details, let us rewrite the local utility functions (LUFs) f j to include both
the estimated utility and the confidence terms, i.e.,

f j(aj) = f j(aj , µ̂j) + α
∑
i∈Cj

U(ai)

By loose couplings, we can break down the problem into sub-problems. Let
F be the set containing all LUFs, i.e., F , {f j}mj=1 and Fi be the set of LUFs
that have agent i in scope. Then consider a subproblem that only has Fi. Fixing

a specific local joint action aC
j−i, the possible value Vi of Fi for all actions of

agent i is

Vi(Fi,a
Cj−i) =

⋃
ai∈Ai

∑
fj∈Fi

f j(aC
j−i × {ai})

Since the action taken by agent i will only affect the global utility through Vi,
we can eliminate agent i by calculating the value of agent i ’s best response to

all joint action its neighbors can take aC
j−i ∈ ACj−i. Then a new LUF Fnew

i can

be constructed using these values, which depends only on aC
j−i, i.e.,

Fnew
i (aC

j−i) = max
(
Vi(Fi,a

Cj−i)
)



10 F. Lin et al.

Then we replace Fi in F by the new factor. In addition, since we want to find the
optimal joint action, we tag each value in Fnew

i with the best response of agent i.
We do these series of operations to eliminate all agents i ∈ C in a predetermined
order q. Details of the algorithm are shown in Algorithm 2.

Algorithm 2: VE

1 Input A set of local utility functions f j and an elimination order q containing
all agents

2 F = {f j}mj=1

3 while q is not empty do
4 i← q.dequeue()

5 for each action aC
j−i ∈ AC

j−i do

6 Fnew
i (aC

j−i) = max
(
Vi(Fi,a

Cj−i)
)

7 end
8 F ← (F\Fi) ∪ Fnew

i

9 end
10 v← V(F)
11 return the tag a∗ attached to v

4.3 Extensions

The algorithm proposed for multi-agent contextual bandits can be naturally
extended to the special case where agents have similar action sets, contextual
spaces and score functions. In such cases, we treat X =

⋃
i∈C Xi andA =

⋃
i∈C Ai

and modify MACUCB to allow information sharing between agents by sharing
the same adaptive space partition B. The new algorithm is named Multi-agent
Similar Contextual Upper Confidence Bound (MASCUCB). For instance, in the
cloudlet rental problem, cloudlets usually have similar rental options and score
functions (since time delay is determined by demand and computation power
regardless of locations). MASCUCB follows the general framework of MACUCB
but instead of having an individual partition for each agent, it maintains a
public collection of balls for all agents, i.e., Bt = Bt1 = · · · = Btn. Then, both
the estimation and the update are done with the public collection, which greatly
expedites the exploration process and leads to a decrease in regret. The update
procedure is shown in Algorithm 3.

Algorithm 3: Update in MASCUCB

1 for each agent i do
2 Execute MACUCB Lines 16 - 17

3 if conf(B̂i,ai,t) ≤ R(B̂i,ai,t) then

4 Bnew = Bai,t

(
xi,t,

1
2
R(B̂ai,t)

)
5 Bt+1

ai,t
← Bt

ai,t
∪Bnew; nt

(
Bnew

)
= 0

For some other applications, full feedback is available, i.e., scores of all actions
are available at the end of each round. For example, in the cloudlet resource rental
problem, the service demand in each region is revealed at the end of each round.
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Then the score, which is the delay reduction minus the rental cost, can be derived
accordingly. Therefore, the scores of all rental decisions are observable. We call
MASCUCB with full feedback as MASCUCBwF. As outlined in Algorithm 4,
MASCUCBwF follows the general framework of MASCUCB, but updates balls
for all actions {B̂i,a}ai∈Ai

instead of only updating ball B̂i,ai,t
.

