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Finite state machines are a well-known representation of strategies in (in)finitely repeated or stochastic games.

Actions of players correspond to states in the machine and the transition between machine-states are caused

by observations in the game. For extensive-form games (EFGs), machines can act as a formal grounding

for abstraction methods used for solving large EFGs and as a domain-independent approach for generating

sufficiently compact abstractions. We show that using machines of a restricted size in EFGs can both (i) reduce

the theoretical complexity of computing some solution concepts, including Strong Stackelberg Equilibrium

(SSE), (ii) as well as bring new practical algorithms that compute near-optimal equilibria considering only a

fraction of strategy space. Our contributions include (1) formal definition and theoretical characterization

of machine strategies in EFGs, (2) formal definitions and complexity analysis for solution concepts and

their computation when restricted to small classes of machines, (3) new algorithms for computing SSE in

general-sum games and Nash Equilibrium in zero-sum games that both directly use the concept of machines.

Experimental results on two different domains show that the algorithms compute near-optimal strategies and

achieve significantly better scalability compared to previous state-of-the-art algorithms.
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1 INTRODUCTION
Finite state machines are often used for playing (in)finitely repeated games or stochastic games

with infinite horizon [1, 8, 41, 52, 53, 55, 58, 59]. Machines correspond to strategies in the game;

each machine consists of an automaton – states of the automaton correspond to actions in the

game and the observations from the game change the states in the automaton (the transitions

correspond to observations). For example, well-known strategies in repeated Prisoners’ Dilemma,

such as Tit-for-tat, correspond to finite state machines.

While machines are the standard for (in)finitely repeated games, to the best of our knowledge,

they are not formally used for extensive-form games (EFGs) that model dynamic interaction

between players with a finite horizon. An optimal strategy based on histories in an EFG has a

finite representation and there are many algorithms for computing (or approximating) optimal

strategies [10, 36, 43, 46, 66, 73]. The size of such strategies, however, grows exponentially in the
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number of moves in the game and this exponential increase complicates using EFGs for real-world

problems with a long horizon. Finite state machines of a restricted size, on the other hand, can act

as a compact representation of strategies in EFGs and thus can be used even for very large EFGs.

The key methods for reducing the size of strategies in EFGs are the abstraction methods. These
methods suggest to solve a smaller abstracted game instead of the original game and then translate

the computed strategy back to the original large game. The information abstractions reduce the
size of strategies by removing information, thus merging together decision points of a player, the

action abstractions reduce the number of possible actions available in the game. There are several

generic algorithms for creating exact [26], bounded-error [16, 45, 48] and heuristic [7, 31, 40, 61]

abstractions. However, the existing abstraction methods provide no guarantees that abstract games

will have sufficiently small strategies (e.g., an exponential reduction), they require a specific game

structure (e.g., the exact, lossless abstractions are only applicable to the so-called games with ordered

signals [26]), and they either do not typically lead to an increase in scalability (e.g., determining

whether there exists an abstraction with a bounded error is an NP-complete problem in general

EFGs [45]) or merge information sets only at a same level of a game tree [14, 40]. Our approach,

in contrast, restricts the players to play strategies corresponding to machines of restricted size in

the original unabstracted game. Finally, introducing machine strategies for EFGs also provides a

formal grounding for the abstractions
1
.

Our main motivation is to find the best machine strategy – a strategy represented by a machine

from a small class (e.g., a polynomial-sized set of machines with a restricted number of states) that

has as high expected reward in the original unabstracted game as possible. Moreover, we want

this expected reward to be guaranteed even if the opponent is not using a small strategy. We thus

provide several key theoretical and algorithmic contributions: (1) We formally define machines for

strategies in EFGs. We introduce the concept of abstract actions and abstract observations in the

machine and use two distinguishing functions to map these abstract concepts to their counterparts

in the original EFG. We discuss theoretical properties such as existence of equivalence classes

between strategically equivalent machines and complexity measures of the machines. (2) We

provide definitions of solution concepts when restricted to small classes of strategies and show

that such restriction can have a positive impact on the computational complexity of the problem of

computing a solution concept (namely, this is true for Strong Stackelberg Equilibrium; SSE). This,

however, does not hold for all solution concepts (the complexity of computing a Nash Equilibrium

(NE) remains the same). (3) We present novel algorithms that directly exploit small classes of

machines and we demonstrate practical usefulness of machines for computing an NE in zero-sum

EFGs as well as a novel algorithm for computing SSE. We experimentally demonstrate significantly

better scalability while finding near-optimal strategies. For example, our machine algorithm for

computing SSE achieves 6.7% deviation from the optimum, while being 28.6-times (148.6-times)

faster than the incremental-generation-based heuristic (exact) algorithm, and uses only 2 × 10−7%
of all strategies in the game.

Related Work
Using Turing machines of restricted complexity that play extensive-form games has been proposed

in [30], where a single extensive-form game is represented as an infinite sequence of extensive-form

games of non-decreasing size. The approach of the authors is, however, different from ours and

cannot be directly used in our setting. While they show that every Nash (or sequential) equilibrium

in the original game corresponds to an equilibrium in “Turing strategies” in the sequence of games,

1
As the first step, we focus here on the simplest finite state machines and Moore automata. However, extensions to more

complex probabilistic or counting automata can be investigated in future work.
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we are interested in showing the opposite: that equilibrial machine strategies play well in the

original game.

In stochastic games, a commonly used concept is stationary equilibrium [3, 34], a Nash equilibrium

under the restriction that players must always choose the same action at a given state, independently

of history. This concept cannot be used in EFGs directly, because all strategies in EFGs with perfect

recall are stationary (unique history of actions of a player leads to an information set). Machines

provide a mechanism for identifying which actions are going to be considered as (partially) history

independent: they allow for strategies depending, e.g., on last 𝑛 observations.

An overview of abstraction methods in EFGs can be found in [61]. The principal difference

between machine strategies and abstraction methods is that while abstraction methods are applied

to the whole game tree at once to reduce its size, machines serve to solve the strategy-selection

problem. I.e., machines identify a subset of strategies in the original unabstracted game with

specified representation properties (e.g., strategies representable by machines of restricted size).

In some cases, heuristic abstraction methods have an equivalent formulation in machines, e.g.,

strategies in abstraction created by reducing betting rounds [7] correspond to acyclic machines

with limited diameter. While the most popular abstraction method–bucketing–merges information

sets only on the same level of a game, machines can associate information sets across the whole

game. This property was shown to be crucial to construct more efficient strategies [44]. Another

advantage of machines is that they are easily computable and enumerable. Moreover, and contrary

to heuristic abstractions, machine equilibria guarantee zero exploitability in the original game. We

discuss the differences between machines and lossy abstractions in more detail in Appendix B.

Machine strategies also follow themethodology suggested in [59], omitting actions in unreachable

situations and prescribing similar actions in similar situations. They provide a model of “real-world

social phenomena” [59] motivated by humans’ preference in simple and well-structured strategies

over more complex ones [4, 19, 21, 47, 51, 57, 67]. In fact, machines are not only used as models

of individual social phenomena [22, 33, 60, 62], they are also suitable as a model of more general

human cognition [20].

2 EXTENSIVE-FORM GAMES
Extensive-form games model sequential interactions between players and can be visually repre-

sented as game trees. Formally, a multi-player EFG is defined as a tuple 𝐺 = (N ,H ,Z,A, 𝑢, C,I):
N is a set of 𝑛 players. We use 𝑖 to refer to one of the players, and −𝑖 to refer to his opponents.H
denotes a finite set of nodes in the game tree. Each node corresponds to a unique history of actions

taken by all players and chance from the root of the game; hence, we use the terms history and

node interchangeably. We say that ℎ is a prefix of ℎ′ (ℎ ⊑ ℎ′) if ℎ lies on a path from the root of the

game tree to ℎ′. A denotes the set of all actions, with A𝑖 denoting the actions of player 𝑖 .Z ⊆ H
is the set of all terminal nodes of the game. For each 𝑧 ∈ Z we define for each player 𝑖 a utility
function 𝑢𝑖 : Z → R. The chance player selects actions based on a fixed probability distribution

known to all players. Function C : H → [0, 1] denotes the probability of reaching node ℎ due to

chance; C(ℎ) is the product of the chance probabilities of all actions in history ℎ.

Imperfect observation of player 𝑖 is modeled via information sets I𝑖 that form a partition over

ℎ ∈ H where 𝑖 chooses an action. Player 𝑖 cannot distinguish between nodes in any information

set 𝐼 ∈ I𝑖 . We overload the notation and use 𝐴(𝐼𝑖 ) to denote possible actions available in each node

from an information set 𝐼𝑖 . We assume that action 𝑎 uniquely identifies the information set where

it is available. We assume perfect recall, which means that players remember the history of their

own actions and all information gained during the course of the game. As a consequence, all nodes

in any information set 𝐼𝑖 have the same history of actions for player 𝑖 .
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Pure strategies Π𝑖 assign one action for each 𝐼 ∈ I𝑖 , denoted as 𝜋 (𝐼 ). A more efficient representa-

tion in the form of reduced pure strategies Π∗𝑖 assigns one action for each 𝐼 ∈ I𝑖 reachable while
playing according to this strategy. Amixed strategy 𝛾𝑖 ∈ Δ𝑖 is a probability distribution over Π𝑖 . For

any tuple of strategies 𝛾 ∈ Δ = (Δ1, . . . Δ𝑛) we use 𝑢𝑖 (𝛾) = 𝑢𝑖 (𝛾𝑖 , 𝛾−𝑖 ) for the expected outcome of

the game for player 𝑖 when players follow strategies 𝛾 . A best response of player 𝑖 to the opponents’

strategies 𝛾−𝑖 is a strategy 𝛾𝐵𝑅𝑖 ∈ 𝐵𝑅𝑖 (𝛾−𝑖 ), where 𝑢𝑖 (𝛾𝐵𝑅𝑖 , 𝛾−𝑖 ) ≥ 𝑢𝑖 (𝛾 ′𝑖 , 𝛾−𝑖 ) for all 𝛾 ′𝑖 ∈ Δ𝑖 .

