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Abstract

Mental health has become a major concern according to
WHO who estimates that more than 350 million people
worldwide are affected by depression. Studies have shown
that interventions and social support can reduce stress and
depression. However, counselling centers do not have enough
resources to provide counselling and social support to all the
participants in their interest. This paper helps social support
organizations (e.g., university counselling centers) sequen-
tially select the participants for interventions. Unfortunately,
previous works do not consider emotion propagation from
other neighbours of the influencees and initial uncertainties
of mental states and influence. Moreover, they fail to scale
up to solve problems with a large number of participants due
to the huge state space. Our contributions in this paper are
fourfold. Firstly, we propose a new model that addresses the
sequential intervention of participants while considering the
propagation of emotions and formulate it as a Partially Ob-
servable Markov Decision Process (POMDP) to handle un-
certainties about their mental states and the influence between
them. Secondly, we apply reasoning to refine belief to im-
prove solution quality for the lack of initial information on
mental state values. Thirdly, we improve the scalability by
the abstraction of states to reduce the number of states by
representing the mental states with an abstracted discrete set.
We further improve the scalability by multi-level partitioning
to get smaller POMDPs. Finally, we conduct extensive exper-
iments on both synthetic and real networks to show that our
algorithm significantly improves scalability with comparable
solution quality compared to the state-of-the-art algorithms.

1 Introduction

Nowadays, depression and other mood disorders have be-
come major public health concerns worldwide. The World
Health Organization (WHO) estimates that 350 million peo-
ple are affected by depression throughout the world, reduc-
ing their ability to work and socialize, as well as increas-
ing the rate of mortality from suicides (Eyre et al. 2017).
Since counselling and social support help mitigate this prob-
lem by reducing people’s stress (Rafferty and Griffin 2006),
counselling services are emerging to provide interventions
where a counsellor conducts dialogue sessions with several
participants, finds out about their mental states and provides
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therapy. In this work, we use University Counselling Center
(UCC) as an example. UCC is set up to monitor the stress
level and well-being of students and decrease their stress
level by interventions.

However, there are several challenges faced. Firstly, ac-
cording to 2016 AUCCCD Survey, only 6 − 7% of the stu-
dents seek for counselling. Although we need to invite all
the students for counselling to provide more effective so-
cial support, there are some limitations in the capacity of
intervention such as the availability of counsellors in a uni-
versity. Secondly, UCC cannot obtain the complete infor-
mation about the students’ mental states and the relationship
between them at the beginning of the intervention. Thirdly,
the large number of students makes it difficult to scale up
to the real-world networks. Hence, it is not easy for UCC to
efficiently decide the intervention plan.

There are existing works to deal with such kind of prob-
lems using sequential planning algorithms. PSINET (Ya-
dav et al. 2015), HEAL (Yadav et al. 2016) and CAIMS
(Yadav et al. 2018) maximize the HIV information spread
in uncertain networks by formulating as POMDPs address-
ing the uncertainty of the influence between the partici-
pants. DOSIM (Wilder et al. 2017) formulates the problem
as a zero-sum game between the influencer and the adver-
sary (uncertainty). However, these algorithms cannot be di-
rectly extended to solve our problem due to two main issues.
Firstly, they do not consider the initial uncertainty of mental
state values which leads to poor solution quality. Secondly,
the extensions of these algorithms fail to scale up to realistic
networks due to the huge state space of our problem.

This paper makes four key contributions. Firstly, we pro-
pose a novel model for intervention to prevent depression in
an uncertain network. The model considers the different val-
ues of nodes and the propagation which is not only affected
by the influencer but also by influencee’s neighbours. We
formulate the problem as POMDP to address the uncertain-
ties of mental state values and influence which we observe
along the interventions. Secondly, we propose a reasoning
algorithm on the students’ mental states upon observation
to refine the belief of the POMDP. Refining the belief with
reasoning reduces the loss of solution quality by the initial
uncertainty of students’ mental states. Thirdly, we propose
MLPRAP (Multi-Level Partition algorithm with Reasoning
and Abstracted Planning) with the following novelties: (i)
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we abstract the POMDP states to reduce the state space; (ii)
we provide theoretical bounds on uniform networks for so-
lution quality loss due to abstraction; (iii) we partition the
graph into smaller partitions by two folds: (1) balanced par-
titioning (MLP-B); (2) cluster partitioning (MLP-C) so that
the algorithm scales up to plan interventions for a network of
at least 1000 students. Finally, we provide extensive exper-
imental analysis on scalability and solution quality of ML-
PRAP compared to the state-of-the-art algorithms.

2 Motivation Scenario

Though our model can be applied to many scenarios such as
mental health care for a public sector and counselling ser-
vices for employees, we motivate our model by a specific
case where UCC conducts a series of interventions to stu-
dents. At each round of intervention, UCC invites a group of
students for the counselling session. Through the interven-
tion, UCC knows the mental states of intervened students
and students within one degree of them (Rice et al. 2012),
i.e., the influence between the counselled students and their
friends. Since the counsellors have student registry and the
collected information in previous interventions, UCC has
initial students’ mental states and influence estimation.

