
Published as a conference paper at ICLR 2023

RESACT: REINFORCING LONG-TERM ENGAGEMENT
IN SEQUENTIAL RECOMMENDATION WITH RESIDUAL
ACTOR

Wanqi Xue1,∗ , Qingpeng Cai2, Ruohan Zhan3, Dong Zheng2, Peng Jiang2, Kun Gai4, Bo An1

1Nanyang Technological University, 2Kuaishou Technology,
3Hong Kong University of Science and Technology, 4Unaffiliated
wanqi001@e.ntu.edu.sg, {caiqingpeng, zhengdong, jiangpeng}@kuaishou.com, rhzhan@ust.hk,
gai.kun@qq.com, boan@ntu.edu.sg

ABSTRACT

Long-term engagement is preferred over immediate engagement in sequential rec-
ommendation as it directly affects product operational metrics such as daily active
users (DAUs) and dwell time. Meanwhile, reinforcement learning (RL) is widely
regarded as a promising framework for optimizing long-term engagement in se-
quential recommendation. However, due to expensive online interactions, it is
very difficult for RL algorithms to perform state-action value estimation, explo-
ration and feature extraction when optimizing long-term engagement. In this pa-
per, we propose ResAct which seeks a policy that is close to, but better than, the
online-serving policy. In this way, we can collect sufficient data near the learned
policy so that state-action values can be properly estimated, and there is no need to
perform online interaction. ResAct optimizes the policy by first reconstructing the
online behaviors and then improving it via a Residual Actor. To extract long-term
information, ResAct utilizes two information-theoretical regularizers to confirm
the expressiveness and conciseness of features. We conduct experiments on a
benchmark dataset and a large-scale industrial dataset which consists of tens of
millions of recommendation requests. Experimental results show that our method
significantly outperforms the state-of-the-art baselines in various long-term en-
gagement optimization tasks.

1 INTRODUCTION

In recent years, sequential recommendation has achieved remarkable success in various fields such
as news recommendation (Wu et al., 2017; Zheng et al., 2018; de Souza Pereira Moreira et al.,
2021), digital entertainment (Donkers et al., 2017; Huang et al., 2018; Pereira et al., 2019), E-
commerce (Chen et al., 2018; Tang & Wang, 2018) and social media (Zhao et al., 2020b; Rappaz
et al., 2021). Real-life products, such as Tiktok and Kuaishou, have influenced the daily lives of
billions of people with the support of sequential recommender systems. Different from traditional
recommender systems which assume that the number of recommended items is fixed, a sequen-
tial recommender system keeps recommending items to a user until the user quits the current ser-
vice/session (Wang et al., 2019; Hidasi et al., 2016). In sequential recommendation, as depicted in
Figure 1, users have the option to browse endless items in one session and can restart a new session
after they quit the old one (Zhao et al., 2020c). To this end, an ideal sequential recommender system
would be expected to achieve i) low return time between sessions, i.e., high frequency of user visits;
and ii) large session length so that more items can be browsed in each session. We denote these
two characteristics, i.e., return time and session length, as long-term engagement, in contrast to im-
mediate engagement which is conventionally measured by click-through rates (Hidasi et al., 2016).
Long-term engagement is preferred over immediate engagement in sequential recommendation as it
directly affects product operational metrics such as daily active users (DAUs) and dwell time.

∗The work was done during an internship at Kuaishou Technology.

1

Published as a conference paper at ICLR 2023

Despite great importance, unfortunately, how to effectively improve long-term engagement in se-
quential recommendation remains largely uninvestigated. Relating the changes in long-term user
engagement to a single recommendation is a tough problem (Wang et al., 2022). Existing works
on sequential recommendation have typically focused on estimating the probability of immediate
engagement with various neural network architectures (Hidasi et al., 2016; Tang & Wang, 2018).
However, they neglect to explicitly improve user stickiness such as increasing the frequency of visits
or extending the average session length. There have been some recent efforts to optimize long-term
engagement in sequential recommendation. However, they are usually based on strong assumptions
such as recommendation diversity will increase long-term engagement (Teo et al., 2016; Zou et al.,
2019). In fact, the relationship between recommendation diversity and long-term engagement is
largely empirical, and how to measure diversity properly is also unclear (Zhao et al., 2020c).

