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Abstract. Sponsored search auctions (SSAs) have attracted a lot of
research attention in recent years and different equilibrium concepts
have been studied in order to understand advertisers’ bidding strate-
gies. However, the assumption that advertisers are perfectly rational
in these studies is unrealistic in the real world. In this work, we ap-
ply the quantal response equilibrium (QRE), which is powerful in
modeling bounded rationality, to SSAs. Due to high computational
complexity, existing methods for QRE computation have very poor
scalability for SSAs. Through exploiting the structures of QRE for
SSAs, this paper presents an efficient homotopy-based algorithm to
compute the QRE for large-size SSAs, which features the following
two novelties: 1) we represent the SSAs as an Action Graph Game
(AGG) which can compute the expected utilities in polynomial time;
2) we further significantly reduce redundant calculations by leverag-
ing the underlying relations between advertisers’ utilities. We also
develop an estimator to infer parameters of SSAs and fit the QRE
model into a dataset from a commercial search engine. Our experi-
mental results indicate that the algorithm can significantly improve
the scalability of QRE computation for SSAs and the QRE model can
describe the real-world bidding behaviors in a very accurate manner.

1 Introduction

Sponsored search has become a major monetization means for com-
mercial search engines (e.g., Google, Yahoo! and Bing) and has
shown great success [23, 29, 38]. When a user issues a query to a
search engine, in addition to several relevant webpages, a set of s-
elected advertisements will also be displayed on the search result
page. To show his/her ad on the search result page, an advertiser (or
bidder) is required to submit a bid for the query. Most of the time,
there are many more advertisers bidding for the query than the num-
ber of available ad slots and the search engines need a mechanism to
decide which ads should be shown on the result page, how to allocate
the slots to the shown ads, and how to charge an advertiser if his/her
ad is clicked by users.

Generalized Second Price (GSP) is the most popular mechanism
used in sponsored search auctions (SSAs) and has attracted much re-
search attention recently [16, 35, 38, 40]. Among those studies, equi-
librium analysis is a hot topic to understand advertisers’ behaviors.
Varian [45] studied the concept of symmetric Nash equilibrium for
GSP auctions and proved its existence. Edelman et al. [15] defined
a subset of Nash equilibria called locally envy-free equilibria which
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are equivalent to the symmetric Nash equilibria. Borgers et al. [5]
further proved the existence of multiple Nash equilibria in GSP auc-
tions. The forward looking Nash equilibrium was studied in [7, 8].

A critical limitation of existing studies on equilibrium analysis is
that they assume the full rationality of advertisers. That is, advertisers
are very smart; they can find their optimal strategies and take opti-
mal actions. In practice, an advertiser may fail in estimating his/her
competitors’ bidding strategies and therefore cannot take the “best-
response” action [21, 46]. As a result, it is necessary to study the
equilibrium for SSAs based on bounded rationality, which is the fo-
cus of this work.

In this paper, we introduce the quantal response equilibrium
(QRE) [17, 20, 33, 34] into SSAs, which can deal with bounded
rationality and has demonstrated very good performance in gener-
al normal form games (NFGs). Specifically, because of the limited
information about the market and opponents in the real world, an ad-
vertiser cannot calculate his/her accurate utility, where the error is
assumed to follow some distribution (e.g., the extreme value distri-
bution [33, 34]) with a precision parameter (i.e., a measurement of a
advertiser’s rationality). Due to the disturbance of the errors, adver-
tisers can only maximize their inaccurate utilities in each round of
the auctions, which makes their outcome policies to form a QRE —
a mixed-strategy equilibrium in which strategies with higher utilities
are more likely to be chosen than those with lower utilities, but the
best one is not chosen with certainty. A higher precision parameter
implies that the advertiser is more rational and hence can choose the
better strategies with higher probabilities.

We focus on designing an algorithm for the search engine (or the
auctioneer) to compute the QRE4 in SSAs, which can be used to cap-
ture advertisers’ bidding behaviors. We show that the calculation of
a QRE is equivalent to computing the fixed point of Browder’s func-
tions [6, 28, 42], the complexity of which is at least PPAD-complete
[10, 11, 37]. We further formulate the problem as finding a solution
of a continuous non-linear function. Basic Newton-type algorithms
are usually locally convergent and work well only when we could
provide a good starting point, which, however, is difficult to find
in SSAs. To address this problem, we leverage the homotopy prin-
ciple [2, 3, 30], which has been used for equilibrium computation
[18, 22, 39, 44]. Advantages of homotopy-based methods include
their numerical stability and potential to be globally convergent. We
noticed that Gambit [32] used a similar method to compute the QRE
for NFGs, which, however, is very time-consuming and cannot be di-
rectly applied to large-size SSAs. To tackle this challenge, we lever-
age some nice properties of the SSAs (as compared to general N-

4 There might be multiple QREs and the one computed with our algorithm
is called the principal equilibrium, which is mostly studied in the literature
[18, 22, 44]
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FGs), including the context-specific independence structure and the
underlying relations between advertisers’ utilities, to refine the com-
putational procedure and significantly speed up the algorithm. The
experimental results show that the improved homotopy algorithm can
efficiently compute a QRE for SSAs in large sizes. We also investi-
gate how to use the QRE model to infer the parameters, including the
values and precisions of bidders and the click-through-rates (CTRs).
We develop an estimating algorithm based on the commonly used
Maximum Likelihood Estimation (MLE) principle [1, 26, 36]. Our
experiments show that the QRE model fits the real data well.

To sum up, this paper makes two major contributions. First, we
design an efficient homotopy-based algorithm to compute the QRE
for large-size SSAs by utilizing the nice properties of SSAs. Second,
we fit the QRE model into the real data and do extensive experiments
to show that, comparing with Nash equilibria, the QRE is more prac-
tical since it can handle bidders’ bounded rationality and model the
real world in a very accurate manner.

The rest of this paper is organized as follows. In Section 2, we
introduce the model of the GSP mechanism and then define the QRE
for SSAs. The homotopy-based algorithm is proposed in Section 3,
including the methods for significantly improving the efficiency of
the algorithm. Section 4 gives the parameter estimation algorithm.
Then we conduct extensive experiments in Section 5 to evaluate our
algorithms. Conclusions are given in the last section.

