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Abstract. Firewalls, Intrusion Detection Systems (IDS), and cyber-
insurance are widely used to protect against cyber-attacks and their
consequences. The optimal investment in each of these security measures
depends on the likelihood of threats and the severity of the damage they
cause, on the user’s ability to distinguish between malicious and non-
malicious content, and on the properties of the different security mea-
sures and their costs. We present a model of the optimal investment
in the security measures, given that the effectiveness of each measure
depends partly on the performance of the others. We also conducted an
online experiment in which participants classified events as malicious or
non-malicious, based on the value of an observed variable. They could
protect themselves by investing in a firewall, an IDS or insurance. Four
experimental conditions differed in the optimal investment in the differ-
ent measures. Participants tended to invest preferably in the IDS, irre-
spective of the benefits from this investment. They were able to identify
the firewall and insurance conditions in which investments were bene-
ficial, but they did not invest optimally in these measures. The results
imply that users’ intuitive decisions to invest resources in risk manage-
ment measures are likely to be non-optimal. It is important to develop
methods to help users in their decisions.
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1 Introduction

1.1 Cybersecurity

Cybersecurity has become one of the major challenges for modern society [1], as
the frequency and variety of cyber-attacks are steadily increasing [19], and the
damage caused by cybercrime continues to rise [3]. The growing threats lead to
a corresponding growth in the development of cybersecurity defense tools. The
investment in these tools aims to diminish the risk of losses to the point where
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the marginal cost of implementing security is equal to the additional reduction
of the costs, caused by security incidents [8].

Organizations need to decide how to allocate resources to different risk mit-
igation measures. Such decisions are based on the evaluation of the efficiency
of the different security measures by decision makers in organizations. Invest-
ment decisions regarding different security measures are complicated by the fact
that the consequences of implementing one measure may affect the efficiency of
others. Also, securing the cyberspace is not only a technical issue [12]. Rather,
it is strongly affected by the behaviors, perceptions and decision making of the
people who use these systems [7].

1.2 User Decision Making

To design proper security systems, designers must understand how users make
decisions regarding security [20]. Actual human decisions regarding risk taking
do not always correspond with the optimal decisions, prescribed by decision
theory [20]. These deviations can result from users’ evaluations of the trade-
off between the effectiveness of the security and the usability of the system [15].
Some users may be willing to accept high False Alarm rates of an alerting system,
if they think that the expected damage from an undetected malicious event is
sufficiently larger than the expected cost of taking unnecessary actions after
False Alarms. Others may prefer low False Alarm rates, if alerts are seen as too
disruptive, even at the cost of reducing the likelihood of detecting an attack [2].

Also, decisions may not be optimal because abstract outcomes tend to have
less impact on decisions than concrete ones [4]. In security, the pro-security
alternative (invest in a security mechanism) usually has the invisible outcome of
protecting from attacks [20]. This benefit is often intangible for users, making
it difficult to evaluate the gains, compared to the costs. The difficulty to assess
the benefits, gained from investing in security, is particularly large when users
do not know the exact level of risk they are facing, or when they believe the risk
is smaller than it actually is [20].

Risk taking is a complex combination of behaviors. It depends on the person’s
individual characteristics, on the available security mechanisms and information
and on the nature of threats [2]. For instance, people who feel better protected
are likely to engage in more risky behavior [20]. A person may take greater risks,
knowing that a warning system is installed and no warning has been issued [13].

1.3 Defending Against Cyber-Threats

To lower risks, people can either reduce the likelihood of a threat or reduce
the severity of the damage, caused by a successful attack. Firewalls are a widely
used mechanism to lower the likelihood of threats. They are barriers between the
secured and controlled internal networks and the untrusted outside networks [9].
The quality of a firewall system is measured by its ability to stop malicious events
from entering the system, while not interfering with non-malicious events [8].
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Cyber-insurance limits the damage caused by a cyber-attack, once it has
occurred. It does not protect from attacks, but it helps organizations or indi-
viduals reduce their risks by sharing the costs associated with recovery after a
successful cyber-attack [10].