There has been evidence shown by the studies that emo-
tions (happiness or stress) can spread from person to per-
son via emotion propagation (Fowler and Christakis 2008;
Eyre et al. 2017). Therefore, we construct the emotion prop-
agation model where a person’s stress (mental state) is re-
duced after the intervention, after which she spreads her hap-
piness through emotion propagation in the network and re-
duces the stress levels of her neighbours. This propagation
is one-degree from the seed node since the influence propa-
gation does not normally go beyond that in real-world net-
works (Goel, Watts, and Goldstein 2012). Since the neigh-
bours’ mental states affect a person’s mental state both pos-
itively and negatively (Rafferty and Griffin 2006), we con-
sidered the happy/ stressed emotions of each neighbour in
the propagation model. We assume that the mental states of
intervened students are reduced with certainty considering
that the sudden external factors would not arise while being
monitored during intervention (UCLA 2018).

3 Related Works

Students’ Stress and Risk of Depression. Many different
factors can lead to depression such as genetics, medication,
physical or substance abuse and stress (Helmers et al. 1997).
Among them, stress (feeling of frustration, anger, nervous-
ness) is a significant factor for a high risk of depression and
anxiety, esp. for university students (Blackmore et al. 2007;
Lucassen et al. 2006; Khan and Khan 2017). Hence, we aim
to reduce stress levels to reduce the risk of depression.
Influence Maximization. Influence maximization on social
networks has been modelled as Independent Cascade (IC) or
Linear Threshold (LT) models (Kempe, Kleinberg, and Tar-
dos 2003). There are uncertainties in social networks such
as uncertainty in the edge influence probability and uncer-
tainty in the initial values of the nodes. There are two lines
of works that address such uncertainty: (1) IC is extended

to choose the seed set to optimally spread influence in a
graph (Chen et al. 2016); (2) the influencer selects several
seed sets sequentially to intervene the participants and the
influencer receives observations about the participants’ im-
mediate social circles. To sequentially select the intervention
participants, PSINET and HEAL formulate the problem as
POMDP to handle the uncertainties of connection existence
that are observed in each intervention (Yadav et al. 2015;
2016). As another approach, DOSIM formulates the prob-
lem as a zero-sum game between the algorithm which picks
the optimal policy and the adversary (nature) which selects
the connection probabilities with uncertainty (Wilder et al.
2017). However, all adopt IC model and only consider the
spread from the influencer but not the effect of influencee’s
neighbours. Moreover, they only consider the node values
as binary and set initial values as 0, i.e., they do not con-
sider uncertainty on the initial values of the nodes. However,
HEAL cannot scale up to realistic networks due to huge state
and action sets in our model. Hence, we propose abstraction
and multi-level partitioning to improve the scalability.
Online POMDP Solvers. We focus on online algorithms
for solving POMDPs that are more scalable and suitable
for our problem with huge state and action sets than offline
algorithms. Monte Carlo Sampling-based online solvers,
POMCP (Silver and Veness 2010) and DESPOT (Ye et al.
2017), use Monte Carlo tree search and maintain a search
tree for all sampled histories. Thus, they have better solu-
tion quality but reduce scalability. HEAL does not maintain
a search tree and uses QMDP heuristics (Littman, Cassan-
dra, and Kaelbling 1995) to find the best action.

4 Model

We consider Q rounds of UCC’s interventions of a group
of students and at each intervention, UCC selects K stu-
dents. For each intervention, UCC obtains the observations
about mental states of the selected students and influence be-
tween the selected students and their neighbours. Belief for
the next intervention is updated according to the newly ob-
tained observations. The objective of UCC is to decrease the
global stress level of all students to prevent depression.

4.1 Network and Dynamics

The connection network of N students is represented by a
directed graph G = 〈V,E〉 with the node set V (|V | = N)
and the edge set E. Every i ∈ V represents a student in
the connection network. Moreover, every e = {(i, j)|i, j ∈
V } ∈ E represents that student i is a friend of student j
and is associated with real value wij , which terms the influ-
ence that i induces to j. Since the friendship between a pair
of students is mutual (Seshadhri, Kolda, and Pinar 2012), if
(i, j) ∈ E then (j, i) ∈ E. However, different wij and wji

values indicate the different influence i and j have on each
other and we set wii = 0. For the sake of description, let
N in(i) be student i’s in-neighbours where (j, i) ∈ E with
0 < wji ≤ 1 for j ∈ N in(i) and N out(i) as out-neighbours
where (i, j) ∈ E, 0 < wij ≤ 1 for j ∈ N out(i), respec-
tively. The mental state of a student is one of the values in the
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discrete set M = {0, 1, 2, · · · , μ} 1 in which 0 represents
the least stressed mental state and μ represents the most
stressed mental state. Therefore, the students’ mental states
are represented by v = 〈v1, ..., vN 〉 where vi ∈ M, i ∈ V
is the mental state of student i.
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Figure 1: An illustrative example with 5 students. At round t,
UCC knows the influence between the students w12 and w23,
represented by the solid lines. Influence unknown by UCC
are represented by the dashed lines. Student 3 is picked by
UCC to be intervened at t. w34 and w35 are known by UCC
and students 4 and 5 are also influenced according to Eq. (1).