2 Quantal Response Equilibrium

In this section, we first demonstrate our motivation of investigating
the QRE for SSAs, following which we give some notations and as-
sumptions and then define the QRE for SSAs.

2.1 Motivation

Given that GSP is not a dominant-strategy mechanism, Nash equilib-
rium solutions become an important means to understand how bid-
ders behave in SSAs. While there exist quite a few Nash equilibrium
concepts proposed and studied for SSAs, symmetric Nash equilib-
rium [45] and locally envy-free Nash equilibrium [15] are the most
famous two: the former captures the notion that there should be no
incentive for any pair of bidders to swap their slots, and the latter
captures the notion that there should be no incentive for any bidder
to exchange bids with the bidder ranked one position above him/her.

While those equilibrium concepts have many nice properties, a
common limitation of them is that they assume the perfect rational-
ity of bidders, i.e., bidders have perfect knowledge about their util-
ities and take optimal actions to maximize their utilities. However,
the perfect rationality assumption is too good to be true in real-world
SSAs. Therefore, a natural question arises: how can we weaken the
perfect-rationality assumption and still obtain some meaningful so-
lution concept for SSAs?

Observing that in real-world SSAs, an advertiser usually has un-
certainty about his/her utility and is more likely to choose strategies
with higher utilities instead of always choosing the best one. We in-
troduce the quantal response equilibrium to model the bounded ra-
tionality of bidders in the following two subsections.

2.2 Notations and Assumptions

We focus on the GSP mechanism. Generally there are N bidders
competing for K ad slots (N ≥ K). We use the symbol [N ] to rep-
resent the set {1, 2, . . . , N}. Let vi denote the private value of bidder

i, which expresses the maximum per-click price he/she is willing to
pay, and the vector v = (v1, v2, . . . , vN ) represents the value pro-
file of all bidders. We use bi to represent the bid submitted by i to
participate in the auction. θik is the CTR of i’s ad when placed at
slot k, which is usually assumed to be the product of the ad CTR
αi and the slot CTR βk [38]. We use α = (α1, α2, . . . , αN ) and
β = (β1, β2, . . . , βK) to denote the profiles of ad and slot CTRs
respectively. Following the common practice [38], without loss of
generality, we assume

β1 ≥ β2 ≥ · · · ≥ βK .

In the GSP mechanism, bidders are ranked in the descending order
of their ranking scores which is defined as

si = αibi.

The top k ≤ K bidders whose scores are not less than the reserve
price r are allocated at the first k slots. If an ad is clicked, the pay-
ment of the corresponding bidder is the minimum amount that main-
tains his/her current rank position.

2.3 Definition of QRE

Let Bi denote advertiser i’s bid space and bij be the j-th minimal
price in Bi. We define the score space of bidder i as

Si = {sij |sij = αibij , j ∈ [|Bi|]},

where |Bi| represents the size of Bi, and define the joint score space
of all advertisers except i as

S−i = ×l∈[N ]\{i}Sl.

Then we have that

|Si| = |Bi|, ∀i ∈ [N ].

Let qij(s−i) and pij(s−i) denote the slot allocated to and the pay-
ment of bidder i, given s−i ∈ S−i and sij ∈ Si. Then the utility of
advertiser i is

uij(s−i)=

{
0, sij < r;

(vi − pij(s−i))αiβqij(s−i), sij ≥ r.
(1)

Let σi be i’s mixed strategy over Bi and σij denote the probabil-
ity on bij . Similarly, we define σ = (σ1, σ2, . . . , σN ) and σ−i =
(σ1, . . . , σi−1, σi+1, . . . , σN ). The expected utility of i with sij ,
given σ−i, is

uij(σ−i) =
∑

s−i∈S−i

P (s−i|σ−i)uij(s−i), (2)

where P (s−i|σ−i) is the probability that the score profile of other
bidders except i is s−i given σ−i. The quantal response πij of bidder
i to others’ mixed strategy profile σ−i is defined as5

πij(σ−i) =
1

λi
· 1

|Bi| + (1− 1

λi
)

euij(σ−i)λi∑
k∈[|Bi|] e

uik(σ−i)λi

5 In the commonly-used logit form of quantal response [33, 44], multiplying
αi and dividing λi for all i ∈ [N ] by the same constant will not change the
QRE outcome, which means that they are undistinguishable. To address this
problem, we use a slightly different definition which satisfies the principle
of QRE, i.e., better strategies are more likely to be chosen.
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=
1

λi|Bi| + (1− 1

λi
)

1∑
k∈[|Bi|] e

(uik(σ−i)−uij(σ−i))λi
, (3)

where λi∈[1,+∞) is the precision parameter of bidder i. We can
easily verify that Eq. (3) is consistent with our expectation that better
strategies are more likely to be chosen than worse ones. When λi=1,
we have πij(σ−i) =

1
|Bi| , which means that i uniformly chooses any

strategy in Bi; and when λi �→+∞, the choice probability of the bid
strategy with the highest expected utility approaches 1. To sum up,
λi is a parameter to measure i’s “rationality”. That is, a larger λi

suggests that i will choose the best strategy with a higher probability.
We use the vector λ = (λ1, λ2, · · · , λN ) to denote the precision
profile. A QRE [17, 33] is defined as follows.

Definition 1. A quantal response equilibrium with λ is a mixed s-
trategy profile σ such that for all i ∈ [N ] and j ∈ [|Bi|], σij =
πij(σ−i).

Definition 1 implies that a QRE strategy profile is a fixed point of
Browder’s functions [6]. Besides, the Nash equilibrium is a special
case of the QRE with λi → +∞ for all i ∈ [N ].

3 Equilibrium Computation

In this section, we design an efficient homotopy-based algorithm to
compute the QRE for SSAs. We first describe the algorithm and then
show how to significantly speed it up by exploiting peculiarities of
SSAs.