Strategies in EFGs with perfect recall can be compactly represented by using the sequence

form [43]. A sequence 𝜎𝑖 ∈ Σ𝑖 is an ordered list of actions taken by a single player 𝑖 in history

ℎ. ∅ stands for the empty sequence (i.e., a sequence with no actions). A sequence 𝜎𝑖 ∈ Σ𝑖 can be

extended by a single valid action 𝑎 taken by player 𝑖 , written as 𝜎𝑖𝑎 = 𝜎 ′𝑖 . We say that 𝜎𝑖 is a prefix
of 𝜎 ′𝑖 (𝜎𝑖 ⊑ 𝜎 ′𝑖 ) if 𝜎

′
𝑖 is obtained by a finite number (possibly zero) of extensions of 𝜎𝑖 . We use 𝑠𝑒𝑞𝑖 (𝐼𝑖 )

and 𝑠𝑒𝑞𝑖 (ℎ) to denote the sequence of 𝑖 leading to 𝐼𝑖 and ℎ, respectively. We say that 𝐼1 immediately
precedes 𝐼2, 𝐼1, 𝐼2 ∈ I𝑖 , in case there exists action 𝑎 ∈ 𝐴(𝐼1), such that 𝑠𝑒𝑞𝑖 (𝐼2) = 𝑠𝑒𝑞𝑖 (𝐼1)𝑎. We use

the function 𝑖𝑛𝑓𝑖 (𝜎 ′𝑖 ) to denote the information set in which the last action of the sequence 𝜎 ′𝑖 is
taken. For an empty sequence, function 𝑖𝑛𝑓𝑖 (∅) returns the information set of the root node. Using

sequences, any mixed strategy of a player can be represented as a realization plan (𝑟𝑖 : Σ𝑖 → R). A
realization plan for a sequence 𝜎𝑖 is the probability that player 𝑖 will play 𝜎𝑖 under the assumption

that the opponents play to allow the actions specified in 𝜎𝑖 to be played. By 𝑔𝑖 : Σ1 × · · · × Σ𝑛 → R
we denote the extended utility function, 𝑔𝑖 (𝜎1, . . . , 𝜎𝑛) =

∑
𝑧∈Z |𝑠𝑒𝑞1 (𝑧)=𝜎1∧···∧𝑠𝑒𝑞𝑛 (𝑧)=𝜎𝑛 𝑢𝑖 (𝑧)𝐶 (𝑧). If

no leaf is reachable with a tuple of sequences 𝜎 , the value of 𝑔𝑖 (𝜎) is 0.

3 MACHINES AS STRATEGIES
In this section, we define machines which compactly represent strategies in EFGs. We show how to

construct a machine for every pure strategy of a player and how to define complexity of a machine.

As examples of definitions of machine complexity, consider a number of states of a machine, or a

number of transitions. For a specific state-counting measure we present an algorithm for reducing

machine complexity and show that all irreducible behaviorally equivalent machines are isomorphic.

Finally, we state that the problem of finding Nash equilibrium (and some of its refinements) in

machines is FIXP-hard.

3.1 Extensive-form machines
In repeated games, the same one-shot game is repeated for a finite or infinite number of rounds. A

convenient representation of strategies in these games is by Moore automata. A Moore automaton

consists of a finite number of states, which include one initial state, a transition function and a

behavioral function. In case the automaton is in state 𝑞𝑡 in round 𝑡 , a player’s strategy is given

by applying the behavioral function to 𝑞𝑡 . The next state is then determined by the transition

function as a function of 𝑞𝑡 and the opponents’ actions in 𝑡 . There are fundamental differences

when machines are to be used for EFGs instead of repeated games. In repeated games, in every

round, any action from the player’s set of actions can be taken. In EFGs, however, not every action

is applicable in every information set. To this end, we introduce the concept of abstract actions as
actions with similar meaning that can be played in multiple information sets in an EFG.

Definition 3.1 (Abstract actions). Given an extensive-form game 𝐺 = (N ,H , Z,A, 𝑢, C,I), let
𝑃𝐴𝑖

be a partition of A𝑖 into mutually disjoint subsets, such that no two actions belonging to the

same set of 𝑃𝐴𝑖
can be performed in the same information set. Then the sets of partition 𝑃𝐴𝑖

form

the set of abstract actions for player 𝑖 , associated with 𝑃𝐴𝑖
.

For example, a player 1 in the game tree in Figure 1 can try to play “left action” in all of his

singleton information sets, creating an abstract action {𝑎1, 𝑎9, 𝑎11}. The same principle can be also
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𝑎14

𝑎7

1

(0, 9)

𝑎13

(1, 5)

𝑎14

𝑎8

0.5 𝑎4

𝑎1

(−1, 1)

𝑎2

q0

{𝑎1, 𝑎9, 𝑎11}
start

q1

𝑎14

𝑜2 = {𝑎1𝑎4𝑎7, 𝑎1𝑎4𝑎8}

𝑜1 = {𝑎1𝑎3𝑎5, 𝑎1𝑎3𝑎6}

𝜙 : 𝑄 × Σ𝑖 → Θ

𝜓 : 𝑄 × I𝑖 → A𝑖

Extensive-form machine

Functions Automaton

Fig. 1. (Left) An EFG with two players. Each internal node is labeled by a player who acts in this node, while
under every terminal node is a tuple of utilities obtained by the first player and the second player, respectively.
Every edge is labeled by an action performed on a way from the node above to the node below. The direction
of the edges is omitted, but the tree is assumed to be traversed from top to bottom. The nodes which belong
to the same information set are connected by a dashed line. (Right) An extensive-form machine of player 1
prescribing a pure strategy {𝑎1, 𝑎9, 𝑎11, 𝑎14} in the game tree on the left.

applied to observations. In extensive-form games, the observations correspond to sequences of

actions of both players in the game tree.

Definition 3.2 (Extensive-form observations). Given an extensive-form game𝐺 , an extensive-form

observation of player 𝑖 is a set of sequences of actions interconnecting either two information

sets 𝐼1, 𝐼2 ∈ I𝑖 such that 𝐼1 immediately precedes 𝐼2; or a root and an information set 𝐼3 ∈ I𝑖 , such
that 𝑠𝑒𝑞𝑖 (𝐼3) = ∅. The set of all possible extensive-form observations is denoted Σ𝑖 , while the

extensive-form observation leading to an information set 𝐼 is denoted 𝑠𝑒𝑞Σ𝑖 (𝐼 ).

In the game tree depicted in Figure 1, there are three extensive-form observations for player

1: 𝜎1
1

= {𝑎1𝑎3𝑎5}, 𝜎12 = {𝑎1𝑎3𝑎6} and 𝜎1
3

= {𝑎1𝑎4𝑎7, 𝑎1𝑎4𝑎8}. Player 2 then has two possible

extensive-form observations: {𝑎1𝑎3} and {𝑎1𝑎4}. Using extensive-form observations, the player is

able to recognize abstract observations.

Definition 3.3 (Abstract observations). Given an extensive-form game𝐺 , let 𝑃𝑂𝑖
be a partition of Σ𝑖

into mutually disjoint subsets. Then the parts of partition 𝑃𝑂𝑖
form the set of abstract observations

for player 𝑖 , associated with 𝑃𝑂𝑖
.

For example, a poker player might not want to react specifically to every amount of bet of other

players. By grouping bets together (e.g., into intervals), he can create a smaller number of “abstract

bets”. Similarly in Figure 1, player 1 can group together his extensive-form observations in order to

create abstract observations, e.g., from {𝑎1𝑎3𝑎5} and {𝑎1𝑎3𝑎6} he can create an abstract observation

{𝑎1𝑎3𝑎5, 𝑎1𝑎3𝑎6}.
In order to use abstract actions and observations in a machine, two distinguishing functions have

to be defined: (i) a function 𝜙 that maps the observations in the EFG to their abstract counterparts

and (ii) a function𝜓 that maps the abstract actions prescribed by the machine to their counterparts

in the EFG.

Definition 3.4 (Extensive-form machine). Let 𝐺 = (N ,H , Z,A, 𝑢, C,I) be an extensive-form

game. A tuple𝑀𝑖 = (𝑄,𝑞0,Λ, 𝛽,Θ, 𝛿, 𝜙,𝜓 ) is an extensive-form machine of player 𝑖 , where 𝑄 is a

set of states with 𝑞0 as an initial state. Λ is a set of abstract actions prescribed by the machine,

𝛽 : 𝑄 → {Λ ∪ ∅} is a behavior function prescribing an abstract action in a given state, Θ is a set

of abstract observations available for the machine, and 𝛿 : 𝑄 × Θ → 𝑄 is a transition function
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determining the next state as a function of a state and an abstract observation. 𝜙 : 𝑄 × Σ𝑖 → Θ
then specifies an abstract observation as a function of a state and an extensive-form observation;

and𝜓 : 𝑄 ×I𝑖 → A𝑖 identifies which action to play in the game tree as a function of a state and an

information set.

Table 1. (Left) A function 𝜙 from the machine depicted in Figure 1. It takes a state of the machine and one
of the extensive-form observations 𝜎11 = {𝑎1𝑎3𝑎5}, 𝜎12 = {𝑎1𝑎3𝑎6} or 𝜎13 = {𝑎1𝑎4𝑎7, 𝑎1𝑎4𝑎8} and selects a
transition in the machine. (Right) A function𝜓 from the same machine. Based on a state of the machine and
an information set in the tree it selects which action to play.