We assume that in each intervention, UCC reduces the
selected student’s stress level by δ 2. Due to her mental state
change, her emotion propagates to her friends j ∈ N out(i)
by the propagation where the extent of influence varies by
influence wij . The process is illustrated in Figure 1.

The extent of influence on j by i is represented by Δi→j
which is defined as:

Δi→j = � wij(μ− vi)

wij(μ− vi) +
∑

k∈N in(j)\{i} vk · wkj
· δ� (1)

which implies that when vi is smaller, i.e., the influencer i is
less stressed, Δi→j is larger. When

∑
k∈N in(j)\{i} vk·wkj is

larger, i.e., her other neighbours have more stressed mental
states, Δi→j is smaller. This is inspired by the studies that
the happiness/stress of the neighbours also affect the extent
of influence (Rice et al. 2012; Rafferty and Griffin 2006).

Hence, the total mental state value decrease on j is:

Δj = aj · δ +
∑

ai=1,i∈V \{j}
Δi→j (2)

where a = 〈ai〉, ∀i ∈ V such that ai = 1 if student i is
selected and ai = 0 otherwise. The first term aj · δ is the in-
fluence induced by UCC and the second term is the influence
induced by the propagation from the intervened neighbours
of j such that Δi→j are aggregated for all neighbours i of j
who are intervened.

4.2 Uncertainties

UCC does not have complete information of the students’
mental states and influence initially. Hence, we model the
uncertainty of students’ mental states at the tth interven-
tion by defining an N × (μ + 1) matrix P̂t−1 and each row

1In current literature, mental states can only be roughly evalu-
ated inexplicitly as mild, moderate and severe (WHO 1993).

2δ = f(vi). If vi < δ, we assign vi = 0 after decrease. This
also applies to Δj in Eq (2).

p̂t−1
i = 〈p̂t−1

i (m)〉 is the probability distribution over the
discrete set M of student i. p̂t−1

i (m) expresses the proba-
bility of student i being evaluated as mental state value m at
t. For the uncertain influence, we also define an N ×N ma-
trix Ŵ0 which represents the estimates of influence between
each pair of students. The values in Ŵ0 are estimated by the
counsellors based on the information collection before the
intervention process.

Initially, UCC has mental state estimates P̂0 and influ-
ence estimates Ŵ0. In each intervention, the mental states
of the selected students and influence are observed. Hence,
in tth intervention, UCC derives P̂t from the belief which
is updated during the intervention. The rule for the belief
update is described in POMDP formulation section. Ŵt is
also updated by assigning ŵij = wij , ∀j ∈ N out(i) and
ŵji = wji, ∀j ∈ N in(i) for each intervened student i.

4.3 POMDP Formulation

POMDPs are sequential decision making models under un-
certainty (Puterman 2014). Formally, a POMDP is defined
as P = 〈S,A,O, T,Ω, R, b0〉.
States and Initial Belief. S is the state set. A state is defined
as s = 〈v, Ŵ 〉 where v denotes the students’ mental states
and Ŵ is defined as ŵij = wij if the influence of student i
on j is known by UCC and ŵij = ŵ0

ij otherwise where ŵ0
ij

is the initial estimation of wij by UCC. UCC has an initial
belief over states b0 which is a distribution over S and b0s is
the probability that the POMDP is at s at the beginning of
the interventions.
Actions and Observations. UCC’s selection of K students
at each intervention is defined as action a where ai = 1
means student i is selected and ai = 0 otherwise, given the
constraint

∑
i∈V ai = K. All actions belong to the set A.

UCC’s observation by taking the action a ∈ A at state s
is defined as o(s,a) = {vi, wij , wji|∀ai = 1, j ∈ V,v ∈
s}, i.e., the mental states and the associated influence of the
intervened students. All observations belong to the set O. Ω
is the observation function of the POMDP which is uniquely
defined by the action a and the state s:

Ω(o, s,a) =

{
1, if o = o(s,a);
0, otherwise. (3)

Transition Probabilities Heuristic. T (s,a, s′) is the tran-
sition probability of reaching s′ from s by taking action
a. UCC takes action a and the change in students’ mental
states is calculated as by Eq (2). Therefore, we can define
T (s,a, s′) as:

T (s,a, s′) =
{

1, if s′ = 〈v′, Ŵ ′〉;
0, otherwise.

(4)

where v′ and Ŵ ′ are students’ mental states and influence
of the new state s′ that are updated as:

v′j = vj −Δj; ŵ′
ij =

{
wij , if ai = 1 or aj = 1;
ŵij , otherwise. (5)

where v′j ∈ v′, ŵ′
ij ∈ Ŵ ′, ∀i, j ∈ V .
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Reward and Policy. The reward R(s,a) of taking action
a ∈ A in state s = 〈v, Ŵ 〉 is defined by:

R(s,a) =
∑

s′∈S
T (s,a, s′)

(∑
i∈V

(vi − v′i)
)

(6)

We define the history at intervention t as a sequence of past
actions and observations Ht = 〈a1, o1, a2, . . . , at, ot〉. We
denote Ht as the set of all possible histories at t. The policy
is defined as π : Ht → A which takes history Ht as input
and outputs the action a. The expected reward for π starting
from b0 is defined as V π(b0) =

∑Q
t=1 E[R(s,a)|b0, π]. E[·]

outputs the expected value of the input. The optimal policy
π∗ is the policy that maximizes V π(b0). Formally, π∗ =
argmaxπ V

π(b0).
Belief Update. Since in each state s, we have the determin-
istic value of Ŵ where each element is either ŵij or wij , the
initial belief b0 can be defined by P̂0 and Ŵ0 such that for
s = 〈v, Ŵ 〉:

b0s =

{ ∏
vi∈v p̂0i (vi), if Ŵ = Ŵ0

0, otherwise.
(7)

At intervention t, each state s = (v, Ŵ ) with belief
bt−1
s transits to s′ = (v′, Ŵ ′) upon taking action a.