3.1 The Homotopy-based Algorithm

In this subsection, we discuss how to compute a QRE given v, λ, α
and β. We define

U =
∑
i∈[N ]

|Bi|

and obtain a continuous function F : [0, 1]U �→ [0, 1]U from Defini-
tion 1 as below:

Fij(σ) = πij(σ−i)− σij , ∀i ∈ [N ], j ∈ [|Bi|].

Now we can see that computing a QRE of SSAs is equivalent to
finding a zero point of the nonlinear function F (σ). If a good start-
ing point is available, we can directly apply Newton-style iteration
methods. However, we have little information about such a good ini-
tial point. As pointed out by Allgower and Georg [2, 3], Newton-style
iteration methods often fail because poor starting points are very like-
ly to be chosen.

The basic idea of the homotopy is composed of two steps: given
a problem we want to solve, first, define a problem with a unique
easy-to-compute solution and then build a continuous transforma-
tion from the artificial problem into the original problem we want to
solve; second, begin with the solution of the easy-to-solve problem
and trace solutions of the associated problems of the transformation
until finally the solution of the original problem is found.

To design a homotopy-based algorithm, our first step is to propose
a degenerate problem which is easy solve. In particular, we can find a
degenerated form of F (denoted as G) by letting uij(σ−i), ∀i ∈ [N ]
and j ∈ [|Bi|], be zero:

Gij(σ) =
1

|Bi| − σij , i ∈ [N ], j ∈ [|Bi|].

Obviously, G(σ) has a unique zero point: σij = 1/|Bi|, ∀i ∈
[N ], j ∈ [|Bi|]. Then we define a homotopy function H : [0, 1]U ×
[0, 1] �→ [0, 1]U between F (σ) and G(σ) as

Hij(σ, t) =
1

λi|Bi| + (1− 1

λi
)R(σ−i, t)

−1 − σij ,

R(σ−i, t) =
∑

k∈[|Bi|]
e(uik(σ−i)−uij(σ−i))λit,

which is a continuous transformation from H(σ, 0) = G(σ) to
H(σ, 1) = F (σ) as t grows continuously from 0 to 1.

We further define the solution set of H(σ, t) = 0 as

H−1(0) = {(σ, t)|H(σ, t) = 0}.

It follows from Browder’s fixed point theorem [6] that, for a given t ∈
[0, 1], there is a σ(t) such that H(σ(t), t) = 0. From the definition
of H we know that σ(0) and σ(1) correspond to the zero point of
G(σ) and F (σ) respectively. The remaining problem is to trace out
a path consisting of (σ(t), t) ∈ H−1(0), which starts at (σ(0), 0)
and ends at (σ(1), 1). Considering the possibility of the existence
of turning points [27], increasing t monotonically when tracing the
path may lead to points far away from the path. A common practice
to avoid the disturbance of turning points is to view the σ and t as
functions of an implicit parameter a simultaneously and to compute
a parametric path

c(a) = (σ(t(a)), t(a)),

which satisfies
H(c(a)) = 0. (4)

The method we use to trace the path is called predictor-corrector
(PC) [2, 3], the basic idea of which is to numerically trace the path
c(a) by generating a sequence of points ci = (σ, t)i, i = 1, 2, . . .
along the path satisfying ‖H(ci)‖ ≤ ε for some ε > 0. In partic-
ular, given that we have found a point ci on the path c(a), an Euler
predictor step is used to predict the next point ci+1 on c(a):

ci+1 = ci +Δ ·
c′(a)

∣∣
c(a)=ci

‖ c′(a)∣∣
c(a)=ci

‖ , (5)

where c′(a) is the derivative of c(a) with respect to a and Δ >
0 is the step length. Then a corrector phase is necessary to refine
the accuracy of ci+1. We make use of the Gauss-Newton method as
presented below:

ĉi+1 = ci+1 −H ′(ci+1)
+H(ci+1), (6)

where H ′(ci+1)
+ is the Moore-Penrose inverse6 of the Jacobian ma-

trix H ′(ci+1) of H(·) at point ci+1, and ĉi+1 is the refined point of
ci+1. If ‖H(ĉi+1)‖ > ε, we will substitute ĉi+1 into the right side of
Eq. (6) to further refine it. The corrector procedure may be performed
several times until we find the satisfactory point which will be used
in the predictor phase to infer the next point. The PC method, starting
with (σ(0), 0), is applied step by step until (σ(1), 1) is reached.

Now we discuss how to compute the derivative c′(a) in Eq. (5)
and the Jacobian matrix H ′(ci+1) in Eq. (6). We first consider the
calculation of c′(a). By differentiating Eq. (4) we get the following
equation:

H ′(c(a))c′(a) = 0. (7)

6 The Moore-Penrose inverse is defined by A+=AT (AAT )−1.
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The solution of Eq. (7) is

c′d(a) = μ · (−1)d · det(H ′
−d(c(a))) (8)

where c′d(a), d=1, · · · , U+1, denotes the d-th7 component of c′(a)
and H ′

−d(c(a)) is H ′(c(a)) with the d-th column removed; det(·) is
the determinant operation; μ=±1 is the sign of c′(a) to be chosen.
We know from Eq. (8) that once H ′(c(a)) is given, c′(a) can be
obtained directly. Eq. (6) also involves computing H ′(·). So next we
will concentrate on how to compute H ′(·). We use ũij to represent
uij(σ−i)λi for simplicity in the remaining part of this paper. Since
the function H is a mapping from [0, 1]U × [0, 1] to [0, 1]U , its
Jacobian matrix contains U ·(U + 1) partial derivatives that can be
divided into four cases:

Case 1. i ∈ [N ] and j ∈ [|Bi|]:
∂Hij

∂σij
= −1;

Case 2. i ∈ [N ], j and k ∈ [|Bi|], j 
= k:

∂Hij

∂σik
= 0;

Case 3. i and l ∈ [N ], j ∈ [|Bi|], m ∈ [|Bl|], i 
= l:

∂Hij

∂σlm
= −(1− 1

λi
)R(σ−i, t)

−2 ∂R(σ−i, t)

∂σlm
,

∂R(σ−i, t)

∂σlm
= te−ũijt

∑
k∈[|Bi|]

eũikt(
∂ũik

∂σlm
− ∂ũij

∂σlm
);

Case 4. i ∈ [N ], j ∈ [|Bi|]:
∂Hij

∂t
= −(1− 1

λi
)R(σ−i, t)

−2 ∂R(σ−i, t)

∂t
,

∂R(σ−i, t)

∂t
= e−ũijt

∑
k∈[|Bi|]

eũikt(ũik − ũij).

