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Correlated equilibrium is an established solution concept in game theory describing a situation when players

condition their strategies on external signals produced by a correlation device. In recent years, the concept has

begun gaining traction also in general artificial intelligence because of its suitability for studying coordinated

multi-agent systems. Yet the original formulation of correlated equilibrium assumes entirely rational players

and hence fails to capture the subrational behavior of human decision-makers. We investigate the analogue of

quantal response for correlated equilibrium, which is among the most commonly used models of bounded

rationality. We coin the solution concept the quantal correlated equilibrium and study its relation to quantal

response and correlated equilibria. The definition corroborates with prior conception as every quantal response

equilibrium is a quantal correlated equilibrium, and correlated equilibrium is its limit as quantal responses

approach the best response. We prove the concept remains PPAD-hard but searching for an optimal correlation

device is beneficial for the signaler. To this end, we introduce a homotopic algorithm that simultaneously

traces the equilibrium and optimizes the signaling distribution. Empirical results on one structured and one

random domain show that our approach is sufficiently precise and several orders of magnitude faster than a

state-of-the-art non-convex optimization solver.

CCS Concepts: • Theory of computation → Algorithmic game theory; Exact and approximate com-
putation of equilibria.
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correlated equilibrium, quantal correlated equilibrium
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1 INTRODUCTION
Robert Aumann introduced the concept of correlated equilibrium [4] in 1974 as a generalization

of Nash equilibrium [50]. While in Nash equilibrium the players act upon their best interests

simply based on the reasoning about their opponents’ strategies, in correlated equilibrium they

may condition their behavior also on an external private signal. The process of selecting and

revealing the signals is traditionally entrusted to a mediator mechanism, a so-called correlation

device. Together with an underlying normal-form game, a correlation device constitute an extended
game in which a profile of one signal per player is sampled first, the players consequently receive

their private signals and choose their strategies accordingly. Correlated equilibrium consists of

all pairs of a correlation device’s distribution over signals and players’ strategies, such that the

strategies form a Nash equilibrium in the extended game [23].
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Throughout the years, correlated equilibrium became one of the most prominent concepts in

game theory, because of its suitability for studying coordinated multiagent systems [3, 33], as well as

appealing computational complexity that is provably polynomial. Signaling has also applications in

fighting misinformation [13], terrorism [37], or cybercrime [36]. Besides, many of the contemporary

breakthroughs in Nash equilibrium computation in two-player zero-sum games (e.g., in [10, 48])

or even multi-player games (e.g., in [11]) were achieved through uncoupled no-regret methods

originally designed to approximate correlated equilibrium in general-sum games. Recent years

have witnessed an increasing attention to correlated strategies also in sequential games, either in

the form of (coarse) correlated equilibrium [14, 22] or team-maxmin equilibrium with coordination

device [20, 60]. With the new approaches, even large scenarios may be solved in a matter of days.

Despite the favorable scalability of contemporary state-of-the-art approaches, one of the funda-

mental limitations that hinders applications of game-theoretic models in real world remains their

assumption of perfect rationality of players. Numerous deployments of concepts related to leader-

follower equilibria proved that accounting for the imperfect decision-making of human players helps

to avoid unnecessary utility losses and leads to substantially improved performance [2, 8, 34, 58].

Perhaps the first attempt to introduce “boundedly rational” behavior into correlated equilibrium

was through trembling-hand perfection [53]. The idea of trembles is that players may choose

suboptimal actions with the same non-zero, yet vanishing probability, and was studied in context

of correlated strategies in both normal-form [18] and extensive-form [41] games.

Trembling-hand perfection amends the inherent issues associated with perfectly rational concepts

akin to Nash equilibrium through prescribing optimal strategies even when the game play strays

off the equilibrium path. Yet, this does not translate into correct predictions of human behavior, as

the literature shows that instead of making uniform deviations, human players tend to discriminate

between different alternatives more systematically [12]. Among the most renowned models of

bounded rationality that address this issue is the quantal response [43, 44]. Quantal response

assumes that players act stochastically, choosing higher-utility actions with higher probability,

and is consistently regarded as one of the best predictors of human behavior in games, verified by

numerous experiments [31, 58]. The behavioral model of quantal response, in context of the leader-

follower equilibria [15, 16], is also a fundamental component of several algorithms successfully

deployed in the real world [19, 58]. Despite its importance, to the best of our knowledge, no work

that studies correlated quantal response strategies has ever been published.

1.1 Contributions
In this work, we investigate the amalgamation of quantal response and correlated equilibrium. We

consider generalized Luce models of quantal behavior that represent the response as a function

increasing in utility normalized over the set of player’s actions. Luce models are able to capture a

wide range of behavior (including the most common logit model [43], but also attitudes towards risk

and loss [35], or subjective utilities (e.g., in [51])), and despite being studied in theory before [29],

to the best of our knowledge, our work is the first to formulate an algorithm computing quantal
equilibria with Luce models. To this end, we provide two possible definitions of quantal correlated

equilibrium, inspired by the standard way of constructing a correlated equilibrium: we replace a

best-response condition with quantal response, enforcing quantal behavior either per each signal

separately or over the whole set of strategies. Our formulation is general enough to model individual
differences in quantal behavior between the players, which other works rarely consider. Our first

motivation is to study if these quantal counterparts of correlated equilibrium satisfy the intuitive

requirements of such an equilibrium. Indeed, in Section 3, we show that every quantal response

equilibrium is quantal correlated, and the traditional correlated equilibrium is reached in the limit

as quantal responses approach a best response. The space of all equilibria is compact, and in case



the equilibrium is unique for all correlation devices, it is also connected. We conclude our initial

analysis by showing that the concept remains PPAD-hard.

In Section 4, we formulate a robust homotopic algorithm capable of traversing the principal

branch of equilibrial correspondence. We employ carefully designed variable substitutions and model
reformulations that ameliorate numerical issues caused by steep quantal response functions or

wide ranges of utilities. As a consequence, we are able to simultaneously trace the equilibrium and
gradiently optimize a probability distribution over the signals while maintaining the homotopy’s

convergence guarantees. Finally, in Section 5, we investigate the algorithm’s scalability and quality

of solutions using two experimental domains: random games and supply chain games. Supply

chains constitute a prime application domain for quantal correlated equilibrium: a setting where a

central authority (e.g., a government) aims to coordinate the retailers to streamline the economy,

but is only capable of sending signals (e.g., taxation policies) because of the retailers’ autonomy. The

results indicate that the homotopy approach provides high-quality solutions while being several

orders of magnitude faster than BARON, a state-of-the-art non-convex optimization solver.

2 PROBLEM DEFINITION
In a normal-form game 𝐺 = (𝑁,𝐴,𝑢), we denote the finite set of players 𝑁 , 𝑛 = |𝑁 |, and for each

player 𝑖 ∈ 𝑁 , the finite set of possible actions for 𝑖 is 𝐴𝑖 . The set 𝐴 is then a Cartesian product of

𝐴𝑖 . For a tuple 𝑎 ∈ 𝐴, we define a real-valued utility function for player 𝑖 as 𝑢𝑖 : 𝐴→ R. Pure (i.e.,
deterministic) strategies are a Cartesian product Π of Π𝑖 , where Π𝑖 coincides with 𝐴𝑖 and each

𝜋𝑖 ∈ Π𝑖 represents an action the player 𝑖 commits to playing. Mixed (i.e., stochastic) strategies Δ are

a Cartesian product of Δ𝑖 , and each Δ𝑖 is a probability simplex over Π𝑖 . For any tuple or product,

we use −𝑖 to denote the opponents of player 𝑖 and their corresponding sub-tuple or sub-product,

e.g., for 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝐴, 𝑎−𝑖 = (𝑎1, . . . , 𝑎𝑛)\{𝑎𝑖 }, and 𝛿−𝑖 (𝑎−𝑖 ) =
∏

𝑗 ∈𝑁,𝑖≠𝑗 𝛿 𝑗 (𝑎 𝑗 ), 𝛿𝑖 ∈ Δ𝑖 .

2.1 Standard solution concepts in normal-form games
We provide formal definitions of two equilibria our work is built upon: correlated equilibrium and

quantal response equilibrium. We begin with correlated equilibrium, which describes a situation

when the players are able to coordinate their strategies based on external signals. Then we proceed

to quantal response equilibrium, in which the players’ decisions are affected by systematic biases.

The standard construction of correlated equilibrium assumes a lottery mechanism (a signaling

scheme) 𝜆 ∈ Λ that gives rise to an equilibrium (Nash, refinements thereof, etc) in the extended

signaling game 𝐺 = (𝑁,𝐴, 𝑆,𝑢), where Λ is a set of distributions over a Cartesian product 𝑆 of

finite sets of private signals 𝑆𝑖 for each player. The extended game is a sequential extension of

the underlying game in which a correlation device first samples a signal profile according to

the signaling scheme 𝜆 that is considered public knowledge. The players then learn about their

respective signals and play strategies conditioned on the signal. Deterministic strategies in the

extended game define action to play for each signal that could be received. In other words, each

𝜋𝑖 ∈ Π𝑖 is a set {(𝑎𝑖 , 𝑠𝑖 ),∀𝑠𝑖 ∈ 𝑆𝑖 }. For this purpose, for a given profile 𝜋 ∈ Π, we define ×𝜋 as a

Cartesian product of individual 𝜋𝑖 ∈ 𝜋 . Note that the elements of ×𝜋 are tuples of one pair (𝑎𝑖 , 𝑠𝑖 )
per player. Behavioral strategies 𝐵 describe stochastic strategies in the extended game, where

player’s behavior is conditioned upon receiving a signal. 𝐵 is a Cartesian product of 𝐵𝑖 , where 𝐵𝑖 is

a set of conditional probability mass functions. In case of Nashian correlated equilibrium, the tuple

(𝜆, (𝛽𝑖 )𝑖∈𝑁 ), 𝜆 ∈ Λ, 𝛽𝑖 ∈ 𝐵𝑖 is hence a correlated equilibrium if it satisfies the inequalities∑
𝑎∈𝐴

∑
𝑠∈𝑆

𝜆(𝑠)𝛽 (𝑎 |𝑠)𝑢𝑖 (𝑎) ≥
∑

𝑎−𝑖 ∈𝐴−𝑖

∑
𝑠∈𝑆

𝜆(𝑠)𝛽−𝑖 (𝑎−𝑖 |𝑠)𝑢𝑖 (𝑚(𝑠𝑖 ), 𝑎−𝑖 ) ∀𝑖 ∈ 𝑁,∀𝑚 : 𝑆𝑖 → 𝐴𝑖 . (CE)



Note that when all players are able to play any pure, mixed or behavioral strategy, according to

Kuhn’s equivalence theorem, there exists an equivalent formulation of (CE) also in mixed strategies.

The probability distribution over pure strategy profiles induced by 𝜆 and 𝛽 is called a correlated
equilibrium distribution [5]. In case the players attain a Nash equilibrium in the extended game,

according to the Revelation principle [24], every correlated equilibrium distribution has a canonical
representation. In a canonical form the signals are interpreted as actions recommended to the

players to play (i.e., 𝑆𝑖 = 𝐴𝑖 ), and the behavioral strategies are projections 𝑆 → 𝑆𝑖 over 𝑆𝑖 = 𝐴𝑖 .

As a consequence, 𝜆 and 𝛽 can be merged into one distribution, resulting in a linear formulation,

called a direct correlated equilibrium. Because of its polynomial computability and equivalence

to correlated equilibrium constructed the standard way, this form is most commonly studied in

the literature. However, the underlying equilibrium plays a crucial role. For example, in perfect

correlated equilibrium, the direct and standard formulations do not coincide [18].

Example 2.1. Consider a variant of the Battle of Sexes game shown in the center of Figure 1. The

tetrahedron on the left is the simplex of probability distributions on pure profiles in the game, with

the corners corresponding to the profiles themselves. The inner polytope with 4 vertices is the set

of direct correlated equilibria. Each vertex is one Nash equilibrium in the game.

Both forms of correlated equilibrium assume perfectly rational strategizing of all players, i.e.,

each player is capable of selecting and following the utility-maximizing option. Relaxing this

assumption leads to a “statistical version” of best response called quantal response, which takes

into account the inevitable error-proneness of humans and allows the players to make systematic

errors. Quantal-responding of player 𝑖 is commonly modeled through function 𝑄𝑅𝑖 : Δ−𝑖 → Δ𝑖

that is monotonically increasing in expected utility:

𝑢𝑖 (𝛿−𝑖 , 𝑎𝑘𝑖 ) ≤ 𝑢𝑖 (𝛿−𝑖 , 𝑎𝑙𝑖 ) ⇒ 𝑄𝑅𝑘𝑖 (𝛿−𝑖 ) ≤ 𝑄𝑅𝑙𝑖 (𝛿−𝑖 ) ∀𝛿−𝑖 ∈ Δ−𝑖 , 𝑎𝑘𝑖 , 𝑎𝑙𝑖 ∈ 𝐴𝑖 ,

where 𝑄𝑅
𝑗

𝑖
(𝛿−𝑖 ) is the probability of playing action 𝑎 𝑗 . In this work, we focus on a wide class of

quantal response functions called generalized Luce models [29].

Definition 2.2. A quantal function 𝑄𝑅𝑖 : Δ−𝑖 → Δ𝑖 is a generalized Luce model if there exists

a strictly positive, increasing real-valued function 𝑞𝑖 : R→ R+ such that

𝑄𝑅𝑖 (𝛿−𝑖 ) =
(

𝑞𝑖 (𝑢𝑖 (𝛿−𝑖 , 𝑎𝑖 ))∑
𝑎′
𝑖
∈𝐴𝑖

𝑞𝑖 (𝑢𝑖 (𝛿−𝑖 , 𝑎′𝑖 ))

)
𝑎𝑖 ∈𝐴𝑖

.

Because 𝑞𝑖 is strictly positive and increasing function, the corresponding 𝑄𝑅 is a valid quantal

response function. We call such functions 𝑞𝑖 generators of generalized Luce models. When quantal

response functions of all players are continuous, by a direct application of the Brouwer’s theorem

we know that the quantal response dynamic has a fixed point, called quantal response equilibrium.