UCC observes o ∈ O with the probability of Ω(o, s′,a).
Hence we update the belief by bts′ = γ · Ω(o, s′,a) ·∑

s∈S T (s,a, s′) · bt−1
s where γ is the normalizing con-

stant: γ = 1/(
∑

s′∈S Ω(o, s′,a) · ∑s∈S T (s,a, s′) · bt−1
s ).

After that, we update P̂t based on the belief update with
p̂tj(m) =

∑
s′∈S,v′

j=m bts′ .

5 MLPRAP

To solve the formulated problem, we first tried online
POMDP solvers such as DESPOT (Ye et al. 2017) and
POMCP (Silver and Veness 2010) which can scale up to
large networks. These solvers, however, limit the size of ini-
tial belief set. This makes them not suitable for our setting
since the initial belief set may be as large as the state set.

We propose MLPRAP (Multi-Level Partition algorithm
with Reasoning and Abstracted Planning), extended from
the algorithms for the dynamic influence maximization in
social networks to improve scalability and solution quality.
MLPRAP sequentially selects the students in an uncertain
large-scale network with three novelties: reasoning on the
estimated mental states of students to refine the belief before
each intervention, abstraction of the POMDP states to solve
large POMDPs and multi-level partitioning of the graph.

Algorithm 1 describes the flow of MLPRAP. We parti-
tion the graph G with multi-level partitioning by Algorithm
4 or 5 to obtain a map P of partition par and k (line 1).
Then, we generate abstracted POMDPs for each par (line
2). Next, we refine belief bt−1 with reasoning by Algorithm
2 (line 4). Each POMDP is solved to find the optimal one-
node action with QMDP Heuristics (lines 6-8). We choose
K actions from A according to multi-level partitioning vari-
ants to get a which is added to policy π and belief bt is up-
dated (lines 9-10).

Algorithm 1: MLPRAP(G)

1 Obtain P with multi-level partitioning (Algorithm 4 or
5) ; // P is a map of par and k

2 Generate abstracted POMDPs P ′
k and assign k for

〈par, k〉 ∈ P;
3 for t = 1 : Q do

4 Reason to refine bt−1 of each P ′
k (Algorithm 2);

5 Initialize A = ∅ ; // A is a map of action and k
6 for P ′

k do
7 action = FindBestAction(P ′

k);
8 add 〈action, k〉 to A;
9 Choose K actions from A and assign to a;

10 Add a to π, and update bt of P ′
k according to

(bt−1,a);
11 return π

5.1 Reasoning

In our POMDP, the initial students’ mental states and influ-
ence (P̂0 and Ŵ0) are inaccurate since they are estimated by
UCC without evaluation. This leads to poor solution quality
as the algorithm sequentially selects the participants from
inaccurate initial beliefs. At every intervention t, as we get
information about the selected students’ mental states and
the real influence between the students, we do reasoning on
the estimated students’ mental states and refine bt so that the
belief estimates are closer to the true mental states.

The change in her emotions propagates to her neighbours
in the social network as emotions can spread from one per-
son to another. Moreover, her mental state is also affected
by the mental states of her neighbours. There are two main
conclusions that describe the relationship about the mental
states in a social network: (i) the close friends in the network
have similar mental state values (Hill, Griffiths, and House
2015); (ii) the mental state of a student is not just affected
by one of her friends independently but affected by the men-
tal states of all her friends (Eyre et al. 2017). These existing
findings can be represented by the State Relationship Rule.
State Relationship Rule (SRR). A student’s mental state
lies within the range defined by the weighted average of all
her neighbours’ mental state ranges. Given each neighbour
i’s mental state range as [lbi, ubi] where lbi ≤ vi ≤ ubi, j’s
range [lbj , ubj ] is defined as:

lbj = �
∑

i∈N in(j) lbi · ŵij∑
i∈N in(j) ŵij

�;ubj = �
∑

i∈N in(j) ubi · ŵij∑
i∈N in(j) ŵij

�
(8)

Accordingly, the prediction of the mental state depends
not only on the mental state of the neighbours but also on
the influence of the neighbours. We also allow uncertainty
of the range predicted by SRR. Therefore, there will be a
probability to predict a student to be stressed although she is
surrounded by all neighbours in happy mental states.