𝝓 Σ1

𝜎1
1 𝜎1

2 𝜎1
3

𝑄
𝑞0 𝑜1 𝑜1 𝑜2

𝑞1 - - -

𝝍 I1
𝐼1 𝐼2 𝐼3 𝐼4

𝑄
𝑞0 𝑎1 𝑎9 𝑎11 -

𝑞1 - - - 𝑎14

Given a series of observations 𝑜1𝑜2 . . . 𝑜𝑚 ;𝑜𝑖 ∈ Θ, the state 𝛿 (𝛿 (. . . 𝛿 (𝑞0, 𝑜1), 𝑜𝑚−1), 𝑜𝑚) reached
from the initial state is denoted 𝛿 (𝑞0, 𝑜1𝑜2 . . . 𝑜𝑚). Functions𝜙 and𝜓 from themachine in Figure 1 are

shown in Table 1. Note that the machine in this example prescribes playing one action from the game

tree (𝑎14), one strictly abstract action ({𝑎1, 𝑎9, 𝑎11}), and changes its state based on one extensive-

form observation ({𝑎1𝑎4𝑎7, 𝑎1𝑎4𝑎8}) and one strictly abstract observation ({𝑎1𝑎3𝑎5, 𝑎1𝑎3𝑎6}).
However, using valid abstract actions and abstract observations does not guarantee that an

extensive-formmachine (further called simply machine) plays a valid strategy in an EFG. A machine

can reach states that prescribe actions which cannot be played in the current information set in the

EFG. If there are no such states, we call the machine G-consistent. Reducing the size of the domains

of functions 𝜙,𝜓 and verifying whether a given machine is G-consistent is a polynomial-time

problem, because it can be done by one pass through the game tree. G-consistent machines of

player 𝑖 with no unreachable states and transitions, and reduced domains of functions 𝜙,𝜓 are said

to be strongly G-consistent, denoted asM𝑖 .

Everymachine fromM𝑖 corresponds to exactly one reduced pure strategy 𝜋 . In case twomachines

prescribe the same strategy, we call them behaviorally equivalent. The following observation shows

that for every pure strategy 𝜋 , it is possible to construct a canonical 𝐺-consistent machine 𝑀𝜋 ,

prescribing the strategy 𝜋 .

Observation 1 (Canonical machine). Let 𝐺 = (N ,H , Z,A, 𝑢, C,I) be an extensive-form
game with a root node ℎ0, and a pure strategy 𝜋 ∈ Π𝑖 of player 𝑖 . The canonical machine 𝑀𝜋 =

(𝑄,𝑞0,Λ, 𝛽,Θ, 𝛿, 𝜙,𝜓 ) of player 𝑖 associated with 𝜋 is constructed as follows. Let

(1) 𝑄 ← I𝑖∪{ℎ0}; 𝑞0 ← ℎ0; Λ← A𝑖 ; Θ← Σ𝑖 ;
(2) 𝛽 (𝐼 ) ← 𝜋 (𝐼 ), where I∈ 𝑄 and 𝜋 (𝐼 ) is an action which 𝜋 prescribes in I. If 𝜋 (𝐼 ) is not defined,

𝛽 (𝐼 ) ← ∅;
(3) 𝛿 (𝐼1, 𝑠𝑒𝑞Σ𝑖 (𝐼2)) = 𝐼2, where I1 ∈ 𝑄 , I2 ∈ I𝑖 and I1 immediately precedes I2; and
(4) 𝜙𝜋 (_, 𝜎) = 𝜎 ;𝜓𝜋 (𝑞, _) = 𝛽 (𝑞),

where ‘_’ is an arbitrary state or information set.

In case a root ℎ0 of a game tree belongs to an information set of the same player as machine𝑀𝜋 ,

𝑄 is equal to just I𝑖 (since 𝑞0 ∈ I𝑖 ). Otherwise, the initial state of the machine does not correspond

to any information set of the player and the player just waits for the first observation.
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3.2 Measure of strategic complexity
Given an extensive-form game, behavioral equivalence over machines creates equivalence classes

on the set of all machines fromM, such that every class prescribes the same pure strategy. A player

can choose from all the machines within an equivalence class the one that optimizes his measure of
strategic complexity, in order to decrease the strategy-implementation costs (and as shown later,

also computational complexity) associated with using machines.

Formally, a measure of strategic complexity of player 𝑖 is a function 𝜇𝑖 :M𝑖 → R+, assigning a
non-negative value to each machine. The most well-studied complexity measure in the literature on

automata playing repeated games is the measure 𝜇𝑄 [2, 5, 58], which measures the complexity of

an automaton as its number of states
2
. This measure is commonly used in practice, when a player

(e.g., a defense agency) is interested in minimizing a “maintenance cost” [58] of their implemented

strategy. The maintenance cost consists of both the necessary memory (i.e., the number of machine

states to remember) and indirectly also a number of deployed sensors (i.e., the number of transitions

from which the transition function chooses). We introduce a way to minimize this cost.

A machine 𝑀1 is said to be reducible with respect to 𝜇𝑄 in case there exists a behaviorally

equivalent machine𝑀2, such that the number of states of𝑀2 is strictly smaller than the number of

states of𝑀1. We can find the unnecessary states of𝑀1 using a method similar to the minimization

of the size of finite-state automata. [54]. This algorithm merges states of a finite-state automaton

for which it holds that any future accepting input would also guarantee to end in an accepting

state. Similarly, with machines, we have to ensure that future observations will lead to prescribing

the same actions. For this purpose we use the distinguishing extensions.

Definition 3.5 (Distinguishing extension). Given a machine𝑀 = (𝑄,𝑞0,Λ, 𝛽, Θ, 𝛿, 𝜙,𝜓 ), and two

sequences of abstract observations 𝑜1 and 𝑜2, a distinguishing extension is an abstract observation

𝑜 ′ such that 𝛽 (𝛿 (𝑞0, 𝑜1𝑜 ′)) = 𝑢 and 𝛽 (𝛿 (𝑞0, 𝑜2𝑜 ′)) = 𝑣 with 𝑢 ≠ 𝑣 ∈ Λ.

The distinguishing extension is an observation such that the behavior of the machine differs

for 𝑜 ′ depending on whether it received 𝑜1 or 𝑜2. We define the corresponding relation 𝑅𝑀 as

an equivalence relation, such that 𝑜∗
1
𝑅𝑀𝑜

∗
1
if and only if there is no distinguishing extension

for 𝑜∗
1
, 𝑜∗

2
∈ Θ∗, where Θ∗ is a set of all finite sequences of observations from Θ. 𝑅𝑀 divides all

finite sequences of elements from Θ∗ into equivalence classes. In case of a machine, these classes

correspond to the states of the irreducible machine.

Proposition 3.6. For every machine 𝑀 = (𝑄,𝑞0,Λ, 𝛽,Θ, 𝛿, 𝜙,𝜓 ), there exists a behaviorally
equivalent machine𝑀 ′ = (𝑄 ′, 𝑞′

0
,Λ′, 𝛽 ′, Θ′, 𝛿 ′, 𝜙 ′,𝜓 ′) with 𝜙, 𝜙 ′ and𝜓,𝜓 ′ isomorphic on |𝑄 ′ | states,

such that𝑀 ′ is a 𝜇𝑄 -irreducible machine with respect to fixed 𝜙 ′,𝜓 ′.

Proof. Let 𝐹 be a set of all possible functions 𝑓 : 𝑄 × Σ𝑖 → Θ. First, the initial partition P of 𝑄

into classes of states 𝑆
𝑜,𝑓

is defined ∀𝑎 ∈ Λ and ∀𝑓 ∈ 𝐹 as follows:

𝑆
𝑎,𝑓

= {𝑞 ∈ 𝑄 | 𝐵(𝑞) = 𝑎, 𝜙 (𝑞, 𝜎) = 𝑓 (𝑞, 𝜎)∀𝜎 ∈ Σ𝑖 },
i.e., it is a maximum set of states prescribing the same abstract action and with the same outputs of

function 𝜙 . Second, the classes in P are iteratively split into subclasses according to Algorithm 1,

which finds a distinguishing extension for at least two states in the same class. When there is no

class left that needs to be split, the set of one representative state 𝑟 from each remaining class of

states 𝐵 (denoted as 𝑟 (𝐵)) will form the states of the 𝜇𝑄 -irreducible machine𝑀 ′. By the construction,

2
In EFGs, this measure also provides an explanation for the size of traditional (pure) strategies, which specify an action in

every information set. For every pure strategy 𝜋 of player 𝑖 , a number of information sets is exactly equal to 𝜇𝑄 (𝑀𝜋 ) (+ an

initialization state ℎ0, in case 𝑖 does not act in ℎ0).
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ALGORITHM 1: Minimizing a number of states of a machine

repeat
for 𝑆 ∈ P do

for 𝑜 ∈ 𝑂 do
if ∀𝑈 ∈ P ∃𝑞 ∈ 𝑆 𝛿 (𝑞, 𝑜) ∉ 𝑈 then
T ← ∅
for 𝑆 ′ ∈ P do

𝑇𝑆′ ← {𝑞 ∈ 𝑆 | 𝛿 (𝑞, 𝑜) ∈ 𝑆 ′}
if 𝑇𝑆′ ≠ ∅ then T ← T ∪𝑇𝑆′

P ← P\𝑆 ∪ T
until no changes

all states in the same class prescribe the same action. Similarly, for any observation 𝑜 ∈ Θ, all states
in the class 𝐵 transit by 𝑜 to some state in some class 𝐵′ (otherwise the class would have been split),

which defines the transition function 𝛿 ′(𝑟 (𝐵), 𝑜) = 𝑟 (𝐵′) for𝑀 ′.
The initial partition can be generated in time |𝑄 | ( |Θ| + 1), because for each state all possible

outputs of𝜙 are considered. The main loop is executed at most |𝑄 | times, because in each iteration at

least one class of states must be split, and each class contains at least one state. Each iteration of the

loop examines each state 𝑆 ∈ P |𝑂 |-times. The complexity of the algorithm is hence𝑂 ( |Θ| |𝑄 |2). □

Moreover, for the state measure it holds that there cannot be two non-isomorphic irreducible

behaviorally equivalent machines with isomorphic functions 𝜙 and𝜓 . The reasoning is similar to

the case of finite automata [37].

Proposition 3.7. Every strongly G-consistent 𝜇𝑄 - irreducible machine is unique.