Example 2.3. The graph on the right of Figure 1 depicts the quantal-response dynamic when

both players act according to a generator 𝑞(𝑥) = (𝑥 + (119 +
√
401937)/332)3. The x-axis varies the

probability of the first player taking action 𝑜 using a thick solid line. The second player quantal-

responds, followed by the first player again. The equilibrium is a fixed point of this dynamic, i.e.,

when the line touches or crosses the quadrant’s axis. There are two quantal response equilibria,

𝛿1 (𝑜) ∈ {0.0834, 0.825}1. The induced probability distributions over profiles are depicted in the

tetrahedron on the left in hollow circles.

1
The quantal generator was numerically approximated such that for 𝛿1 (𝑜) = 0.0834 the dynamic touches the quadrant’s

axis without crossing it, resulting in two equilibria instead of three. The generator is not entirely exact, but due to the

concept’s continuity the existence of a close-enough “touching” generator is guaranteed.



2.2 Quantal correlated equilibria
We consider generalized Luce quantal response functions and formulate two representations of

quantal correlated equilibrium. We focus on the standard construction of correlated equilibrium

because the canonical representation does not make sense in case the players are assumed to always

play quantally and are hence incapable of following a single recommended action. First, we assume

the players behave according to their generalized Luce quantal response functions with generators

(𝑞𝑖 )𝑖∈𝑁 after they receive a signal. We call this form of quantal correlated equilibrium the per-signal

equilibrium. Inserting bounded rationality into the model is simple using the standard construction.

Definition 2.4. Let𝐺 = (𝑁,𝐴, 𝑆,𝑢) be a signaling game. The behavioral strategies (𝛽𝑖 )𝑖∈𝑁 , 𝛽𝑖 ∈ 𝐵𝑖
and a signaling scheme 𝜆 ∈ Λ form a per-signal quantal correlated equilibrium (𝑆-QCE) if

𝑢𝑖 (𝑎𝑖 |𝑠𝑖 ) =
∑

𝑎−𝑖 ∈𝐴−𝑖

∑
𝑠−𝑖 ∈𝑆−𝑖

𝜆(𝑠𝑖 , 𝑠−𝑖 )𝛽−𝑖 (𝑎−𝑖 |𝑠−𝑖 )𝑢𝑖 (𝑎𝑖 , 𝑎−𝑖 )

𝛽𝑖 (𝑎𝑖 |𝑠𝑖 ) =
𝑞𝑖 (𝑢𝑖 (𝑎𝑖 |𝑠𝑖 ))∑

𝑎′
𝑖
∈𝐴𝑖

𝑞𝑖 (𝑢𝑖 (𝑎′𝑖 |𝑠𝑖 ))
.

(𝑆-QCE)

Example 2.5. Consider the game in Figure 1, where the first player always receives a single signal

while the second player conditions their strategy on one of two possible signals received with

an equal probability. Both players act using a generator 𝑞(𝑥) = (𝑥 + (119 +
√
401937)/332)3. The

interaction dynamic of a per-signal quantal correlated equilibrium is depicted in the graph on the

right using a thick dashed line, similarly as with the quantal response equilibrium. There are three

per-signal equilibria, for 𝛽1 (𝑜) ∈ {0.0833, 0.233, 0.772}.

In our second formulation, instead of playing quantally for each signal independently, we assume

the players act quantally over the whole set of pure strategies in the extended game. We refer to

this formulation as the over-pure-strategies equilibrium.

Definition 2.6. Let𝐺 = (𝑁,𝐴, 𝑆,𝑢) be a signaling game. The mixed strategies (𝛿𝑖 )𝑖∈𝑁 , 𝛿𝑖 ∈ Δ𝑖 and

a signaling scheme 𝜆 ∈ Λ form an over-pure-strategies quantal correlated equilibrium (Π-QCE) if

𝑢𝑖 (𝜋𝑖 ) =
∑

(𝑎𝑖 ,𝑠𝑖 ) ∈𝜋𝑖

∑
𝜋−𝑖 ∈Π−𝑖

∑
(𝑎−𝑖 ,𝑠−𝑖 ) ∈×𝜋−𝑖

𝜆(𝑠𝑖 , 𝑠−𝑖 )𝛿−𝑖 (𝜋−𝑖 )𝑢𝑖 (𝑎𝑖 , 𝑎−𝑖 )

𝛿𝑖 (𝜋𝑖 ) =
𝑞𝑖 (𝑢𝑖 (𝜋𝑖 ))∑

𝜋 ′
𝑖
∈Π𝑖

𝑞𝑖 (𝑢𝑖 (𝜋 ′𝑖 ))
.

(Π-QCE)

Example 2.7. Figure 1 shows an over-pure-strategies quantal correlated dynamic as well, using a

thick dotted line. Similarly as in S-QCE, we consider a setting with one and two equally possible

signals per player. The game contains a single over-pure-strategies equilibrium for 𝛿1 (𝑜) = 0.0833.f

If we compare both formulations, we realize that while each player selects one distribution

that describes their complete behavior after receiving any signal in formulation (Π-QCE), the
formulation (𝑆-QCE) assumes that players choose the strategy distribution for each signal sepa-

rately. Consequently, after observing a signal, they may act independently on other signals. The

psychological studies show that humans prefer such short-term, delayed heuristic decisions [27]

over long-term, premeditated decisions. This behavior arises especially in conflicts [30] or when

facing information overload caused by large decision space [40]. In the light of that, formulation

(𝑆-QCE) seems more natural then its counterpart (Π-QCE). For this reason, we will prefer the

formulation (𝑆-QCE) in the analysis and when we formulate an algorithm solving it, but the same

approach could be applied also to formulation (Π-QCE).
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Fig. 1. Equilibria in a variant of the Battle of Sexes game. (Middle) Each row of the matrix is labeled by a
strategy of the first player and every column is labeled by a strategy of the second player. The values denote
the utilities of the first and the second player, respectively. (Left) The simplex of correlated equilibria. (Right)
Three quantal dynamics: quantal response, per-signal correlated, and over-pure-strategies correlated. The
players share the same generator 𝑞(𝑥) = (𝑥 + (119 +

√
401937)/332)3, and receive either one or two possible

signals (each with probability 0.5), respectively. Equilibria are the points intersecting the quadrant’s axis.

Still, in both of these formulations, the signaling scheme 𝜆 is assumed to be given and fixed.

We may, however, intend to search for a scheme that is optimal in some sense, as if the signals

constituted an action space of an additional player – a signaler. Possible criteria may include

maximization of social welfare or signaler’s own utility. In case the criterion has a form of function

𝑓 , the formulation under the condition that the players attain quantal correlated equilibrium is:

Definition 2.8. Let𝐺 = (𝑁,𝐴, 𝑆,𝑢) be a signaling game and 𝑓 : Λ×Σ→ R be a criterion function.

The optimal QCE is

max

𝜆∈Λ,𝜎 ∈Σ
𝑓 (𝜆, 𝜎) 𝑠 .𝑡 . 𝜎 ∈ 𝑄𝐶𝐸 (𝜆), (OPT)

where 𝑄𝐶𝐸 (𝜆) refers to the set of quantal correlated equilibria for a given signaling scheme 𝜆 and

Σ is either 𝐵 (for S-QCE) or Δ (for Π-QCE).

The difficulty of this optimization is affected by properties of function 𝑓 as well as the topology

of quantal correlated equilibria. For this reason, we study the quantal correlated equilibria in more

detail in the following section.

3 PROPERTIES OF QUANTAL CORRELATED EQUILIBRIA
In this section we investigate basic properties of quantal correlated equilibria. All proofs are deferred

to the appendix. We begin our analysis by examining the relation to quantal response equilibrium.

Proposition 1. Let 𝐺 = (𝑁,𝐴, 𝑆,𝑢) be a signaling game. Then
(1) the over-pure-strategies quantal correlated equilibrium is a normal-form quantal response

equilibrium in the extended game, and
(2) the per-signal quantal correlated equilibrium is an extensive-form (agent) quantal response

equilibrium in the extended game.
Consequently, both concepts exist for all continuous generators and any signaling scheme 𝜆.

Remark 1. When restricted to playing quantal responses, some mixed or behavioral strategies may

become unavailable. In general, this leads to the failure of Kuhn’s theorem in quantal strategies. In

context of correlated equilibria, some per-signal quantal responses may not have an equivalent

representation as over-pure-strategies quantal responses, or vice versa.



This fact becomes obvious when we examine the graph in Figure 1. Here, the action 𝑜 is never

played with a probability higher than 0.6 in the per-signal response against any viable strategy of

the opponent. In contrast, the same action may be played as a quantal response with 0.6 or higher

probability in over-pure-strategies formulation. As a consequence, the chances of both quantal

correlated equilibria being equivalent (in some sort, e.g., as restrictions) is low. However, there

exist special examples when both responses give rise to the same equilibrial strategy.

Proposition 2. Let 𝐺 = (𝑁,𝐴, 𝑆,𝑢) be a two-player signaling game where |𝑆1 | = 1 and 𝑞2 is
exponential. Then the equilibrium strategies of player 1 in both quantal correlated equilibria coincide.

We clarified how quantal correlated equilibrium may be represented as a quantal response

equilibrium, and outlined when both formulations of quantal correlation result in the same response.

Nowwe examine the other direction: how quantal response equilibrium relates to quantal correlated

equilibrium and when it may be extended into one.

Proposition 3. Let 𝐺 be a normal-form game. Any quantal response equilibrium in 𝐺

(1) may be extended into a per-signal quantal correlated equilibrium laying on a corner of the
signaling simplex; and

(2) is a trivial over-pure-strategies quantal correlated equilibrium with a single signal per player.

Remark 2. When studying the relations between correlated and uncorrelated quantal equilibria,

we may ask if we may relate the number of equilibria for each concept. In some classes of games

(e.g., zero-sum games), the quantal response equilibrium is guaranteed to be unique. Because the

extended game of a zero-sum game is trivially zero-sum as well, and quantal correlation may be

represented as a standard quantal-response interaction by Proposition 1, the quantal correlated

equilibria are also unique. In other classes, the answer remains ambiguous: it is easy to construct

examples with arbitrary ordering of the number of correlated and uncorrelted quantal equilibria.

This fact is also clear when looking at Figure 1. In this game, there is one per-signal quantal

correlated, two quantal response, and three over-pure-strategies quantal correlated equilibria. This

motivates the attempt to characterize the topology of the space of quantal correlated equilibria.

Proposition 4. Let 𝐺 = (𝑁,𝐴, 𝑆,𝑢) be a signaling game and C = {(𝜆,𝑄𝐶𝐸 (𝜆)), 𝜆 ∈ Λ}, where
𝑄𝐶𝐸 is either 𝑆-QCE or Π-QCE. Then C is compact and the correspondence 𝜆 → 𝑄𝐶𝐸 (𝜆) is upper
hemicontinuous. Consequently, if 𝑄𝐶𝐸 (𝜆) is unique for all 𝜆 ∈ Λ, then C is connected.

Example 3.1. Figure 1 shows an example of the correspondence C depicted in gray x-lines. Here,

C is projected on the coordinates corresponding to the probability of observing signal 𝑠1
2
and

probability of playing action 𝑜 in 𝑆 − 𝑄𝐶𝐸 (𝑠1
2
). The graph varies 𝑠1

2
∈ [0, 1] on the x-axis and

depicts three correspondence branches which clearly delineates the projection’s non-convexity

and discontinuity. The full set C could hence never be convex as well.

Searching for sufficient conditions of the concepts’ convexity is difficult, as even obvious, natural

choices of quantal generators, signals or utility functions (e.g., linear generators, 𝑆 = 𝐴 or zero-sum

games) lead to non-convex solutions. Optimizing over the set of signaling schemes is thus difficult

and gradient methods may not reach the maximum even for concave criterion functions. Any

system designer may still benefit from looking for an optimal signaling scheme, as for some criteria
2
,

the maximum is never reached in quantal response equilibrium.

2
We omit trivial examples when the signaler’s criterion depends on the entropy of the signaling scheme or the players’

strategies, which naturally leads to optimal distributions unrelated to quantel response equilibrium.



Proposition 5. Let 𝐺 be a signaling game with positive utilities where each player behaves
according to a quantal response with an exponential generator. Assume that the quantal response
equilibrium in the underlying game is non-uniform and the signaler optimizes their fully rational
expected utility that is always positive and negatively correlated with utilities of all players. Then the
signaler’s utility in quantal response equilibrium is smaller than in other quantal correlated equilibria.

The concepts’ non-convexity brings into question their relation to correlated equilibrium, which,

in contrast, is known to be convex. A classical result from quantal response equilibrium may

be generalized for correlated strategies, describing correlated equilibrium as a limit of quantal

correlated equilibrium with certain parametric generators.

Proposition 6. Let 𝑞𝑝 be a parametric generator continuous in 𝑝 ∈ R with 𝑞𝑝′ ∈ 𝑂 (𝑞𝑝′′) for
any 𝑝 ′ < 𝑝 ′′. Let {𝑝1, 𝑝2, . . . } be a sequence such that lim𝑡→∞ 𝑝𝑡 = ∞, and {𝛽1, 𝛽2, . . . }, 𝛽 𝑗 ∈ 𝐵 be
a sequence of corresponding quantal correlated equilibria with generators 𝑞𝑝𝑡 for a fixed signaling
scheme 𝜆 ∈ Λ. Then 𝛽∗ = lim𝑡→∞ 𝛽𝑡 is a correlated equilibrium for 𝜆.

The convergence of these quantal responses to a best response may be hence seen as a driver of

“convexification” of the solution space. This suggests that optimizing over signaling schemes for

quantal response functions closely resembling best response may yield better results than when

searching for a maximizing scheme with less steep generators. Because an essential step in the

optimization is computing a quantal correlated equilibrium for a given scheme, as a last results in

this section we examine the concepts’ computational complexity.

Proposition 7. Let𝐺 be a signaling game of 𝑛 players and 𝑞1, . . . , 𝑞𝑛 be their respective generators.
Let QCE be the problem of computing a quantal correlated equilibrium in 𝐺 . Then QCE is PPAD-hard.

Now we are ready to move to the introduction of a practical algorithm for computing a quantal

correlated equilibrium.