So far, we assume that all mental state values can occur in
our POMDP. There might be some states in the belief with
the mental state values that are inconsistent with SRR. Dur-
ing the reasoning process, we take SRR into account and set
the probabilities of the states in the belief that violate SRR
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to 0. This process can reduce the uncertainty on mental state
values and thus, improve the solution quality. A concrete ex-
ample is shown in Figure 2 to describe how the belief is re-
fined during the reasoning process according to SRR.
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Figure 2: An illustrative example of reasoning process.
When UCC intervenes student i, UCC observes the value
of her mental state and influence between her neighbours
shown in red. Using this observation, we predict the ranges
of j, k, l in blue with observed vi and the ranges from their
other in-neighbours in magenta. The predicted ranges are
in green. Using these ranges, we calculate [lbi, ubi] for i,
the j, k, l’s ranges are modified if vi /∈ [lbi, ubi]. The final
ranges for j, k, l are shown in blue.

Example 1. We consider an example in Figure 2 with
μ = 10 where {vi = 5, wij = 1, wji = 1, wik =
0.5, wki = 1, wil = 0.25, wli = 0.25} is observed. First,
with Eq. (8), we can predict the mental state ranges for j, k, l
as [1, 9], [0, 10], [0, 10] respectively. Using these ranges, we
find that we get ubi = 4 and lbi = 6 after calculating i’s
range with vk = 0 and vk = 10. Hence, 0 and 10 are re-
moved from k’s range. Thus, we get [1, 9], [1, 9], [0, 10] as
the refined ranges for j, k, l. During reasoning process, we
set bs as zero if s contains inconsistent mental states that are
not in the refined ranges and violates SRR.

According to SRR, we do the reasoning as follows.
When UCC intervenes student i, UCC gets an observation
{vi, wij , wji|j ∈ V }. With this observation, we predict the
range for student j’s mental state where j ∈ N out(i). We
set the mental state range for other unobserved students as
[0, μ] and influence as the maximum, i.e., 1 to make the pre-
dicted range wider to compensate for uncertain values. For
the robust prediction of mental states, UCC defines that the
predicted range for j’s mental state has the width of at least
ω i.e., ubj − lbj ≥ ω. Hence, if the width of the range
predicted by Eq. (8) is less than ω, we modify the range
as [θj − ω/2, θj + ω/2] 3 where θj = 
(lbj + ubj)/2�.
On the other hand, we need to make sure that the observed
value vi is in the range [lbi, ubi] which is calculated by the
predicted ranges for vj , ∀j ∈ N in(i). For each value α in
range [lbj , ubj ], we use [lbk, ubk] for k ∈ N in(i) \ {j} to
find [lbi, ubi] and α is removed from the range if ubi < vi or
lbi > vi. We run the refining process until all the observed

3If θj − ω/2 < 0, lbj = 0. If θj + ω/2 > μ, ubj = μ.

vi values are in the range [lbi, ubi] which is calculated by all
the predicted ranges for j ∈ N in(i).

We refine the belief before each intervention so that the
algorithm selects action based on the belief closer to the real
network. We do reasoning on the network, predict the range
and check for each belief state where bt−1

s > 0 if all mental
state values of s are in respective predicted ranges.

Algorithm 2: Reasoning(bt−1,d)

1 for s ∈ S, bt−1
s > 0 do

2 lb,ub = PredictMentalStateValues(s,d);
3 for vj ∈ s do

4 if vj /∈ [lbj , ubj ] then bt−1
s = 0 ;

5 b′t−1
s = bt−1

s /
∑

s′∈S bt−1
s′ , ∀s ∈ S;

6 return b′t−1;

Algorithm 2 checks each state where bt−1
s > 0 if the

students’ mental states are in the range predicted by SRR
(line 1). We define a vector d where di = 1 if student i
is observed and di = 0 otherwise. The range for each stu-
dent’s mental state value is predicted according to SRR in
PredictMentalStateValues(.) which is described in Al-
gorithm 3. After that, the algorithm checks if the mental state
of all students are in the respective predicted ranges and sets
bt−1
s to 0 otherwise (line 4). Finally, non-zero belief values

are rescaled to sum up to 1 (line 5).

Predicting Mental State Values by SRR Algorithm 3 re-
turns the predicted ranges for the students. lbi, ubi are set
as certain mental state of i and w̃ij is set as certain influ-
ence of i and j if i is observed, i.e., di = 1, and set to
lbi = 0, ubi = μ, w̃ij = 1 otherwise (lines 1-7). Given
the observed student i, the mental state range for her out-
neighbour j is predicted by applying SRR (lines 8-15). Lines
16-22 describe that the mental state range [lbi, ubi] of ob-
served student i is calculated using the predicted ranges for
her in-neighbours. If α ∈ [lbj , ubj ], ∀j ∈ N in(i) predicts
the range [lbi, ubi] and vi /∈ [lbi, ubi], it is removed from
[lbj , ubj ] (line 22).

5.2 Abstraction of POMDP States

We reduce the huge state space by defining σ such that a
student’s mental state is one of the values in the abstracted
discrete set M′ = {0, σ, 2σ, ..., μ} and we define the state
set S′ with M′. Hence, the non-abstracted total number of
states, i.e., (μ+ 1)N is reduced to �(μ+ 1)/σN .