We choose μ to ensure that the derivative of t with respect to a,
which corresponds to the (U + 1)-th component in c′(a), is positive
at (σ(0), 0), i.e.,

μ · (−1)U+1det(H ′
−(U+1)(σ(0), 0)) > 0.

Substituting t = 0 into this inequality and combining with cases 1-3,
we get

μ · (−1)U+1 · (−1)U = (−1)2U+1μ > 0,

which indicates that μ = −1 at (σ(0), 0).
By now we have discussed how to compute Eqs. (5) and (6). Then

we can use the PC method to find the point (σ(1), 1) ∈ H−1(0) step
by step, the convergence property of which is analyzed in [2, 3].

The complete process of our proposed method is summarized in
Algorithm 1. In line 1 we assign t with 0 and the starting point c1 with
(σ(0), 0). Line 2 initializes Δ and ε. Lines 3-8 use the PC method
to generate a set of points ci, i = 2, 3, . . . along the path until even-
tually the point (σ(1), 1) is found. Line 4 is the Euler predictor step
which computes the next point ci+1 given ci according to Eq. (5).
The Gauss-Newton corrector step is performed repeatedly in lines 5-
6 to improve the accuracy of the point predicted in line 4. The value
of t is updated in line 7 and the step length is adjusted in line 8 based
on the Asymptotic Expansion method proposed in [2, 3]. The result
is returned in line 10.
7 σij ’s are assumed to be assigned to c(a) in lexicographic order of their

subscripts. The last component of the vector corresponds to t.

Algorithm 1: Computing a QRE

1 t← 0, c← (σ(0), 0);
2 initialize Δ and ε;
3 while t 
= 1 do

4 c← c+Δ · c′(a)|c(a)=c

‖(c′(a)|c(a)=c)‖ ;

5 while ‖H(c)‖ > ε do

6 c← c−H ′(c)+H(c);
7 t← the last component of c;
8 Adjust the step length Δ;
9 (σ, t)← c;

10 return σ;

3.2 Efficient Computation for SSAs

Algorithm 1 indicates that we need to compute the Jacobian matrix
H ′(·) at each predictor and corrector step when tracing the path.
Thus the efficiency of calculating H ′(·) will significantly affect the
scalability of the algorithm. In this subsection, we discuss how to
reduce the complexity of Algorithm 1 through efficient calculation
of H ′(·) by leveraging the properties of SSAs. First. we represent
the SSAs as an Action Graph Game (AGG) [24, 25, 43] which can
compute the components of H ′(·) in polynomial time, while general
NFGs cost exponential time to calculate them. Second, we further
significantly reduce redundant calculations based on the analyses of
the relations between advertisers’ utilities.

3.2.1 Representing SSAs as AGG

The elements in H ′(·) are classified into four cases as shown in Sec-
tion 3.1, the last two cases of which involve computing ũij and ∂ũij

∂σlm
.

We can rewrite Eq. (2) as

uij(σ−i)=
∑

m∈[|Sl|]
σlm

∑
s−il∈S−il

P (s−il|σ−il)uij(s−il, slm)

=
∑

m∈[|Sl|]
σlm

∂uij(σ−i)

∂σlm
, ∀l 
= i, (9)

where S−il = ×i′∈[N ]\{i,l}Si′ and s−il is an element of S−il. So
the main effort on calculating H ′(·) is to compute a set of partial
derivatives, i.e.,

D = {∂uij(σ−i)

∂σlm
|i, l ∈ [N ]; l 
= i; j ∈ [|Bi|];m ∈ [|Bl|]}.

We need to traverse the
∏

i′∈[N ]\{i,l} |Bi′ | realizations in S−il to

compute ∂uij(σ−i)

∂σlm
if we view SSAs as general NFGs. Clearly, this

traversal method (TM for short) is exponential, i.e., O(MN ), where

M=max{|Bi′ |
∣∣i′ ∈ [N ]}.

Fortunately, expected utilities in SSAs with GSP mechanism have
many special properties that could be utilized to reduce the compu-
tational complexity. Here we take bidder i with sij and bidder l with
slm as an example (sij ≥ r) and define

IG = {n|sn > sij , n 
= i}.

Similarly, we further define

IE = {n|sn = sij , n 
= i}
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and
IL = {n|sn < sij , n 
= i}.

We assume the tie is broken randomly. It thus follows that:

1. When |IG| ≥ K, i’s utility is zero.
2. When |IG| < K and |IG|+ |IE | ≥ K, bidder i has a probability

1
|IE |+1

to be allocated at a slot ranging from |IG| + 1 to K and
his/her payment is pi = bij . According to our assumption on the
tie, i’ utility in such case is

1

|IE |+ 1
(vi − bij)

K∑
k=|IG|+1

αiβk.

3. When |IG| + |IE | < K, i’s location will be any one from slot
|IG|+1 to slot |IG|+|IE |+1 with an identical probability 1

|IE |+1
.

His/her payment is pi = bij if ranked at the slot between |IG|+1
and |IG| + |IE |. On the other hand, his/her payment is pmax/αi

if allocated at slot |IG|+ |IE |+ 1, where

pmax = max{r, sn|n ∈ IL}.

Bidder i’s utility in this case is

1

|IE |+ 1
((vi−bij)

|IG|+|IE |∑
k=|IG|+1

αiβk+(vi−pmax)αiβ|IG|+|IE |+1).