Proof. Assume there are two strongly G-consistent irreducible machines𝑀1 and𝑀2 and with

functions 𝜙,𝜓 isomorphic on min( |𝑄1 |, |𝑄2 |) states, which are behaviorally equivalent, but |𝑄1 | <
|𝑄2 |. Run the algorithm 1 on the states of𝑀1 and𝑀2 together, as if they were one machine. The

initial states of 𝑀1 and 𝑀2 have to be indistinguishable, because the machines are behaviorally

equivalent. If states 𝑞1 ∈ 𝑄1 and 𝑞2 ∈ 𝑄2 are indistinguishable, so are all their successors, otherwise

it is possible to distinguish 𝑞1 and 𝑞2. Both machines are irreducible and therefore every state of

𝑀1 is indistinguishable from at least one state of𝑀2 and vice versa. But𝑀1 is smaller than𝑀2, so

there have to be two states of𝑀2 in the same equivalence class, which contradicts the assumption

of irreducibility. □

Nash Equilibria in Machines. In EFG 𝐺 played with machines, every player 𝑖 chooses his measure

of complexity 𝜇𝑖 . Each measure 𝜇𝑖 gives rise to a finite set M𝑖 of all strongly G-consistent 𝜇𝑖-

irreducible machines. A mixed machine strategy 𝜂𝑖 is then a probability distribution overM𝑖 . A

Nash equilibrium (NE) in machine strategies is a situation in which no player profits from changing

his machine strategy. Formally, a machine profile 𝜂𝑁𝐸 = (𝜂1, ..., 𝜂𝑛) is an NE if and only if for each

player 𝑖 ∈ 𝑁 it holds that 𝜂𝑖 is a best response to 𝜂−𝑖 . However, computing NE in machines does

not decrease the computational complexity of finding an NE.

Proposition 3.8. Let𝐺 be an EFG with at least 3 players, 𝜇 = (𝜇1, . . . , 𝜇𝑛) be a tuple of one measure
of complexity for each player, and 𝑐 ∈ R+,𝑛 be a vector of positive constants. The following problems
are FIXP-hard:
(1) finding a machine profile 𝜂𝑁𝐸 , such that for each player 𝑖 it holds that if 𝜂𝑁𝐸

𝑖 (𝑀) > 0 then there
is no behaviorally equivalent machine𝑀 ′ such that 𝜂𝑁𝐸

𝑖 (𝑀 ′) > 0, 𝜇𝑖 (𝑀 ′) < 𝜇𝑖 (𝑀); and
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(2) finding a machine profile 𝜂𝑁𝐸 in restriction 𝑅 = (𝑅1, . . . , 𝑅𝑛) ⊆ M = (M1, . . . ,M𝑛) to
machines of complexity 𝜇𝑖 (𝑀) < 𝑐𝑖 ,∀𝑀 ∈ 𝑅𝑖 , |𝑅𝑖 | > 1, satisfying (1) in R.

Proof. We prove the first part of the proposition by constructing a reduction from the problem

of finding NE in EFGs, which is known to be FIXP-hard, because computing it in normal form

is FIXP-complete [24]. For each player 𝑖 we set 𝜇𝑖 = 𝜇𝑄 if 𝑂 = Σ𝑖 and 𝐴 = A𝑖 ; ∞ otherwise. By

Proposition 3.7, every class B of behaviorally equivalent machines has a unique minimum. There

is hence a bijection between pure strategies and minima of every class B and the solution of the

reduced problem directly translates to the solution in the EFG. For the restricted case, we use the

result from [24] again, that computing NE if every player has at least 2 actions is still FIXP-complete.

We create𝐺 ′ withA ′ ⊆ A from𝐺 by allowing only two arbitrary actions in every information set.

We set 𝜇𝑖 = 𝜇𝑄 if 𝑂 = Σ𝑖 and 𝐴 = A ′𝑖 ;∞ otherwise, 𝑐𝑖 = |I𝑖 | + 1. Only pure strategies from 𝐺 ′ are
hence in 𝑅 and because of the setting of 𝑐𝑖 , each of them can be represented by a canonical machine.

Again, the solution translates directly. The existence of solutions for both problems follows from

the finiteness of EFGs (and hence also the finiteness ofM) and the existence of NE in every finite

game. □

By the same reasoning, also refinements of NE in machines, e.g., sequential equilibrium, perfect

equilibrium or quasi-perfect equilibrium in machines, are still FIXP-hard, because computing these

equilibria without restrictions is FIXP-complete [23].

4 EFFICIENT COMPUTATION OF SOLUTION CONCEPTS IN MACHINES
In this section, we use the compact representation of strategies we introduced in the previous

section to efficiently compute the approximations of two solution concepts. But because even the

setM of irreducible machines can be still very large, we first introduce small classes of strategies

in size-parametric classes of games and use them for designing efficient algorithms instead.

Definition 4.1 (Size-parametric class of games). A sequence of extensive-form games𝐺1,𝐺2, . . .

is a size-parametric class of games L if and only if for all 𝑘 ∈ N and for two consecutive games

G
𝑘
= (N

𝑘
, H

𝑘
, Z

𝑘
, A

𝑘
, u

𝑘
, C

𝑘
, I

𝑘
) and G

𝑘+1
= (N

𝑘+1
, H

𝑘+1
, Z

𝑘+1
, A

𝑘+1
, u

𝑘+1
, C

𝑘+1
, I

𝑘+1
) it holds that

N𝑘 = N𝑘+1
,H𝑘 ⊆ H𝑘+1

, A𝑘 = A𝑘+1
, C𝑘 = C𝑘+1 ↾ H𝑘

and I𝑘 ⊆ I𝑘+1.
We refer to the 𝑛𝑡ℎ game 𝐺𝑛

in the size-parametric class L as L(𝑛).
Definition 4.2 (Small class of strategies). Let L be a size-parametric class of games. A class

Π𝑆
𝑖 (𝑛) ⊆ Π𝑖 (𝑛) of all strategies of player 𝑖 satisfying a given property P in game L(𝑛) is said to be

small if and only if the number of strategies in Π𝑆
𝑖 (𝑛) is polynomial in the number of information

sets of L(𝑛).
The advantage of machines is that their structural properties (i.e., associated with automata)

easily give rise to small classes of machine strategies, denoted asM𝑆
𝑖 for player 𝑖 . In the following

example we show one of such properties.

Observation 2. Let L be a size-parametric class of games with a guaranteed maximum number
of actions before every player acts again. We say a machine has property ˜P if and only if a graph of its
transition function is planar and a number of its states is logarithmic in a number of information sets
of L(𝑛). The class of all machines satisfying ˜P is small.

Proof. The number of possible abstract actions 𝐵𝐴 in a given size-parametric class is at most

the number of nonempty subsets of 𝐴. By the definition of size-parametric classes, the number of

actions is independent on the size of the tree. Therefore, we can bound 𝐵𝐴 from above as

𝐵𝐴 ≤ 2
|𝐴 | − 1 = 𝑐1.
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Let 𝑐 be a guaranteed maximum number of actions before every player acts again. The number of

possible abstract observations 𝐵𝑂 is equal to the number of nonempty subsets of the set of possible

extensive-form observations. Because the number of extensive-form observations is at most the

number of sequences in an |𝐴|-ary tree with constant depth 𝑐 (i.e., |𝐴|𝑐 ), we bound 𝐵𝑂 as

𝐵𝑂 ≤ 2
|𝐴 |𝑐 − 1 = 𝑐2.

In a machine with 𝑘 states, there are 𝑘 possibilities for choosing the initial state. Each state then

prescribes one abstract action or a “noop” action. Because the transition function is planar, the

number of transitions is at most 3𝑘 − 6. Each transition corresponds to one of the 𝐵𝑂 abstract

observations (or no observation). We assume there are no multiple transitions, since we can unify

the extensive-form observations using abstractions. Because the number of planar graphs with 𝑘

vertices is at most 30.06𝑘 [9], the number of machines of size smaller than log( |𝐼 |) is at most∑
log( |𝐼 |)
𝑘=1

(
2𝐵𝑂 + (𝐵𝑂 )2

)
3𝑘−6

30.06𝑘 (𝐵𝐴 + 1)𝑘 ≤ |𝐼 |
log

(
30.06(2𝑐2+𝑐2

2
)3 (𝑐1+1)

)
+1
.

□

Because small classes of machine strategies exist, we can use them to lower the computational

complexity or reduce computational time of several equilibria.

4.1 Stackelberg Solution Concept in Two-Player EFGs
In Stackelberg equilibrium in two-player games the roles of the players are asymmetric. One player

(the leader) has the power to commit to a strategy and the other player (the follower) plays a best

response. The solution concept has many real-world applications [65], for example, the leader can

correspond to a defense agency committing to a security protocol to protect critical facilities. The

common assumption in the literature is that the follower breaks ties in favor of the leader. In this

case, the concept is called a Strong Stackelberg Equilibrium (SSE).

Definition 4.3. A strategy profile 𝛾𝑆𝑆𝐸 = (𝛾𝑙 , 𝜋𝑓 ) is a Strong Stackelberg Equilibrium if 𝛾𝑙 is an

optimal strategy of the leader given that the follower best-responds. Formally:

(𝛾𝑙 , 𝜋𝑓 ) = argmax

𝛾 ′
𝑙
∈Δ𝑙 ,𝜋

′
𝑓
∈𝐵𝑅𝑓 (𝛾 ′𝑙 )

𝑢𝑙 (𝛾 ′𝑙 , 𝜋
′
𝑓
).