One can also reduce risks by providing users with information that allows
them to detect and avoid risks, using decision support systems or alerting sys-
tems. The availability of additional information may change the strategies deci-
sion makers use to address a decision problem [6]. In the context of cyber security,
Intrusion Detection System (IDS) are widely used. They monitor networks or
systems for malicious activity or policy violations, and they issue alerts when
suspicious events are detected [8]. The quality of an IDS system is measured in
terms of its ability to distinguish between malicious and non-malicious events.
From the user’s perspective, the IDS can improve the information the user has
for deciding whether an event is malicious or not.

1.4 Our Contributions

We develop a model of the value of the investments, leading to the lowering of
the likelihood of adverse events, the costs related to the adverse events, and the
information available for detecting adverse events.

These three security measures affect different parts of the coping with threats,
but they are intricately related. For instance, lowering the chances for the occur-
rence of adverse events may lower the need for investment in improved decision
support. Thus, decision makers may need to consider trade-offs when deciding
on the optimal strategy to manage cyber risks.

We also conducted a behavioral experiment to assess actual user behavior in
a controlled lab setting and to compare it to the model predictions. The results
of the study allow us to identify possible differences between user preferences and
choices and the optimal security behavior, prescribed by the normative model.
In particular, we aim to determine whether users respond more strongly and are
more sensitive to the likelihood of damage or to its severity. We also observe
whether users are able to choose the optimal investment in the alerting system,
considering the properties of the system. The knowledge of such biased decisions
can help us decide whether choices of risk-mitigation investments can be left to
the user’s intuitive choices, or whether one needs to develop ways to help users
choose optimal protection.

2 Model

2.1 Modeling Framework

We use Signal Detection Theory (SDT) [11,16–18] to describe and study binary
classification decisions under uncertainty. It assumes that classifications are made
by deciding from which of two overlapping distributions (often referred to as
signal and noise) an observation was sampled [21].



36 Y. B. Yaakov et al.

Signal detection theory commonly assumes Gaussian distributions. However,
to facilitate the development of analytical solutions, we use Exponential distri-
butions to represent the signal and noise.

2.2 Model Description

We consider a decision-making model of an agent (a company, an organiza-
tion or an individual) in a given period (e.g., a year) to decide on cyber risk
management. We consider three security measures for cyber risk management -
firewalls, intrusion detection systems (IDS) and cyber-insurance. They become
active sequentially - a threat first has to pass the firewall. It may then be detected
by the IDS, and the user can respond to the indication of the IDS. The cyber-
insurance will lower the damage, if neither of these two security measures stops
the threat, and an attack occurs.

2.3 Firewall and IDS

Consider an information asset of the company with value v, which is also the loss
caused when an attack succeeds. Let N be the number of events trying to access
the information asset in the given period and ε of them are malicious, which can
be estimated from the historical data. We assume the asset is protected by the
typical cybersecurity system architecture. IDSs will raise an alarm when an event
is identified as “malicious”. The outputs of IDSs, together with the features of
the events, are inputs to humans’ classification decisions.

We use PF
m to denote the probability that a malicious event can pass the

firewall, which depends on the agent’s investment in firewalls, yielding PF
m =

f(x). We assume that all non-malicious events can pass the firewall. Therefore,
the probability that an event that passed the firewall is malicious is

Ps = P (Malicious|after Firewall) =
ε · PF

m

(1 − ε) + ε · PF
m

(1)

and the probability that the event is non-malicious is Pn = 1 − Ps. The proba-
bility that the IDS correctly detects a malicious event (i.e., true positive) is P I

TP

and P I
FP is the probability that the IDS incorrectly classifies an event as mali-

cious (i.e., false positive). The probabilities of false negative and true negative
are denoted by P I

FN = 1 − P I
TP and P I

TN = 1 − P I
FP , respectively. The values of

〈P I
TP , P I

FP 〉 depend on the agent’s investment in the IDS and the agent’s alarm-
ing threshold βI according to the signal detection theory (SDT) parameters
〈λs, λn〉, displayed in Fig. 1.