The above properties indicate that given bidder i’s score si = sij ,
his/her utility only depends on |IG|, |IE | and pmax, but not on who
are in IG and IE or exactly what their bids are, and not on whose
ranking score is pmax. That is SSAs have considerable context-
specific independence structure and can be represented compactly
by an AGG. An action graph (AG) is a trie8, each leaf of which cor-
responds to a tuple (|IG|, |IE |, pmax). Specifically, when computing
∂uij(σ−i)

∂σlm
, because 1) we just consider the cases where |IG| < K,

2) |IE | ≤ N , and 3) pmax has at most NM different values, the AG
has O(KN2M) leaves, which can be built in time O(KN2MN) =
O(KN3M) by a dynamic program [24]. Compared with that of TM
(O(MN )), it is a significant improvement.

3.2.2 Reducing Redundancy

The computation of the set D with AGG involves two steps: 1) build-
ing the AGs and 2) calculating the partial derivatives based on these
AGs. Intuitively, we need to apply the two procedures to each of the
N(N − 1)M2 elements of D. Actually, we can significantly reduce
the calculations by utilizing the properties of SSAs.

We first focus on the process of AG construction (i.e., step 1). The
AG for ∂uij(σ−i)

∂σlm
is built by a dynamic program which traverses the

union set

{snk|n ∈ [N ] \ {i, l}, k ∈ [|Bn|]} ∪ {slm},

the first part of which is the same for all m ∈ [|Bl|]. Thus we can just
build one trie with {snk|n ∈ [N ] \ {i, l}, k ∈ [|Bn|]}, from which
the AGs for ∂uij(σ−i)

∂σlm
, ∀m ∈ [|Bl|], can be directly derived by fur-

ther taking slm into consideration. This observation implies that we
can compute D by building at most N(N−1)M AGs. Next we show
how to further refine step 1 based on the following propositions.

8 Trie is an ordered tree data structure. More details can be found at https:
//en.wikipedia.org/wiki/Trie and [4].

Proposition 1. For all l 
= i, ∂uij(σ−i)

∂σlm
= 0 if sij < r.

This proposition is straightforward since Eq. (1) indicates that
uij(s−il, slm) = 0 if sij < r.

Proposition 2. For all l 
= i,

∂uij(σ−i)

∂σlm
=

∂uij+1(σ−i)

∂σlm
= . . . =

∂uij+k(σ−i)

∂σlm
,

if there is no sl′m′ , l′ 
= i and m′ ∈ [|Bl′ |], satisfying sij ≤ sl′m′ ≤
sij+k.

Proof. IE is empty under the assumption. Given b−il, bidders except
i are either in IG or in IL and will not change their positions when
i’s score changes from sij to sij+n, n ∈ [k]. Then we have that,
for all s−il ∈ S−il, uij(s−il, slm) = uij+n(s−il, slm), ∀n ∈ [k],
because they have the same IG, IE and IL. Taking expectation over
S−il completes the proof according to Eq. (9).

Proposition 3. For all l 
= i, the AGs for ∂uij(σ−i)

∂σlm
and ∂ulj(σ−i)

∂σim

are the same if Si = Sl.

Proof. Since the AG is indeed a trie, we only need to show that
they have the same leaves. Given s−il ∈ S−il, because sij =
slj and sim = slm, the profiles s−i = (s−il, slm) for sij
and s−l = (s−il, sim) for slj can be mapped to the same tuple
(|IG|, |IE |, pmax). By traversing S−il and considering that there is a
one-to-one correspondence between the tuples and leaves, we prove
the proposition.

Proposition 2 shows that if a subset {sij , sij+1, . . . , sij+k} of Si

satisfies the constraint, then ∂uij+1(σ−i)

∂σlm
,. . ., ∂uij+k(σ−i)

∂σlm
can be ob-

tained directly through ∂uij(σ−i)

∂σlm
without building the AGs. Propo-

sition 2 cannot be applied to the case where bidders have the same
score space. By contrast, Proposition 3 is particularly useful for this
case, which can reduce the number of AGs to N(N−1)M

2
in step 1.

The next proposition is used to speed up step 2.

Proposition 4. For all l 
= i,

∂uij(σ−i)

∂σlm1

=
∂uij(σ−i)

∂σlm2

,

if 1) slm1 , slm2 ≤ r or 2) slm1 , slm2 > sij .

Proof. Similar to the proof of Proposition 2, we just need to prove
that for all s−il ∈ S−il, uij(s−il, slm1) = uij(s−il, slm2), which
is true due to the fact that (s−il, slm1) and (s−il, slm2) correspond
to the same tuple (|IG|, |IE |, pmax) for sij on each of the two con-
ditions.

We use an example where bidders have the same score space to
analyze the effects of Propositions 3 and 4 in step 2. We assume
r = 0 for ease of analysis. Given i and l, we only need to compute
∂uij(σ−i)

∂σlm
for j < M and m ≤ j + 1, and ∂uiM (σ−i)

∂σlm
for m ≤ M ,

because those for j < M and m > j + 1 are equal to ∂uij(σ−i)

∂σlj+1
ac-

cording to Proposition 4. Then the amount of components calculated
with AGs is

(2 + 3 + . . .+M +M) =
M2 + 3M − 2

2
.

On the other hand, given j and m, Proposition 3 implies that
∂uij(σ−i)

∂σlm
and ∂ulj(σ−i)

∂σim
as a pair can be computed simultaneously
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with one AG. There are N(N−1)
2

such pairs. As a result, the number
of calculations reduced in total is

N(N − 1)M2 − N(N − 1)

2

M2 + 3M − 2

2

>
3

4
N(N − 1)M(M − 1).

Since D has N(N − 1)M2 elements, the efficiency for step 2 is
improved by about 75%.

4 Parameter Estimation

In this subsection, we propose an algorithm based on the principle
of MLE and QRE to estimate v, α and β of SSAs from real data.
It is pointed out in [19] that the auctioneer itself can not accurately
estimate the CTRs and it is not rare to get a 50% error. Our mod-
el provides an alternative way for the search engine to infer these
parameters when they are unknown.