The problem of computing SSE in any EFG 𝐺 is known to be NP-hard [50]. There are multi-

ple algorithms computing SSE in the literature, including both exact [12, 15] and heuristic ap-

proaches [18, 42]. Contrary to the exact methods, we can compute SSE in restriction 𝑅𝐺 , allowing

only strategies from a small class of the follower’s strategies in 𝐺 , in polynomial time by solving

the following LP for every machine𝑀𝐵𝑅 ∈ M𝑆
𝑓
:

max

𝑟1

∑
𝑧∈𝑍 (𝑀𝐵𝑅 )

𝑟𝑙 (𝑠𝑒𝑞𝑙 (𝑧))𝑢𝑙 (𝑧) (1)∑
𝑧∈𝑍 (𝑀𝐵𝑅 )

𝑟𝑙 (𝑠𝑒𝑞𝑙 (𝑧))𝑢𝑓 (𝑧)) ≥
∑

𝑧∈𝑍 (𝑀𝑓 )
𝑟𝑙 (𝑠𝑒𝑞𝑙 (𝑧))𝑢𝑓 (𝑧) ∀𝑀𝑓 ∈ M𝑆

𝑓
(2)

𝑟𝑙 (∅) = 1 (3)

𝑟𝑙 (𝜎𝑙 ) ≥ 0 ∀𝜎𝑙 ∈ Σ𝑙 (4)

𝑟𝑙 (𝑠𝑒𝑞𝑙 (𝐼𝑙 )) =
∑

𝑎∈𝐴(𝐼𝑙 )
𝑟𝑙 (𝑠𝑒𝑞𝑙 (𝐼𝑙 )𝑎) ∀𝐼𝑙 ∈ I𝑙 (5)

where 𝑍 (𝑀) denotes the set of leafs reachable by machine𝑀 . The first constraint forces𝑀𝐵𝑅 to be

the best response (in the restriction) to the leader’s strategy, while the next three network-flow

constraints ensure the leader’s realization plan is well-formed. The number of variables in this LP

EC’20 Session 5b: Bounded Rationality

518



is linear in the size of the game because it contains one variable for every sequence of the leader.

The number of constraints is polynomial, because we have one constraint for every machine in (2)

and at most two constraints for every information set of the leader in (3)–(5). Because we solve one

LP for every machine strategy from a small class, the algorithm runs in polynomial time.

Corollary 4.4. LetL be a size-parametric class of perfect-recall EFGs with 2 players andM𝑆
𝑓
(𝑛) be

a small class of machine strategies of the follower inL(𝑛). Then the problem of finding a strategy profile
𝛾𝑆𝑆𝐸 = (𝛾𝑅

𝑙
, 𝑀𝑓 ) describing an SSE in a restriction of L(𝑛) induced byM𝑆

𝑓
(𝑛), i.e.,𝑀𝑓 ∈ M𝑆

𝑓
(𝑛), is

polynomial.

Using Small Classes of Strategies for Approximating SSE. Solving the LPs described by equations (1)

– (5) finds SSE in the restriction 𝑅𝐺 . Our goal is then to use the optimal defender’s strategy 𝛾𝑅
𝑙
from

𝑅𝐺 also in𝐺 . To evaluate the quality of strategy 𝛾𝑅
𝑙
we compute its deviation error and exploitability.

Definition 4.5. Let𝐺 be a perfect-recall EFG with 2 players andM𝑆
𝑓
be a small class of machines

of the follower. Let 𝑢𝑆𝑆𝐸
𝑙

be an expected utility of the leader in the SSE in 𝐺 and (𝛾𝑅
𝑙
, 𝑀𝑓 ) be the

SSE in restriction 𝑅𝐺 induced byM𝑆
𝑓
. The deviation error of 𝛾𝑅

𝑙
is then |𝑢𝑙 (𝛾𝑅𝑙 , 𝑀𝑓 ) −𝑢𝑆𝑆𝐸𝑙

|; and the

exploitability of 𝛾𝑅
𝑙
is |𝑢𝑙 (𝛾𝑅𝑙 , 𝑀𝑓 ) −𝑢𝑙 (𝛾𝑅𝑙 , 𝐵𝑅𝑓 (𝛾𝑅𝑙 )) |. 𝛾

𝑅
𝑙
is called non-exploitable if its exploitability

is equal to 0.

A strategy computed in the restriction is of high quality in case both the deviation error and the

exploitability are small. However, solving the restriction does not always provide a good solution

to the original game. The reason is that the strategy of the leader in 𝑅𝐺 can be exploited by the

follower arbitrarily in 𝐺 , because by constraint (2) we enforce the follower’s best response being

optimal only with respect to other efficiently representable strategies. Moreover, the expected

utility of the leader in the restriction does not provide any information about his true utility in the

original game for the same reason. Consider the following example explaining deviation error and

exploitability in more detail.

𝑙

𝑓

(0,−1)

𝑑1

(1, 1)

𝑒1

𝑐1

𝑓

(−100, 1)

𝑑2

(2,−1)

𝑒2

𝑐2

Fig. 2. An EFG showing the exploitability and de-
viation error of leader’s strategy in the restriction.

Small

Irreducible

Strongly

G-consistent

G-consistent

Extensive-form
Machines

M M M𝑆

Fig. 3. The relation between introduced classes
of extensive-form machines.

Example 4.6. An example of a two-player EFG 𝐺 is depicted in Figure 2. In this game the leader

chooses his strategy from the set of pure strategies {𝑐1, 𝑐2} and the follower from the set {𝑑1𝑑2, 𝑑1𝑒2,
𝑒1𝑑2, 𝑒1𝑒2}. Because the follower can choose any combination of actions in his left and right state,

there is no chance for the leader to make the follower pick the action 𝑒2 in his right state to achieve

the highest utility in the game. The SSE in this game is hence (𝑐1, 𝑒1𝑑2) with the expected utility of

the leader equal to 1.

Now consider a restriction 𝑅𝐺 to strategies representable by machines with one state, which

contains only the strategies 𝑑1𝑑2 and 𝑒1𝑒2 of the follower. In other words, the follower’s strategy

in his right game state is now conditioned on his strategy in the left game state. An equilibrium

strategy𝛾𝑅
𝑙
of the leader is then to commit to playing both of his strategies with the equal probability

of 0.5. This strategy makes the follower indifferent between his options and by the assumption
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of breaking the ties in favor of the leader, he plays 𝑒1𝑒2. The expected utility of the leader in this

equilibrium is 1.5: strictly higher than in the equilibrium in the whole game. The deviation error of

𝛾𝑅
𝑙
is |1.5 − 1| = 0.5.

However, the strategy 𝛾𝑅
𝑙
is highly exploitable in case the leader commits to playing this strategy

in the original game. Because the follower is now not constrained by the restriction 𝑅𝐺 , he can play

the action 𝑑2 whenever he finds himself in the right state, resulting in utility −100 for the leader.
The exploitability of strategy 𝛾𝑅

𝑙
is therefore | (0.5 × 1 − 0.5 × 100) − 1.5| = 51.

To solve this issue, we replace the BR constraint (2) in 𝑅𝐺 by the following BR constraints in𝐺 :

𝑣𝑖𝑛𝑓𝑓 (𝜎𝑓 ) = 𝑠𝜎𝑓
+
∑

𝐼 ′∈I𝑓 :𝑠𝑒𝑞𝑓 (𝐼 ′)=𝜎𝑓

𝑣 ′𝐼 +
∑

𝜎𝑙 ∈Σ𝑙
𝑟𝑙 (𝜎𝑙 )𝑔𝑓 (𝜎𝑙 , 𝜎𝑓 ) ∀𝜎𝑓 ∈ Σ𝑓 (6)

0 ≤ 𝑠𝜎𝑓
∀𝜎𝑓 ∈ Σ𝑓 (7)

0 = 𝑠𝜎𝑓
∀𝜎𝑓 ∈ Σ(𝑀𝐵𝑅), (8)

similarly as in a sequence-form LP described in [11]. By Σ(𝑀) are denoted the sequences played by
machine𝑀 and 𝑣𝑖𝑛𝑓 (𝜎) describes an expected value in the information set 𝑖𝑛𝑓 (𝜎). By replacing the

constraint (2) with constraints (6 – 8) we enforce the best-response machine to be a best response

not only in the restriction, but also in the original game. There are three immediate consequences.

First, due to the linear size of the sequence form, this modified LP is still of a polynomial size

and hence polynomially solvable. Second, the resulting defender’s strategy cannot be exploited

in 𝐺 . And third, this modification also provides a lower bound on the leader’s expected utility in

the SSE in𝐺 . However, in case there exists at least one follower’s strategy outside the restriction,

the deviation error can still be strictly positive. In general, it is not possible to bound the deviation

error when approximating SSE in EFGs–a game can be constructed, in which the best response of

the follower from SSE is a best response only in a single point of a strategy simplex of the leader

and any epsilon deviation of the strategy of the leader leads to a different best response of the

follower [11]. In such a game, omitting the best response to the leader’s SSE strategy from the

restriction can lead to arbitrarily-high error.

Finally, similarly to the existing works on SSE for EFGs, we can reformulate a set of LPs as a

single mixed-integer linear program (MILP) by appending the following constraints to the MILP

described in [11]: ∑
𝜎 ∈Σ(𝑀𝑓 )

𝑟 𝑓 (𝜎) ≥ |Σ(𝑀𝑓 ) |𝑏𝑀𝑓
∀𝑀𝑓 ∈ M𝑆

𝑓
(9)∑

𝑀𝑓 ∈M𝑆
𝑓

𝑏𝑀𝑓
= 1 (10)

𝑏𝑀𝑓
∈ {0, 1} ∀𝑀𝑓 ∈ M𝑆

𝑓
. (11)

This way, we enforce the follower’s strategy to be from a small class of machine strategies. While

solving an MILP is an NP-complete problem, in practice it achieves better scalability compared to

solving a set of LPs. Further on, we refer to this MILP-based algorithm as the machine algorithm for
SSE in the experiments.

Besides SSE, a similar analysis of another solution concept which becomes polynomially solvable

in machines–MAXPAY-EFCE–can be found in Appendix C.

4.2 Nash Solution Concept in Two-Player EFGs
Besides decreasing computational complexity, machines can also be used to decrease time and

memory requirements for computing (or approximating) other concepts. An example of such a

concept is the well-known Nash equilibrium (NE) in two-player zero-sum games.
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Definition 4.7. A strategy profile 𝛾𝑁𝐸 = (𝛾1, 𝛾2) is a Nash Equilibrium if 𝛾𝑖 ∈ 𝐵𝑅𝑖 (𝛾−𝑖 ), 𝑖 ∈ {1, 2}.