Consume

Recommender
System

Restart

Request 1

Request 2

Request N

…

Session 1

Yes

Yes

No
User

Response

Figure 1: Sequential recommendation.

Recently, reinforcement learning has achieved impressive
advances in various sequential decision-making tasks,
such as games (Silver et al., 2017; Schrittwieser et al.,
2020), autonomous driving (Kiran et al., 2021) and
robotics (Levine et al., 2016). Reinforcement learning in
general focuses on learning policies which maximize cu-
mulative reward from a long-term perspective (Sutton &
Barto, 2018). To this end, it offers us a promising frame-
work to optimize long-term engagement in sequential rec-
ommendation (Chen et al., 2019). We can formulate the
recommender system as an agent, with users as the envi-
ronment, and assign rewards to the recommender system based on users’ response, for example,
the return time between two sessions. However, back to reality, there are significant challenges.
First, the evolvement of user stickiness lasts for a long period, usually days or months, which makes
the evaluation of state-action value difficult. Second, probing for rewards in previously unexplored
areas, i.e., exploration, requires live experiments and may hurt user experience. Third, rewards of
long-term engagement only occur at the beginning or end of a session and are therefore sparse com-
pared to immediate user responses. As a result, representations of states may not contain sufficient
information about long-term engagement.

To mitigate the aforementioned challenges, we propose to learn a recommendation policy that is
close to, but better than, the online-serving policy. In this way, i) we can collect sufficient data near
the learned policy so that state-action values can be properly estimated; and ii) there is no need to
perform online interaction. However, directly learning such a policy is quite difficult since we need
to perform optimization in the entire policy space. Instead, our method, ResAct, achieves it by first
reconstructing the online behaviors of previous recommendation models, and then improving upon
the predictions via a Residual Actor. The original optimization problem is decomposed into two
sub-tasks which are easier to solve. Furthermore, to learn better representations, two information-
theoretical regularizers are designed to confirm the expressiveness and conciseness of features. We
conduct experiments on a benchmark dataset and a real-world dataset consisting of tens of millions
of recommendation requests. The results show that ResAct significantly outperforms previous state-
of-the-art methods in various long-term engagement optimization tasks.

2 PROBLEM STATEMENT

In sequential recommendation, users interact with the recommender system on a session basis. A
session starts when a user opens the App and ends when he/she leaves. As in Figure 1, when a
user starts a session, the recommendation agent begins to feed items to the user, one for each rec-
ommendation request, until the session ends. For each request, the user can choose to consume the
recommended item or quit the current session. A user may start a new session after he/she exits
the old one, and can consume an arbitrary number of items within a session. An ideal recommender
system with a goal for long-term engagement would be expected to minimize the average return time
between sessions while maximizing the average number of items consumed in a session. Formally,
we describe the sequential recommendation problem as a Markov Decision Process (MDP) which
is defined by a tuple ⟨S,A,P,R, γ⟩. S = Sh × Sl is the continuous state space. s ∈ S indicates
the state of a user. Considering the session-request structure in sequential recommendation, we de-
compose S into two disjoint sub-spaces, i.e., Sh and Sl, which is used to represent session-level

2

Published as a conference paper at ICLR 2023

(high-level) features and request-level (low-level) features, respectively. A is the continuous action
space (Chandak et al., 2019; Zhao et al., 2020a), where a ∈ A is a vector representing a recom-
mended item. P : S × A× S → R is the transition function, where p(st+1|st, at) defines the state
transition probability from the current state st to the next state st+1 after recommending an item at.
R : S × A → R is the reward function, where r(st, at) is the immediate reward by recommending
at at state st. The reward function should be related to return time and/or session length; γ is the
discount factor for future rewards.