Given a QRE strategy σ, the logarithmic likelihood of the un-
known parameters v, λ, α and β is

L(v, λ, α, β|σ) = log(
∏

i∈[N ]

∏
j∈[|Bi|]

πij(σ−i)
σij ) (10)

Then the parameters can be estimated by maximizing the likeli-
hood as shown in the following optimization problem:

max
v,λ,α,β

L(v, λ, α, β|σ) (11)

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
vi ≥ 0, ∀i ∈ [N ];

λi ≥ 1, ∀i ∈ [N ];

1 > βs ≥ βs+1 > 0, ∀s ∈ [K − 1];

0 < αi < 1, ∀i ∈ [N ].

(12)

However, qij(s−i) is not a continuous function of αi, ∀i ∈ [N ], nor
are the utilities of bidders. As a result, the likelihood defined in Eq.
(10) is not continuous with respect to α.

To address the discontinuity of the likelihood function, we split
the unknown parameters into two groups and sequentially optimize
them: we treat v, λ, β as a group and α as the other group; in each
iteration, we first optimize v, λ, β and then α.

The function L(v, λ, α, β|σ) in Eq. (11) is continuous with respect
to the parameters in the first group. We can learn a better set of v, λ, β
by solving the following sub optimization problem:

max
v,λ,β

L(v, λ, α, β|σ) (13)

s.t.

⎧⎪⎨⎪⎩
vi ≥ 0, ∀i ∈ [N ];

λi ≥ 1, ∀i ∈ [N ];

1 > βs ≥ βs+1 > 0, ∀s ∈ [K − 1].

(14)

Since the above optimization problem is non-convex, it is difficult to
find the global maximum. We turn to find a set of local maxima with
different starting points and then choose the best one to improve the
possibility of reaching the global maximum of the sub problem.

As aforementioned, the likelihood function is not continuous with
respect to α. Here we do not optimize bidders’ ad CTRs simultane-
ously. Instead, we deal with them one by one. Let us take the ad CTR
αi of bidder i as an example and keep αj , ∀j 
= i fixed. Given that all

the other parameters are fixed, it is easy to know that the likelihood
has the following discontinuous points:

{αjbj
bi

∣∣0 <
αjbj
bi

< 1, j ∈ [N ] \ {i}, bi ∈ Bi, bj ∈ Bj}.

Then we can partition the feasible domain of αi into several intervals
where the likelihood function L is continuous with respect to αi, and
then by solving the optimization problem defined in Eq. (15) in each
interval we can find a better αi given all the other parameters:

maxαi L(v, λ, α, β|σ) (15)

s.t. αi in the continuous interval.

Similarly, the above optimization problem is not convex. To avoid
being tracked into a bad local maximum, we can also find a set of
local maxima with different starting points and choose the best one.

Algorithm 2: Parameter estimation

1 L∗ ← −∞;
2 Randomly generate an ad CTR profile α;
3 while True do
4 Fix α and update v, λ, β by solving the problem shown in

Eqs. (13) and (14);
5 for i← 1, 2, · · · , N do
6 Fix αj , ∀j 
= i, v, λ, β and update αi by solving the sub

problem as shown in Eq. (15) in each continuous
interval;

7 L̂← L(v, λ, α, β|σ);
8 if L̂ > L∗ then

9 L∗ ← L̂;
10 else return the learned parameters v, λ, α, β;

The complete procedure is presented in Algorithm 2. In line 1 we
initialize the likelihood of the original optimization problem with
negative infinity. Line 2 sets an initial α. Lines 3-9 iteratively op-
timize the two groups of parameters. Line 4 fixes α and updates
(v, λ, β). Lines 5-6 fix (v, λ, β) and update α. Lines 7-10 control
the optimization process: if we make progress in this iteration, we
continue the optimization; otherwise, we return the latest parameter-
s. Again, to avoid a bad local maximum, we run the algorithm for
multiple times with different initial α’s in Line 2 and choose the best
parameters as the final output in our experiments.

5 Experimental Evaluation

We conduct extensive experiments to evaluate the algorithms for
QRE computation and parameter estimation.

5.1 Effectiveness of the Homotopy Algorithm

We first evaluate the runtime of the three different approaches for
computing D: TM, AGG, and AGG combined with our speed-up
methods (AGGSU for short). The experiments are divided into two
groups based on whether bidders have the same score space. In each
group, we test the three methods with different game sizes where
N = 5, 6, . . . , 20 and M = 10, 15, 20. In all the experiments,
α, β and Bi, ∀i ∈ [N ], are sampled from uniform distributions
with supports (0.1, 1)N , (0.1, 1)K and (0,M)M respectively. We
let K = N/2� and vi = maxbi∈Bi bi, ∀i ∈ [N ]. The runtime for
each method in each setting is averaged over 100 experiments. The
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results are depicted in Figure 1 with logarithmic y-axis, where da-
ta greater than 104 seconds are not displayed and the symbol “-S”
(“-D”) denotes the same (different) score space group. Since the run-
times for TM in the two groups are almost the same, we just plot the
average of them.

We see from Figure 1 that the runtime of TM increases exponen-
tially as N grows. The 8×10 (i.e., N = 8, M = 10) game cannot be
solved by TM within 1 hour. As a comparison, both AGG and AG-
GSU are much more efficient than TM. We observe that AGGSU-D
(AGGSU-S) is about ten times faster than AGG-D (AGG-S), which
confirms the efficiency of our speed-up methods proposed in Section
3.2.2. We further notice that AGGSU-S (AGG-S) always runs slower
than AGGSU-D (AGG-D). That is because IE is almost an empty set
for AGGSU-D (AGG-D) and thus its AGs have O(KNM) leaves,
while the AGs for AGGSU-S (AGG-S) contain O(KN2M) leaves.
Overall, our AGGSU method performs the best in all the settings.

Next we evaluate the performance of Algorithm 1. The parameters
of the experiments are generated as above and λ is uniformly sam-
pled from the support (0, 10)N . We do not assume the identical score
space and the set D is computed with AGGSU-D. The experiments
are based on three different settings (game sizes). We use dynamic
(Dy) and various fixed step lengths to test Algorithm 1. The results
are depicted in Table 1, which shows the runtime of the algorithm
in seconds (time), the number of Euler steps (#E), and the averaged
amount of Gauss-Newton steps (#G) in one Euler step.