Algorithm 4: Update in MASCUCBwF

1 Execute at and observe local scores for all actions {s(ai, xi,t)}ai∈Ai,i∈C
2 for each agent i do
3 for each action ai in Ai do

4 nt+1(B̂i,ai)← nt(B̂i,ai) + 1

5 sum(B̂i,ai) = sum(B̂i,ai) + st(xi,t, ai)

6 if conf(B̂i,ai) ≤ R(B̂i,ai) then

7 Bnew ← Bi,ai

(
xi,t,

1
2
R(B̂i,ai)

)
8 Bt+1

ai
← Bt

ai
∪Bnew

9 nt

(
Bnew

)
= 0

5 Regret Analysis

In this section, we provide an upper bound on the cumulative regret for MACUCB.
Define the r-covering number of (Xi, D) as the minimal number of balls,

whose diameters are not greater than r, needed to cover Xi:

Nr(Xi) , min

{
H : ∃V = v1, . . . , vH ,Xi ⊂

H⋃
h=1

B(vh,
r

2
)

}
Then we have the following theorem regarding the expected regret achieved by
MACUCB.

Theorem 1. Assume Eqs. (1) and (2) hold. With probability at least 1−2nT−2,
the expected global regret is bounded by

RegT ≤ 2α

m∑
j=1

∑
i∈Cj

inf
r′i∈(0,1)

(
7r′iT + |Ai|

∑
r∈R(r′i,1)

28Nr(Xi) log T

r

)
where α is the Lipschitz continuity coefficient in Eq. (2) and R(a, b) = {2−k|k ∈
N ∧ 2−k ∈ (a, b]}.

Before we prove Theorem 1, let us first propose to bound the difference
between the mean score µ(a,OBi,a

) of agent i’s action a with context OBi,a
and

the average score s̄t(Bi,a) for all balls. Define the good event be that

∀t ∈ [T ],∀i ∈ C,∀a ∈ Ai,∀Bi,a ∈ Bti,a,∣∣s̄t(Bi,a)− µ(a,OBi,a)
∣∣ ≤ conft(Bi,a) +R(Bi,a)

where OBi,a
denotes the centre of ball Bi,a and µ(a,OBi,a

) is the mean score
of action a with context OBi,a

. The following lemma states that the good event
happens with high probability.
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Lemma 1. Assume Eqs. (1) and (2) hold. For ∀t ∈ [T ] ,∀i ∈ C,∀a ∈ Ai,∀Bi,a ∈
Bti,a, with probability at least 1− 2nT−2, we have∣∣s̄t(Bi,a)− µ(a,OBi,a

)
∣∣ ≤ conft(Bi,a) +R(Bi,a)

Proof of Lemma 1. Fix a ball Bi,a. If nt(Bi,a) = 0 or R(Bi,a) = 1, we have∣∣s̄t(Bi,a)− µ(a,OBi,a
)
∣∣ ≤ 1 ≤ conft(Bi,a) +R(Bi,a)

Thus, the inequality always holds if nt(Bi,a) = 0 or R(Bi,a) = 1.
If nt(Bi,a) ≥ 1 and R(Bi,a) < 1, by Eq. (1) we have∣∣∣E [st(Bi,a)]− µ

(
a,OBi,a

) ∣∣∣ ≤ max
xi,t∈domt(Bi,a)

D(xi,t, OBi,a
) ≤ R(Bi,a)

Therefore, according to Hoeffding’s inequality,

Pr
( ∣∣s̄t(Bi,a)− µ(a,OBi,a)

∣∣ > conft(Bi,a) +R(Bi,a)
)

≤Pr
(∣∣s̄t(Bi,a)− µ(a,OBi,a)

∣∣− ∣∣E [s̄t(Bi,a)]− µ(a,OBi,a)
∣∣ > conft(Bi,a)

)
≤Pr

(∣∣s̄t(Bi,a)−E [s̄t(Bi,a)]
∣∣ > conft(Bi,a)

)
≤2 exp

(
−2nt(Bi,a)conft(Bi,a)2

)
≤2 exp

(
− 2nt(Bi,a)

nt(Bi,a) + 1
· 4 log T

)
≤2T−4

Since each agent will generate at most one new ball in each round, the total
number of balls with nt(Bi,a) ≥ 1 and R(Bi,a) < 1 is at most nt for any t. To
complete the proof, we apply the Union bound over all rounds t and all such
balls B,

Pr [bad event] ≤ T · nT · 2T−4 = 2nT−2

Then, we show that the global regret can be upper bounded by the sum of
the confidence of the action taken up to a constant factor.