Given a policy π(a|s) : S ×A → R, we define a state-action value function Qπ(s, a) which outputs
the expected cumulative reward (return) of taking an action a at state s and thereafter following π:

Qπ(st, at) = E(st′ ,at′)∼π

[
r(st, at) +

∞∑
t′=t+1

γ(t′−t) · r(st′ , at′)

]
. (1)

The optimization objective is to seek a policy π(a|s) such that the return obtained by the recom-
mendation agents is maximized, i.e., maxπ J (π) = Est∼dπ

t (·),at∼π(·|st) [Q
π(st, at)]. Here dπt (·)

denotes the state visitation frequency at step t under the policy π.

3 REINFORCING LONG-TERM ENGAGEMENT WITH RESIDUAL ACTOR

To improve long-term engagement, we propose to learn a recommendation policy which is broadly
consistent to, but better than, the online-serving policy1. In this way, i) we have access to sufficient
data near the learned policy so that state-action values can be properly estimated because the notori-
ous extrapolation error is minimized (Fujimoto et al., 2019); and ii) the potential of harming the user
experience is reduced as we can easily control the divergence between the learned new policy and
the deployed policy (the online-serving policy) and there is no need to perform online interaction.

𝒂"𝒐𝒏

∆

𝒔 𝒂"

𝒂

Reconstruction

Prediction

Selection

Figure 2: Workflow of ResAct.

Despite the advantages, directly learning such a policy
is rather difficult because we need to perform optimiza-
tion throughout the entire huge policy space. Instead, we
propose to achieve it by first reconstructing the online-
serving policy and then improving it. By doing so, the
original optimization problem is decomposed into two
sub-tasks which are more manageable.

Specifically, let π̂(a|s) denote the policy we want to
learn; we decompose it into â = aon + ∆(s, aon) where
aon is sampled from the online-serving policy πon, i.e.,
aon ∼ πon(a|s), and ∆(s, aon) is the residual which is
determined by a deterministic actor. We expect that adding the residual will lead to higher expected
return, i.e., J (π̂) ≥ J (πon). As in Figure 2, our algorithm, ResAct, works in three phases:

i) Reconstruction: ResAct first reconstructs the online-serving policy, i.e., π̃on(a|s) ≈
πon(a|s), by supervised learning. Then ResAct samples n actions from the reconstructed
policy, i.e., {ãion ∼ π̃on(a|s)}ni=1 as estimators of aon;

ii) Prediction: For each estimator ãion, ResAct predicts the residual and applies it to ãion, i.e.,
ãi = ãion +∆(s, ãion). We need to learn the residual actor to predict ∆(s, ãon) such that ã
is better than ãon in general;

iii) Selection: ResAct selects the best action from the {ãi}ni=0 as the final output, i.e.,
argmaxã Q

π̂(s, ã) for ã ∈ {ãi}ni=0.

In sequential recommendation, state representations may not contain sufficient information about
long-term engagement. To address this, we design two information-theoretical regularizers to im-
prove the expressiveness and conciseness of the extracted state features. The regularizers are maxi-
mizing mutual information between state features and long-term engagement while minimizing the
entropy of the state features in order to filter out redundant information. The overview of ResAct is
depicted in Figure 3 and we elaborate the details in the subsequent subsections. A formal description
for ResAct algorithm is shown in Appendix A.

1The online-serving policy is a historical policy or a mixture of policies which generate logged data to
approximate the MDP in sequential recommendation.

3

Published as a conference paper at ICLR 2023

CVAE-Encoder

CVAE-Decoder

High-level
State Encoder

Low-level
State Encoder

Residual Sub-actor

State-action Value Networks

Policy Gradient

𝑳𝑹𝒆𝒄

𝒔

𝒂 𝒔𝒉

𝑳𝑪𝒐𝒏

𝑳𝑬𝒙𝒑

𝒔𝒍

𝒂#𝒐𝒏

𝒂#𝒐𝒏

∆

𝒛𝒍 𝒛𝒉

𝒔

𝒔

𝒂#

𝑸(𝒔, 𝒂#)

Residual Actor

Data Flow
Gradient Flow

Figure 3: Schematics of our approach. The CVAE-Encoder generates an action embedding distri-
bution, from which a latent vector is sampled for the CVAE-Decoder to reconstruct the action. The
reconstructed action ãon, together with state features extracted by the high-level and low-level state
encoders, are fed to the residual actor to predict the residual ∆. After adding the residual, the action
and the state are sent to the state-action value networks, from which policy gradient can be gener-
ated. The framework can be trained in an end-to-end manner.