Every state in S′ belongs to S, i.e., S′ ⊂ S. Given ac-
tion a ∈ A and state s ∈ S′, the successive state ŝ ∈ S
is obtained according to the transition function of original
POMDP P . The change in mental states is computed with
observed vi for ai = 1 and abstracted v′j for aj = 0. If
ŝ /∈ S′, we replace with s′ ∈ S′ such that 0 < v′i − v̂i ≤
σ, ∀i ∈ V . The policy evaluated with S′ is denoted as π′.
We denote the optimal policy of the abstracted POMDP as
π′∗ and the expected reward as V π′∗

.
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Algorithm 3: PredictMentalStateValues(s,d)

1 for i ∈ V do
2 if di == 1 then
3 lbi = ubi = vi;
4 for j ∈ V do w̃ij = wij ;
5 else
6 lbi = 0; ubi = μ ;
7 for j ∈ V do w̃ij = 1 ;

8 for i ∈ V, di == 1 do

9 for j ∈ N out(i), dj == 0 do

10 lbj = 

∑

k∈Nin(j) lbk·w̃kj
∑

k∈Nin(j) w̃kj
�;

11 ubj = �
∑

k∈Nin(j) ubk·w̃kj
∑

k∈Nin(j) w̃kj
;

12 θj = (lbj + ubj)/2;
13 lb′j = θj − ω/2, ub′j = θj + ω/2 ;
14 if lb′j < lbj then lbj = lb′j ;
15 if ub′j > ubj then ubj = ub′j ;

16 for i ∈ V, di == 1 do

17 for j ∈ N in(i), dj == 0 do
18 for α ∈ [lbj , ubj ] do

19 lbi = 
α·w̃ji+
∑

k∈Nin(i)\{j} lbk·w̃ki
∑

k∈Nin(i) w̃ki
�;

20 ubi = �α·w̃ji+
∑

k∈Nin(i)\{j} ubk·w̃ki
∑

k∈Nin(i) w̃ki
;

21 if lbi > vi or ubi < vi then
22 remove α from [lbj , ubj ] ;

23 return lb,ub;

Although the abstraction method improves scalability,
there is some loss of solution quality due to the approxi-
mation, i.e., V π∗ − V π′∗

. Hence, in Lemma 1, we prove a
theoretical bounded error, V π∗ −V π′∗

, for independent net-
work at the end of round Q.
Lemma 1. For a certain network with independent students,
V π∗ − V π′∗ ≤ Q · (σ − 1) ·K.
Proof. The maximum difference between vi and v′i is (σ−1)
since we have s′ if 0 < v′i − v̂i ≤ σ. Hence, for Q rounds
where K nodes are chosen at each round, the maximum dif-
ference between the total expected rewards of the optimal
policies π∗ and π′∗ is Q · (σ − 1) ·K.

In Lemma 2, we prove the bounds for certain networks
with connections between the students. For general net-
works, we cannot prove the bounds since the influence prop-
agation greatly depends on the neighbours’ mental states
and influence. Hence, we consider a complete graph with
wij = w, ∀i, j ∈ V .
Lemma 2. For a certain network where the students’ mental
state values and influence are known,

V π∗ − V π′ ≤ Q ·K · (δ · (N · μ− 2)

μ+N − 2
− δ + σ − 1

)
(9)

Proof. Let π∗ be the optimal policy of the original POMDP
P with initial state s0. At round t, given the state st−1 and
action at, st−1 transits to st. We refer to the mental states at

t as vti , ∀i ∈ V where vti ∈ vt,vt ∈ st. In a complete graph,
the influence level on j at round t is defined using Eq. (2)
as:

Δt
j = at

j ·δ+
∑

at
i=1,∀i∈V \{j}

(μ− vt−1
i ) · δ

(μ− vt−1
i ) +

∑
k∈N\{i} v

t−1
k

(10)

Hence, we calculate Rt as:

Rt = K · δ + (N − 1) ·
∑

at
i=1,∀i∈V

(μ− vt−1
i ) · δ

(μ− vt−1
i ) +

∑
k∈N\{i} v

t−1
k

(11)

vt−1
i = 1, ∀i ∈ V gives the largest propagation to find the

maximum total estimated reward possible for P . Hence,

Rt ≤ K · δ · (N · μ− 2)

μ+N − 2
(12)

To find the lower bound, we ignore the propagation process
of the abstracted POMDP P ′. Hence,

R′
t ≥ K · (δ − σ + 1) (13)

Hence, we have the bound for V π∗ − V π′
as:

V π∗ − V π′ ≤ R̂ = Q ·K · (δ · (N · μ− 2)

μ+N − 2
− δ+ σ− 1

)
(14)

Since V π′∗ ≥ V π′
, we proved that V π∗ − V π′∗ ≤ R̂.

5.3 Multi-Level Partitions

We improve the scalability further by multi-level partition-
ing of the graph. The most intuitive way is to partition the
graph into K partitions, i.e., the number of selected students.
But the POMDPs are still very large to be solved. Hence, we
divide each of K partitions into smaller subpartitions.