Lemma 2. Assume Eqs. (1) to (3) hold. With probability at least 1 − 2nT−2,
the global regret over T rounds is bounded by

RegT ≤ 2α

T∑
t=1

m∑
j=1

∑
i∈Cj

Ut(ai,t)

Proof of Lemma 2. Consider the global regret incurred in any round t, by Lips-
chitz condition, we have

Regt = F (a∗t ,µt)−F (at,µt)

≤ F (a∗t , µ̂t)−F (at,µt) + α

m∑
j=1

∑
i∈Cj

∣∣∣µ̂(a∗i,t, xi,t)− µ(a∗i,t, xi,t)
∣∣∣



Context-aware Multi-Agent Coordination 13

Then according to the optimality of at, we obtain

F (a∗t , µ̂t) ≤ F (at, µ̂t) + α

m∑
j=1

∑
i∈Cj

Ut(ai,t)− α
m∑
j=1

∑
i∈Cj

Ut(a
∗
i,t)

Combining these two inequalities and by Lipschitz condition, we get

Regt ≤ F (at, µ̂t)−F (at,µt) + α

m∑
j=1

∑
i∈Cj

Ut(ai,t)− α
m∑

j=1

∑
i∈Cj

Ut(a
∗
i,t)

+ α

m∑
j=1

∑
i∈Cj

∣∣∣µ̂(a∗i,t, xi,t)− µ(a∗i,t, xi,t)
∣∣∣

≤ α
m∑

j=1

∑
i∈Cj

∣∣∣µ̂(ai,t, xi,t)− µ(ai,t, xi,t)
∣∣∣+ α

m∑
j=1

∑
i∈Cj

Ut(ai,t)− α
m∑

j=1

∑
i∈Cj

Ut(a
∗
i,t)

+ α

m∑
j=1

∑
i∈Cj

∣∣∣µ̂(a∗i,t, xi,t)− µ(a∗i,t, xi,t)
∣∣∣

Now fix a single agent i. For simplicity, we might drop some subscript i in the
subsequent equations, but implicitly all terms correspond to agent i. Consider
the action ai,t taken and the corresponding ball B̂i,ai,t

selected by agent i in

round t. Denote the representative ball of B̂i,ai,t
as B̂rep. By Lemma 1, under

good event, we have∣∣∣s̄t(B̂rep)− µ(ai,t, OB̂rep
)
∣∣∣ ≤ conft(B̂rep) +R(B̂rep)

By Lipschitz condition,∣∣∣µ(ai,t, OB̂rep
)− µ(ai,t, OB̂i,ai,t

)
∣∣∣ ≤ D(B̂i,ai,t

, B̂rep)∣∣∣µ(ai,t, OB̂i,ai,t
)− µ(ai,t, xi,t)

∣∣∣ ≤ R(B̂i,ai,t)

Combining above inequalities, we obtain∣∣s̄t(B̂rep)− µ(ai,t, xi,t)
∣∣ ≤ conft(B̂rep) +D(B̂i,ai,t , B̂rep) +R(B̂rep) +R(B̂i,ai,t)

= Ut(B̂i,ai,t
) = Ut(ai,t)

According to Eqs. (5) and (7), µ̂t(ai,t, xi,t) = st(B̂i,ai,t
) = s̄t(B̂rep). Thus, we

have ∣∣µ̂t(ai,t, xi,t)− µ(ai,t, xi,t)
∣∣ ≤ Ut(ai,t)

Similarly, |µ̂t(a
∗
i,t, xi,t)− µ(a∗i,t, xi,t)| ≤ Ut(a

∗
i,t). Therefore, under good event,

Regt ≤ 2α

m∑
j=1

∑
i∈Cj

Ut(ai,t)

The global regret is simply the sum of Regt in all T rounds.
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Now let us consider a single agent i and establish an upper bound for Ut(ai,t).