4 HOMOTOPY METHOD FOR COMPUTING QUANTAL CORRELATED EQUILIBRIA
In this section, we first review the literature on finding quantal response equilibrium. None of

existing algorithms could be adapted for computing (even non-optimal) quantal correlated equi-

librium directly because of two main problems: (i) they focus on the logit generator 𝑞(𝑥) = 𝑒𝛼𝑥 ,

and use its properties nontransferable to other generators in the Luce model; and (ii) they are

able to compute only the normal-form representation of quantal response equilibrium which does

not translate to the per-signal one as in 𝑆-QCE. We hence formulate a novel homotopy method

optimizing quantal correlated equilibrium, making the following contributions: (i) we reformulate

the generalized Luce model to improve robustness, (ii) we employ general product-separating func-

tions to alleviate steepness of quantal generators; and (iii) we simultaneously trace the equilibrium

and gradiently optimize the signaling scheme. We derive the precise algorithm and analyze its

convergence properties.

Several methods have been introduced for computing quantal response equilibrium in different

classes of games. Most of them focus on the logit generator that enables leveraging the unique

correspondence with the Gibbs entropy regularizer [45, 46]. Out of them, only the Karush-Kuhn-

Tucker reformulation of per-player optimization is capable of converging in some general-sum

games [57]. The main limitation of this approach is that the sufficient assumptions of convergence

can not be efficiently verified in practice. Other techniques rely on the structure of (weighted) zero-

sum games and employ a specific Karush-Kuhn-Tucker reformulation of the equilibrial point [39],

laminar regret minimization [21], or smooth Q-learning [38].

To the best of our knowledge, the only method in the literature that does not depend on the

entropy regularization is based on a homotopic approach [25]. The idea of homotopy methods is to



introduce a single-parametric system of (nonlinear) equations with a trivial solution on one end of

the parametric range and the desired, unknown solution on the other. By following a path from the

trivial solution (i.e., by continuously deforming the system from the simple to the complex one)

we approach the desired one. Advantages of homotopy methods include their numerical stability

and potential to be globally convergent. The homotopy for quantal response equilibrium with no

optimization considered was first derived for normal form games with the same logit generator

for all players [55]. Another homotopy for quantal response equilibrium was introduced in [52] in

context of sponsored search auctions, using specific properties thereof. Neither could be used for

quantal correlation because of their strict assumptions about game domains and quantal models.

4.1 Tracing the equilibrial correspondence path
We formulate a novel homotopy method for quantal correlated equilibrium. Contrary to previous

methods for quantal response equilibrium, our method has multiple favorable properties. It applies

to any general-sum game and enables to find even per-signal equilibria, which the other methods

are inadaptable for. The first-order description of tracing promises a better scalability over the

second-order KKT methods
3
. Moreover, each player may use a different generator, not necessarily a

logit one
4
, which enables tailoring the concept to groups of players of different behavioral profiles.

To be able to trace the parametric path, we assume the generators have parametric representations.

Definition 4.1. Let 𝑞 be a generator of a generalized Luce quantal function. We call 𝑞(𝑥, 𝑡) a
parametric representation of 𝑞 in case 𝑞 is differentiable and

𝑞(𝑥, 𝑡 = 0) = 𝑐, 𝑐 ∈ R
𝑞(𝑥, 𝑡 = 1) = 𝑞(𝑥).

Example 4.2. Perhaps the simplest way of creating parametric representations is in terms of

exponentiation. Consider a logit generator 𝑒𝛼𝑥 . One of is possible parametric representations is 𝑒𝛼𝑡𝑥 ,

which is equal to 1 for 𝑡 = 0 and to the generator for 𝑡 = 1. Similarly for a Luce generator (𝑥 +𝐶)𝛼 ,
we may choose a parametric representation (𝑥 +𝐶)𝛼𝑡 . For logarithmic generators, e.g., 𝑙𝑜𝑔(𝛼𝑥 +𝐶),
a possible representation may be 𝑙𝑜𝑔(𝛼𝑥 +𝐶)𝑡 . In all three examples, 𝛼 and𝐶 are suitable constants

such that the resulting generators give rise to valid quantal functions in a given game.

Example 4.3. Another way to construct parametric representations comes from some of the ideas

behind the work of Isaac Newton, and is therefore referred to as newtonian [25]. For any generator

𝑞, the newtonian representation is formulated as

𝑞(𝑥, 𝑡) = 𝑡𝑞(𝑥) + (1 − 𝑡).

Note that newtonian representations are differentiable whenever the original generator function is.

For example, for the logit generator 𝑒𝛼𝑥 the newtonian representation looks as 𝑡𝑒𝛼𝑥 + (1 − 𝑡).

Homotopic function 𝐻 (𝑥, 𝑡) : R𝑚+1 → R𝑚 is then a function with a homotopic parameter 𝑡 ,

such that the system 𝐻 (𝑥, 𝑡) = 0 has a trivial solution for 𝑡 = 0 and the desired solution for 𝑡 = 1.

Motivated by the definition of system (Π-QCE), we define a homotopy function 𝐻 for QCE with

3
For example, the experiments in [39] consider optimization over simple games (rock-paper-scissors, one-card poker, and a

security game) with sequence-form payoff matrices of per-player size at most 16.

4
Traversing the homotopic curve may even correspond to implementing different exploration-exploitation policies, e.g., the

Explore-Then-Exploit [7], with an appropriate parametric representation.



strategy profile 𝛽 and homotopic parameter 𝑡 as

𝐻 (𝛽, 𝑡) =
(
𝐻

𝑘,𝑙
𝑖
(𝛽, 𝑡)

)
𝑖∈𝑁, 𝑎𝑘

𝑖
∈𝐴𝑖 , 𝑠

𝑙
𝑖
∈𝑆𝑖

𝐻
𝑘,𝑙

𝑖 (𝛽, 𝑡) = 𝑞𝑖 (𝑢𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 ), 𝑡) − 𝛽𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 )
∑
𝑎𝑖 ∈𝐴𝑖

𝑞𝑖 (𝑢𝑖 (𝑎𝑖 |𝑠𝑙𝑖 ), 𝑡),

i.e., a reformulation of the second equation in (Π-QCE) with the generators substituted by their

parametric representations. Note that here𝑚 =
∑

𝑖∈𝑁 |𝐴𝑖 | · |𝑆𝑖 |. The solutions are points (𝛽, 𝑡), such
that 𝐻 (𝛽, 𝑡) = 0 – a set of one or more paths – and we aim to trace one of the paths from 𝑡 = 0 to

𝑡 = 1. Clearly, the homotopic system is equivalent to system (Π-QCE) for 𝑡 = 1 by the definition of

parametric representations. Moreover,

Proposition 8. For arbitrary 𝜆, the solution for 𝑡 = 0 is a uniform strategy for each signal.

However, the experiments proved that such a system may become numerically unstable with

paths containing multiple bifurcation points, causing the tracing to significantly slow down or stall.

We hence derive a reformulated system that relies on generalization of two folk techniques that

increase the robustness of the method. First, for each player we choose a single reference action,
denoted as 𝑎0𝑖 , 𝑖 ∈ 𝑁 . For any other action 𝑎

𝑗

𝑖
≠ 𝑎0𝑖 and signal 𝑠𝑖 ∈ 𝑆𝑖 , we have

𝛽𝑖 (𝑎0𝑖 |𝑠𝑖 ) =
𝑞𝑖 (𝑢𝑖 (𝑎0𝑖 |𝑠𝑖 ))∑

𝑎𝑖 ∈𝐴𝑖
𝑞𝑖 (𝑢𝑖 (𝑎𝑖 |𝑠𝑖 ))

, 𝛽𝑖 (𝑎 𝑗𝑖 |𝑠𝑖 ) =
𝑞𝑖 (𝑢𝑖 (𝑎 𝑗𝑖 |𝑠𝑖 ))∑

𝑎𝑖 ∈𝐴𝑖
𝑞𝑖 (𝑢𝑖 (𝑎𝑖 |𝑠𝑖 ))

.

Because both equalities share the same sum

∑
𝑎𝑖 ∈𝐴𝑖

𝑞𝑖 (𝑢𝑖 (𝑎𝑖 |𝑠𝑖 )), we may write

𝛽𝑖 (𝑎0𝑖 |𝑠𝑖 )𝑞𝑖 (𝑢𝑖 (𝑎
𝑗

𝑖
|𝑠𝑖 )) = 𝛽𝑖 (𝑎 𝑗𝑖 |𝑠𝑖 )𝑞𝑖 (𝑢𝑖 (𝑎

0

𝑖 |𝑠𝑖 )) . (★)

This reformulation enables to eliminate numerical errors associated with the sum, which for some

quantal generators may reach extremely high values. On the down side, the 𝛽 values are no longer

normalized by the sum, becoming unbounded. For each signal 𝑠𝑖 ∈ 𝑆𝑖 , we hence enforce that∑
𝑎𝑖 ∈𝐴𝑖

𝛽𝑖 (𝑎𝑖 |𝑠𝑖 ) = 1.

Still, the possible differences in magnitudes of 𝛽 and the effective range of some 𝑞𝑖 ’s result in further

numerical instabilities. To alleviate it, we aim to apply some concave bijective univariate function

𝑓 over Equation (★). To introduce an efficiently implementable change of variables, we require that

𝑓 is a product-separating function, i.e., 𝑓 (𝑥𝑦) = 𝑓2 (𝑓1 (𝑥), 𝑓1 (𝑦)), 𝑥,𝑦 ∈ R and 𝑓1 has an inverse 𝑓 −1
1

.

As an example of 𝑓 , consider 𝑓 (𝑥) = 𝑥1/𝑐 , 𝑐 > 1 with 𝑓1 = 𝑓 and 𝑓2 being a product of its arguments.

Similarly, we could have 𝑓 = 𝑙𝑜𝑔, with 𝑓1 = 𝑓 and 𝑓2 being a sum. Applying 𝑓 to Equation (★) then

motivates a substitution of variables 𝛾 = 𝑓1 (𝛽) and the resulting homotopy is formulated as

𝐻 (𝛾, 𝑡) =
(
𝐻

𝑘,𝑙
𝑖
(𝛾, 𝑡)

)
𝑖∈𝑁, 𝑎𝑘

𝑖
∈𝐴𝑖 , 𝑠

𝑙
𝑖
∈𝑆𝑖

𝐻
𝑘,𝑙
𝑖
(𝛾, 𝑡) = 𝑓2 (𝑓1 (𝑞𝑖 (𝑢𝑖 (𝑎0𝑖 |𝑠𝑙𝑖 ), 𝑡)), 𝛾𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 )) − 𝑓2 (𝑓1 (𝑞𝑖 (𝑢𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 ), 𝑡)), 𝛾𝑖 (𝑎0𝑖 |𝑠𝑙𝑖 ))

𝐻
0,𝑙
𝑖
(𝛾, 𝑡) =

∑
𝑎𝑘
𝑖
∈𝐴𝑖

𝑓 −1
1
(𝛾𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 )) − 1.

Because 𝐻 is a reformulation of system 𝐻 , a simple modification of Proposition 8 remains true

and the solution for 𝑡 = 0 is trivially 𝛾𝑡=0𝑖 (𝑎𝑖 |𝑠𝑖 ) = 𝑓1 (1/|𝐴𝑖 |). To efficiently trace the path from this

initial solution, we have to account for the possibility that a branch we follow is not monotonic

in 𝑡 . The pairs (𝛾, 𝑡) are hence parameterized by 𝑝 , i.e., the homotopy will compute a parametric



path 𝑐 (𝑝) = (𝛾 (𝑝), 𝑡 (𝑝)), where 𝑝 is interpreted as the arclength along the path. As the following

theorem shows, such path exists and is unique.

Theorem 4.4 ([1]). Let𝐻 : R𝑚+1 → R𝑚 be a smooth homotopic map. Let𝑢0 ∈ R𝑚+1 be a point such
that𝐻 (𝑢0) = 0 and the Jacobian matrix𝐻 ′(𝑢0) has maximum rank. Then there exists a unique smooth
curve 𝑝 ∈ 𝐽 → 𝑐 (𝑝) ∈ R𝑚+1 which satisfies 𝑐 (0) = 𝑢0 and 𝐻 (𝑐 (𝑝)) = 0 for 𝑝 in some open interval 𝐽
containing zero, such that for all 𝑝 ∈ 𝐽 , the tangent 𝑐 ′(𝑝) is smoothly induced by the Jacobian matrix
𝐻 ′(𝑐 (𝑝)) and satisfies the following three conditions:

(1) 𝐻 ′(𝑐 (𝑠))𝑐 ′(𝑠) = 0, (2) ∥𝑐 (𝑠)∥ = 1, (3) 𝑑𝑒𝑡
(
𝐻 ′(𝑐 (𝑝))
𝑐 ′(𝑝)

)
> 0.

As a consequence of Theorem 4.4, the curve 𝑐 associated with the quantal correlated equilibrium

homotopy may be regarded as a local solution of an initial value problem:

(𝑖) (𝛾 (𝑝), 𝑡 (𝑝)) ′ = 𝑐 ′(𝐻 ′(𝛾 (𝑝), 𝑡 (𝑝))), (𝑖𝑖) (𝛾 (0), 𝑡 (0)) = (𝛾𝑡=0, 0),

where we abuse the notation a little and write 𝑐 ′ as the tangent vector depending on the Jacobian

matrix for a given value of 𝑝 . Therefore, we may use any method suitable for solving initial value

problems to trace 𝑐 . The literature recommends to use predictor-corrector continuation methods

that better exploit the contraceptive properties of 𝑐 with respect to the Newton-type iterative

methods than general initial value problem solvers [1], and we will hence focus on them.

The standard predictor-corrector works in iterations, starting from the initial point (𝛾𝑡=0, 0). As
the name suggests, in each iteration 𝜄 it is given a point (𝛾, 𝑡)𝜄 on (or close to) the curve 𝑐 and it

performs two steps: the prediction and the correction. Most commonly, the Euler predictor is used
5
,

and it estimates the next point (𝛾, 𝑡)𝜄+1 on the path using the current point and the step-size ℎ as

(𝛾, 𝑡)𝜄+1 ← (𝛾, 𝑡)𝜄 + ℎ𝑐 ′(𝐻 ′((𝛾, 𝑡)𝜄)).

Because the prediction often lies further from the curve, the correction step serves to refine it.