The first variant is MLP-B which has ηK balanced parti-
tions, i.e., each partition contains a similar number of nodes.
Algorithm 4 starts with initializing P, a map of partitions
and their indices, as an empty set (line 1). We use the METIS
algorithm (Karypis and Kumar 1998) to partition the graph
G while minimizing cross-edge influence between partitions
so as not to lose the network structure of the graph (line 2).
It returns a list of partitions, i.e., pars. Each partition is in-
dexed (line 4) and ensembled as POMDP to compute the
optimal one-node action. Finally, actions with the best K
rewards are chosen to get an action of K nodes.

Algorithm 4: MLP− B(η)

1 Initialize P = ∅ and k = 0 ; // P is a map of par and k
2 pars = METIS(G, ηK);
3 for par ∈ pars do
4 add 〈par, k〉 to P; k ++;
5 return P;

As balanced partitioning may not maintain the network
structure, in the second variant, MLP-C, we cluster the graph
into K partitions by finding minimum cross-edge cuts with-
out keeping the partitions balanced. Let l be the maximum
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Figure 3: Scalability comparison of MLPRAP variants with DC, HEAL (Figure 3a and 3b are plotted in log-scale)
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Figure 4: Solution quality comparison of MLPRAP variants with DC, HEAL

limit of a partition that can be solved. If a partition is larger
than l, we divide the partition into smaller subpartitions.

In Algorithm 5, we first cluster the graph G into K parti-
tions by finding minimum cut and store the partitions in pars
(line 1). We initialize the map P as an empty set (line 2).
The partitions are indexed and added to P (line 8). If a parti-
tion has more than l nodes, we divide it into �nodecount/l
subpartitions using METIS and store in subpars. We use
METIS over clustering to avoid having many levels of parti-
tioning to get subpartitions. The subpartitions are kept with
same index and added to P to indicate that only one node
from the partitions with same index will be chosen for an
action of K nodes (lines 4-7). After obtaining the optimal
action from each POMDP, the action with maximum reward
from the partition with same index is chosen.

Algorithm 5: MLP− C(l)

1 pars = minimumCutClustering(G,K);
2 Initialize P = ∅ and k = 0;
3 for par ∈ pars do
4 if nodecount(par) > l then
5 subpars = METIS(par, �nodecount(par)/l) ;
6 for subpar ∈ subpars do
7 add 〈subpar, k〉 to P

8 else add 〈par, k〉 to P ;
9 k ++;

10 return P;

6 Experimental Evaluation
In this section, we analyze the performance of MLPRAP-B
and MLPRAP-C, i.e., MLPRAP with MLP-B and MLP-C

with different settings. All our experiments are run on a 3.2
GHz 4-core Intel machine having 16 GB of RAM. The re-
sults are averaged over 30 trials. We use runtime and total
reward as metrics to evaluate scalability and solution quality
on both synthetic and real networks. The 95% confidence
intervals are drawn in all figures which show that all the
results are statistically significant. During experiments, we
first compute UCC’s policy and simulate on the networks
without any uncertainties to compute the real reward ob-
tained by the policy during the intervention process.

6.1 Experiment Setup

Problem Instance Generation. We run the lab experi-
ments to evaluate the performance of the algorithm. We syn-
thesize the problem instances since real-world experiments
on the study of intervention process in a social network is
challenging and there is no publicly available data which
studies the stress level of the people in a network. However,
evaluations of algorithms on synthetic data are widely ac-
cepted (Yadav et al. 2015; 2016; Wilder et al. 2017) as they
serve as an important first step towards future applications of
the model. We generate networks with realistic mental state
values while using reasonable measures according to (Eyre
et al. 2017; Hill, Griffiths, and House 2015) so that the net-
work reflects the mental state values of each individual in
the network. There are two kinds of networks considered:
• synthetic networks: We generate the synthetic network
G by two methods. First, Barabási-Albert scale-free net-
works, where each new vertex is connected to ξ vertices
using a preferential attachment mechanism (Barabási and
Albert 1999). Since the students stay in groups of 3 or 4
which is the size of a team for a group project, we let ξ =
3. Second, Erdos-Ŕenyi random networks ER(N, |E|),
where exactly |E| edges are randomly constructed be-
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tween each pair of nodes (Erdos 1959). We set |E| = 3N
to let each node have 3 connections on average. Then, we
assign ŵij ∈ W0 as randomized values from [0, 1].

• real networks: The first network is Zachary Karate Club
dataset (Karate) with 34 nodes and 78 edges (Zachary
1977) which is the friendship data of the members of a
university karate club. This will closely reflect the rela-
tionship between students in the network and the effec-
tiveness of interventions. We assign ŵij ∈ W0 as ran-
domized values from [0, 1]. The second dataset is Mobile-
1 dataset (Mobile) which has 107 nodes and 513 edges
(Tang, Lou, and Kleinberg 2012). It consists of the logs
of calls and cell tower IDsx of users for ten months. We
assign communication count between users i and j as ŵij .
After we have obtained the network, we set μ = 9, pick a

student i ∈ V and assign the uniformly sampled value from
[0, μ]. For all other j ∈ V \ {i}, we iteratively predict the
mental state ranges according to SRR and assign the sam-
pled value from the predicted range. We repeat the process
until convergence where all the nodes are assigned with the
mental state values.

Baselines. We use two algorithms as baselines: (1) Degree
Centrality (DC) which selects the highest degree node first;
(2) K-variant HEAL as it is the most relevant algorithm
which has been demonstrated to perform much better than
earlier algorithms.