3.1 RECONSTRUCTING ONLINE BEHAVIORS

To reconstruct behaviors of the online-serving policy, we should learn a mapping π̃on(a|s) from
states to action distributions such that π̃on(a|s) ≈ πon(a|s) where πon(a|s) is the online-serving
policy. A naive approach is to use a model D(a|s; θd) with parameters θd to approximate πon(a|s)
and optimize θd by minimizing

Es,aon∼πon(a|s)
[
(D(a|s; θd)− aon)

2
]
. (2)

However, such deterministic action generation only allows for an instance of action and will cause
huge deviation if the only estimator is not precise. To mitigate this, we propose to encode aon into
a latent distribution conditioned on s, and decode samples from the latent space to get estimators of
aon. By doing so, we can generate multiple action estimators by sampling from the latent distribu-
tion. The key idea is inspired by conditional variational auto-encoder (CVAE) (Kingma & Welling,
2014). We define the latent distribution C(s, aon) as a multivariate Gaussian whose parameters, i.e.,
mean and variance, are determined by an encoder E(·|s, aon; θe) with parameters θe. Then for each
latent vector c ∼ C(s, aon), we can use a decoder D(a|s, c; θd) with parameters θd to map it back
to an action. To improve generalization ability, we apply a KL regularizer which controls the devia-
tion between C(s, aon) and its prior which is chosen as the multivariate normal distributionN (0, 1).
Formally, we can optimize θe and θd by minimizing the following loss:

LRec
θe,θd

= Es,aon,c

[
(D(a|s, c; θd)− aon)

2 +KL(C(s, aon; θe)||N (0, 1))
]
. (3)

where aon ∼ πon(a|s) and c ∼ C(s, aon; θe)2. When performing behavior reconstruction for an
unknown state s, we do not know its aon and therefore cannot build C(s, aon; θe). As a mitigation,
we sample n latent vectors from the prior of C(s, aon), i.e., {ci ∼ N (0, 1)}ni=0. Then for each ci,
we can generate an estimator of aon by using the decoder ãion = D(a|s, ci; θd).

3.2 LEARNING TO PREDICT THE OPTIMAL RESIDUAL

By learning the CVAE which consists of E(·|s, aon; θe) and D(a|s, c; θd), we can easily reconstruct
the online-serving policy and sample multiple estimators of aon by {ãion = D(a|s, ci; θd), ci ∼
N (0, 1)}ni=0. For each ãion, we should predict the residual ∆(s, ãion) such that ãi = ãion+∆(s, ãion)
is better than ãion. We use a model f(∆|s, a; θf) with parameters θf to approximate the resid-
ual function ∆(s, a). Particularly, the residual actor f(∆|s, a; θf) consists of a state encoder and
a sub-actor, which are for extracting features from a user state and predicting the residual based

2C(s, aon; θe) is parameterized by θe because it is a multivariate Gaussian whose mean and variance are the
output of the encoder E(·|s, aon; θe).

4

Published as a conference paper at ICLR 2023

on the extracted features, respectively. Considering the bi-level session-request structure in se-
quential recommendation, we design a hierarchical state encoder consisting of a high-level en-
coder fh(sh; θh) and a low-level encoder fl(sl; θl) for extracting features from session-level (high-
level) state sh and request-level (low-level) state sl, respectively. To conclude, the residual actor
f(∆|s, a; θf) = {fh, fl, fa} works as follows:

zh = fh(sh; θh), zl = fl(sl; θl); z = Concat(zh, zl);∆ = fa(z, a; θa). (4)

