
Battery Management for Automated
Warehouses via Deep Reinforcement Learning

Yanchen Deng1, Bo An1, Zongmin Qiu2, Liuxi Li2, Yong Wang2, and Yinghui
Xu2

1 School of Computer Science and Engineering, Nanyang Technological University
{ycdeng,boan}@ntu.edu.sg

2 Cainiao Smart Logistics Network
{zongmin.qzm,liuxi.llx,richard.wangy}@cainiao.com,renji.xyh@taobao.com

Abstract. Automated warehouses are widely deployed in large-scale
distribution centers due to their ability of reducing operational cost
and improving throughput capacity. In an automated warehouse, or-
ders are fulfilled by battery-powered AGVs transporting movable shelves
or boxes. Therefore, battery management is crucial to the productivity
since recovering depleted batteries can be time-consuming and seriously
affect the overall performance of the system by reducing the number of
available robots. In this paper, we propose to solve the battery man-
agement problem by using deep reinforcement learning (DRL). We first
formulate the battery management problem as a Markov Decision Pro-
cess (MDP). Then we show the state-of-the-art DRL method which uses
Gaussian noise to enforce exploration could perform poorly in the formu-
lated MDP, and present a novel algorithm called TD3-ARL that performs
effective exploration by regulating the magnitude of the outputted ac-
tion. Finally, extensive empirical evaluations confirm the superiority of
our algorithm over the state-of-the-art and the rule-based policies.

Keywords: Automated warehouses · Battery management · Deep rein-
forcement learning.

1 Introduction

With the rapid development of multi-robot systems, automated warehouses and
Robotic Mobile Fulfillment Systems (RMFSs), such as the Kiva system [4], have
emerged as a new category of automated order fulfillment systems. In such sys-
tems, order fulfillment is implemented by a fleet of battery-powered Automatic
Guided Vehicles (AGVs) to transport movable shelves with Stock-keeping Units
(SKUs). Due to their ability of reducing operational cost and improving through-
put capacity, automated warehouses have been adapted in many e-commerce
companies including Amazon, Cainiao, etc. Battery management is crucial to
automated warehouses as recovering the depleted batteries is time-consuming
and significantly affects the throughput capacity of the system by reducing the
number of available AGVs. Moreover, since the number of charging poles is fixed,

2 Yanchen et al.

inappropriate battery management would result in many low-power AGVs which
cannot be recharged timely. As a result, these AGVs eventually cannot fulfill any
job (including recharging) due to the extremely low battery and must be recov-
ered manually, which makes battery management quite challenging.

A common way to implement battery management is by hand-crafted rules.
For example, we could use a parameterized policy with two thresholds 〈Tc, Tw〉.
The AGVs with battery lower than Tc are scheduled to charge and the AGVs
with battery higher than Tw are scheduled to work. However, since most of them
are built upon energy conservation, the rule-based policies are decoupled from
the current workload and may schedule many AGVs to charge even during peak
periods. As a result, the backlogs increase and the performance of the system
degenerates significantly due to the lack of available AGVs. In other words, the
rule-based policies are pre-defined and cannot be adjusted adaptively according
to the real-time workload.

To maximize throughput capacity, it is necessary to explore alternative ap-
proaches to solve the battery management problem by explicitly considering the
dynamic workload. Our first contribution is modeling the battery management
problem as a Markov Decision Process (MDP) due to its capability in model-
ing long-term planning problems with uncertainty. The state of the formulated
MDP includes the battery histograms of AGVs under different states, the num-
ber of working AGVs in different working areas and the number of backlogs.
The action is defined as the upper bound of the AGVs in the working areas and
the threshold for the charging AGVs. The reward is defined as the number of
fulfilled orders in each time step.