There are two possibilities. (1) When the ball selected B̂i,ai,t is a parent ball;

(2) When B̂i,ai,t
is a non-parent ball;

Lemma 3. Assume Eqs. (1) and (2) hold. With probability at least 1− 2nT−2,
for ∀t ∈ [T ], i ∈ C, Ut(ai,t) is bounded by

Ut(ai,t) ≤ 7R(B̂i,ai,t
)

Moreover, if B̂i,ai,t
is a parent ball in round t, the bound can be improved to

Ut(ai,t) ≤ 3R(B̂i,ai,t
)

Proof of Lemma 3. We use B̂par and B̂rep to denote the parent ball and the

representative of B̂i,ai,t
respectively. Since B̂rep = argminB∈Bt

i,ai,t

D(B̂i,ai,t
, B)+

conft(B) +R(B), we have

Ut(ai,t) = Ut(B̂i,ai,t) = D(B̂i,ai,t , B̂rep) + conft(B̂rep) +R(B̂rep) +R(B̂i,ai,t)

≤ D(B̂i,ai,t
, B̂par) + conft(B̂par) +R(B̂par) +R(B̂i,ai,t

)

By the rule of parent ball, we have

conft(B̂par) ≤ R(B̂par)

D(B̂i,ai,t
, B̂par) ≤ R(B̂par)

R(B̂par) = 2R(B̂i,ai,t)

Therefore,

Ut(ai,t) ≤ 3R(B̂par) +R(B̂i,ai,t) = 7R(B̂i,ai,t)

In cases when B̂i,ai,t
is a parent ball, similarly, by the rule of parent ball, we

have

Ut(ai,t) = D(B̂i,ai,t
, B̂rep) + conft(B̂rep) +R(B̂rep) +R(B̂i,ai,t

)

≤ D(B̂i,ai,t , B̂i,a) + conft(B̂i,ai,t) +R(B̂i,ai,t) +R(B̂i,ai,t)

≤ conft(B̂i,ai,t
) +R(B̂i,ai,t

) +R(B̂i,ai,t
)

≤ 3R(B̂i,ai,t)

To continue with the proof, define BTi,a(r) as the collection of balls of radius

r in BTi,a, i.e.,

BTi,a(r) = {B ∈ BTi,a|R(B) = r}

Then, let’s derive an upper bound for the number of balls with radius r in BTi,a.
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Lemma 4. For ∀i, ∀a ∈ Ai and ∀r = 2−k, k ∈ N,∣∣BTi,a(r)
∣∣ ≤ Nr(Xi)

where Nr(Xi) is the r-covering number of Xi

Proof of Lemma 4. First, for any i ∈ C and a ∈ Ai, we show that in BTi,a,
the centers of balls whose radius is r are within distance at least r from one
another. Consider ∀Bi,a, B

′
i,a ∈ BT

i,a where R(Bi,a) = R(B′i,a) = r and Bi,a and
B′i,a are generated at round t and t′ respectively. Without loss of generality,
assume that t < t′. Let B′par denote the parent of B′i,a. Recall that domt(B

′
par)

is a subset of B′par that excludes all balls in Bti,a with a smaller radius. Thus,
domt′(B

′
par) ∩ Bi,a = ∅. Moreover, according to the rule of parent, OB′

i,a
∈

domt′(B
′
par). As a result, OB′

i,a
6∈ Bi,a. and therefore we have

D(Bi,a, B
′
i,a) ≥ r

Now we proceed with the proof. Suppose
∣∣BTi,a(r)

∣∣ = Nr(Xi)+1, which means

that there are Nr(Xi) + 1 balls B1, . . . , BNr(Xi)+1 of radius r in BTi,a. Then by
pigeonhole, we must have two balls Bm and Bn whose centers fall into the same
B(vh,

r
2 ). This means that the distance between the centers of these two balls

cannot be more than the diameter of the ball B(vh,
r
2 ), i.e., D(Bm, Bn) ≤ r,

which leads to a contradiction. Therefore, we have∣∣BTi,a(r)
∣∣ ≤ Nr(Xi)

Now we are ready to prove the theorem.