The baseline approach for computing an exact NE in EFGs is via mathematical programming [10,

70]. Scaling up to even larger games requires approximating NE, for which the leading method

is Regret Minimization (RM) with most methods based on Counterfactual Regret Minimization

(CFR) [73]. RM algorithms are iterative methods, which in every iteration update the strategies of

the players in order to minimize a weighted sum of regret at each decision. The average strategies

are then guaranteed to approach NE. The memory requirements of RM (and CFR) are, however,

fairly high. For example, CFR has to store the regret and average strategies throughout the iterations

for every action in every information set in the game, which makes solving large EFGs intractable.

A competing RM-based approach called CFR-BR [39] decreases the requirements by storing only

the regrets of one player (because current-iteration strategies converge to NE with high probability),

while the second player best-responds.

By using machines we are able to decrease the memory requirements even further. Because a

number of machines from a a small class is small, we can run regret minimization (e.g., vanilla

regret matching) directly on the set of pure machine strategies of one player, while the opponent

best-responds. By the same argument as in CFR-BR, the current-iteration strategy converges to NE

in the restriction with high probability [39]. Besides the best response, this approach requires storing

only one number, i.e., the regret, for each machine. The converged strategy gives a guaranteed

lower bound on the equilibrium utility in the whole game. Further on, we refer to this RM-BR-based

algorithm as the machine algorithm for NE in the experiments.

5 EXPERIMENTS
Finally, we demonstrate practical aspects of using machines for computing solution concepts in

EFGs. We compare our novel machine algorithms with two algorithms for computing equilibria.

For the SSE they are: (i) a heuristic incremental-generation algorithm [18] referred to as INC and

(ii) an exact branch-and-bound algorithm [15] referred to as FULL. For the NE, we compare the

machine algorithm to the CFR-BR algorithm [39]. CFR-BR is conceptually the closest algorithm to

the machine algorithm, as both aim to reduce memory requirements for solving large games; hence

scaling up to scenarios intractable for CFR(+). Moreover, the exploitability of CFR-BR is comparable

to that of CFR [39]. The implementation was done in Java 1.8 and all (MI)LP computations were

carried by a single-threaded IBM CPLEX 12.8 solver, on a 2.0GHz CPU with 16GB RAM.

Evaluation Domains. For the experiments we used two evaluation domains. The first one is a

variant of the “Flip It” game [68], which is widely used for modeling computer attacks [6, 13, 18, 49].

We call this variant a ComproFlipIt. In this game, two players compete over control of nodes in

a network. For every attempt to gain control of a node they pay a cost, but they receive rewards

for every node they control. The game models imperfect observations of the players by grouping

together all game states with the same amount of achieved points. We consider the following four

network graphs: (i) a graph with 2 nodes and a pass node played for 5 rounds (2P/5); (ii) a graph

with 3 nodes played for 5 rounds (3/5); (iii) a graph with 4 nodes played for 4 rounds (4/4); and (iv)

a graph with 2 nodes played for 7 rounds (2/7). Computing SSE in this game is challenging because

of its structural difficulty, as almost every follower’s pure strategy can be a best-response to some

leader’s strategy.

The second domain is a zero-sum Pursuit-Evasion game: a chasing game on a grid. In this game,

the evader attempts to reach his goal destination from the starting position, while the pursuer tries

to catch him. The players move simultaneously and are able to detect the opponent if he is located in

a given range of 𝑘 steps. We designed two representative instances of the Pursuit-Evasion game by

placing the pursuer between the evader and his goal: (i) an instance with the starting position of the
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evader [2, 1], the starting position of the pursuer [1,−1] and visibility 1 step ( [2, 1], [1,−1], 1) and
(ii) an instance with the starting position of the evader [2, 3], the starting position of the pursuer

[1, 1] and visibility 5 steps ( [2, 3], [1, 1], 5). We assume the goal position to be always [0, 0]. In both

instances the players took 5 steps before the game ended. A formal description of the evaluation

domains can be found in Appendix A.

Table 2. The configurations of machines used in the experiments: (left) ComproFlipIt game; and (right)
Pursuit-Evasion game.

Configuration\Instance 2P/5 3/5 4/4 2/7 ([2,1],[1,-1],1) ([2,3],[1,1],5)

𝑐1 (3, 0.9) (3, 0.8) (4, 0.99) (4, 0.9) (4, 0.8) (5, 0.8)

𝑐2 (4, 0.9) (4, 0.95) (4, 0.97) (5, 0.9)

𝑐3 (5, 0.9) (4, 0.9) (4, 0.95) (6, 0.9)

Machine Strategies in the Evaluation Domains. For each evaluation domain we fixed the abstract

actions and initial abstract observations. In the ComproFlipIt game, we used node IDs as abstract

actions, thus neglecting any information an action could possibly carry about the state of the game

in which it is being played. We used a difference in points of the player between two consecutive

information sets as abstract observations. In the Pursuit-Evasion game, we used the directions left,

right, up and down for both the abstract actions (moving direction) and abstract observations (an

estimated direction of the position of the opponent, if visible). Based on an initial exploration of the

machine space we chose 3 configurations for each tested ComproFlipIt instance and 1 configuration

for each Pursuit-Evasion instance as shown in Table 2. Each configuration is defined by a pair

𝑐𝑖 = (𝑚𝑖 , 𝜉𝑖 ). We generated exhaustively all machines playing valid player’s strategies with at

most𝑚𝑖 states. Final abstract observations were generated from 𝑙 initial abstract observations by

performing ⌊𝜉𝑖 × (𝑙 − 1)⌉, 𝜉𝑖 ∈ [0, 1] merges of randomly selected pairs of so-far created abstract

observations. The resulting set of abstract observations was used for generating the machines. We

ran Algorithm 1 on every generated machine and discarded all 𝜇𝑄 -reducible-ones, so that every

generated machine prescribes a unique pure strategy.

In order to show that the systematic way of exploring the small strategy space outperforms

randomly generated small classes of strategies, we randomly generated also sets of pure strategies

of the same size as machines. These sets of strategies are referred as R2P/5, R3/5, R4/4 and R2/7 for

each tested ComproFlipIt instance, respectively.

5.1 Machine Algorithm for SSE
Since the SI-LP variant of the FULL algorithm was reported to be fastest in [15], we use this variant

as a baseline algorithm for computing SSE in ComproFlipIt games. For the INC algorithm, we

use the fastest variant from [18], setting the parameter 𝛿 that controls the approximation of the

upper convex hulls to 𝛿 = 0.3 and the penalization parameter 𝜖 to 𝜖 = 0.3. In the leftmost graph

of Figure 4 we present the sizes of the constructed small classes of machines in the ComproFlipIt

games. The x-axis shows the configurations, while the y-axis depicts the mean number of machines

in the game. Every point in the graph corresponds to the mean over the sampled instances and

shows also the achieved standard error (for all instances it is below 200, with a mean error 10%).

The graph contains also a number of all pure strategies of the attacker in the game, depicted by a

dash-dot-dotted line for 2P/5 (4.3× 108 strategies), a dash-dotted line for 3/5 (6.3× 108 strategies), a
dotted line for 4/4 (6.1 × 108 strategies) and a dashed line for 2/7 (3.5 × 108 strategies). The results
show that even with configuration 𝑐3, the number of small machines is more than 5 orders of
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Fig. 4. (Left) The mean number of machines in the small class, (Middle) mean full game deviations and (Right)
mean runtimes in ComproFlipIt for different configurations. The solution concept is Strong Stackelberg
equilibrium. All y-axes are in logarithmic scale. Every point shows also a standard error.

magnitude smaller than the number of all possible attacker’s pure strategies in the game. As the 𝜉 is

set higher (or the number of states lower), the number of small machines becomes even smaller. For

the instance 3/5 and 𝑐1, the number of small machines reaches ≈ 8× 10−6% of all possible strategies.

But even though we considered only a very small fraction of strategies, the results show that

the machine algorithm was able to achieve nearly-optimal solutions even with configuration

𝑐1: the relative errors of computed solutions are presented in the middle graph of Figure 4. The

x-axis varies the configuration and the y-axis shows the mean ratio of the absolute difference

in the defender’s expected utility computed by FULL (denoted as E𝑆𝑆𝐸 [𝑢𝑑 ]) and the machine

algorithm (denoted as E𝑀 [𝑢𝑑 ]3) to the defender’s expected utility in SSE. We compute the ratio

as | E𝑆𝑆𝐸 [𝑢𝑑 ] − E𝑀 [𝑢𝑑 ] |/E𝑆𝑆𝐸 [𝑢𝑑 ]. For example, for instance 2P/5 the difference is 0.12%, with

the number of small strategies only 0.000045%. For comparison, for each ComproFlipIt instance

and each seed we computed an average defender’s expected utility when considering 10 different

subsets of randomly generated pure strategies. The mean relative errors of random strategies are

also depicted in the same Figure (the shapes of the markers for machine/random strategies are the

same for each setting) and they are more than 6.62-times (a median value) larger than machine

deviations, often reaching an error of 20-50%. No machine configuration had higher error than its

random counterpart. INC was able to achieve a mean relative error 0.1% on 3/5 and a zero error on

other three instances.

Finally, the runtime results for the machine algorithm are depicted in the rightmost graph of

Figure 4. Again, the x-axis shows the configuration and the y-axis depicts the mean speedup and

standard errors. We calculate the speedup as the runtime of the FULL algorithm divided by the

runtime of the machine algorithm. The runtime of the machine algorithm includes not only the

solving time of the MILP formulation, but also a running time of domain-independent method

for generating the machines and pruning all behaviorally equivalent ones
4
. For configurations

with higher values of parameter 𝜉 or smaller number of machine states the machine algorithm

progressively becomes faster, as the number of small machines it considers decreases. The figure

contains also the speedups of INC, depicted by a dash-dot-dotted line for 2P/5, a dash-dotted line for

3/5, a dotted line for 4/4 and a dashed line for 2/7. All configurations of all instances are significantly

faster than FULL: a median value is 45.3-times. The configurations are also faster or comparable to

INC: a median speedup is 3.15-times. Contrary to FULL and INC, the machine algorithm is able to

scale up to even larger scenarios as shown in the extended experimental results in Appendix A.