Solving the MDP is challenging since both the state space and the ac-
tion space are continuous. Traditional tabular-based reinforcement learning ap-
proaches [2, 8, 15, 20] cannot be applied due to their inability of modeling high-
dimensional and complicated dynamics. Pioneered by DQN [13], deep reinforce-
ment learning (DRL) [5] has achieved tremendous success in solving many se-
quential decision-making problems [14, 16, 18]. TD3 [6] is the state-of-the-art
DRL algorithm for continuous control. However, it implements exploration by
adding Gaussian noise to the outputted action, which could be inefficient in
our problem where the permuted action may still has the same semantic if the
magnitude of the outputted action is high. Therefore, our second contribution is
proposing a novel algorithm called TD3 with action regulation loss (TD3-ARL)
to enforce the state dependent exploration. In more detail, we regulate the mag-
nitude of the outputted action by imposing a loss term on the objective function
of the actor network to guarantee the diversity of exploration. Our extensive
empirical evaluations have demonstrated the superiority of TD3-ARL over the
state-of-the-art.

2 Related Work

Battery Management for Automated Warehouses. While battery man-
agement is crucial to large-scale automated warehouses, its influence on the

Title Suppressed Due to Excessive Length 3

performance is usually omitted in automated warehouse studies [9]. McHANEY
examined several charging schemes and pointed out the battery constraint can
only be omitted when charging can be insured to take place without impacting
system operation [11]. Recently, Zou et al. evaluated the performance of differ-
ent recovering strategies including re-charging, swapping and inductive charging
[22]. Several heuristics for dispatching low-power AGVs for battery swapping
were proposed in [3]. However, these heuristics cannot be applied to our case
since we focus on recovering depleted batteries via re-charging.

Deep Reinforcement Learning. Combining with high-capacity deep neural
network approximators, DRL [5] has achieved great successes on challenging
decision making problems [14, 16, 18]. Pioneered by DQN [13], many DRL algo-
rithms such as A3C [12], DDPG [10], SAC [7] and TD3 [6] have been proposed.
However, most of off-policy DRL algorithms use uncorrelated Gaussian noise to
enforce exploration, which would perform poorly in our case where many actions
are equivalent. Therefore, based on TD3 we propose a novel algorithm which
performs effective exploration by regulating the magnitudes of the outputted
actions.

3 Motivation Scenario

Fig. 1. The layout of a typical automated warehouse

Fig.1 gives the layout of a typical automated warehouse. Generally, the life-
cycle of an order includes picking, consolidation and casting line. When an order
comes in, the system assigns picking jobs for Good-to-Person Area to pick the
required SKUs from buckets and store them to a turnover box. After finishing
picking jobs, the box is sent to the Rebin Area for further consolidation. If
the order does not contain any manually picking item, the system assigns an

4 Yanchen et al.

assembly job for Assembly Area to assemble a picking-cart with empty parcels.
Otherwise, the system assigns an assembly job for the Manually Picking Area to
pick the SKUs from the shelves manually and assemble a picking-cart in which
parcels are filled with the required SKUs. The picking-cart is sent to the Rebin
Area as soon as the assembly job finishes. After both the turnover box and the
picking-cart arrived at the Rebin Area, the consolidation is initiated to combine
the SKUs from different areas by transferring SKUs in the box to the parcels
in the picking-cart. After finishing consolidation job, the picking-cart is sent to
the Casting Line Area for packaging and inspecting. The order is considered as
fulfilled and sent outbound after the casting line job is finished.

Since the number of charging poles are fixed and all the transportation of
buckets, boxes and picking-carts is fulfilled by battery-powered AGVs, inappro-
priate battery management would lead to the shortage of available AGVs and
severely degenerates the throughput capacity of warehouses. Typically, battery
management is implemented by thresholds. That is, the system schedules the
AGVs with battery lower than a threshold to charge and schedules the charging
AGVs with battery higher than another threshold to work. Besides, a working
AGV will not execute charging job if the number of charging AGVs has already
met the number of charging poles. Finally, an emergency charging mechanism
that allows low-power AGVs to preempt charging poles is introduced to ensure
that the battery of an AGV is higher than a safe threshold.