Proof of Theorem 1. Let RegiT = 2α
∑T

t=1 Ut(ai,t). Then we can separate the
global regret into individual ones, i.e., RegT ≤

∑m
j=1

∑
i∈Cj Reg

i
T . Now, consider

a single agent i. For any ball B ∈ Bi, let AB be a singleton set containing
the round when B is activated and SB denotes the set of rounds when B is
selected and is not a parent ball. Then by construction,

⋃
B∈Bi

{AB , SB} forms
a partition of set [T ]. Moreover, note that in the round t when B is activated,
the ball selected B̂i,a must be a parent ball. Thus, if we use 1{·} to denote the
indicator function, RegiT can be represented as

RegiT = 2α
∑
t∈[T ]

∑
r∈R(0,1)

∑
B∈BT

i (r)

1{t ∈ AB ∪ SB} · Ut(ai,t)

= 2α

(1)︷ ︸︸ ︷∑
t∈[T ]

∑
r∈R(0,r′i)

∑
B∈BT

i (r)

1{t ∈ AB ∪ SB} · Ut(ai,t)

+ 2α

(2)︷ ︸︸ ︷∑
t∈[T ]

∑
r∈R(r′i,1)

∑
B∈BT

i (r)

1{t ∈ AB ∪ SB} · Ut(ai,t)
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where r′i can take any value in (0, 1). On one hand, by Lemma 3, we can obtain
a bound for part (1):

(1) ≤
∑
t∈[T ]

∑
r∈R(0,r′i)

∑
B∈BT

i (r)

1{t ∈ AB ∪ SB} · 7r′i ≤ 7r′iT

On the other hand, for part (2):

(2) =
∑
t∈[T ]

∑
r∈R(r′i,1)

∑
B∈BT

i (r)

1{t ∈ AB} · Ut(ai,t) + 1{t ∈ SB} · Ut(ai,t)

≤
∑
t∈[T ]

∑
r∈R(r′i,1)

∑
B∈BT

i (r)

1{t ∈ AB} · 6R(B) + 1{t ∈ SB} · 7R(B)

≤
∑

r∈R(r′i,1)

∑
B∈BT

i (r)

6r + 7r ·
(4 log T

r2
− 2
)

For the first inequality, when t ∈ |SB |, B is the ball selected. Then by Lemma
2 and Lemma 3, we have Ut(ai,t) ≤ 7R(B). On the other hand, t ∈ AB means

that B is activated in time t. Then the ball selected B̂i,ai,t is the parent ball of

B. Thus, we have Ut(ai,t) ≤ 3R(B̂i,ai,t
) = 6R(B). For the second inequality, as

defined, B is not a parent ball when t ∈ AB ∪ SB . Thus, by the rule of parent,
we can get an upper bound for the cardinality of |SB |,

conft (B) =

√
4 log T

1 + nt(B)
> R(B)

It means that

nt(B) =
∑
t∈[T ]

1{t ∈ AB}+ 1{t ∈ SB} <
4 log T

R(B)2
− 1

Therefore, we have |AB | = 1 and |SB | < 4 log T
R(B)2 − 2.

In addition, based on Lemma 4 and Bi =
⋃

a∈Ai
Bi,a, we have

∣∣BTi (r)
∣∣ ≤

|Ai|Nr(Xi). Now we can bound the regret of agent i as follows:

(2) ≤
∑

r∈R(r′i,1)

∑
B∈BT

i (r)

6r + 7r ·
(4 log T

r2
− 2
)

≤ |Ai|
∑

r∈R(r′i,1)

6Nr(Xi)r + 7Nr(Xi)r ·
(4 log T

r2
− 2
)

= |Ai|
∑

r∈R(r′i,1)

28Nr(Xi) log T

r
− 8Nr(Xi)r

Combining (1) and (2), we get

RegT ≤ 2α

m∑
j=1

∑
i∈Cj

(
7r′iT + |Ai|

∑
r∈R(r′i,1)

28Nr(Xi) log T

r
− 8Nr(Xi)r

)
. .