Table 1. Performance of Algorithm 1

N=10, M=5 N=10, M=10 N=15, M=10
Δ time #E #G time #E #G time #E #G

Dy 0.55 5.10 2.40 5.66 8.00 2.44 19.5 5.42 2.38
0.1 1.92 26.0 0.73 18.6 47.0 0.76 82.1 29.1 0.68
0.3 0.85 10.9 1.03 8.58 18.1 1.05 37.8 11.2 1.03
0.5 0.82 7.45 1.71 7.67 12.3 1.83 33.0 8.03 1.37
0.7 0.81 6.76 2.40 7.68 10.7 2.32 26.8 5.45 2.44
0.9 0.82 5.44 2.60 7.92 8.12 3.56 30.1 4.96 2.75
1.1 0.85 4.34 3.25 10.8 10.2 3.91 37.7 5.02 3.03

We learn from Table 1 that larger step lengths usually lead to few-
er Euler procedures, but more Gauss-Newton processes are needed
to correct the zero point predicted in the Euler phase. The Gauss-
Newton corrector often fails to converge when Δ ≥ 1.3, which im-
plies that Newton-style methods cannot be directly used to compute
the QRE. When Δ is small, the predicted zero points are often accu-
rate enough and the corrector step is not needed, hence the averaged
number of Gauss-Newton steps may be less than 1. Another interest-
ing finding is that the numbers of steps for the predictor and corrector
phases do not increase with the game size. We can verify that, given
the numbers of bidders (N ) and strategies (M ), the runtime of Algo-
rithm 1 is positively correlated to the total amount of steps and the
dynamic step length strategy outperforms those strategies with fixed
step lengths. The results indicate that our algorithm can efficiently
compute the QRE for large-size SSAs.

5.2 Evaluate the Estimation Algorithm

We first used Algorithm 2 to infer the parameters of the QREs com-
puted in Section 5.1 and found that the estimated parameters are al-
ways equal to the generated ones, which verifies the effectiveness of
Algorithm 2 in parameter estimation. Next we conduct experiments
based on Yahoo’s public data on advertising and market [14, 41, 47],
which contain the information about advertisers’ bids and ranks over

4 months. More than 89% of the queries9 in the dataset have less than
5 bidders. We find that bidders’ information in many queries are very
incomplete, i.e., there are only several records about a bidder over the
4 months. As in some related work like [13], we pick out 70 queries
with almost complete information in the log (which do not include
the queries containing just one bidder), and further remove the bid-
ders who give a very high or very low bid and never make a change
since these bidders will create singularity issues for the estimation
and provide little information about bidders’ behaviors.

We fit the QRE model into the processed dataset, in which the dis-
tribution of the number of bidders is shown in Table 2. Specifically,
for each query, we first compute bidders’ real mixed strategy profile
σ with the log file, then we use Algorithm 2 to infer parameters with
the QRE model, next by substituting the estimated parameters into
Eq. (3), we compute bidders’ quantal responses πi for all i ∈ [N ].
We first evaluate whether πi is equal to σi, ∀i ∈ [N ], for each query,
i.e., whether advertisers’ bidding strategies (σ) form a QRE. To do
this, we calculate the error 1∑

i∈[N] |Bi|
∑

i∈[N ],j∈|[Bi]| |πij − σij |
for each query, based on which we compute the maximum, mini-
mum and average of the errors over each of the four scenarios. The
results are depicted in Table 2.

Table 2. Fitting Accuracy Evaluation

scenario No. of
bidders

distribution maximum minimum average

1 3 77.14% 0.0732 0.0002 0.0373
2 4 15.71% 0.0813 0.0002 0.0388
3 5 4.29% 0.0922 0.0011 0.0432
4 ≥ 6 2.86% 0.1078 0.0106 0.0592

We see from Table 2 that for some queries, the minimal errors are
at the magnitude of 10−4, and on average the errors are less than
0.06, which indicates that the QRE can model advertisers’ behav-
iors in the real world well. In most cases, the worst-case errors are
around 0.08. Thus it is reasonable to assume that bidders were play-
ing the QRE. Next, following the practice in [45], we use two specif-
ic queries to show details about the parameters estimated with QRE
model and then make a comparison with the mixed strategy Nash
equilibrium (MSNE) model10.

The parameters estimated with the QRE are depicted in Table 3,
by substituting which into Eq. (3) we compute bidders’ quantal re-
sponses (πi) and expected utilities (ui), as shown in Tables 4 and
5. We see that better strategies are chosen with higher probabilities,
which is consistent with the principle of QRE. We find that the quan-
tal responses (πi) are very close to the real mixed strategies (σi) in
both tables, which implies that the QRE model can accurately de-
scribe bidders’ bidding behaviors in the real world.

Table 3. Estimated parameters with QRE

query i vi λi αi β L∗

1 66.5 85 .04 .07
1 2 43.0 1078 .03 .06 -3.2804

3 61.4 1602 .03 .05

1 6.00 6251 .13 .15
2 2 1.65 222 .65 .10 -2.6098

3 5.67 4700 .18 .05

9 For simplicity, we only consider exact match between a query and keyword-
s. For broad match, please refer to [9, 12, 31].