Although the rule-based policy is easy to be implemented and highly inter-
pretable, it suffers from three major shortcomings. First, AGVs are scheduled
to charge as long as their battery is lower than the charging threshold and there
are available charging poles. As a result, it is possible to schedule a large num-
ber of AGVs to charge and cause the shortage of available AGVs, which is not
desirable during peak periods. Second, the thresholds are decoupled from the
current workload, which prohibits the system from improving throughput ca-
pacity proactively when needed. In fact, a common way to improve productivity
in practice is to disable the charging poles manually to force AGVs to work for a
longer time when the working areas are busy. However, this workaround is risky
since reducing the number of charging poles would lead to a large number of
low-power AGVs or even dead AGVs. Finally, the rule-based policy fails to ex-
ploit order structure. Specifically, since consolidation and casting line depend on
picking, it is reasonable to schedule AGVs in picking areas to charge when most
orders are in consolidation or casting line procedure. Given these limitations,
we aim to take the current workload and the order structure into the consid-
eration and propose a novel battery management scheme to maximize overall
throughput capacity.

4 Problem Statement and MDP Formulation

In this section, we give the formal definition to battery management problem
and formulate it as an MDP.

Title Suppressed Due to Excessive Length 5

4.1 Battery Management Problem

We consider an automated warehouse with a fleet of AGVs G which are subject
to the battery constraint, i.e., an AGV g ∈ G cannot fulfill any job if its battery
bg is lower than the dead threshold Tdead . Orders arrive over time and each
order includes picking jobs for Good-to-Person area, an assembly job for either
Assembly area or Manual Picking area, and jobs for Rebin area and Cast Line
area respectively. Given the number of charging poles C < |G|, the goal is to
design a battery management scheme to maximize overall throughput capacity.
More specifically, at each time step t, we aim to determine the set of charging
AGVs Gtc ⊂ G and the set of AGVs for working areas Gtw ⊆ G such that
|Gtc| ≤ C,Gtc ∩ Gtw = ∅ and Gtc ∪ Gtw = G to maximize the number of fulfilled
orders by the end of a day.

4.2 MDP Formulation

We propose to model the problem as a Markov Decision Process (MDP) due
to its ability in modeling sequential decision-making problems with uncertainty.
Formally, the MDP is defined by a tuple M = 〈S,A,R,P〉 where S,A,R,P
are the state space, the action space, the reward function and the transition
probability function, respectively. The definitions are given as follows.

– State st ∈ S. The state we consider includes battery feature, AGV fleet
feature and system feature. For the battery feature, we build a histogram
with a bin size 5% for AGVs in charging state, working state and idle state,
respectively. For the AGV fleet feature, we consider the number of working
AGVs in each area. For the system feature, we consider the number of back-
logs and the current time step t, where backlogs are the unfinished orders
by the current time step.

– Action at ∈ A. It is impossible to directly determine Gtw and Gtc as dividing
a set into two disjoint subsets would result in a prohibitive large action space.
Instead, we consider to schedule anonymously. Formally, at is defined by a
tuple 〈U tw, T tc 〉 where |G| −C ≤ U tw ≤ |G| is the upper bound of the number
of AGVs in working areas and T tc is the battery threshold for the charging
AGVs. When realizing at, the system schedules max(|Gtw| − U tw, 0) AGVs
with the lowest battery to charge and schedules the charging AGVs with
battery higher than T tc to working areas.

– Reward function R. The reward is defined as the number of orders fulfilled
in the time step t. We aim to find the policy π∗ : S → A which maximizes
the accumulated reward (i.e., the total number of fulfilled orders). That is,

π∗ = arg max
π

T∑
t=1

R(st, π(st))

.

6 Yanchen et al.

5 Solving the MDP

Traditional RL algorithms cannot be applied to solve the MDP as the state space
S and the action space A are continuous and the transition probability function
P does not have an explicit form. Therefore, we resort to deep RL and present
a novel algorithm built upon TD3. We will first briefly introduce TD3 and show
it would perform poorly in our problem due to inefficient exploration. Then we
present our proposed algorithm.