Context-aware Multi-Agent Coordination 17

Therefore, we complete the proof.

RegT ≤ 2α

m∑
j=1

∑
i∈Cj

inf
r′i∈(0,1)

(
7r′iT + |Ai|

∑
r∈R(r′i,1)

28Nr(Xi) log T

r

)

Moreover, define the covering dimension di for any agent i as

di , inf
{
d > 0 : Nr(Xi) ≤ βr−di ∀r ∈ (0, 1)

}
.

Then substitute Nr(Xi) ≤ βr−di into the inequality in Theroem 1, we obtain
the following corollary.

Corollary 1.

RegT ≤ O(KT
d+1
d+2 log T

1
d+2 ) ≤ Õ(T

d+1
d+2 )

where d = max(d1, . . . , dn) and K =
∑m

j=1

∑
i∈Cj |Ai|.

In addition, the sublinear regret bounds of MASCUCB and MASCUCBwF
can be derived in a similar way to Theroem 1.
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Fig. 3. Loose couplings and context information

6 Experiment

In this section, we evaluate the performance of the proposed algorithms in a
real-life scenario.
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Table 1. Hyperparameter

Parameter Value

Time horizon T 5000
2D Context space Context [Demand in last 24

hrs, Current time]
Input data size per task S 1MB
Required CPU cycles per task C 109

CPU frequency of each VM F 2× 109Herts
Price per VM P 0.1 unit
Maximum service demand per VM Dmax 80
Expected transmission rate of cloudlets Rc 5Mbps
Expected transmission rate of the cloud Rremote 2Mbps
Expected backbone transmission rate Rb 10Mbps
Processor capacity per task at Cloud center V 10× 109Herts
Round-trip travel time to the Cloud ht 1

6.1 Experiment Setting

The dataset used is the AuverGrid dataset from the Grid Workloads Archive
(GWA) [11]. This dataset records the real-word computational demand received
by large-scale multi-site infrastructures to support e-Science. It contains 400k
task requests of 5 grids.

The learning problem is formulated as follows. Consider each cloudlet as an
agent. There are 5 cloudlets in total. As shown in Figure 3, cloudlets [C1, C2,
C3] serve users in region A, [C3, C4] provide services in region B and region C
has two cloudlets [C4, C5]. In each round, side-information is observed by each
cloudlet. Then rental decisions need to be determined. There are some options
available, i.e., A = [0, 2, 4, 6], corresponding to the number of virtual machines
(VM) to rent by each cloudlet. The goal is to maximize ASP’s global utility.

More specifically, the score function measures the quality of service (QoS)
minus the cost incurred. Herein QoS is measured as the processing time saved by
computing at cloudlets instead of the remote Cloud. For each task, the processing
time per task at cloudlets equals to transmission delay plus processing delay.
Take Cloudlet C1 as an example. If the number of VMs rented at C1 is a1 with
a1 > 0, then the processing time at C1 is T1 = S

Rc
+ C

Fa1
. In comparison, the

processing time at the remote Cloud is TRemote = S
Rremote

+ S
Rb

+ C
V + ht. Thus,

QoS per task at C1 is QoS = ∆t = TRemote − T1. In cases when a1 = 0, QoS is
set to zero. While the rental cost of VMs is Cost1 = Pa1. Let dt be the service
demand (number of tasks) covered by C1. Then, given the maximum service
demand processed per VM Dmax, the score achieved by taking action a1 at C1
is S1 = min(dt, a1Dmax)QoS − Cost1. Similar formulation has been considered
in [6].

The joint utility in each region can take any form as long as it satisfies Eqs. (2)
and (3). In this experiment, we use the Worst Performance Metric to measure
the local utility in one region, i.e. fa = min

(
s1(a1, x1), s2(a2, x2), s3(a3, x3)

)
.