6.2 Experiment results

Scalability Analysis. We compare the runtimes of our al-
gorithms and baselines by varying network sizes. We set
Q ∈ {5, ..., 10}, δ = 2, K = 5, σ = 3, η = 2 and l = 10.
In Figure 3a, we compare the runtime of each algorithm
along the y-axis w.r.t varying network sizes along the x-axis.
For example, for a problem with a network of 30 students,
it takes 0.070s for DC, 375.383 s for HEAL, 0.149 s for
MLPRAP-B and 0.748 s for MLPRAP-C. While DC is the
fastest, it does not result in good solution quality as we will
discuss in solution quality analysis. HEAL can only solve
up to 30 students. It runs out of memory for larger networks.
Moreover, HEAL runs very slowly even for small networks.
We also run HEAL+R (HEAL with Reasoning) and it has
similar runtime with HEAL. While the running time is faster
in smaller networks, MLPRAP-B runs out of memory on the
network of more than 100 students with η = 2. MLPRAP-C
can solve larger networks than all other algorithms. In this
experiment, we show up to network with 700 students which
the system can solve within the time limit of 3600s. The sys-
tem can solve 1000 students network in 6141.920s. We find
the same trends for ER networks shown in Figure 3b.

The second experiment runs the algorithms on BA and
ER networks of 25 students (N = 25) with fixed η = 2 and
l = 10. In Figures 3c and 3d, we vary time horizons along
the x-axis on the same network to record the runtime along
the y-axis. For a BA network of 25 students, HEAL takes
50s to plan for 5 interventions whereas DC and both variants
of MLPRAP take just a fraction of a second, i.e., 0.070s,
0.195s and 0.202s respectively. While all algorithms have
linearly increasing runtimes with increasing time horizon,
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Figure 5: Experiments on real networks

MLPRAP algorithms do not significantly increase and have
better scalability.

Although we only scale up to a network with 700 nodes
for the scalability analysis since we limit the solving time to
1hr, MLPRAP-C algorithm can solve much larger networks
since the multi-level partitioning algorithm keeps partition-
ing the network until the partitions can be solved by the ML-
PRAP algorithm. With a more powerful machine and longer
time, MLPRAP-C can solve much larger networks.

Solution Quality Analysis. Figures 4a and 4b show the
rewards of the different algorithms along y-axis on the vary-
ing sizes of the student networks along the x-axis. We keep
N=25, 100, 300, 500, 700 to highlight the limitations of
baseline algorithms. For example, for BA network of 25
nodes, the total reward is 45.2, 48.17, 54.33, 50.10, 51.17
for DC, HEAL, HEAL+R, MLPRAP-B and MLPRAP-C re-
spectively. The trends show that HEAL+R improves solu-
tion quality better than simply running HEAL and the ap-
proximated solution with abstraction does not suffer a sig-
nificant loss. As networks become larger, MLPRAP variants
have a larger advantage over DC. Therefore, MLPRAP-B
and MLPRAP-C are more suitable to solve larger networks.

In Figure 4c and 4d, we compare the total reward (y-
axis) with increasing time horizon (x-axis) for both types
of random networks with 25 nodes. The trends show that
MLPRAP variants result in better solution quality than DC
and HEAL. While HEAL+R is the best for a network of 25
students, we have shown that it cannot scale up to larger net-
works. On the other hand, MLPRAP-B and MLPRAP-C do
not lose much solution quality compared to HEAL+R.

Effect of uncertainty. We also analyze the effect of un-
certainty of the student networks on the solution quality. The
uncertainty for initial mental state values is reflected by the
initial estimated mental state range. In Figure 5b, the value 4
on the x-axis represents that there are 4 possible mental state
values with 0.25 probability for each student while the y-axis
represents the total reward. We can conclude from the results
that the homogeneous distribution, i.e., |M| = 10, gives the
best total reward. This is because homogeneous distribution
assigns all the mental states with equal probability lowering
the chances of incorrectly estimating the mental states and
losing the solution quality in contrast to smaller ranges.

Real Networks. We also evaluate the scalability and solu-
tion quality of the algorithms on real networks (Mobile and
Karate). Figure 5a describes the rewards of each network
for 5 interventions with K = 6. HEAL and HEAL+R can-
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not solve Mobile and MLPRAP-C gives the best solution
quality. Similar to synthetic networks, HEAL+R gives the
best total reward for Karate. While MLPRAP-B only gives a
similar solution quality as HEAL, MLPRAP-C gives much
higher solution quality than DC and HEAL and comparable
to HEAL+R.

7 Conclusion

We propose a novel model that considers emotion propaga-
tion from not only the influencer but also neighbours of the
influencee while selecting the students for interventions in
uncertain networks. We propose MLPRAP algorithm with
reasoning, abstraction of POMDP states and multi-level par-
titioning of the graph into smaller POMDPs to sequentially
plan to select the students for each intervention. Finally, we
experiment with synthetic networks generated as BA and ER
networks as well as real network datasets. We show that ML-
PRAP variants have significantly better scalability and solu-
tion quality comparable to the state-of-the-art algorithms.
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