5.1 TD3

Twin Delayed Deep Deterministic Policy Gradient (TD3) [6] is the state-of-
the-art deep reinforcement learning algorithm for continuous control. TD3 is
a deterministic policy gradient algorithm [17] and incorporates an actor-critic
architecture where both the actor and the critics are parameterized by deep
neural networks. The policy which is represented by the actor network πφ is
updated to maximize

J(φ) =
1

N

∑
s

Qθ1(s, πφ(s)) (1)

where N is the size of a mini-batch of experiences and Qθ1 is a critic. To address
the overestimation bias in critic learning, TD3 concurrently learns two critics
Qθ1 , Qθ2 and uses the smaller one to compute the targets for critic updates. The
critics are updated to minimize the temporal difference error [19]. Besides, it
adds noises to the target actions and enforces a delayed policy update to reduce
variances in actor-critic methods.

Unfortunately, TD3 would perform poorly when solving MDP M due to
inefficient exploration. Since TD3 trains a deterministic policy in an off-policy
way, a common approach to enforce exploration is to add uncorrelated mean-zero
Gaussian noise N (0, σ) to the outputted action, which would perform poorly in
our case. In fact, many actions in MDP M are equivalent and the conventional
exploration scheme fails to exploit the fact effectively. Consider the conventional
exploration scheme applied to U tw shown in Fig.2(a) where Û tw is the deterministic
action outputted by the actor. Since the system schedules max(|Gtw| − U tw, 0)
AGVs to charge, any U tw ∈ [|Gtw|, |G|] has the same semantic. As a result, TD3
could sample a lot of equivalent actions but rarely explore the region [|G| −
C, |Gtw|] if the magnitude of the outputted action is close to |G|.

5.2 Enforcing State Dependent Exploration via Action Regulation
Loss

Since all the actions in the range of [|Gtw|, |G|] are equivalent, we consider to
tamp the magnitude of the outputted action such that Û tw ≤ |Gtw| + ε to en-
sure the diversity, where ε is a constant to achieve effective exploration (i.e.,
Fig.2(b)). Thus, the bound is dependent on the current state. A straightforward
way would be rounding the outputted action to the bound directly. However, as

Title Suppressed Due to Excessive Length 7

(a) conventional exploration scheme

(b) state dependent exploration scheme

Fig. 2. Different exploration schemes

shown in [1], directly clipping would incur a bias on the policy gradient. Another
approach to enforce the bound is reward engineering [21], which uses L2-norm
of the outputted action as a penalty and injects it directly into the reward func-
tion. However, since the rewards in M are objective quantities with real-world
interpretation (i.e., the number of orders fulfilled in each time step), it is in-
appropriate to impose a hand-crafted penalty term. Besides, directly injecting
the penalties to the rewards can cause high variances in critic learning since the
critics bootstrap both the actual rewards and the penalties. In fact, the penal-
ties do not have a temporal structure and should not be bootstrapped since the
out-of-bound actions in different time steps are independent from each other.

Instead, we tamp the magnitude of the outputted action by directly imposing
a loss term on the objective function of the actor and refer it as TD3 with action
regulation loss (TD3-ARL). Formally, the actor network πφ in our algorithm is
updated to maximize

J(φ) =
1

N

∑
s

Qθ1(s, a)− L(s, a)|a=πφ(s), (2)

where L(s, a) is the regulate loss defined by

L(s, a) = |Gw(s) + ε− U(a)|+ U(a)−Gw(s)− ε. (3)

Here, Gw : S → N is a function that returns the number of AGVs in the working
areas and U : A → N is a function that returns the first component of an action
(i.e., the upper bound of the number of AGVs in working areas). When U(a) is
higher than the state dependent bound Gw(s)+ε, a loss of 2(U(a)−Gw(s)−ε) is
incurred to regulate the magnitude of the action. Otherwise the loss term cancels
and the objective function is equivalent to the one in vanilla TD3. Combining
with uncorrelated Gaussian noises N (0, σ), the regulated action can achieve
effective state dependent exploration. Alg.1 presents the sketch of TD3-ARL.