We can compute the probability that an event is malicious when the alarm
is raised, i.e., the positive predicted value (PPV), and the probability that the
event is non-malicious when the alarm is not raised, i.e., the negative predicted
value (NPV).



Choosing Protection 37

PPV = P (Malicious|Alarm) =
P I
TPPs

P I
TPPs + P I

FPPn
(2)

NPV = P (Non-Malicious|No-Alarm) =
P I
TNPn

P I
TNPn + P I

FNPs
(3)

Fig. 1. Signal detection theory distributions for categorization decisions. The two
exponential distributions for non-malicious and malicious events are parameterized
by 〈λs, λn〉, respectively. W.l.o.g., we assume that λs < λn. The threshold βI indicates
that events with values above βI will trigger an alarm in the IDS. When applying the
model to the human monitoring decisions, βH

A is the human threshold when an alarm
was raised and βH

Ā is the human threshold when no alarm was raised.

2.4 Human Monitoring

The human monitoring specifies the agent’s monitoring policy, considering the
company’s defense systems (firewall and IDS). The agent classifies the event as
malicious or non-malicious, given the output of the IDS, i.e., alarm and no-
alarm. The payoff matrix of the agent consist of (i) if the event is malicious and
the agent classifies it as “malicious”, the agent suffers −γv, (ii) if the event is
non-malicious and the agent classifies it as “malicious”, the agent suffers −c,
(iii) if the event is malicious and the agent classifies it as “non-malicious”, the
agent suffers −v and (iv) if the event is non-malicious and the agent classifies it
as “non-malicious”, the outcome is d. We note that 0 ≤ γ < 1 and c < v. The
agent’s monitoring policy is also modeled by SDT with the additional outputs,
and the decision variables are 〈βH

A , βH
Ā

〉, which specifies the thresholds to classify
the alarmed and no-alarmed events, as displayed in Fig. 1.

2.5 Cyber Insurance

The agent can purchase cyber insurance from an insurer with a premium to
cover all (or a fraction of) the damage caused by the malicious events. The set
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of insurances provided by the insurer is denoted by I and each insurance Ii ∈ I
is specified by Pi, Li where Pi is the premium and Li is the limit of liability.
The insurer will not pay more than the limit of liability. The agent’s strategy is
denoted by z, where zi = 1 if Ii is purchased and zi = 0 otherwise.

2.6 Combining the Security Measures

After specifying the investments 〈x, y, z〉 and the thresholds 〈βI , βH
A , βH

Ā
〉, we can

compute the agent’s expected costs, caused by an event that passes the firewalls.

û(x, y, z;βI , βH
A , βH

Ā )

= PA · {P (Malicious|Alarm)[PH
TP |A(−γv) + PH

FN |A(−v)]}
+ PA · {P (Non-Malicious|Alarm)[PH

FP |A(−c) + PH
TN |A(d)]}

+ PĀ · {P (Malicious|No-Alarm)[PH
TP |Ā(−γv) + PH

FN |Ā(−v)]}
+ PĀ · {P (Non-Malicious|No-Alarm)[PH

FP |Ā(−c) + PH
TN |Ā(d)]}

= P I
TPPs[PH

TP |A(−γv) + PH
FN |A(−v)] + P I

FPPn[PH
FP |A(−c) + PH

TN |A(d)]

+ P I
FNPs[PH

TP |Ā(−γv) + PH
FN |Ā(−v)] + P I

TNPn[PH
FP |Ā(−c) + PH

TN |Ā(d)] (4)

where PA is the probability that an event will cause an alarm when passing the
IDS. Therefore, the agent’s damage, caused by all events, can be computed as
Û(x, y, z;βI , βH