3
Note that as explained in the paragraph under Example 4.6, this value is guaranteed in the full game.

4
Note that generating the machines can be done significantly faster when domain knowledge is exploited.
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Fig. 5. (Left) The mean full game exploitability and standard errors over 20 seeds in the 4/5 instance of the
ComproFlipIt game and the full game exploitability in (Middle) the ( [2, 1], [1,−1], 1) instance and (Right) the
( [2, 3], [1, 1], 5) instance of the Pursuit-Evasion game. The solution concept is Nash equilibrium.

5.2 Machine Algorithm for NE
We run the machine algorithm with regret matching as a regret minimization algorithm. In the

leftmost graph of Figure 5 we present the exploitability in the 4/5 instance of the ComproFlipIt game

with 4 states of the machine and 𝜉 = 0.97. The x-axis shows the CPU time in seconds, while the

y-axis depicts the exploitability in the full game, i.e., the absolute difference between the defender’s

expected utility of the current-time strategy and the equilibrium strategy divided by the defender’s

expected utility of the equilibrium strategy. Similar to the results with SSE, every point in the graph

corresponds to the mean over the sampled instances and it depicts also the achieved standard error.

The graph shows that the machine algorithm is able to find a strategy of low exploitability within

the first 8 minutes while maintaining even lower memory requirements than CFR-BR. It takes

about an hour for CFR-BR to converge to a strategy of similar exploitability. We achieved similar

results also with other ComproFlipIt instances.

The middle graph depicts the exploitability in the ( [2, 1], [1,−1], 1) instance of the Pursuit-

Evasion game played for 5 rounds. In this game, the machine algorithm computes a near-optimal

strategy almost instantly, but it takes about 140 seconds for the CFR-BR algorithm to achieve similar

exploitability. Similarly, the rightmost graph shows the exploitability in ( [2, 3], [1, 1], 5), when it

takes 90 seconds for CFR-BR to reach the same exploitability.

Practical Use of Machines. The results prove the usefulness of machines for selecting equilibrium

strategies in large EFGs with structural properties, such as games in which actions have similar

semantics and often similar quality regardless of the history of actions. According to the results

with the ComproFlipIt game, the machines also provide better approximation of the equilibria in

games with larger depth (e.g., instance 2/7), rather than in games with larger branching factor

(e.g., instance 4/5). To further test our intuition on where machines provide an efficient way to

abstract equilibrium strategies and where not, we also ran experiments with the machine algorithm

for computing SSE on randomly generated games. Even in this domain, machines still achieved

significant speedup when compared to FULL or INC, despite the expected higher deviation errors.

6 CONCLUSION
This work formally defines finite state machines that play extensive-form games (EFGs). Using

finite state machines of restricted size in EFGs can have both theoretical as well as practical impact.

We show that computing a Strong Stackelberg Equilibrium (SSE) can be simplified to a polynomial

problem when restricting to small strategies represented as machines of restricted size. Moreover,
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we present two algorithms (for SSE and for NE) that directly use machines and improve scalability

compared to the previous/original algorithms while reaching only a small error.

Our paper opens many new directions for research. First, a detailed comparison between existing

domain-specific and domain-independent abstraction methods and different classes of machines,

automata, and distinguishing functions can be done to provide a complete analysis of abstraction

methods in EFGs. This step may require extending the class of currently used Moore automata to

probabilistic or, for example, counting automata. Second, we have demonstrated that machines

have practical impact and can improve scalability of algorithms. Therefore, new more scalable

algorithms can be proposed.
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A EXTENDED EXPERIMENTAL RESULTS
In this section, we first present the detailed descriptions of the evaluation domains. Then, we show

additional scalability results achieved with the machine algorithm for computing SSE.

A.1 Domain Descriptions
A.1.1 ComproFlipIt game. A two-player general-sum ComproFlipIt game is defined as a tuple

𝐹 = (𝑉 , 𝑡, 𝜌, 𝜏). The game is played by a defender and an attacker on an empty graph with nodes 𝑉

for a finite number of simultaneous rounds 𝑡 . There is a positive reward 𝜌 : 𝑉 → R+ and a positive

cost 𝜏 : 𝑉 → R+associated with each node 𝑣 ∈ 𝑉 . We model the situation when the public nodes of

a possibly much larger network are severely compromised and the defender assumes the worst

case: in the beginning, all public nodes are controlled by the attacker. The defender has to deploy

a countermeasure to regain control of the network inputs. In each round 𝑗 , each player 𝑖 selects

one node to flip (denoted as 𝑣𝑖𝑗 ), i.e., to attempt to gain control of. The flipping action is successful

when the current owner of the node does not also flip it. For every flipping action, the players pay

the cost assigned to the node. At the end of every round the players collect the total rewards from

all nodes they now control (denoted as 𝑉 𝑖
𝑗 ):

𝑢𝑖𝑗 (𝑉
𝑖
𝑗 ) ← −𝜏 (𝑣

𝑖
𝑗 ) +

∑
𝑣∈𝑉 𝑖

𝑗

𝜌 (𝑣) ∀𝑖 ∈ N . (12)

After 𝑡 rounds the game ends and the final utilities are the sum of the rewards collected in the

individual rounds. In a zero-sum variant of the ComproFlipIt game the utility of the defender is

set to be the negative of the utility of the attacker. We consider a version of the game in which

the players learn whether their action succeeded and how many points they have in total after

each round. Moreover, we assume that the graph can also contain a single disconnected pass node
with zero reward and zero cost, simulating a pass action. In the experiments, we used the following

four graphs: (i) a graph with 2 nodes and a pass node played for 5 rounds (2P/5); (ii) a graph with

3 nodes played for 5 rounds (3/5); (iii) a graph with 4 nodes played for 4 rounds (4/4); and (iv) a

graph with 2 nodes played for 7 rounds (2/7). The numbers of rounds were fixed so the instances

are large enough to analyze the differences between the algorithms, but still the solutions can be

computed within 48 hours.

Table 3. The intervals from which the rewards and costs were generated for individual types of nodes.

Interval\Type (1) (2) (3) (4)

Reward interval 60..100 60..100 30..60 10..40

Cost interval 60..100 30..60 50..90 10..40

We assume the defender acts as a leader in this game, while the attacker takes the role of the

follower. For every graph, we solved 20 instances of the ComproFlipIt games. Each node in the

graph was randomly assigned to one of the following types: (1) high reward, high cost, (2) high

reward, low cost, (3) low reward, high cost, and (4) low reward, low cost. The reward and cost were

generated randomly from the intervals depicted in Table 3 to generate representative instances of

ComproFlipIt games.

A.1.2 Pursuit-Evasion game. A two-player zero-sum Pursuit-Evasion game is defined as a tuple

𝑃𝐸 = (𝑝, 𝑒, 𝑘). The game is played by a pursuer and an evader on an infinite grid with a starting

position of the pursuer 𝑝 and a starting position of the evader 𝑒 . We consider a version of the game

in which a player does know the position of the opponent only in case they are closer than 𝑘 steps.
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Fig. 6. (Left) The ( [2, 1], [1,−1], 1) instance of the Pursuit-Evasion game. (Right) The ( [2, 3], [1, 1], 5) instance
of the Pursuit-Evasion game. The figure shows the starting positions of the (P)ursuer, the (E)vader, and the
evader’s (G)oal.

The players move simultaneously and the goal of the evader is to escape to the goal position [0, 0].
The utility of the evaders is defined as: (i) 2, in case he reaches the goal position; (ii) 1 in case he

manages to escape the pursuer; and (iii) -1 in case he is caught either while crossing an edge or in a

node. We designed two representative instances (depicted in Figure 6) of the Pursuit-Evasion game

by placing the pursuer in between the evader and his goal: ( [2, 1], [1,−1], 1) and ( [2, 3], [1, 1], 5).
In both instances the players took 5 steps before the game ended.

A.2 Scalability Results
For the first three instances, we present the comparison of runtimes in Table 4

5
. The maximum

number of states was fixed to 3, while the parameter 𝜉 for the machine algorithm results depicted

in this table was set to 0.5 for instances with 2 nodes, 0.9 for instances with 3 nodes and 0.99 for

instances with 4 nodes. The table shows also larger instances which can be computed only by the

machine algorithm. We terminated both FULL and INC after 2 weeks of computation. For reference,

we include the mean number of machines of size at most 3 in larger instances of the ComproFlipIt

game for different values of parameter 𝜉 in Table 5. Similarly to the leftmost graph of Figure 4, also

here the standard errors are negligible.

Table 4. The mean runtimes and standard errors in seconds of solving algorithms on ComproFlipIt instances
of increasing size.

Alg \ Instance 2P/5 3/5 4/4 2P/6 3/6 4/5

FULL 27211 ± 5387 21865 ± 8178 97540 ± 28636 - - -

INC 5832 ± 3964 8870 ± 6974 71907 ± 31413 - - -

Machines 1027 ± 3940 281 ± 3900 8550 ± 23990 646451 ± 96145 395042 ± 184603 863896 ± 272652

Table 5. The mean number of machines of size at most 3 for instances with larger depths under different
setting of the abstraction parameter 𝜉 .

Instance \𝜉 ≤0.2 0.3, 0.4 0.5 0.6 0.7 0.8 0.9 0.99

2P/6 547 166.9 51.2 51.2 51.2 20.4 20.4 -

3/6 - - 803.3 803.3 307.9 156.7 55.6 -

4/5 - - 70055.4 34886.9 7743.2 3422 682.7 52.1

5
We omit the 2/7 instance, since only 7 out of 20 seeds of the larger instances were computable by the machine algorithm.

Neither FULL nor INC terminated within 1 week.
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B COMPARISON TO LOSSY ABSTRACTIONS
In this section, we compare machines to lossy abstractions. Lossy abstractions are arguably the

concept most similar to machines. Both can be applied to general EFGs to (exponentially) reduce

the size of strategies, hence finding a solution more efficiently. We highlight the main differences

between the concepts and discuss an example showing a limitation of abstractions.