To this end, we employ the Gauss-Newton correction method because under mild assumptions it

guarantees an existence of a neighborhood of (𝛾, 𝑡)𝜄+1 such that successively applying the method

to (𝛾, 𝑡)𝜄+1 converges to a point (𝛾, 𝑡)𝜄+1 laying on the curve [9]. The Gauss-Newton method is

formally defined as

(𝛾, 𝑡)𝜄+1 ← (𝛾, 𝑡)𝜄+1 − 𝐻 ′((𝛾, 𝑡)𝜄+1)+𝐻 ((𝛾, 𝑡)𝜄+1),
where

+
denotes the Moore-Penrose inverse. Once a distance to the curve becomes sufficiently

small, we set (𝛾, 𝑡)𝜄+1 ← (𝛾, 𝑡)𝜄+1. It also pays off to update the steplenght ℎ accordingly during

iterations when 𝑐 becomes more linear (or conversely, more curvy) to speed up the convergence.

For this purpose, we use a simple ℎ-adaptation by asymptotic expansion that updates ℎ according

to a contraction rate of two consecutive corrector runs and we switch to Newton adaptation when

reaching 𝑡 = 1 [26]. The predictor-corrector terminates when 𝑡 𝜄 attains a value close enough to 1.

As evident from the description, the efficiency of running the algorithm relies on the ability to

compute the curve tangent 𝑐 ′ and the Moore-Penrose inverse of the Jacobian matrix. Fortunately,

both may be computed from QR factorization of the transposed matrix 𝐻 ′⊤ [1, 9]. QR factorization

represents 𝐻 ′⊤ ∈ R𝑚,𝑚+1
as 𝐻 ′⊤ = 𝑄

(
𝑅

0

)
, where 𝑄 ∈ R𝑚+1,𝑚+1 is an orthogonal matrix and

𝑅 ∈ R𝑚,𝑚
is a non-singular upper triangular matrix. A notable advantage of QR factorization is its

5
Our experiments with lower-degree Runge-Kutta methods yielded similar results.



ALGORITHM 1: Predictor-corrector method for quantal correlated equilibrium

Input: 𝐻, (𝛾, 𝑡) such that 𝐻 ((𝛾, 𝑡)) = 0, 𝜄

Parameters: ℎ,ℎ, 𝜄𝑔𝑛, 𝜖, 𝜖, 𝜖𝑡 , 𝑎𝜅 , 𝑎𝑓 , 𝑎𝜂
𝜄 ← 0

while 𝑡 < (1 + 𝜖𝑡 ) and 𝜄 < 𝜄 do
𝐻 ′ ← 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛(𝛾, 𝑡)
𝑄, 𝑅 ← 𝑄𝑅(𝐻 ′)
(𝛾, 𝑡) ← 𝐸𝑢𝑙𝑒𝑟 ((𝛾, 𝑡), 𝑄, 𝑅)
𝑎𝑐𝑐𝑒𝑝𝑡 ← 𝑇𝑟𝑢𝑒, 𝜄𝑔𝑛 ← 0, 𝑓 ← 1/𝑎𝑓 , ∥𝑐 | (𝛾, 𝑡)∥ ← ∞
while ∥𝑐 | (𝛾, 𝑡)∥ > 𝜖𝑐 do // check distance from the curve

(𝛾, 𝑡) ← 𝐺𝑎𝑢𝑠𝑠𝑁𝑒𝑤𝑡𝑜𝑛((𝛾, 𝑡), 𝑄, 𝑅), 𝜄𝑔𝑛 ← 𝜄𝑔𝑛 + 1
ℎ, ∥𝑐 | (𝛾, 𝑡)∥ , 𝑓 , 𝑎𝑐𝑐𝑒𝑝𝑡, 𝑛𝑒𝑤𝑡𝑜𝑛 ←
𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑡𝑒𝑝 (ℎ, 𝜄𝑔𝑛, 𝑓 , (𝛾, 𝑡), (𝛾, 𝑡), ∥𝑐 | (𝛾, 𝑡)∥ , 𝜖, 𝜖, 𝑎𝜅 , 𝑎𝑓 , 𝑎𝜂 , 𝑛𝑒𝑤𝑡𝑜𝑛)
if ∥𝑐 | (𝛾, 𝑡)∥ > 𝜖𝑐 or 𝜄𝑔𝑛 > 𝜄𝑔𝑛 then 𝑎𝑐𝑐𝑒𝑝𝑡 ← 𝐹𝑎𝑙𝑠𝑒

if not accept then break

end
if 𝑎𝑐𝑐𝑒𝑝𝑡 then (𝛾, 𝑡) ← (𝛾, 𝑡), 𝜄 ← 𝜄 + 1 else ℎ ← ℎ/𝑎𝑓

end
return (𝛾, 𝑡)

numerical stability. Let 𝑧 denote the last column of 𝑄 , then the tangent and the Moore-Penrose

inverse may be obtained as

𝑐 ′ = 𝑠𝑔𝑛(𝑑𝑒𝑡 (𝑄)𝑑𝑒𝑡 (𝑅))𝑧, 𝐻 ′+ = 𝑄

(
𝑅⊤−1

0

)
.

The matrix 𝑅⊤ is not inverted in practice as calculating 𝑤 = 𝐻 ′+𝑏 is typically done by forward

solving 𝑅⊤𝑦 = 𝑏. It remains to show how the Jacobian matrix of the homotopic system for quantal

correlated equilibrium looks like. Let us first consider the derivatives of (𝐻𝑘,𝑙
𝑖
)𝑖∈𝑁, 𝑎𝑘

𝑖
∈𝐴𝑖 ,𝑘>0, 𝑠

𝑙
𝑖
∈𝑆𝑖

with respect to 𝛾 and 𝑡 .

𝜕𝐻
𝑘,𝑙
𝑖

𝜕𝛾𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 )
=

𝜕𝑓2 (𝑓1 (𝑞𝑖 (𝑢𝑖 (𝑎0𝑖 |𝑠𝑙𝑖 ), 𝑡)), 𝛾𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 ))
𝜕𝛾𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 )

𝜕𝐻
𝑘,𝑙
𝑖

𝜕𝛾𝑖 (𝑎0𝑖 |𝑠𝑙𝑖 )
= −

𝜕𝑓2 (𝑓1 (𝑞𝑖 (𝑢𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 ), 𝑡)), 𝛾𝑖 (𝑎0𝑖 |𝑠𝑙𝑖 ))
𝜕𝛾𝑖 (𝑎0𝑖 |𝑠𝑙𝑖 )

𝜕𝐻
𝑘,𝑙
𝑖

𝜕𝛾𝑖′ (𝑎 𝑗
′

𝑖′ |𝑠𝑙
′
𝑖′ )

=
𝜕𝑓2 (𝑓1 (𝑞𝑖 (𝑢𝑖 (𝑎0𝑖 |𝑠𝑙𝑖 ), 𝑡)), 𝛾𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 ))

𝜕𝑓1 (𝑞𝑖 (𝑢𝑖 (𝑎0𝑖 |𝑠𝑙𝑖 ), 𝑡))
𝜕𝑓1 (𝑞𝑖 (𝑢𝑖 (𝑎0𝑖 |𝑠𝑙𝑖 ), 𝑡))
𝜕𝑞𝑖 (𝑢𝑖 (𝑎0𝑖 |𝑠𝑙𝑖 ), 𝑡))

𝜕𝑞𝑖 (𝑢𝑖 (𝑎0𝑖 |𝑠𝑙𝑖 ), 𝑡)
𝜕𝑢𝑖 (𝑎0𝑖 |𝑠𝑙𝑖 )

𝜕𝑢𝑖 (𝑎0𝑖 |𝑠𝑙𝑖 )
𝜕𝛾𝑖′ (𝑎 𝑗

′

𝑖′ |𝑠𝑙
′
𝑖′ )

−
𝜕𝑓2 (𝑓1 (𝑞𝑖 (𝑢𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 ), 𝑡)), 𝛾𝑖 (𝑎0𝑖 |𝑠𝑙𝑖 ))

𝜕𝑓1 (𝑞𝑖 (𝑢𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 ), 𝑡))
𝜕𝑓1 (𝑞𝑖 (𝑢𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 ), 𝑡))
𝜕𝑞𝑖 (𝑢𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 ), 𝑡))

𝜕𝑞𝑖 (𝑢𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 ), 𝑡)
𝜕𝑢𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 )

𝜕𝑢𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 )
𝜕𝛾𝑖′ (𝑎 𝑗

′

𝑖′ |𝑠𝑙
′
𝑖′ )

𝜕𝐻
𝑘,𝑙
𝑖

𝜕𝑡
=

𝜕𝑓2 (𝑓1 (𝑞𝑖 (𝑢𝑖 (𝑎0𝑖 |𝑠𝑙𝑖 ), 𝑡)), 𝛾𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 ))
𝜕𝑓1 (𝑞𝑖 (𝑢𝑖 (𝑎0𝑖 |𝑠𝑙𝑖 ), 𝑡))

𝜕𝑓1 (𝑞𝑖 (𝑢𝑖 (𝑎0𝑖 |𝑠𝑙𝑖 ), 𝑡))
𝜕𝑞𝑖 (𝑢𝑖 (𝑎0𝑖 |𝑠𝑙𝑖 ), 𝑡))

𝜕𝑞𝑖 (𝑢𝑖 (𝑎0𝑖 |𝑠𝑙𝑖 ), 𝑡)
𝜕𝑡

−
𝜕𝑓2 (𝑓1 (𝑞𝑖 (𝑢𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 ), 𝑡)), 𝛾𝑖 (𝑎0𝑖 |𝑠𝑙𝑖 ))

𝜕𝑓1 (𝑞𝑖 (𝑢𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 ), 𝑡))
𝜕𝑓1 (𝑞𝑖 (𝑢𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 ), 𝑡))
𝜕𝑞𝑖 (𝑢𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 ), 𝑡))

𝜕𝑞𝑖 (𝑢𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 ), 𝑡)
𝜕𝑡

,



where 𝑖 ′ ≠ 𝑖 and for any 𝑘 , including 0,

𝜕𝑢𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 )
𝜕𝛾𝑖′ (𝑎𝑘

′
𝑖′ |𝑠𝑙

′
𝑖′ )

=
∑

𝑎−𝑖 ∈𝐴−𝑖
𝑎𝑘
′

𝑖′ ∈𝑎−𝑖

∑
𝑠−𝑖 ∈𝑆−𝑖
𝑠𝑙
′
𝑖′ ∈𝑠−𝑖

𝜆(𝑠𝑖 , 𝑠−𝑖 )𝑢𝑖 (𝑎𝑘𝑖 , 𝑎−𝑖 )
𝜕𝑓 −1

1
(𝛾𝑖′ (𝑎𝑘

′
𝑖′ |𝑠𝑙

′
𝑖′ ))

𝜕𝛾𝑖′ (𝑎𝑘
′

𝑖′ |𝑠𝑙
′
𝑖′ )

∏
𝑗 ∈−𝑖\𝑖′

𝑎 𝑗 ∈𝑎−𝑖 ,𝑠 𝑗 ∈𝑠−𝑖

𝑓 −1
1
(𝛾 𝑗 (𝑎 𝑗 |𝑠 𝑗 )) .

All other derivatives are equal to zero. Nowwe turn to the description of derivatives of (𝐻 0,𝑙
𝑖
)𝑖∈𝑁, 𝑠𝑙

𝑖
∈𝑆𝑖 ,

which are non-zero only in the case of

𝜕𝐻
0,𝑙
𝑖

𝜕𝛾𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 )
=

𝜕𝑓 −1
1
(𝛾𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 ))

𝜕𝛾𝑖 (𝑎𝑘𝑖 |𝑠𝑙𝑖 )
.

The whole algorithm for computing quantal correlated equilibrium is depicted in Algorithm 1.

Here, ℎ is the initial stepleght with ℎ being its minimum value, and 𝜄𝑔𝑛 is a maximum number

of iterations of the Gauss-Newton method. 𝜖 and 𝜖 are minimum and maximum distances from

the curve, respectively, and 𝜖𝑡 is the termination distance of 𝑡 from 1. 𝑎𝜅 , 𝑎𝑓 , 𝑎𝜂 are the maximum

contraction, maximum decelaration, and perturbation parameters of the step adaptation. The full

description and pseudocode of the steplength update algorithm can be found in the appendix.

Remark 3. The predictor-corrector method may potentially diverge because of the Jacobian un-

boundedness. Contrary to general sequential games [56], computing Jacobian of the homotopy of

quantal correlated equilibrium does not require normalization of opponents’ strategies because

the probability of observing a signal depends only on the signaling scheme. As a consequence,

whenever 𝑓1, 𝑓2 and 𝑞𝑖 ’s have bounded derivatives on their respective domains in the signaling

game, then the Jacobian is bounded. All 𝑓1, 𝑓2 and 𝑞𝑖 ’s considered in this work satisfy this condition.

4.2 Finding locally optimal signaling scheme
There may be multiple curves spanning across the solution space of the system 𝐻 (𝛾, 𝑡) = 0. They

may start and end at various points, some may be short and defined only over a subdomain of

𝑡 , or entirely disconnected from others. In the previous section, we described how to traverse a

specific, unique branch that starts with uniform behavioral strategies (i.e., a centroid of the strategy

simplex) and gradually approaches the quantal correlated equilibrium for a given signaling scheme

and quantal generators, moving across the whole domain of 𝑡 . In the literature, this branch is

commonly referred to as the principal branch [28, 52, 55]
6
. When interpreted in terms of learning,

traveling along this path corresponds to a process when independent agents continuously explore

and exploit an environment that is unknown to them [38]. The exact same path is taken also by

replicator dynamic, a standard algorithm of evolutionary game theory [55].

Since the principal branch is unique, for a given 𝜆 and 𝑝 , we have a unique equilibrium 𝛽𝑝 (𝜆), i.e.,
the equilibrium may be seen as a function of the signaling scheme and the homotopic parameter

(or just the homotopic parameter in case of the quantal response equilibrium). Because of this

correspondence and the branch’s significance, it is often chosen as a domain to optimize over

when selecting an optimal quantal response equilibrium, e.g., in auction parameter estimation in

sponsored search auctions [52] or subrationality estimation for general normal-form games [42].