8 Yanchen et al.

Algorithm 1: TD3 with Action Regulation Loss

Initialize critic networks Qθ1 , Qθ2 and actor network πφ with random
parameters θ1, θ2 and φ

Initialize target networks Qθ′1 , Qθ′2 , πφ′ with θ′1 ← θ1, θ
′
2 ← θ2, φ

′ ← φ
Initialize replay memory M
for episode=1,. . . , E do

Reset the environment and get the initial state s
for t=1,. . . ,T do

Select an action a = πφ(s) + ψ where ψ ∼ N (0, σ)
Execute a in the environment and observe the reward r = R(s, a), new
state s′ and done signal d

Store the experience (s, a, r, s′, d) to M
s← s′

for i=1,. . . ,K do
Sample a mini-batch of N experiences {(s, a, r, s′, d)} from M
ã′ ← πφ′(s′) + ψ where ψ ∼ clip(N (0, σ̃), α,−α)

y ← r + γ(1− d) mini∈{1,2}Qθ′i(s
′, ã′)

Update critics Qθi to minimize 1
N

∑
(y −Qθi(s, a))2, ∀i ∈ {1, 2}

if i mod delay=0 then
Update actor πφ to maximize Eq. (2)
θ′i ← τθi + (1− τ)θ′i
φ′ ← τφ+ (1− τ)φ′

6 Simulator Design

To facilitate training and evaluating algorithms, we build an event-driven simu-
lator to simulate order generation, battery changes and decision execution.
Data description. The data provided by Cainiao include the orders in the Wuxi
warehouse for 25 days. Each order contains the releasing time and the detailed
job allocation for each working area. For each job, we can infer its duration via
its start time and end time.
Timeline design. We divide a day into 510 discrete time steps. During a time
step, the following activities are executed sequentially.

– Order generation. Since orders in consecutive time steps are correlating in
the real-world scenario, it is inappropriate to bootstrap from the real-world
data for each time step individually. On the other hand, if we directly replay
the real-world orders in a day, the number of different order pace patterns
could be quite limited. As a result, the trained policy could overfit these
patterns. Therefore, we propose to compromise by bootstrapping from long
term patterns. Specifically, we divide a day into 24 slots (1h per slot) and
uniformly select an input for each slot from the real-world data in the same
time interval.

– Interacting with policy. The policy computes an action according to the cur-
rent state and submits it to the simulator. The simulator executes the numer-
ical action by casting it to the set of AGVs to be scheduled and repositioning

Title Suppressed Due to Excessive Length 9

these AGVs to their destinations (i.e., charging poles or working areas) with
random delays.

– Processing orders. The simulator processes orders by a first-in first-out (FIFO)
strategy. Specifically, it iterates over the order queue and attempts to allo-
cate AGVs for the remaining jobs of each order. The allocation for an order
terminates if (1) there is no available AGVs in the working areas or (2) the
prepositional jobs haven’t been fulfilled (e.g., the casting line job depends
on the consolidation job). An order is considered as fulfilled and is removed
from the order queue if its casting line job has been finished.

– Updating AGVs. For each AGV, the simulator updates its battery according
to the duration of each status it has experienced in the time step. If its
battery is lower than the dead threshold Tdead, then the AGV is marked as
dead and cannot be scheduled to fulfill any job.

After finishing these procedures, the simulator returns a feature vector that
represents the current state and a reward that is the number of orders fulfilled
in current time step.

7 Empirical Evaluation

In this section, we conduct extensive empirical evaluation to demonstrate the
effectiveness of our proposed method.

7.1 Experimental Configurations

We consider the problems with |G| = 640 AGVs, the charging capacity C = 120,
the emergency charging threshold 30% and the dead threshold Tdead = 15%. The
size of the training instances ranges from 3,500 orders to 4,500 orders per day.
For each episode, we randomly choose a training instance as order inputs. The
test instances we consider are categorized into low loads (∼3,500 orders per day),
median loads (∼3,900 orders per day) and high loads (∼4,300 orders per day).
For each of configuration, we generate 50 instances and report the means as the
results. The performance metrics we consider are listed as follows.

– Fulfilled ratio. The metric measures the proportion of the fulfilled orders at
the end of an episode, which directly reflects the productivity of a policy.