A , βH
Ā

) = N(εPF
m + (1 − ε)) · û(x, y, z;βI , βH

A , βH
Ā

). The agent’s
expected utility is

U = min
{

0,
∑

Ii∈I zi · Li − Ū
}

− I(B) · Ũ (5)

with the constraint that

Ũ ≤ B (6)

where Ũ = x + y +
∑

Ii∈I zi · Pi is the sum of investments in the firewall, IDS
and insurance. The first term of Eq. (5) implies that the expected damage Ū is
higher than the limit of liability, the agent will pay the excess cost. Otherwise
the insurance will cover the entire cost. The indicator function in the second
term is defined as: I(B) = 0 if B < ∞, which means the risk management is
constrained by a finite budget B and I(B) = 1 if B = ∞, which means the
risk management is without any budget constraint. Our goal is to compute the
optimal assignment of the budget to maximize the agent’s expected utility.

3 Experiment

We conducted an experiment to test the extent to which model predictions
correspond with actual user behavior, at least in controlled settings. To do so,
we developed a web-based experimental system that presents trials, resembling
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incoming email messages. Participants had to classify messages as malicious or
non-malicious. The experiment consisted of six sessions. At the beginning of each
session, participants decided how much they wanted to invest in a firewall, an IDS
and insurance. Greater investment in each of the security measures led to greater
protection. The system assigned the participants randomly to one of the four
experimental conditions. The conditions differed in the optimal investment in the
security measures (firewall, IDS, or insurance). In three of the four conditions,
the optimal investment in one of the measures was the maximum 10, and it was
0 for the two other measures. In the fourth condition, the optimal investment
was 0 for all measures.

3.1 Participants

Participants were 98 engineering students (59 females and 39 males), with 24
participants in condition 1, 24 participants in condition 2, 20 participants in
condition 3, and 30 participants in condition 4. Most (84 participants) performed
the experiment as part of a project in a course on quantitative models of human
performance, while the remaining 14 responded to requests by the experimenter
to participate in the study.

3.2 Experiment Description

The game is played by 98 independent players, who are all potential victims of
attacks, where the attacker is modeled by the system. The game consists of 6
sessions, with 30 trials in each session. In each trial, security attacks occur prob-
abilistically, according to a fixed, exogenous probability p = .3, which determines
the baseline rate of security attacks. The success or failure of an attempted attack
depends on the defensive measures purchased by the player in the beginning of
each session. Each session began with investment screen in which the participant
could explore and eventually choose a combination of investments, consisting of
investments between 0 and 10 points in each of the three security systems, from
a total budget of 30 points in each session:

a An automatic system (resembling a firewall) that blocks part of the malicious
events, letting all non-malicious events through. The greater the investment
in the firewall, the larger the proportion of malicious components the system
blocks.

b An automatic alert system (referred to as the Intrusion Detection System,
IDS), which either issues or does not issue an alert that indicates a malicious
component. The greater the investment in the IDS, the greater its ability
to distinguish between malicious and non-malicious components (in Signal
Detection terms, its sensitivity increases).

c Insurance that will compensate for some or all of the damage caused when a
malicious component got through. The greater the investment in the insur-
ance, the higher the proportion of the damage the insurance covers.
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Participants could check the system quality as per the different potential invest-
ment mixtures as many times as they wanted. The quality of the systems was
presented as the percentage of the malicious components that are stopped by the
firewall, the True Positive and False Positive rate of the IDS and the percent-
age of compensation from the insurance for damage caused by malicious events.
After selecting the investment mixture, the participant needed to classify 30
events per session.

Events were blocked by the firewall with some probability p (p depends on
the participant’s investment in the Firewall security system x). In Condition
1, when the optimal investment in the firewall was to invest 10 points p (x) =
1.37 − e−1e−0.2x

, so that with the maximal investment, the firewall blocked .5 of
the malicious events. In the other conditions, p (x) = 1.9 − e−0.1e−0.3x

. Here the
maximal investment in the firewall only blocked .105 of the malicious events.