Meanwhile, the global utility is the sum of the utilities in all regions F = fa +
fb + fc. Please see Table 1 for details about the parameter configurations.
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(a) |A| = 4
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(b) |A| = 5
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(c) |A| = 6
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(d) |A| = 7

Fig. 4. Comparison of cumulative regrets between different algorithms

6.2 Experimental Results

To test its performance, we compared MACUCB algorithm and its variants with
some classical algorithms:
UCB1 [2]: UCB1 can also be applied to multi-agent cases. The key idea is to
treat each possible combination of rental decisions as a different action.
LinUCB [14]: LinUCB makes use of the context information of agents by as-
suming that the expected utility is defined by the inner product between the
context vector and an unknown coefficient vector.
MAUCE [3]: MAUCE is an algorithm for multi-agent multi-armed bandits,
which also exploits loose couplings.
MASCUCB: In MASCUCB, agents share the collection of balls for estimation.
By sharing historical observations, agents could take advantage of the similari-
ties to make better decisions.
MASCUCBwF: For computing resource rental problem, the scores of other ac-
tions are also revealed once we observe the service demand. Thus, MASCUCBwF
makes full use of this extra information to adjust the estimation.
Random: The algorithm randomly selects a possible combination of resource
rental decisions in each round.

Figure 4 depicts the cumulative regrets incurred by these algorithms under
different rental option sets in the first 5000 rounds. It can be seen that MACUCB
and its variants significantly outperform other benchmarks across the time period
considered when the action set is large. Specifically, the rental options selected to
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conduct the experiments areA = [0, 2, 4, 6],A = [0, 2, 4, 6, 8],A = [0, 2, 4, 6, 8, 10]
and A = [0, 2, 4, 6, 8, 10, 12] respectively.

Note that the performance of UCB1 degrades significantly with increasing
action set. It is even worse than Random algorithm when |A| ≥ 6. This poor
performance can be mainly explained by two reasons: Firstly, since UCB1 treats
each possible combination of rental decisions as an action, the problem size grows
exponentially with the number of agents. As a result, UCB1 needs to spend a
large fraction of time in the exploration phase, making it inefficient. Secondly,
UCB1 fails to establish a link between contexts and utilities. Although LinUCB
considers the context information in the estimation, its performances are worse
than MAUCE, MACUCB and its variants. Same as UCB1, due to a large joint
action set, LinUCB spends too much time in the exploration phase, preventing
it from taking the optimal action frequently. Similar to our algorithm, MAUCE
also exploits loose couplings. Although it achieves smaller regrets than MACUCB
when the size of the action set is small, the gap narrows with increasing action
set. Eventually, MACUCB outperforms MAUCE when |A| = 7. Moreover, since
MAUCE fails to exploit the similarities across agents, it performs worse than
MASCUCB and MASCUCBwF across all sessions. In addition, it is highly help-
ful to exploit the similarities between cloudlets, as evidenced by comparing the
performance of MASCUCB and MACUCB. Figure 4 shows that MASCUCB
outperforms MACUCB in all sessions. Furthermore, comparing MASCUCB and
MASCUCBwF, we see that observing more information about scores of actions
at cloudlets increases the accuracy of estimation and results in a lower cumulative
regret. Since we are using historical data to estimate current scores, uncertainty
is always present. The Lipschitz assumption between context and scores only
roughly holds. Having more information about real scores of actions could help
to correct the bias and reduce the uncertainty to some extent.

7 Conclusion

In this paper, we formulate the multi-agent coordination problem as a multi-
agent contextual bandit problem and an online algorithm called MACUCB is
proposed to address it. To efficiently perform the maximization in multi-agent
settings, MACUCB applies a variable elimination technique to exploit loose cou-
plings. Meanwhile, a modified zooming technique is used in MACUCB to adap-
tively exploit the context information. Besides, two enhancement methods are
proposed which achieve better theoretical and practical performance. One shares
the common context space among the agents and the other makes use of full feed-
back information available. Moreover, sublinear regret bounds were derived for
each of the proposed algorithms. Finally, the experiment results on a real-world
dataset show that the proposed algorithms outperform other benchmarks.
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