– Number of bottleneck time steps. We consider a time step as a bottleneck time
step when there is no available AGVs. Intuitively, if a policy fails to provide
more available AGVs when the working areas are busy, then bottleneck time
steps are more likely to happen, especially when considering the effect of
backlogs.

– Latency per order. We consider the latency of an order as the duration re-
quired to fulfill the order. If a policy fails to provide enough AGVs, then the
system has to wait for available AGVs and the latency of each order will
increase.

10 Yanchen et al.

– Average number of idle AGVs. The metric considers the number of idle AGVs
in each time step. Intuitively, a poor policy would provide less available AGVs
in each time step and thus the average number of idle AGVs is low.

The competitors we consider are three rule-based policies parameterized by
〈T tc , T tw〉 where T tc is the charging threshold for AGVs in working areas and T tw
is the working threshold for charging AGVs in time step t. The fixed thresholds
policy we consider has static thresholds T tc = 40% and T tw = 80%, which is
widely used in real-world scenarios. The dynamic charging threshold policy has
a fixed working threshold T tw = 80% and a dynamic charging threshold T tc which
is computed by an upper bound TUBc , a lower bound TLBc and the number of
charging AGVs in current time step. Formally,

T tc = TUBc − (TUBc − TLBc)
|Gtc|
|G|

In the experiments, we set TUBc = 75% and TLBc = 35%. Finally, the dynamic
working threshold policy has a fixed charging threshold T tc = 40% and a dynamic
working threshold T tw which is computed by an upper bound TUBw , a lower bound
TLBw and the number of working AGVs in current time step. Formally,

T tw = TUBw − (TUBw − TLBw)
|Gtworking|
|G|

where Gtworking ⊆ Gtw is the set of working AGVs. In our experiments, we set

TUBw = 80% and TLBw = 60%.

0 50 100 150 200
of Episodes

20

40

60

80

100

Fu
lfi

lle
d

Ra
tio

 (%
)

TD3-ARL
Vallina TD3
Fixed Thresholds Policy

(a) low Load

0 50 100 150 200
of Episodes

20

40

60

80

100

Fu
lfi

lle
d

Ra
tio

 (%
)

TD3-ARL
Vallina TD3
Fixed Thresholds Policy

(b) median Load

0 50 100 150 200
of Episodes

20

40

60

80

100

Fu
lfi

lle
d

Ra
tio

 (%
)

TD3-ARL
Vallina TD3
Fixed Thresholds Policy

(c) high load

Fig. 3. Learning curves of TD3-ARL and Vanilla TD3 under different loads

For the implementation of the TD3 algorithm, both the actor and the critics
are parameterized by a four layer fully-connection network where the hidden
layers include a 300 neuron and a 400 neuron layers. Relu activation functions
are applied to layers other than the last layer. For the output layer of the actor,
a sigmoid activation function is applied to bound the action space. To represent

Title Suppressed Due to Excessive Length 11

Low Load Medium Load High Load94

95

96

97

98

99

Fu
lfi

lle
d

Ra
tio

 (%
)

TD3-ARL
Vanilla TD3
Fixed Thresholds Policy
Dynamic Working Threshold Policy
Dynamic Charging Threshold Policy

(a) fulfilled ratio

Low Load Medium Load High Load100

120

140

160

180

200

220

240

of

 B
ot

tle
ne

ck
 T

im
e

St
ep

s

TD3-ARL
Vanilla TD3
Fixed Thresholds Policy
Dynamic Working Threshold Policy
Dynamic Charging Threshold Policy

(b) number of bottleneck time steps

Low Load Medium Load High Load
3250

3500

3750

4000

4250

4500

4750

5000

La
te

nc
y

pe
r O

rd
er

 (s
)

TD3-ARL
Vanilla TD3
Fixed Thresholds Policy
Dynamic Working Threshold Policy
Dynamic Charging Threshold Policy

(c) latency per order

Low Load Medium Load High Load160

180

200

220

240

260

Av
er

ag
e

of

 Id
le

 A
GV

s

TD3-ARL
Vanilla TD3
Fixed Thresholds Policy
Dynamic Working Threshold Policy
Dynamic Charging Threshold Policy

(d) average number of idle AGVs

Fig. 4. Performance comparisons under different loads

the action component Uw efficiently, we squash the range [|G| − C, |G|] to [0,1]
and the action can be directly recovered from the raw output of the actor via
a linear transformation. Finally, we set the size of replay memory to 106, the
standard deviation of exploration noise σ = 0.1, the standard deviation of target
smooth noise σ̃ = 0.05, the noise range α = 0.1 and the policy update frequency
to 2.