The main difference between abstraction methods and machines lies in the structure the concepts

are applied to. A lossy abstraction is applied to the whole game at once, and the solving algorithm

then considers strategies from a smaller, abstracted tree. All strategies in the abstracted tree are

abstracted equivalently, i.e., if the same action is played in two different strategies, it has to belong

to the same information set in the abstracted tree. On the other hand, machines can abstract each

strategy from the original game differently. In other words, each machine strategy could belong to

a differently abstracted tree. For example, consider two consecutive information sets 𝐼1 and 𝐼2 with

possible actions 𝐴(𝐼1) = {𝑎, 𝑏} and 𝐴(𝐼2) = {𝑎, 𝑐}. One machine could prescribe to play action 𝑎 in

both cases, hence merging the sets 𝐼1 and 𝐼2, while a second machine playing actions {𝑏, 𝑐} would
still have to distinguish between the sets to choose the right action.

Contrary to bounded-error abstractions, machines do not offer any guarantee on the maximum

value of the deviation error. However, the exploitability in the full game (i.e., outside of the

restriction induced by machines) can be shown to be zero (or approaching zero) in both the SSE

and the NE. Moreover, finding optimal bounded-error abstractions, or even determining whether

an abstraction with a guaranteed solution quality exists, is often computationally demanding:

NP-complete or graph-isomorphism-complete. Notably, it is of the same complexity as finding SSE

or MAXPAY-EFCE in the original game.

Table 6. A comparison of heuristic abstraction methods to their counterparts in machines. Abbreviations
used: AA – abstract action, AO – abstract observation.

Abstraction Method Publication Equivalent Machine Concept

Betting round reduction [7] Acyclic machine with diameter limit

Elimination of betting round [7] Acyclic machine with diameter limit

Merging betting rounds [7] Machine with a cycle

Composition of preflop and postflop mode [7] Machine composition

Betting values discretization [28] Only specific AAs allowed

Independent betting rounds [64] Public information merged into one AO

Multiplayer betting game transformation [31, 32] Only two betting AAs allowed

Bucketing (binning) [7, 14, 25, 27, 28, 40] Acyclic machine with specific AOs

Soft state translation [63] Machine w/ probabilistic transition function

More suitable and fairer comparison is to heuristic abstraction methods, which offer no guarantee

on the solution quality. In Table 6 we summarize most commonly used heuristic techniques and

introduce their equivalent concepts in machines. Most of the techniques translate into machines

easily, e.g., restricting a number of bets a player can make per round is equivalent to considering

composed machines with limited diameter, or, discretizing betting values translates into allowing

only the said values as abstract actions. In the past years, research on heuristic abstractions focused

mainly on bucketing – creating level-by-level information abstractions by grouping information

sets together. Bucketing works well in games like poker, in which it can provide high-quality

abstractions without a need to consider more levels at once. On the other hand, machines enable

to merge information sets in multiple levels, which was shown to be necessary to find better

abstracted strategies [44]. We give an example of one common class of games, which require

multilevel abstractions, at the end of this section. Bucketing abstractions are hence not a direct
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Fig. 7. (Left) An example of a pursuit-evasion game with one (P)ursuer and one (E)vader on a large, but finite
grid. (Right) A machine representing the evader’s best-response strategy in the pursuit-evasion game. Each
state is labeled with the action taken by the evader while the transitions denote the observations received in
the game.

alternative to machines, but rather a technique, which can be fittingly used simultaneously with

machines, e.g., to compute abstract observations and the corresponding distinguishing functions

used in the machines. We plan to investigate this approach in future work.

Finally, the set of machine strategies can often be enumerated
6
in polynomial time and its size

can be bounded from above by choosing a proper property (e.g., a maximum number of states in

the automaton). In contrast, domain-independent abstraction methods provide no guarantee for

the abstracted game to contain a sufficiently small number of strategies
7
.

Now we discuss an example of a scenario which illustrates the principal differences between

machines and level-by-level abstractions. Consider a simple pursuit-evasion game played by one

pursuer and one evader on a grid. The pursuit-evasion games are a well-studied class of games

in the literature, with many known properties [29, 35, 56, 69]. Similarly to other human-made

(meaning non-random) games, also pursuit-evasion games have underlying structural properties

which favor playing similar actions in similar situations. The players move in rounds in one of

the four possible directions ((U)p, (D)own, (L)eft and (R)ight). The goal of the pursuer is to catch

the evader while the evader tries to navigate away from the pursuer. We consider a variant of

the game in which the grid is infinite and after every round the players are given information

(an observation) about an approximate direction in which their opponent is located (we assume

only the four previously mentioned directions). The best response of the evader is to always move

in the direction opposite to the pursuer’s presumed location. Neglecting this strategy can cause

significant loss in the expected utility when constructing an optimal strategy for the pursuer. As

depicted in Figure 7, a machine with four states can represent this simple, obvious evader’s strategy

(w.l.o.g. assuming the pursuer’s initial location is on the right of the evader). Note that any domain-

independent class of machines with the machines of size at least four as its subset will necessarily

contain this strategy because there always exist domain-independent abstract observations grouping
the information sets according to the last seen observation.

Consider a number of possible level-by-level abstractions in this game. After 𝑘 rounds, both

players made 𝑘 steps each. The number of paths they could follow is hence 4
𝑘
. It is safe to assume

that for 𝑘 large enough, for every path, there exists at least 2 possible observations they could get, in

case their starting positions are not excessively distant. The number of information sets at this level

of the game tree is hence at least 2 × 4𝑘 and at most 4 × 4𝑘 . The minimum number of all possible

abstractions is equal to a number of possible partitions of information sets, described by a Bell

6
The efficiency of enumeration depends on the properties we require to be satisfied by the machines.

7
The bucketing abstraction methods enable to bound the number of strategies, but they require domain-specific metrics.
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number 𝐵(2×4𝑘 ). This number is already double-exponential in 𝑘 , because 𝐵(𝑛 +1) ≥ (𝑛/2)𝑛/4[72].
The best response of the evader on level 𝑘 can be formulated in only those abstractions (br-

abstractions), which did not merge the information sets corresponding to different observations.

The number of such br-abstractions is hence at most 4𝐵(4𝑘 ). Because 𝐵(𝑛) ≥ 2𝐵(𝑛− 1), the number

of br-abstraction is significantly smaller than the number of all possible abstractions. For example,

with just 4 steps, the number of br-abstractions is at least 1.4008 × 10493 times smaller than number

of all abstractions.

Finding a correct br-abstraction at each level is hence impossible both by enumeration (the

number of all abstractions is exponential in 𝑘) and by random sampling (the ratio of br-abstractions

to all abstractions goes to zero as 𝑘 approaches infinity). Similar results can also be shown for cases

when we assume more observations, more pursuers, or grids with obstacles (in that case, we would

probably need more machine states for representing the best response).

C CORRELATED SOLUTION CONCEPT IN EFGS
In this section, we show another example of a concept for which using extensive-form machines

can improve the computational complexity: the extensive-form correlated equilibrium (EFCE) in

multi-player games [71]. This solution concept describes a situation when players are given a

chance to coordinate according to an external event. In the canonical representation of correlated

equilibrium, the recommendations to the players are the moves, not arbitrarily signals. The proba-

bility distribution the correlation device uses to generate signals is known to all players, but each

player is not aware of the recommendations given to the other players.

Definition C.1. A correlation device is a probability distribution 𝜆 on the set of pure strategy

profiles Π. Consider the extended game in which a chance first selects a strategy profile 𝜋 according

to 𝜆. Then, whenever a player 𝑖 reaches an information set 𝐼 in 𝐼𝑖 , he receives the action 𝑎 at 𝐼

specified in 𝜋 as a signal. An extensive form correlated equilibrium (EFCE) is a Nash equilibrium

of such an extended game in which the players follow the signals. A MAXPAY-EFCE is an EFCE

which maximizes the sum of utilities of all players.

Chance

𝑙

𝑓

(4, 10)

𝑏5

(0,6)

𝑏6

𝑏1

𝑓

(4, 10)

𝑏7

(0, 6)

𝑏8

𝑏2

1/2
𝑙

𝑓

(6, 0)

𝑏5

(0,6)

𝑏6

𝑏3

𝑓

(6, 0)

𝑏7

(0, 6)

𝑏8

𝑏4

1/2

Fig. 8. An EFG with two players, taken from [71]. The figure follows a standard denotation of an EFG.

The EFCE of the game in Figure 8 is described in [71]: a signal 𝑏1 or 𝑏2 is chosen with equal

probability in the left state, and player 𝑓 should play 𝑏5 when 𝑙 received the signal 𝑏1 and 𝑏8 when 𝑙

received the other signal. In the second state of player 𝑙 an arbitrary signal is chosen, independently

of the recommendation in the left state. The expected utilities in this EFCE are 6.5 for player 𝑙 and

3.5 for player 𝑓 .

Similarly to SSE, also MAXPAY-EFCE is an NP-hard problem [71]. Computing it can be done

by solving one LP [38]. This LP has, however, an exponential number of variables, since every

pure strategy profile is described by exactly one variable. The number of constraints remains
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polynomial. Also MAXPAY-EFCE in an EFG in which every player is allowed to play only efficiently

representable strategies is polynomial-time solvable because the number of pure strategy profiles

is polynomial in the restriction.

Corollary C.2. Let L be a size-parametric class of perfect-recall EFGs with 𝑛 players andM𝑆 =

(M𝑆
1
, . . . ,M𝑆

𝑛 ) be a tuple of one small class of machines for each player in L(𝑛). Then the problem of
finding a probability distribution 𝜆 describing an MAXPAY-EFCE in a restriction of L(𝑛), such that 𝜆
is a probability distribution overM𝑆 , is polynomial.

The same idea can be applied also for Stackelberg extensive-form correlated equilibrium (SE-

FCE) [11], which is also NP-hard in multi-player games [17].
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