The participant’s investment in the IDS determined the system sensitivity.
The larger the investment, the better was the ability to distinguish between
malicious and non-malicious events. For Condition 2, in which the maximal
investment in the IDS was optimal, λI

s = 1− e−4e−0.5x
. For the other conditions,

λI
n = 1+ e−4e−0.5x

. Figure 2 shows the probabilities PTP and PFP in the IDS for
different investments for Condition 2 and the other conditions.

Fig. 2. PTP , PFP as functions of the investment in the IDS for Condition 2 and Con-
ditions 1, 3 and 4.

If participants purchased insurance, they were compensated for some of the
damage if they mistakenly classified a malicious event as non-malicious. For
Condition 3, in which the optimal investment in the insurance was the maximal
investment, the proportion of the damage covered by the insurance was I (z) =
0.08x. In the other conditions, the proportion of the damage covered by the
insurance was I (z) = 0.03x.

The private information the participant had about an event was shown as a
rectangle. The longer the rectangle, the greater the probability that the compo-
nent was malicious (length was presented visually, as well as with a numerical
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value). Participants classified the events by using their private knowledge (the
rectangle length) the likelihood of an event being malicious, given the properties
of the firewall and the IDS, and the expected damage from malicious events,
given the investment in the insurance.

Classifying a malicious event as non-malicious resulted in the loss of 6 points,
while correctly classifying a non-malicious event resulted in the gain of 3 points
(no gain or loss of points in other cases).

After classifying 30 components, the session ended and the next session
began. Participants’ points were reset, and they could choose a new investment
mixture and then moved on to classify 30 additional events.

4 Results

4.1 Analysis of the Investment Choices

We analyzed the investment in the three security measures in the six ses-
sions for the four conditions with a three-way Analysis of Variance. The secu-
rity measure (firewall, IDS or insurance) and the session (six sessions) were
within-subject variables, and the condition was a between-subject variable.
We report the significance of effects with Greenhouse-Geisser corrections for
all within- subject effects. There was a significant main effect of the security
measure, F (1.995, 187.56) = 43.33,MSe = 22.11, p < .001. The investment in
the IDS was overall higher (M = 6.675, SD = 2.98) than the investment in
the other measures (Mfirewall = 4.17, SDfirewall = 3.32;Minsurance = 4.31,
SDinsurance = 3.40). There was also a significant main effect of the condition,
F (3, 94) = 6.94,MSe = 38.996, p < .001. Condition 1, in which investment in
the firewall was optimal, showed more investment (M = 5.95, SD = 3.05) than
Condition 2 (M = 3.76, SD = 4.02), p < 0.001, and Condition 4, in which the
optimal strategy was not to invest at all, showed more investment (M = 5.11,
SD = 3.23) than Condition 2, p < 0.05. Also significant were the interactions
Measure X Condition, F (5.99, 22.11) = 7.54,MSe = 22.74, p < .001. and Mea-
sure X Session, F (8.37, 786.85) = 28.33,MSe = 6.68, p < .001.

To gain a better understanding of the patterns of results, we conducted sep-
arate analyses for the different security measures. In the analysis of the invest-
ment in the firewall, there was a significant difference between the conditions,
F (3, 94) = 9.52,MSe = 30.62, p < .001. The investments in Condition 1, in
which investment in the firewall was optimal, were greater (M = 6, SD = 2.85)
than those in Conditions 2 (M = 2.94, SD = 3.35), p < .001 and Condition 3
(M = 3.02, SD = 3.035), p < .001 according to Tukey HSD. There was no signif-
icant effect of the session for the firewall security measure. Participants rapidly
realized that it is worthwhile to invest in the firewall when the investment was
indeed optimal. However, they did not reach the maximal investment. There
was no evidence for learning. Thus, participants did not approach the optimal
investment in the firewall (raise the investment in Condition 1 to the maximum
and lower the investment in all other conditions to 0).
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The results for the investment in the insurance resembled those for the invest-
ment in the firewall. There was a significant difference between the conditions,
F (3, 84) = 8.762,MSe = 30.77, p < .001. In Condition 3, in which invest-
ment in the insurance was optimal, participants invested more (M = 6.275,
SD = 3.15) than in Condition 2, (M = 2.90, SD = 3.15), p < .001, and Condi-
tion 4 (M = 3.84, SD = 2.99), P < .005. Condition 1 showed more investment
(M = 4.69, SD = 3.28) than Condition 2, p < 0.05 according to Tukey HSD.
The effect of the session was again not significant. Thus, here, too, participants
recognized the condition in which maximum investment in the insurance was
optimal. Here, too, there was no evidence for learning over time.