Such optimization considers a fixed homotopy function and a criterion that seeks an optimal point

on the homotopy’s principal branch. As such, it is well suited for descriptive applications such as

maximal-likelihood estimations from real-world data. For quantal correlated equilibrium, a better

6
More specifically, for quantal functions that approach best response, the corresponding quantal response equilibrium

approximates a unique limiting Nash equilibrium on the principal branch.



ALGORITHM 2: Gradient optimization of signaling scheme and equilibrium tracing

Input: 𝜆, (𝛾, 𝑡), 𝐻 such that 𝐻 ((𝛾, 𝑡)) = 0

Parameters: 𝜂, 𝜂,Δ𝑎,Δ𝑟 , 𝜄 // + parameters of the predictor-corrector

while 𝑡 < (1 + 𝜖𝑡 ) do
(𝛾, 𝑡) ← 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 −𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑜𝑟 (𝐻, (𝛾, 𝑡), 𝜄), 𝑓 ′(𝜆, 𝑓 −1

1
(𝛾)) ← 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑠 (𝑓 (𝜆, 𝑓 −1

1
(𝛾)))

𝐻, 𝜆 ← 𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝐴𝑠𝑐𝑒𝑛𝑡 (𝜆, 𝜂, 𝑓 ′(𝜆, 𝑓 −1
1
(𝛾)))

𝑄, 𝑅 = 𝑄𝑅(𝐻 ′⊤)
𝑎𝑐𝑐𝑒𝑝𝑡 ← 𝑇𝑟𝑢𝑒, 𝜄 ← 0

while



𝐻 ′((𝛾, 𝑡))+𝐻 ((𝛾, 𝑡))


 > 𝜖𝑐 do

𝜄 ← 𝜄 + 1
(𝛾, 𝑡) ← 𝐺𝑎𝑢𝑠𝑠𝑁𝑒𝑤𝑡𝑜𝑛((𝛾, 𝑡), 𝑄, 𝑅)
if




𝐻 ′((𝛾, 𝑡))+𝐻 ((𝛾, 𝑡))


 > 𝜖𝑚𝑎𝑥
𝑐 or 𝜄 > 𝜄 then 𝑎𝑐𝑐𝑒𝑝𝑡 ← 𝐹𝑎𝑙𝑠𝑒, break

end
if 𝑎𝑐𝑐𝑒𝑝𝑡 then (𝛾, 𝑡) ← (𝛾, 𝑡), 𝜆 ← 𝜆, 𝐻 ← 𝐻

if 𝑎𝑐𝑐𝑒𝑝𝑡 then 𝜂 ← max(𝜂,Δ𝑎 · 𝜂) else 𝜂 ← Δ𝑟 · 𝜂
end

suited optimization is the earlier mentioned formulation OPT:

max

𝜆∈Λ,𝛽∈𝐵
𝑓 (𝜆, 𝛽) 𝑠 .𝑡 . 𝛽 ∈ 𝑆 −𝑄𝐶𝐸 (𝜆).

This formulation may be interpreted as a search for an optimal signaling scheme and hence offers

prescriptive applications rather than descriptive ones as in the case of parameter estimations. For

this purpose, we do not include the signaling scheme in the definition of the homotopy for quantal

correlated equilibrium, even though it would be possible. Instead, our aim is to purposefully optimize

over the space of signaling schemes, i.e., changing the scheme is a part of the optimization process,

not the homotopical traversal. Both approaches may also be conveniently combined, e.g., by finding

the parameters of quantal generators first and consequently designing an optimal set of signals.

For optimizing formulation (OPT) we consider using gradient-based techniques that rely on

computing the gradient

𝑓 ′(𝜆, 𝛽𝑝 (𝜆)) =
𝜕𝑓 (𝜆, 𝛽𝑝 (𝜆))

𝜕𝜆
+ 𝛽 ′𝑝 (𝜆)⊤

𝜕𝑓 (𝜆, 𝛽𝑝 (𝜆))
𝜕𝛽𝑝

.

While the derivatives of the criterion function are easy to compute, the most challenging part is to

estimate how the equilibrium shifts when we change the signaling scheme 𝜆, i.e., to compute 𝛽 ′𝑝 (𝜆).
To this end, wemay use the homotopymethod, because in case we remember the internediate results

in the Gauss-Newton method, each step of the predictor-corrector method is differentiable with

respect to the signaling scheme. By differentiating through the homotopy we hence approximate

the gradient 𝛽 ′𝑝 (𝜆). The gradient is then used to perform a gradient ascent step projected on Λ as

𝜆𝜄+1 ← 𝑃Λ
(
𝜆𝜄 + 𝜂𝑓 ′(𝜆, 𝛽𝑝 (𝜆))

)
,

where 𝑃Λ denotes the projection and 𝜂 is the learning rate. In practice, we do not compute the

gradient from the whole homotopy run, as this proved to be excessively slow. Instead, we compute

the gradient 𝛽 ′𝑝𝜄→𝑝𝜄+1 (𝜆) and perform the gradient-ascent steps simultaneously with the homotopy

traversal. In doing so, we perform a process akin to simulated annealing, which increases our

chances of converging to a global optimum. The downside of this approach is that our homotopy

continuously changes midway, affecting the shape of the principal branch. As a consequence,



after each update of the signaling scheme, we have to refine the current point (𝛾, 𝑡) with respect

to the changed curve. To this end, we may use the Gauss-Newton method again. The entire

optimization procedure is depicted in Algorithm 2. The algorithm is given an initial learning rate 𝜂

and its minimum value 𝜂. After every iteration of the 𝜆 update, we perform an 𝜂-adaptation step

using parameters Δ𝑎,Δ𝑟 , both strictly smaller than 1. The parameter 𝜄 then controls the number

of predictor-corrector iterations performed. Note that in this context, the learning rate may be

regarded as serving a similar purpose as steplength ℎ in the homotopic predictor. Fortunately, we

are still able to guarantee the existence of a neighborhood such that the Gauss-Newton method

converges to a point on the changed curve.

Proposition 9. Let Λ → (𝐻 : R𝑚+1 → R𝑚) be a correspondence of signaling schemes Λ to
smooth homotopic functions, where each 𝐻 has zero as a regular value. Let 𝑓 : Λ × Δ → R be
a smooth function with bounded derivatives. Then for each 𝜆 ∈ Λ, 𝑝 ∈ 𝐽 , defined as in Theorem
4.4, (𝛽 (𝑝), 𝑡 (𝑝)) : 𝐻𝜆 ((𝛽 (𝑝), 𝑡 (𝑝))) = 0, there exists sufficiently small 𝜂 such that a Gauss-Newton
sequence {N 𝑖 ((𝛽, 𝑡))}∞𝑖=0 converges to a point (𝛽 ′, 𝑡 ′) : 𝐻𝜆′ ((𝛽 ′, 𝑡 ′)) = 0, 𝜆′ = 𝑃Λ (𝜆 + 𝜂𝑓 ′(𝜆, 𝛽 (𝑝))).

Nowwe turn to the question of optimality of the found solution. Proposition 4 claims that the set of

quantal correlated equilibria is compact and connected, but according to our empirical observations,

the concept is hardly ever convex. Consequently, even if the criterion is concave, reaching a

global maximum can not be guaranteed. Despite this fact, the experimental results presented in

the following section show that the algorithm is often able to reach close-to-optimal solutions.

Moreover, note that because of compactness, convergence to local optima is still guaranteed.

5 EMPIRICAL EVALUATION
We turn to the demonstration of the performance of the homotopy algorithm for quantal correlated

equilibrium. We evaluate it using two metrics: (i) the runtime of the algorithm, and (ii) the quality

of the found solutions. For both, we employ the BARON solver as a baseline to compare to. BARON

is a commercial optimization solver for solving non-convex problems to global optimality, and is

consistently regarded as the fastest and most robust solver
7
. In contrast, our implementation of

the homotopy algorithm serves merely as a proof of concept and is done in Python 3 using the

PyTorch library for computing the necessary gradients.

The implementation of Algoritm 1 is based on a general homotopy scheme described in [1] in

Appendix P3 which is further used also in Gambit Library’s quantal response equilibrium solver [42].

We set the parameters as ℎ = 0.35, ℎ = 10
−8, 𝜄𝑔𝑛 = 100, 𝜖 = 10

−4, 𝜖 = 0.8, 𝜖𝑡 = 10
−4, 𝑎𝜅 = 0.8, 𝑎𝑓 =

0.8, 𝑎𝜂 = 0.1, 𝜂 = 0.8, 𝜂 = 10
−5,Δ𝑎 = 0.99,Δ𝑟 = 0.9, and 𝜄 = 10. The initial 𝜆 was sampled uniformly

randomly from the set of distributions over signal profiles. All experiments were performed on a

computer with processor Intel(R) Xeon(R) W-2235 running at 3.80GHz, and 32GB RAM.

5.1 Experimental domains and their instance generation
The algorithm is domain-independent, and we use two domains to evaluate its performance. The

first domain are randomly generated games which serve to capture the expected performance of the

algorithm over various classes of games with arbitrary utility structures. Since larger randomly

generated games may exhibit undesired properties (e.g., in Stackelberg games it may be easier to

solve a random game than a game with specific structure), we evaluate the algorithm also on a

more structured domain. For this purpose we employ games inspired by supply-chain decision

making and suppliers-retailers interaction. Full formal description of both games is in the appendix.

7
According to results published at http://plato.asu.edu/ftp/minlp.html.

http://plato.asu.edu/ftp/minlp.html


5.1.1 Randomly generated normal-form games. We construct general-sum games with action spaces

of different sizes for each player. When searching for an optimal signaling scheme, we consider

two criteria: one linear and one quadratic. As the linear objective, we opt for social welfare8 – a

maximization of a sum of players’ utilities – formally defined as

𝑤𝑒𝑙 𝑓 𝑎𝑟𝑒 (𝛽) =
∑
𝑖∈𝑁

∑
𝑎𝑖 ∈𝐴𝑖

∑
𝑠𝑖 ∈𝑆𝑖

𝛽𝑖 (𝑎𝑖 |𝑠𝑖 )𝑢𝑖 (𝑎𝑖 |𝑠𝑖 ).

The quadratic objective is a variant of Gini index – we aim to minimize absolute differences in

players’ utilities, formally:

𝑔𝑖𝑛𝑖 (𝛽) =
∑
𝑖∈𝑁

(
𝑤𝑒𝑙 𝑓 𝑎𝑟𝑒 (𝛽)
|𝑁 | −

∑
𝑎𝑖 ∈𝐴𝑖

∑
𝑠𝑖 ∈𝑆𝑖

𝛽𝑖 (𝑎𝑖 |𝑠𝑖 )𝑢𝑖 (𝑎𝑖 |𝑠𝑖 )
)
2

.

We consider four different generators of generalized Luce models of quantal response functions:

linear generator 𝑞(𝑥) = 𝑥 +𝐶 , quadratic generator 𝑞(𝑥) = (𝑥 +𝐶)2, logarithmic generator 𝑞(𝑥) =
log(𝑥 + 𝐶) and exponential generator 𝑞(𝑥) = 𝑒𝑥 . We set 𝐶 appropriately to ensure the induced

quantal response functions are valid. The algorithm is capable of handling settings when each

player has a different generator, and we verified that computing a quantal correlated equilibrium

with various combinations of generators does not pose any unforeseen computational challenges.

For the simplicity of presenting the results of the experiments, we focus on setting when all players

share the generator of the same kind. For each generator we employ its newtonian representation,

as it proved to be the most robust in our initial exploration of the algorithm’s settings. For the

chosen utility range, setting 𝑓1 (𝑥) = 𝑥 and 𝑓2 (𝑥,𝑦) = 𝑥𝑦 is sufficient.

5.1.2 Supply chain games. In this game, the suppliers 𝑃 choose a warehouse ℎ ∈ 𝐻 to store

a raw material, while the retailers 𝑅 choose a place 𝑓 ∈ 𝐹 to manufacture a good to sell at a

market. Formally, each storage place is capable of storing one unit of a fixed raw material, and

each manufacture produces one unit of a good from a fixed set of materials. Warehouses and

manufactures are divided into mutually exclusive territories, and manufactures placed in a given

territory are assumed to buy raw materials from the warehouses situated in the same territory

exclusively. There are costs associated with running a supplier business: obtaining the raw material,

shipping it to a warehouse and using the warehouse; and the profit stems from selling it to the

nearby retailer. Similarly, the retailers have to pay for obtaining the raw materials and running the

manufacture; and they profit from selling the good. The costs and prices are driven by the local

market in the territory: we assume the warehouses are rented and the more suppliers decide to

use the storage, the higher the price for usage. Similarly, the price of a raw material fluctuates

depending on the supply and demand. We assume there exists a central governing authority that

aims to maintain a certain number of manufactures operational in each territory, specified by a

function 𝑡 : 𝐹 → N, such that∑𝑓 ∈𝐹 𝑡 (𝑓 ) = |𝑅 |. An optimal signaling scheme should hence minimize

the deviation from this assignment, which is formally expressed as

∑
𝑓 ∈𝐹

©­­­«𝑡 (𝑓 ) −
∑
𝑟 ∈𝑅

𝜏ℎ𝑓 (𝑓 ) ∈𝜏𝑠𝑟 (𝑟 )

∑
𝑠𝑟 ∈𝑆𝑟

𝛽𝑟 (𝑓 |𝑠𝑟 )
∑

𝑠−𝑟 ∈𝑆−𝑟
𝜆(𝑠𝑟 , 𝑠−𝑟 )

ª®®®¬
2

,

where functions 𝜏 identify a territory where a manufacture is located or the retailer is licensed

to operate, respectively, described in detail in the appendix. Similarly as in randomly generated

8
We considered also another linear objective, a “Stackelberg-like” setting in which a selected player’s utility is optimized,

and we obtained comparable results in term of both scalability and quality of solutions.
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Fig. 2. Mean runtimes of computing (𝑆-QCE) with fixed 𝜆 using BARON and the homotopy algorithm in
(Top) randomly generated games and (Bottom) supply chain games. Every point shows also a standard error.

normal-form games, we assume that all players share the generator of the same kind and we use its

corresponding exponential representation as it outperformed the newtonian in this domain. We set

𝑓1 (𝑥) = 𝑥 , 𝑓2 (𝑥,𝑦) = 𝑥𝑦. The supply-chain game may be conveniently modeled as an action-graph

game, and as such, the expected utilities of its strategy profiles can be computed in polynomial

time using a trie-based algorithm [32].