7.2 Experimental Results

Learning curves. To evaluate the stabilities of vanilla TD3 and our proposed
TD3-ARL, we test algorithms every 10 training episodes and present the fulfilled
ratios in Fig.3. It can be seen that our proposed TD3-ARL not only outperforms
the vanilla TD3 but also improves much stably. In fact, TD3-ARL outperforms
the fixed charging threshold policy before the 100-th episode and its performance
still improves slowly afterward. On the other hand, the performance of vanilla
TD3 oscillates in a broad range and it can only compete after 180 episodes. That
is because ARL can effectively regulate the magnitude of an output action to
guarantee the diversity of the experiences. In contrast, vanilla TD3 uses state
independent noise to enforce exploration, which performs poorly due to the ex-
istence of equivalent actions and significantly slows down the learning process.

12 Yanchen et al.

0 100 200 300 400 500
Time Step

0

100

200

300

400

500

600

of

 A
GV

s

Working AGVs (TD3-ARL)
Available AGVs (TD3-ARL)
Working AGVs (Dynamic Working Threshold Policy)
Available AGVs (Dynamic Working Threshold Policy)

(a) number of AGVs in working areas

0 100 200 300 400 500
Time Step

40

45

50

55

60

65

70

Av
er

ag
e

Ba
tte

ry
 (%

)

TD3-ARL
Dynamic Working Threshold Policy

(b) average battery

Fig. 5. Behaviors of policies when solving the instance with high load

Performance Comparison. We benchmark the performance of different policies
under different loads, and present results in Fig.4. It can be seen from the Fig.4(a)
that TD3-ARL can fulfill more orders than the rule-based policies, especially
when solving high load instances. That is due to the fact that low load instances
are relatively trivial that even a naive policy with emergency charging mechanism
can easily fulfill most of orders. As the scale of instances grows, the rule-based
policies no longer can compete as they cannot adaptively adjust their actions to
proactively improve productivity. Fig.4(b) demonstrates the superiority of TD3-
ARL over the rule-based policies in terms of the number of bottleneck time steps.
Compared to the rule-based policies, our TD3-ARL can adjust the number of
charging AGVs according to the current workload, and has less bottleneck time
steps. Fig.4(c) shows the superiorities of TD3-ARL over the rule-based policies
in terms of order latency. Although the dynamic working threshold policy con-
siders the number of working AGVs and results in a lower latency than the
ones of the other rule-based policies, it is still inferior to TD3-ARL, which high-
lights the effectiveness of proactive scheduling. Finally, Fig.4(d) demonstrates
our superiority in terms of idle AGVs. The results indicate that our TD3-ARL
can provide more available AGVs than the rule-based policies, especially when
solving the instances with high load.

Behavior analysis. To look deeper into the decisions made by policies, we analyze
the behaviors of TD3-ARL and dynamic working threshold policy on a high load
instance and present results in Fig.5. It can be seen that for the dynamic working
threshold policy, the number of available AGVs in each time step is fairly stable.
That is due to the fact that the policy is built upon energy conservation. As
a result, it fails to take current workload into consideration and provide more
available AGVs during the peak periods (i.e., after the 300-th time step). In fact,
it schedules many AGVs to charge when the working areas are busy and can
only provide about 520-540 available AGVs for working areas. In contrast, our
TD3-ARL policy exhibits more deliberate behaviors, i.e., scheduling more AGVs

Title Suppressed Due to Excessive Length 13

to charge at the beginning of an episode (and the average battery increases)
and scheduling more AGVs to work when the working areas are busy (and the
average battery decreases). Besides, it is worth noting that in TD3-ARL the
average battery at the end of the episode is close to the one at the beginning of
the episode, which indicates that TD3-ARL is able to take the full advantage of
the accumulated energy to improve productivity.