In the analysis of the investment in the IDS, there was a significant difference
between the sessions, as can seen in Fig. 3, F (3.996, 375.61) = 6.38,MSe =
7.399, p < .001. Session 1 (M1 = 5.43, SD1 = 2.58), showed less investment than
any other session (M2 = 7, SD2 = 2.75; M3 = 6.91, SD3 = 2.79; M4 = 7,
SD4 = 3.00; M5 = 6.99, SD5 = 3.12; M6 = 6.72, SD6 = 3.27). There was no
significant difference between the conditions for the IDS security measure. Thus,
for the IDS, participants did not differentiate between the condition in which
investments in the IDS were justified and the others. There was a change over
time in the investments in IDS, but it was an overall increase in the willingness
to invest in the IDS, irrespective of the effect of the investment.

Fig. 3. IDS: mean investment for the conditions and sessions

5 Discussion

We developed a model of the optimal investment in different security measures
and examined actual investment choices in three different security measures,
considering the quality of the systems. The results showed that participants pre-
ferred to invest in the IDS, compared to the firewall and insurance. However,
the participants were not sensitive to the quality of the IDS. People invested
between 60–70% of the maximum amount in the IDS, regardless of system qual-
ity. Investments in the IDS increased from the first session to the second and then
remained fairly constant. Thus, even though there was a change over time, there
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was no evidence for systematic learning that moves the investments towards the
optimum in the different conditions. These findings are in line with the results
of previous studies that show that user choices of the settings of alerting systems
are often problematic [5,14].

There was, however, some awareness of the differences in the quality of the
firewall and insurance. Players invested more in these two security measures when
the maximal investment was optimal, although they did not reach the optimal
investments. Neither did the investment in the conditions, in which the invest-
ment in the firewall or the insurance provided no benefits, diminish. Overall,
there were no significant learning effects for these two measures. Participants
decided on the level of investment in them during the first session, and they
maintained approximately the same level throughout the experiment.

These results indicate that people (at least in our controlled experiment) fail
to make optimal decisions regarding risk taking/investment in defense systems.
Therefore, an external mechanism is required to support these decisions. An
additional solution is the government’s regulation that specifies the properties
of the security measures (e.g., the required insurance coverage).

6 Implications from Our Study

Future research should validate and expand the results in additional systems.
Still, our study does show that participants do not respond adequately to prop-
erties of the security measures. They over-invest in information that is supposed
to help them differentiate between threat and non-threat situations, even when
this information has limited value. They do not distinguish between systems in
which the information benefits them and others in which it does not.

Also, even though participants realized that some firewall and insurance con-
ditions were better than the others, they did not adjust their responses suffi-
ciently. They did not invest enough in the firewall or the insurance when invest-
ments could have benefited them, and they invested too much in these measures
when they did not provide benefits that would have justified the investment.

In summary, our study shows that users’ choices regarding the investment
in security measures are problematic. Users can distinguish between better and
worse investments in measures that lower the likelihood of attacks or the severity
of the attack consequences. They invest more when the investment is justified,
but not enough, and they invest too much when investments are not justified.
When it comes to information, users invest in it, even if it is practically useless.

These findings should be considered when planning risk mitigation strategies.
It may be problematic to rely on users’ intuitive judgments to choose how to
allocate resources to cyber security measures. Instead, it may be necessary to
conduct systematic, decision-analytical evaluations of risk mitigation measures
to optimally allocate the resources to cyber security measures.
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