10 We do not compare the QRE with the symmetric Nash equilibrium [45]
because the latter is a pure-strategy equilibrium which cannot explain ad-
vertisers’ mixed-strategy behaviors.
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Figure 1. Runtime of TM, AGG and AGGSU

Table 4. Strategies comparison for query 1

σ1 π1 u1 σ2 π2 u2 σ3 π3 u3

.1261 .1239 .1202 .2975 .2979 .0479 .2609 .2607 .0906

.3025 .3563 .1328 .5950 .5948 .0485 .3565 .3697 .0908

.4202 .3714 .1333 .1074 .1073 .0469 .3826 .3697 .0908

.1513 .1484 .1224

Table 5. Strategies comparison for query 2

σ1 π1 u1 σ2 π2 u2 σ3 π3 u3

.2927 .2682 .0339 .6897 .6881 .0633 .0522 .0524 .0581

.2439 .2682 .0339 .1466 .1040 .0548 .1304 .1304 .0583

.4634 .4635 .0340 .1207 .1040 .0548 .8174 .8172 .0587
.0431 .1040 .0548

We learn from Table 3 that bidders’ precision parameters differ
from each other significantly. Note that Eq. (3) implies that besides
λi, the magnitude of the difference between bidder i’s expected u-
tilities has a strong impact on his/her quantal response. To see this
impact, we take bidder 1 in query 2 for an example. We know from
Table 3 that λ1 = 6251 for query 2, which seems to indicate that bid-
der 1 should be very rational because λ1 is large. However, the quan-
tal response π1 = (.2682, .2682, .4635) for query 2 in Table 5 indi-
cates that bidder 1 is not very rational since he/she does not choose
the optimal strategy with very high probability. That is because the d-
ifference between the components of u1 is at the magnitude of 10−4,
which reduces the effect of

∑
k∈[|B1|] e

(u1k(σ−1)−u1j(σ−1))λ1 in E-
q. (3) even though λ1 is at a magnitude of thousands.

Next we fit the MSNE into the dataset, where each player’ expect-
ed utilities by choosing different pure strategies are the same. Hence
we solve the following optimization problem with Algorithm 2:

L̃(v, α, β|σ) = log(
∏

i∈[N ]

∏
j∈[|Bi|]

(
uij(σ−i)∑

k∈[|Bi|] uik(σ−i)
)

1
|Bi| ) (16)

s.t.

⎧⎪⎨⎪⎩
vi ≥ 0, ∀i ∈ [N ];

1 > βs ≥ βs+1 > 0, ∀s ∈ [K − 1];

0 < αi < 1, ∀i ∈ [N ].

(17)

which get its maximal value when

uij(σ−i)∑
k∈[|Bi|] uik(σ−i)

=
1

|Bi| , ∀i ∈ [N ], j ∈ [|Bi|],

or equivalently, when

uij(σ−i) = uik(σ−i), ∀i ∈ [N ], j ∈ [|Bi|], k ∈ [|Bi|].
The estimated results are in Table 6. It shows that the maximal

likelihoods of the queries with MSNE (L̃∗) are less than those with

QRE (L∗), which implies that QRE is more accurate than MSNE
for modeling advertisers’ pricing policies. We learn from the log that
B1 = {10, 15, 20, 30}, B2 = {10, 20, 25} and B3 = {15, 25, 35}
for query 1. The values estimated by QRE are all larger than bids,
which is consistent with the experience that bidders usually do not
overbid [21]. As a comparison, the values predicted by MSNE are
not very reasonable. Besides, the estimated CTRs (θik) of MSNE for
query 1 are overly large, e.g., α1β1 = 0.42 and α2β1 = 0.76, while
the CTRs in the real world are generally lower than 10%. Further-
more, the log shows that the maximal bid in query 2 is not greater
than 10, while the estimated values are at the magnitude of 106,
which does not make sense. The slot CTRs (β) estimated by MSNE
for query 2 also seem strange since in the real world CTRs usually
decrease from the top position to the bottom one. As a comparison,
those estimated with QRE match the real world well. Overall, QRE
can fit the real data much better than MSNE.

Table 6. Estimated parameters with MSNE

query i vi αi β ˜L∗

1 18.1 .51 .83
1 2 12.8 .91 .02 -3.5835

3 112.2 .16 .02

1 8.4×106 .02 .07
2 2 4.8×106 .05 .07 -4.7594

3 3.08×106 .09 .07

6 Conclusion

In this paper, we introduced the solution concept of QRE into S-
SAs to model the bounded rationality of advertisers’ bidding behav-
iors. Along this line, we made two key technical contributions. First,
we designed an efficient homotopy-based algorithm to compute the
QRE for SSAs. By further utilizing the special structure of adver-
tisers’ expected utilities, we significantly improved the efficiency of
our algorithm which can be applied to large-size SSAs. Second, we
developed an estimation algorithm and fitted the QRE model into re-
al data to infer values, precisions and CTRs of the SSAs. In addition,
we conducted extensive experiments to evaluate the performance of
our algorithms, which show that the proposed homotopy algorithm
for computing QRE is very efficient and the QRE model can fit the
real data much better than previous models.
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[20] Philip A Haile, Ali Hortaçsu, and Grigory Kosenok, ‘On the empiri-
cal content of quantal response equilibrium’, The American Economic
Review, 98(1), 180–200, (2008).

[21] Di He, Wei Chen, Liwei Wang, and Tie-Yan Liu, ‘A game-heoretic
machine learning approach for revenue maximization in sponsored
search’, in Proceedings of the Twenty-Third international joint confer-
ence on Artificial Intelligence, pp. 206–212, (2013).

[22] P Jean-Jacques Herings and Ronald Peeters, ‘Homotopy methods to
compute equilibria in game theory’, Economic Theory, 42(1), 119–156,
(2010).

[23] Bernard J Jansen and Tracy Mullen, ‘Sponsored search: an overview
of the concept, history, and technology’, International Journal of Elec-
tronic Business, 6(2), 114–131, (2008).

[24] Albert Xin Jiang and Kevin Leyton-Brown, ‘A polynomial-time algo-
rithm for action-graph games’, in Proceedings of the 21st AAAI Con-
ference on Artificial Intelligence, pp. 679–684, (2006).

[25] Albert Xin Jiang, Kevin Leyton-Brown, and Navin AR Bhat, ‘Action-
graph games’, Games and Economic Behavior, 71(1), 141–173, (2011).

[26] Soren Johansen and Katarina Juselius, ‘Maximum likelihood estima-
tion and inference on cointegration with applications to the demand for
money’, Oxford Bulletin of Economics and statistics, 52(2), 169–210,
(1990).

[27] Kenneth L Judd, Numerical methods in economics, MIT press, 1998.
[28] R Bruce Kellogg, Tien-Yien Li, and James Yorke, ‘A constructive proof

of the brouwer fixed-point theorem and computational results’, SIAM
Journal on Numerical Analysis, 13(4), 473–483, (1976).
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