8 Conclusion

In this paper, we investigated battery management problem for large-scale au-
tomated warehouses which employ battery-powered AGVs to fulfill orders. To
cope with its dynamic nature, we formulate the problem as an MDP with con-
tinuous state and action spaces. Since there are many equivalent actions in the
MDP, traditional state independent exploration scheme performs poorly. There-
fore, we propose a novel algorithm TD3-ARL which regulates the magnitude of
the outputted action and enforces state dependent exploration via imposing a
regulation loss term on the objective function of the actor. Extensive evaluations
show the superiorities over the state-of-the-art, as well as the rule-based policies.

Acknowledgements. This work was supported by Alibaba Group through
Alibaba Innovative Research (AIR) Program and Alibaba-NTU Joint Research
Institute (JRI), Nanyang Technological University, Singapore.

References

1. Chou, P.W., Maturana, D., Scherer, S.: Improving stochastic policy gradients in
continuous control with deep reinforcement learning using the beta distribution.
In: ICML. pp. 834–843 (2017)

2. Coulom, R.: Efficient selectivity and backup operators in monte-carlo tree search.
In: International Conference on Computers and Games. pp. 72–83 (2006)

3. Ebben, M.: Logistic Control In Automated Transportation Networks. Ph.D. thesis,
University of Twente (2001)

4. Enright, J.J., Wurman, P.R.: Optimization and coordinated autonomy in mobile
fulfillment systems. In: Workshops at the Twenty-Fifth AAAI Conference on Ar-
tificial Intelligence (2011)

5. François-Lavet, V., Henderson, P., Islam, R., Bellemare, M.G., Pineau, J.: An
introduction to deep reinforcement learning. Foundations and Trends in Machine
Learning 11(3-4), 219–354 (2018)

6. Fujimoto, S., Hoof, H., Meger, D.: Addressing function approximation error in
actor-critic methods. In: ICML. pp. 1582–1591 (2018)

7. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. In: ICML. pp.
1856–1865 (2018)

8. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: ECML. pp.
282–293. Springer (2006)

14 Yanchen et al.

9. Le-Anh, T., De Koster, M.: A review of design and control of automated guided
vehicle systems. European Journal of Operational Research 171(1), 1–23 (2006)

10. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
Wierstra, D.: Continuous control with deep reinforcement learning. In: ICLR (2016)

11. McHANEY, R.: Modelling battery constraints in discrete event automated guided
vehicle simulations. International Journal of Production Research 33(11), 3023–
3040 (1995)

12. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver,
D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In:
ICML. pp. 1928–1937 (2016)

13. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. Nature 518(7540), 529 (2015)

14. OpenAI: Openai five. https://blog.openai.com/openai-five/ (2018)
15. Rummery, G.A., Niranjan, M.: On-Line Q-Learning using connectionist systems.

Tech. rep., Cambridge University (1994)
16. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Master-
ing the game of go with deep neural networks and tree search. Nature 529(7587),
484 (2016)

17. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.A.: Deter-
ministic policy gradient algorithms. In: ICML. pp. 387–395 (2014)

18. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., et al.: Mastering the game of go without
human knowledge. Nature 550(7676), 354 (2017)

19. Sutton, R.S.: Learning to predict by the methods of temporal differences. Machine
Learning 3, 9–44 (1988)

20. Watkins, C.J.C.H.: Learning from Delayed Rewards. Ph.D. thesis, King’s College,
Cambridge, UK (May 1989)

21. Zhao, M., Li, Z., An, B., Lu, H., Yang, Y., Chu, C.: Impression allocation for
combating fraud in e-commerce via deep reinforcement learning with action norm
penalty. In: IJCAI. pp. 3940–3946 (2018)

22. Zou, B., Xu, X., De Koster, R., et al.: Evaluating battery charging and swapping
strategies in a robotic mobile fulfillment system. European Journal of Operational
Research 267(2), 733–753 (2018)