5.2 Experimental results
For each domain, we tested three settings defined by a number of players, number of signals, and

in case of the supply chain game also by a number of materials. First setting is used for principle

branch tracing only, the second for comparing the quality of optimization on smaller games, and the

third for optimization beyond BARON’s capabilities. Each domain has one parameter controlling a

game’s size used to illustrate scalability. For randomly generated games it is a number of actions per

player, while in supply chain games it is a number of territories in the game. For each combination

of setting × game size × generator function, we constructed 10 game instances per domain.

First, we access the algorithms’ capability to reach quantal correlated equilibrium with fixed sig-

naling scheme. For the homotopy this corresponds to how fast it is able to move along the principal

branch. In the second part, we present results of searching for a signaling scheme optimizing a

given criterion over the set of quantal correlated equilibria.

5.2.1 Computing quantal correlated equilibrium. The upper line of Figure 2 shows the results

achieved in randomly generated games. We consider three-player games with 2 signals per player.

The x-axis varies the number of actions of the first two players (the third player makes only

binary decisions), while the y-axis shows the runtimes of the algorithms. Every point in the graphs

corresponds to the mean over the sampled instances and shows the achieved standard error. We

terminated all still running seeds after 45m. As the graphs show, despite the overhead of the

homotopic algorithm on smaller instances, it scales better than BARON as the game size increases.

The results on supply chain games are depicted in the bottom line of Figure 2. We assume there

are 3 suppliers, 2 retailers and 2 materials. Each retailer receives 1 of 2 possible signals, while the

suppliers observe only a single trivial signal. The graphs follow the same format as in randomly



generated games, and we observe a similar behavior. However, the difference in scalability is even

more profound. Formally, the algorithmminimizes a function |𝑡−1| for ((𝛽, 𝑡), 𝜆) along the principal
branch, using a Newton-type steplength adaptation that guarantees superlinear convergence [6].

The same convergence holds also for other special points of interest on the branch, i.e., zero or

extremal points of a smooth functional 𝑐 (𝑝) → R. We may hence expect similar scalability as

presented here also for other criteria, e.g., maximum likelihood estimation along the path.

5.2.2 Finding optimal signaling scheme. The runtimes and relative errors of solutions computed

while optimizing a signaling scheme in randomly generated games are presented in tables on the

left in Figures 3 (maximizing social welfare) and 4 (minimizing Gini index). We consider small

two-player square games where the first player has 2 signals while the second player receives

only a single trivial signal, otherwise BARON would not scale beyond the smallest games. Each

table shows mean runtimes of both algorithms and deviations Δ that correspond to the mean

difference in the solutions’ criteria values computed using the homotopy and BARON. The almost

non-existent deviations suggest that homotopy reached (close-to) optimal solutions, and we omit

the standard errors as they are negligible. We do not observe any obvious trend with increasing

game size with the exception of the exponential generator where the solution’s quality seems to

improve. This may be a consequence of mitigation of exponential steepness due to quantal-response

averaging with games getting larger. For social welfare, BARON fails to compute solutions with

linear generator even for the smallest games, which seems to be a consequence of numerical

instabilities. On the right of both figures we present scalability comparison of different generators

in two-player square games with 2 signals per player. The results indicate that quantal correlated

equalibria with logarithmic generators consistently take the longest to compute, while the the most

common logistic exponential generator is among the fastest.

Quadratic generator Logarithmic generator Exponential generator

#a H [s] B [s] Δ H [s] B [s] Δ H [s] B [s] Δ
2 2±0 0±0 −6 · 106 4±0 0±0 −7 · 106 1±0 1±0 1 · 101
3 3±0 5±1 −8 · 106 12±3 1±0 −2 · 105 2±0 15±3 −6 · 102
4 6±1 23±3 −6 · 104 12±2 1±0 −5 · 106 2±0 208±62 −7 · 103
5 8±1 345±240 −1 · 105 19±2 3±0 −6 · 106 3±0 898±191 −8 · 103
6 11±0 481±191 −6 · 106 25±0 10±3 2 · 102 - - -

7 18±1 1052±212 −8 · 106 35±1 11±2 −3 · 106 - - -

8 23±3 1619±371 −8 · 106 45±1 61±43 −3 · 106 - - -
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Fig. 3. The results of searching for a signaling scheme optimizing social welfare in randomly generated
games. (Left) Comparison of the runtimes of the homotopy algorithm (H) and BARON (B), and deviations
(Δ) from global solutions in smaller games. (Right) The runtimes of different generators in larger games. With
the exception of the deviations, each value shows also a standard error.

The results in supply chain games can be found in Figure 5. The data in the table describe the

runtimes and deviations in games with 2 suppliers, 1 retailer and 1 material. We observe similar

patterns as in randomly generated games: homotopy scales significantly better than BARON,

while maintaining comparable quality of solutions. On the right side of the figure we compare

scalability of individual generators in games with 3 suppliers, 2 retailers and 2 materials. As

expected, the logarithmic one performs the worst, while the other three generators remain almost

indistinguishable, which is consistent with the results in the table.

Overall, the results suggest that the homotopy method is a viable option for computing the

equilibrium in terms of both scalability and quality of solutions. However, finding an equilibrium

with fixed signaling scheme is significantly easier than optimizing a scheme. This indicates that

computing the gradient more efficiently may significantly improve scalability.



Linear generator Quadratic generator Logarithmic generator Exponential generator

#a H [s] B [s] Δ H [s] B [s] Δ H [s] B [s] Δ H [s] B [s] Δ

2 2±0 0±0 2 · 102 3±0 0±0 −3 · 107 6±1 0±0 −2 · 106 1±0 1±0 −3 · 103

3 7±1 0±0 1 · 102 7±0 9±1 −2 · 107 14±4 2±0 −1 · 106 3±0 51±13 −1 · 103

4 15±4 0±0 6 · 104 12±2 1266±472 4 · 107 27±6 13±6 −9 · 107 17±13 1191±466 −7 · 105

5 16±3 7±2 2 · 103 - - - 44±11 45±15 −2 · 103 - - -

6 35±9 169±139 2 · 103 - - - 61±12 159±50 −8 · 107 - - -

7 126±85 267±204 2 · 103 - - - 75±15 1156±422 −4 · 106 - - -
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Fig. 4. The results of searching for a signaling scheme optimizing Gini index in randomly generated games:
comparison of runtimes, deviations, and generators’ scalability. The figure follows the same format as Figure 3.

Linear generator Quadratic generator Logarithmic generator Exponential generator

#t H [s] B [s] Δ H [s] B [s] Δ H [s] B [s] Δ H [s] B [s] Δ

1 15±4 5±3 −2 · 107 20±5 799±745 −6 · 107 58±23 2±1 −6 · 107 5±1 1167±730 −1 · 102

2 23±4 525±411 −3 · 107 32±8 3734±1193 7 · 107 67±14 72±52 −5 · 107 21±8 2990±1097 −5 · 103

3 74±33 2746±995 −8 · 108 62±14 4866±938 −4 · 105 179±47 756±694 −1 · 106 60±17 5665±890 −1 · 104

4 209±154 2726±1084 −4 · 108 - - - 261±74 1084±758 −1 · 104 - - -
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Fig. 5. The results of searching for a signaling scheme optimizing manufacture allocation in supply chain
games: comparison of runtimes, deviations, and scalability. The figure follows the same format as Figure 3.

6 CONCLUSION
We initiated an investigation of quantal response in correlated equilibrium. We consider generalized

Luce models of quantal response that enables us to induce different quantal behavior for each player,
tailored to specific behavioral profiles. We introduced two ways of including quantality while

conditioning players’ strategies on signals received from a correlation device – either per each

signal separately, or over the whole set of pure strategies in the extended game. We argued that

psychological studies favor the first interpretation and therefore we focused predominantly on it.

In the theoretical part, we verified the equilibrium meets the expectations in terms of its relation

to quantal response and correlated equilibria. We examined the solution’s complexity and proved it

remains PPAD-hard; and showed that coordinating the players using signals may be beneficial for

the signaler as their utility becomes strictly greater than in quantal response equilibrium.

In the algorithmic part, we developed a homotopy approach increasing robustness of computation
using multiple techniques: (i) we eliminated the normalization sum in Luce models, (ii) we reformu-

lated the product of strategies using product-separating functions, and (iii) we simultaneously trace

the equilibrium and optimize the signaling scheme while maintaining the convergence guarantees

of the Gauss-Newton method. Empirical results show the homotopy is consistently faster (up to

300-times) than the state-of-the-art solver BARON and provides competitive solutions.
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A PROOFS
Proposition 1. Let 𝐺 = (𝑁,𝐴, 𝑆,𝑢) be a signaling game. Then
(1) the over-pure-strategies quantal correlated equilibrium is a normal-form quantal response

equilibrium in the extended game, and
(2) the per-signal quantal correlated equilibrium is an extensive-form (agent) quantal response

equilibrium in the extended game.
Consequently, both concepts exist for all continuous generators and any signaling scheme 𝜆.

Proof. We construct two simple reductions from 𝐺 to (1) a normal-form game for showing the

relation to quantal response equilibrium; and to (2) an extensive-form game to show a relation to

an agent quantal response equilibrium.

(1) Let𝐺 ′ = (𝑁,𝐴′, 𝑢 ′) share the same players with𝐺 and𝐴′ = (Π1, . . . ,Π𝑛), i.e., the pure strate-
gies of 𝐺 . Utility 𝑢 ′ is then defined as 𝑢 ′𝑖 (𝑎) =

∑
(𝑎1 |𝑠1,...𝑎𝑛 |𝑠𝑛) ∈×𝑎 𝜆(𝑠1, . . . , 𝑠𝑛)𝑢 (𝑎1, . . . , 𝑎𝑛) for

each action profile 𝑎 ∈ 𝐴′. The expected utilities hence correspond to the definition of utility

in over-pure-strategies quandal correlated equilibrium. The quantal response equilibrium in

𝐺 ′ is a fixed point of the dynamic and hence satisfies the definition of Π-QCE in 𝐺 .

(2) For definitions of extensive-form games and agent quantal correlated equilibrium, see [44].

In extensive-form games, the states a player cannot distinguish are grouped into mutually

disjunctive information sets. Let𝐺 ′ be an extensive-form representation of the 𝐺 ’s extended

game, where the information sets are defined by the signal a player observes and the utility of

their action 𝑎𝑖 in a terminal node below the information set determined by signal 𝑠𝑖 is given

as 𝑢 ′𝑖 (𝑎𝑖 , 𝑎−𝑖 |𝑠𝑖 ) =
∑

𝑠−𝑖 ∈𝑆−𝑖 𝜆(𝑠𝑖 , 𝑠−𝑖 )𝑢𝑖 (𝑎𝑖 , 𝑎−𝑖 ). In agent quantal response equilibrium, each

player acts according to quantal response in each information set separately. The expected

utility in 𝐺 ′ therefore corresponds to the definition of expected utility in per-signal quantal

correlated equilibrium, and the fixed point of the agent quantal-response dynamic is S-QCE.

The existence follows from the existence guarantee of quantal response equilibria. □

Proposition 2. Let 𝐺 = (𝑁,𝐴, 𝑆,𝑢) be a two-player signaling game where |𝑆1 | = 1 and 𝑞2 is
exponential. Then the equilibrium strategies player 1 in both quantal correlated equilibria coincide.

Proof. Consider a quantal response of the second player against a fixed strategy 𝛿1 of the first

player in a per-signal formulation, defined as 𝛽2 (𝑎2 |𝑠2) = 𝑞2 (𝑢2 (𝑎2, 𝑠2))/
∑

𝑎′
2
∈𝐴2

𝑞2 (𝑢2 (𝑎′2, 𝑠)). When

we multiply both the nominator and denominator by

∑
𝜋 ∈Π2:(𝑎2,𝑠2) ∈𝜋

∏
(𝑎′

2
,𝑠′
2
) ∈𝜋\(𝑎2,𝑠2) 𝑞2 (𝑢2 (𝑎′2, 𝑠 ′2)),

we obtain

𝛽2 (𝑎2 |𝑠2) =
∑

𝜋 ∈Π2:(𝑎2,𝑠2) ∈𝜋
∏
(𝑎′

2
,𝑠′
2
) ∈𝜋\(𝑎2,𝑠2) 𝑞2 (𝑢2 (𝑎′2, 𝑠 ′2))𝑞2 (𝑢2 (𝑎2, 𝑠2))(∑

𝑎′
2
∈𝐴2

𝑞2 (𝑢2 (𝑎′
2
, 𝑠2))

) (∑
𝜋 ∈Π2:(𝑎2,𝑠2) ∈𝜋

∏
(𝑎′

2
,𝑠′
2
) ∈𝜋\(𝑎2,𝑠2) 𝑞2 (𝑢2 (𝑎′2, 𝑠 ′2))

) .
Because 𝑞2 is exponential, we may push the product inside the generator as a sum. At the same

time, because the first player has only one trivial signal, we have

𝑢2 (𝜋) =
∑

(𝑎2,𝑠2) ∈𝜋

∑
𝑎1∈𝐴1

𝜆(𝑠)𝛿1 (𝑎1)𝑢2 (𝑎1, 𝑎2) =
∑

(𝑎2,𝑠2) ∈𝜋
𝑢2 (𝑎2 |𝑠2).

Together, this enables us to relate the strategy in the per-signal formulation to the strategy in

the over-pure-strategies formulation as 𝛽2 (𝑎2 |𝑠2) =
∑

𝜋 ∈Π2:(𝑎2,𝑠2) ∈𝜋 𝛿2 (𝜋). Substituting for 𝛽2 in the

definition of expected utility of the first player, we get

𝑢1 (𝑎1) =
∑
𝑎2∈𝐴2

∑
𝑠2∈𝑆2

𝜆(𝑠2)𝛽 (𝑎2 |𝑠2)𝑢 (𝑎1, 𝑎2) =
∑
𝑎2∈𝐴2

∑
𝑠2∈𝑆2

∑
𝜋 ∈Π2:(𝑎2,𝑠2) ∈𝜋

𝜆(𝑠2)𝛿2 (𝜋)𝑢 (𝑎1, 𝑎2) = 𝑢1 (𝜋 = 𝑎),



hence, both formulations lead to the same expected utilities of the first player. For arbitrary 𝑞1, the

equilibrium is thus reached at the same strategy. □

Proposition 3. Let 𝐺 be a normal-form game. Any quantal response equilibrium in 𝐺
(1) may be extended into a per-signal quantal correlated equilibrium laying on a corner of the

signaling simplex; and
(2) is a trivial over-pure-strategies quantal correlated equilibrium with only a single signal per

player.

Proof. We show how to construct specific signal sets and signaling schemes such that the

quantal response equilibrium may be represented as a quantal correlated equilibrium.

(1) Consider 𝜆 that is a corner of the signaling simplex, i.e., there exists exactly one signal profile

𝑠 ∈ 𝑆 such that 𝜆(𝑠) = 1. The signal profile identifies a specific subgame in the extended

game, consisting of a copy of 𝐺 . The expected utilities in the subgame are equivalent to

expected utilities in 𝐺 , and the solution is hence the quantal response equilibrium. If some

signal 𝑠 ′𝑖 is never observed, the corresponding strategy 𝛽𝑖 (·|𝑠 ′𝑖 ) is uniform because all expected

utilities are zero. The per-signal quantal correlated equilibrium hence consists of uniform

and quantal-response equilibrial strategies.

(2) Assume that for each player 𝑖 , |𝑆𝑖 | = 1. Then the extended game is equal to 𝐺 and quantal

response equilibrium is trivially correlated. In case at least one player 𝑖 ′ has |𝑆𝑖′ | > 1, then

|Π𝑖′ | in the extended game is strictly greater than the number of their actions in𝐺 . Because the

generators are strictly positive, the quantal responses are interior points of the probabilistic

simplex, and the quantal response equilibrium may never be extended into an over-pure-

strategies quantal correlated equilibrium.

□

Proposition 4. Let 𝐺 = (𝑁,𝐴, 𝑆,𝑢) be a signaling game and C = {(𝜆,𝑄𝐶𝐸 (𝜆)), 𝜆 ∈ Λ}, where
𝑄𝐶𝐸 is either 𝑆-QCE or Π-QCE. Then C is compact and the correspondence 𝜆 → 𝑄𝐶𝐸 (𝜆) is upper
hemicontinuous. Consequently, if 𝑄𝐶𝐸 (𝜆) is unique for all 𝜆 ∈ Λ, then C is connected.

Proof. We proceed similarly as in Theorem 3 in [43]. We observe that as all generators are

continuous, both formulations of quantal correlated equilibria may be written as zeros of continuous

systems
9
of variables (𝜆, 𝛽) or (𝜆, 𝛿). Because the systems are continuous, C is closed. As both 𝜆

and 𝛽, 𝛿 are bounded, C is compact. Therefore, the correspondence is upper hemicontinuous. When

there exists only one quantal correlated equilibrium for any 𝜆, then C is connected because it is an

image of a connected space by a continuous correspondence. □

Proposition 5. Let 𝐺 be a signaling game with positive utilities where each player behaves
according to a quantal response with an exponential generator. Assume that the quantal response
equilibrium in the underlying game is non-uniform and the signaler optimizes a fully rational expected
utility that is always positive and negatively correlated with utilities of all players. Then the signaler’s
utility in quantal correlated equilibrium is greater than in quantal response equilibrium.

Proof. Assume that 𝜆 is a corner of the signaling simplex. According to Proposition 3, the

equilibrial strategies in the signaling game form a quantal response equilibrium. We show that a

simple change from the corner 𝜆 to a scheme with full support will result in a non-zero increase in

the signaler’s utility. Let 𝜆′ be a uniform distribution over 𝑆 . The corresponding expected utilities

then preserve the ordering of utilities with 𝜆 but their magnitude will be strictly smaller. Because

quantal response equilibrium is continuous and the generators 𝑞 are exponential, the resulting

9
We use this fact in the next section to define the equilibrial homotopy.



equilibrial strategies will be more flat, i.e., closer to uniform, decreasing the overall expected utility

of all players because higher-utility actions are played with strictly lower probability. Because

the signaler’s utility is positive and negatively correlated with other players, their overall utility

increases. □

Proposition 6. Let 𝑞𝑝 be a parametric generator continuous in 𝑝 with 𝑞𝑝′ ∈ 𝑂 (𝑞𝑝′′) for any
𝑝 ′ < 𝑝 ′′. Let {𝑝1, 𝑝2, . . . } be a sequence such that lim𝑡→∞ 𝑝𝑡 = ∞, and {𝛽1, 𝛽2, . . . } be a sequence of
corresponding quantal correlated equilibria with generators 𝑞𝑝𝑡 for a fixed signaling scheme 𝜆. Then
𝛽∗ = lim𝑡→∞ 𝛽𝑡 is a correlated equilibrium for 𝜆.

Proof. According to Proposition 1, the quantal correlated equilibria are quantal response equilib-

ria in the extended games. By the the same reasoning as in Theorem 2 in [43], the limiting quantal

response equilibria are Nash equilibria. Therefore, the limiting quantal correlated equilibria are

Nash equilibria in the extended game, which are (by definition) correlated equilibria. Note that this

result does not depend on the precise definition of the expected utility, i.e., subjective perceptions

of utilities are viable as long as they preserve the total ordering of objective utilities. □

Proposition 7. Let𝐺 be a signaling game of 𝑛 players and 𝑞1, . . . , 𝑞𝑛 be their respective generators.
Let QCE be the problem of computing a quantal correlated equilibrium in 𝐺 . Then QCE is PPAD-hard.

Proof. Let 𝐺 be a two-player signaling game with strictly positive utilities and signal sets of

arbitrary cardinality, in which both players have 𝑛 actions. Computing an 𝜖-Nash equilibrium in 𝐺

is PPAD-complete [17]. We show that computing quantal correlated equilibrium is PPAD-hard by

reducing the problem of finding 𝜖-Nash equilibrium to a problem of computing a specific quantal

correlated equilibrium. We proceed as follows: let both players share the same logit generator

𝑞(𝑥) = 𝑒𝐶𝑥 . By Lemma 1 in [47], for each 𝜖 there exists a polynomially computable 𝐶 such that

the induced quantal response is an 𝜖-best-response. The quantal response equilibrium is hence an

𝜖-Nash equilibrium. Let 𝜆 be a corner of the signaling simplex. By Proposition 3, a quantal response

equilibrium is a restriction of a quantal correlated equilibrium in𝐺 . Therefore, a quantal correlated

equilibrium in 𝐺 is an 𝜖-Nash equilibrium. □

Proposition 8. For arbitrary 𝜆, the solution for 𝑡 = 0 is a uniform strategy for each signal.

Proof. For t=0 we have 𝐻
𝑘,𝑙
𝑖
(𝛽, 𝑡 = 0) = 𝑐𝑖 − 𝛽 (𝑎𝑘𝑖 |𝑠𝑙𝑖 ) |𝐴𝑖 |𝑐𝑖 = 0, hence 𝛽𝑡=0𝑖 (𝑎𝑖 |𝑠𝑖 ) = 1/|𝐴𝑖 |. □

Proposition 9. Let Λ → (𝐻 : R𝑚+1 → R𝑚) be a correspondence of signaling schemes Λ to
smooth homotopic functions, where each 𝐻 has zero as a regular value. Let 𝑓 : Λ × Δ → R be
a smooth function with bounded derivatives. Then for each 𝜆 ∈ Λ, 𝑝 ∈ 𝐽 , defined as in Theorem
4.4, (𝛽 (𝑝), 𝑡 (𝑝)) : 𝐻𝜆 ((𝛽 (𝑝), 𝑡 (𝑝))) = 0, there exists sufficiently small 𝜂 such that a Gauss-Newton
sequence {N 𝑖 ((𝛽, 𝑡))}∞𝑖=0 converges to a point (𝛽 ′, 𝑡 ′) : 𝐻𝜆′ ((𝛽 ′, 𝑡 ′)) = 0, 𝜆′ = 𝑃𝜆 (𝜆 + 𝜂𝑓 ′(𝜆, 𝛽 (𝑝))).

Proof. The main difference between the application of the Gauss-Newton method in tracing

a branch of a homotopy and in the optimization procedure of Algorithm 2 lies in what is static

and what moves. In tracing, we move a point using Euler’s method and aim to converge back

on the curve, while in the optimization, we move the signaling scheme 𝜆, hence altering the

curve, while the point remains static. The convergence for tracing is guaranteed because of the

continuity of the Euler’s method. When moving the curve, we make use of the continuity of quantal

correlated equilibrium. According to Theorem 3.4.1 of [1], there exists an open neighborhood

𝑈 , {𝑥 ∈ R𝑚+1 : 𝐻𝜆′ (𝑥) = 0} ⊂ 𝑈 , such that every Gauss-Newton sequence starting in𝑈 converges

to some 𝑥 ′, 𝐻𝜆′ (𝑥 ′) = 0. Because the space of quantal correlated equilibria laying on some principal

branch is compact and connected, the correspondence Λ→ 𝐻 is continuous. Moreover, as 𝑓 has

bounded continuous derivatives, there exists a sufficiently small 𝜂 such that (𝛽 (𝑝), 𝑡 (𝑝)) lies in the



neighborhood 𝑈 of the induced 𝐻𝜆′ . The Gauss-Newton sequence starting at (𝛽 (𝑝), 𝑡 (𝑝)) hence
converges to a zero of 𝐻𝜆′ . □

B STEPLENGTH ADAPTATION ALGORITHM
For completeness, in Algorithm 3 we present a simple method for updating the steplength ℎ.

The method is a variant of (6.1.10) from [1]. The algorithm computes the distance of the current

estimate of (𝛾, 𝑡) from the homotopy curve 𝑐 and calculates the contraction rate 𝜅 as a ratio of

two consecutive distances in the Gauss-Newton method using the parameter 𝑎𝜂 that serves as a

perturbation to prevent cancellation. The deceleration factor 𝑓 is then calculated from 𝜅 and divides

the current step ℎ to estimate the next step.

ALGORITHM 3: Method UpdateStep for adapting the steplength in predictor-corrector

Input: ℎ, 𝜄, 𝑓 , (𝛾, 𝑡), (𝛾, 𝑡), ∥𝑐 | (𝛾, 𝑡)∥ , 𝜖, 𝜖, 𝑎𝜅 , 𝑎𝑓 , 𝑎𝜂 , 𝑛𝑒𝑤𝑡𝑜𝑛

∥𝑐 | (𝛾, 𝑡)∥𝜄 ←



𝐻 ′((𝛾, 𝑡))+𝐻 ((𝛾, 𝑡))




if not 𝑛𝑒𝑤𝑡𝑜𝑛 and (𝑡 − 1) (𝑡 − 1) < 0 then 𝑛𝑒𝑤𝑡𝑜𝑛 ← 𝑇𝑟𝑢𝑒

𝑓 ← max(𝑓 , 𝑎𝑓
√
∥𝑐 | (𝛾, 𝑡)∥ /𝜖)

if 𝜄 > 2 then
𝜅 ← ∥𝑐 | (𝛾, 𝑡)∥𝜄 /(∥𝑐 | (𝛾, 𝑡)∥𝜄−1 + 𝑎𝜂𝜖)
if 𝜅 > 𝑎𝜅 then return ℎ, ∥𝑐 | (𝛾, 𝑡)∥𝜄 , 𝑓 , 𝐹𝑎𝑙𝑠𝑒, 𝑛𝑒𝑤𝑡𝑜𝑛

end
𝑓 ← max(𝑓 , 𝑎𝑓

√
𝜅/𝑎𝜅 )

if 𝑓 > 𝑎𝑓 then 𝑓 = 𝑎𝑓

ℎ ← |ℎ/𝑓 |
if 𝑛𝑒𝑤𝑡𝑜𝑛 and ∥𝑐 | (𝛾, 𝑡)∥𝜄 < 𝜖 then ℎ ← −ℎ(𝑡 − 1)/(𝑡 − 𝑡 + 𝜖)
return ℎ, ∥𝑐 | (𝛾, 𝑡)∥𝜄 , 𝑓 , 𝑇𝑟𝑢𝑒, 𝑛𝑒𝑤𝑡𝑜𝑛

C ORIGINAL HOMOTOPY METHOD FAILURE
Here we present an example of an equilibrium tracing failure. Assume that two players who act

according to logit generators 𝑞 = 𝑒𝑥𝑝 engage in a game depicted in Figure 6. In case we trace the

quantal correlated equilibrium with trivial single actions using the original homotopy introduced

at the beginning of section 4.1, the algorithm becomes stuck in a bifurcation point when 𝑡 ≈ 0.4029.

The consequent numerical issues that arise result in a failure to reach the equilibrium.

𝐴 𝐵

𝑜 -2,23 -28,-13

𝑟 28,10 -22,-9

Player 2

Pl
ay

er
1

Fig. 6. An example of a normal-form game where the original homotopy method fails to reach the equilibrium.

D EXPERIMENTAL DOMAINS
In this section, we provide the full description of the experimental domains.



D.1 Randomly generated normal-form games
We construct general-sum games with actions spaces of possibly different size for each player. The

utilities are generated uniformly randomly from the interval [−1, 5]. When searching for an optimal

signaling scheme, we consider two criteria: one linear and one quadratic. As the linear objective,

we opt for social welfare10 – a maximization of a sum of players’ utilities – formally defined as

𝑤𝑒𝑙 𝑓 𝑎𝑟𝑒 (𝛽) =
∑
𝑖∈𝑁

∑
𝑎𝑖 ∈𝐴𝑖

∑
𝑠𝑖 ∈𝑆𝑖

𝛽𝑖 (𝑎𝑖 |𝑠𝑖 )𝑢𝑖 (𝑎𝑖 |𝑠𝑖 ).

The quadratic objective is a variant of Gini index – we aim to minimize absolute differences in

players’ utilities, formally:

𝑔𝑖𝑛𝑖 (𝛽) =
∑
𝑖∈𝑁

(
𝑤𝑒𝑙 𝑓 𝑎𝑟𝑒 (𝛽)
|𝑁 | −

∑
𝑎𝑖 ∈𝐴𝑖

∑
𝑠𝑖 ∈𝑆𝑖

𝛽𝑖 (𝑎𝑖 |𝑠𝑖 )𝑢𝑖 (𝑎𝑖 |𝑠𝑖 )
)
2

.

We consider four different generators of generalized Luce models of quantal response functions:

linear generator 𝑞(𝑥) = 𝑥 +𝐶 , quadratic generator 𝑞(𝑥) = (𝑥 +𝐶)2, logarithmic generator 𝑞(𝑥) =
log(𝑥 + 𝐶) and exponential generator 𝑞(𝑥) = 𝑒𝑥 . We set 𝐶 = 3 to ensure the induced quantal

response functions are valid. The algorithm is capable of handling settings when each player

has a different generator, and we verified that computing a quantal correlated equilibrium with

various combinations of generators does not pose any unforeseen computational challenges. For

the simplicity of presenting the results of the experiments, we focus on setting when all players

share the generator of the same kind. For each generator we employ its newtonian representation,

as it proved to be the most robust in our initial exploration of the algorithm’s settings. For the

chosen utility range, setting 𝑓1 (𝑥) = 𝑥 and 𝑓2 (𝑥,𝑦) = 𝑥𝑦 is sufficient.

D.2 Supply chain games
Our definition of a game on supply chains is inspired by [49, 54, 59]. In this game, the suppliers

choose a warehouse to store a rawmaterial, while the retailers choose a place to manufacture a good

to sell at a market. Formally, each storage place is capable of storing one unit of a fixed raw material,

and each manufacture produces one unit of a good from a fixed set of materials. Warehouses and

manufactures are divided into mutually exclusive territories, and manufactures placed in a given

territory are assumed to buy raw materials from the warehouses situated in the same territory

exclusively. There are costs associated with running a supplier business: obtaining the raw material,

shipping it to a warehouse and using the warehouse; and the profit stems from selling it to the

nearby retailer. Similarly, the retailers have to pay for obtaining the raw materials and running the

manufacture; and they profit from selling the good. The costs and prices are driven by the local

market in the territory: we assume the warehouses are rented and the more suppliers decide to

use the storage, the higher the price for usage. Similarly, the price of a raw material fluctuates

depending on the supply and demand. For determining the prices we use a simple allocation

algorithm, assuming closer manufactures are preferred over more distant when delivering a raw

material. We define the game as a tuple 𝑆𝐶 = (𝑃, 𝑅,𝑇 , 𝐻, 𝐹,𝑀, 𝜏𝑝𝑟 , 𝜏ℎ𝑓 , 𝛿, 𝜇ℎ, 𝜇𝑓 , 𝜁𝑏, 𝜁𝑠 , 𝜁ℎ, 𝜁𝑚, 𝜐, 𝜌),
where 𝑃 is a set of suppliers and 𝑅 is a set of retailers. The set𝑇 then consists of different territories,

𝐻 is a set of warehouses and 𝐹 is a set of manufactures.𝑀 is a set of available raw materials. The

function 𝜏𝑝𝑟 : 𝑃 ∪ 𝑅 → 2
𝑇
assigns a supplier or a retailer a set of territories where they may legally

operate. The function 𝜏ℎ𝑓 : 𝐻 ∪ 𝐹 → 𝑇 then identifies a territory where a given warehouse or

manufacture is located. Function 𝛿 : 𝐻 ×𝐹 → R serves to identify a distance between a manufacture

10
We considered also another linear objective, a “Stackelberg-like” setting in which a selected player’s utility is optimized,

and we obtained comparable results in term of both scalability and quality of solutions.



ALGORITHM 4: Material allocation and pricing

Input: action profile 𝜋

Output: facility utilization A, material pricesZ
for 𝑡 ∈ 𝑇 do

𝐴ℎ ←
[
𝜋𝑝 ∈ 𝜋

�� 𝑝 ∈ 𝑃, 𝜏ℎ𝑓 (𝜋𝑝 ) = 𝑡
]
, 𝐴𝑓 ←

[
𝜋𝑟 ∈ 𝜋

�� 𝑟 ∈ 𝑅, 𝜏ℎ𝑓 (𝜋𝑟 ) = 𝑡
]

while |𝐴ℎ | > 0 and |𝐴𝑓 | > 0 do
for 𝑓 ∈ 𝐴𝑓 do

𝛿 [𝑓 ] ← 0, 𝑃 [𝑓 ] = [], 𝜇 ← 𝜇𝑓 ↾ 𝑓 , 𝐴ℎ ← 𝑠𝑜𝑟𝑡_𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔(𝐴ℎ, 𝛿 ↾ 𝑓 )
for ℎ ∈ 𝐴ℎ do

𝛿 [𝑓 ] ← 𝛿 [𝑓 ] + 𝛿 (ℎ, 𝑓 ), 𝑃 [𝑓 ] ← 𝑃 [𝑓 ] ∪ ℎ, 𝜇 (𝜇ℎ (ℎ)) := 𝜇 (𝜇ℎ (ℎ)) − 1
if

∑
𝑚∈𝑀 𝜇 (𝑚) = 0 then break

end
if

∑
𝑚∈𝑀 𝜇 (𝑚) > 0 then 𝛿 [𝑓 ] ← ∞

end
𝑓 ∗ ← 𝑎𝑟𝑔min𝑓 ∈𝐴𝑓

𝛿 [𝑓 ]
if 𝛿 [𝑓 ∗] = ∞ then break

𝐴𝑓 ← 𝐴𝑓 \𝑓 , 𝐴ℎ ← 𝐴ℎ\𝑃 [𝑓 ∗], 𝛿 [𝑓 ∗] ← ∞
end
for ℎ ∈ 𝐻 | 𝜏ℎ𝑓 (ℎ) = 𝑡 do A(ℎ) ←

(
|
{
𝑝 ∈ 𝑃

��𝜋𝑝 = ℎ
}
| − | [ℎ′ ∈ 𝐴ℎ | ℎ′ = ℎ] |

)
/|

{
𝑝 ∈ 𝑃

��𝜋𝑝 = ℎ
}
|

for 𝑓 ∈ 𝐹 | 𝜏ℎ𝑓 (𝑓 ) = 𝑡 do A(𝑓 ) ← (|{𝑟 ∈ 𝑅 | 𝜋𝑟 = 𝑓 }| − |
[
𝑓 ′ ∈ 𝐴𝑓

�� 𝑓 ′ = 𝑓
]
|)/|{𝑟 ∈ 𝑅 | 𝜋𝑟 = 𝑓 }|

for𝑚 ∈ 𝑀 do
Z(𝑡,𝑚) ← 𝜁 (𝑡,𝑚) − |[ℎ ∈ 𝐴ℎ | 𝜇ℎ (ℎ) =𝑚] |/|

{
𝑝 ∈ 𝑃

�� 𝜇ℎ (𝜋𝑝 ) =𝑚,𝜏ℎ𝑓 (𝜋𝑝 ) = 𝑡
}
|

−
∑
𝑓 ∈𝐴𝑓

𝜇𝑓 (𝑓 ,𝑚) /
∑

𝑟 ∈𝑅, 𝜏ℎ𝑓 (𝜋𝑟 )=𝑡
𝜇𝑓 (𝜋𝑟 ,𝑚)

end
end

and a warehouse. Raw materials are assigned to warehouses and manufactures using functions 𝜇.

First, function 𝜇ℎ : 𝐻 → 𝑀 specifies which material may be stored in a warehouse. Second, function

𝜇𝑓 : 𝐹 ×𝑀 → N determines an amount of raw material to operate a manufacture. Functions 𝜁 are

associated with material costs. To obtain a raw material, the supplier pays a price 𝜁𝑏 : 𝑇 ×𝑀 → R.
A baseline selling price of a material to a retailer is determined by 𝜁𝑠 : 𝑇 ×𝑀 → R, which is later

amended by the allocation algorithm. A baseline storing cost is 𝜁ℎ : 𝐻 → R, and for moving the

raw material to a warehouse the supplier pays a price given by function 𝜁𝑚 : 𝑃 ×𝐻 → R. Function
𝜐 : 𝐹 → R then identifies prices for manufacture usage, and function 𝜌 : 𝐹 → R gives an expected

profit of a retailer from selling a good. Given an action profile 𝜋 of warehouses and manufactures

chosen by the suppliers and retailers, the utilities are given by

𝑢𝑝 (𝜋) = A(𝜋𝑝 )Z
(
𝜏−1
ℎ𝑓
(𝜋𝑝 ), 𝜇ℎ (𝜋𝑝 )

)
− 𝜁𝑏

(
𝜏−1
ℎ𝑓
(𝜋𝑝 ), 𝜇ℎ (𝜋𝑝 )

)
− 𝜁𝑚 (𝑝, 𝜋𝑝 ) − 𝜁ℎ (𝜋𝑝 ) |

{
𝑖 ∈ 𝑃

��𝜋𝑖 = 𝜋𝑝
}
|

𝑢𝑟 (𝜋) = A(𝜋𝑟 )𝜌 (𝜋𝑟 ) − 𝜐 (𝜋𝑟 ) −
∑
𝑚∈𝑀

𝜇𝑓 (𝜋𝑟 ,𝑚)A(𝜋𝑟 )Z
(
𝜏−1
ℎ𝑓
(𝜋𝑟 ),𝑚

)
,

whereA is relative utilization of warehouses and manufactures, andZ is material pricing computed

by Algorithm 4. Furthermore, we assume there exists a central governing authority that aims to

maintain a certain number of manufactures operational in each territory, specified by a function



𝑡 : 𝐹 → N, such that

∑
𝑓 ∈𝐹 𝑡 (𝑓 ) = |𝑅 |. An optimal signaling scheme should hence minimize the

deviation from this assignment, which is formally expressed as

∑
𝑓 ∈𝐹

©­­­«𝑡 (𝑓 ) −
∑
𝑟 ∈𝑅

𝜏ℎ𝑓 (𝑓 ) ∈𝜏𝑝𝑟 (𝑟 )

∑
𝑠𝑟 ∈𝑆𝑟

𝛽𝑟 (𝑓 |𝑠𝑟 )
∑

𝑠−𝑟 ∈𝑆−𝑟
𝜆(𝑠𝑟 , 𝑠−𝑟 )

ª®®®¬
2

.

In the experiments, we construct random supply chain games to access the algorithms’ performance.

Each supplier and retailer is assigned a non-empty subset of territories randomly from 2
𝑇
. In each

territory, the number of warehouses and manufactures is random-generated from intervals [2, 4]
and [1, 3], respectively. Each warehouse is assigned a random material it may store, and each

manufacture requires a random amount of material to operate, each amount drawn from interval

[0, 2]. The distance between a warehouse and a manufacture is a integer selected randomly from

interval [1, 4]. The values of material cost functions 𝜁 consist of integers drawn from interval [1, 3]
for 𝜁𝑏 , [4, 6] for 𝜁𝑠 , [1, 3] for 𝜁ℎ , and [1, 4] for 𝜁𝑚 . The manufacture use prices determined by function

𝜐 are random integers from interval [1, 3], and the expected profit given by function 𝜌 is always in

interval [6, 9]. Similarly as in randomly generated normal-form games, we assume that all players

share the generator of the same kind and we use its corresponding exponential representation as it

outperformed the newtonian in this domain. We set the constant of the generators to 𝐶 = 15 and

𝑓1 (𝑥) = 𝑥 , 𝑓2 (𝑥,𝑦) = 𝑥𝑦. The supply-chain game may be conveniently modeled as an action-graph

game, and as such, the expected utilities of its strategy profiles can be computed in polynomial

time using a trie-based algorithm [32].

E ADDITIONAL EXPERIMENTS
This section presents two sets of additional experiments suggested by an anonymous reviewer. We

would like to point out that we observed two principal issues with BARON: (1) it solves smaller

instances within a couple of minutes, but due to the concept’s non-convex formulation, after just

slightly increasing the action space or adding more players BARON does not terminate within

several hours, and (2) it quickly runs out of the 32GB of memory we used in the experiments. The

homotopy method seems to suffer from neither. The experiments in the main text were set up so that

the sizes of the game instances gradually increase in order to control and show BARON’s scalability,

which required keeping the number of signals low. Our intention was also to assess the performance

over a broader spectrum of domains, generators, etc., rather than focus on specific large instances.

In this section, we hence first examine scalability with respect to different cardinalities of signal

sets, and then also the algorithm’s performance on larger games.

E.1 Varying signal spaces
We ran experiments tracing the quantal correlated equilibrium in both randomly generated normal

form games and supply chain games. For every setting, we randomly sampled 10 game instances,

and terminated all running processes after 2 hours.

In randomly generated normal form games, we assumed a setting with 3 players choosing from

20, 20, and 2 actions, respectively. The utility range was set to [−1, 5], i.e., the same as in the

main-text experiments. The number of signals per each player was #𝑠 , #𝑠 , and 2, respectively, where

#𝑠 denotes the number of signals and it is the parameter affecting the game’s size. The results are

depicted in Figure 7. Similarly as when increasing the number of available actions, the homotopy

method performs notably better than BARON, especially with the logit generator.

In supply chain games, we assumed there are 3 suppliers, 2 manufacturers, and a single material.

We fixed the number of territories to 3. Similarly as in the experiments in the main text, we assume
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Fig. 7. Mean runtimes of computing (𝑆-QCE) with fixed 𝜆 using BARON and the homotopy algorithm in
randomly generated games. Every point shows also a standard error.
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Fig. 8. Mean runtimes of computing (𝑆-QCE) with fixed 𝜆 using BARON and the homotopy algorithm in
supply chain games. Every point shows also a standard error.

only the manufacturers receive one of the #𝑠 signals each. The results could be found in Figure 8.

Contrary to experiments varying the action spaces, in these experiments, even the smallest games

do not give BARON any significant advantage over the homotopy method. The homotopy continues

to outperform BARON as the game size increases. Interestingly, BARON’s runtimes seem to exhibit

much larger deviations than when the number of signals was fixed.

E.2 Larger games
Finally, in Figure 9 we present the scalability results of different generators on larger game instances.

Similarly as before, the results were averaged over 10 games. The algorithms were given 4 hours to

compute the results. We examined 3-player randomly generated games with 5 signals per player

and supply chain games 4 suppliers, 3 manufacturers, 2 materials, and 5 signals per manufacturer.

Other parameters remained as in the main text. BARON ran out of the 32GB of memory already on

the smallest instances.
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Fig. 9. Scalability of the homotopy method across different generators in (Left) randomly generated games
and (Right) supply chain games. Every point shows also a standard error.
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