Where zh and zl are the extracted high-level and low-level features, respectively; z is the concate-
nation of zh and zl, and fa(z, a; θa) parameterized by θa is the sub-actor. Here, θf = {θh, θl, θa}.
Given a state s and a sampled latent vector c ∼ N (0, 1), ResAct generates an action with a deter-
ministic policy π̂(a|s, c) = D(ãon|s, c; θd) + f(∆|s, ãon; θf). We want to optimize the parameters
{θd, θf} of π̂(a|s, c) so that the expected cumulative reward J (π̂) is maximized. Based on the De-
terministic Policy Gradient (DPG) theorem (Silver et al., 2014; Lillicrap et al., 2016), we derive the
following performance gradients (a detailed derivation can be found in Appendix B):

∇θfJ (π̂) = Es,c

[
∇aQ

π̂(s, a)|a=π̂(a|s,c)∇θf f(∆|s, a; θf)|a=D(a|s,c;θd)
]
. (5)

∇θdJ (π̂) = Es,c

[
∇aQ

π̂(s, a)|a=π̂(a|s,c)∇θdD(a|s, c; θd)
]
. (6)

Here π̂(a|s, c) = D(ãon|s, c; θd) + f(∆|s, ãon; θf), p(·) is the probability function of a random
variable, Qπ̂(s, a) is the state-action value function for π̂.

To learn the state-action value function, referred to as critic, Qπ̂(s, a) in Eq. (5) and Eq. (6), we adopt
Clipped Double Q-learning (Fujimoto et al., 2018) with two models Q1(s, a; θq1) and Q2(s, a; θq2)
to approximate it. For transitions (st, at, rt, st+1) from logged data, we optimize θq1 and θq2 to
minimize the following Temporal Difference (TD) loss:

LTD
θqj

= E(st,at,rt,st+1)

[
(Qj(st, at; θqj)− y)2

]
, j = {1, 2};

y = rt + γmin
[
Q

′

1(st+1, π̂
′
(at+1|st+1); θ

′

q1), Q
′

2(st+1, π̂
′
(at+1|st+1); θ

′

q2)
]
.

(7)

Where Q
′

1, Q
′

2, and π̂
′

are target models whose parameters are soft-updated to match the corre-
sponding models (Fujimoto et al., 2018).

According to the DPG theorem, we can update the parameters θf in the direction of ∇θfJ (π̂) to
gain a value improvement in J (π̂):

θf ← θf +∇θfJ (π̂), θf = {θh, θl, θa}. (8)

For θd, since it also needs to minimize LRec
θe,θd

, thus the updating direction is

θd ← θd +∇θdJ (π̂)−∇θdL
Rec
θe,θd

. (9)

Based on π̂(a|s, c), theoretically, we can obtain the policy π̂(a|s) by marginalizing out the la-
tent vector c: π̂(a|s) =

∫
p(c)π̂(a|s, c)dc. This integral can be approximated as π̂(a|s) ≈

1
n

∑n
i=0 π̂(a|s, ci) where {ci ∼ N (0, 1)}ni=0. However, given that we already have a critic

Q1(s, a; θq1), we can alternatively use the critic to select the final output:

π̂(a|s) = π̂(a|s, c∗);
c∗ = argmax

c
Q1(s, π̂(a|s, c); θq1), c ∈ {ci ∼ N (0, 1)}ni=0

(10)

3.3 FACILITATING FEATURE EXTRACTION WITH INFORMATION-THEORETICAL
REGULARIZERS

Good state representations always ease the learning of models (Nielsen, 2015). Considering that
session-level states sh ∈ Sh contain rich information about long-term engagement, we design
two information-theoretical regularizers to facilitate the feature extraction. Generally, we expect
the learned features to have Expressiveness and Conciseness. To learn features with the desired
properties, we propose to encode session-level state sh into a stochastic embedding space instead
of a deterministic vector. Specifically, sh is encoded into a multivariate Gaussian distribution

5

Published as a conference paper at ICLR 2023

N (µh, σh) whose parameters µh and σh are predicted by the high-level encoder fh(sh; θh). For-
mally, (µh, σh) = fh(sh; θh) and zh ∼ N (µh, σh) zh is the representation for session-level state
st. Next, we introduce how to achieve expressiveness and conciseness in zh.

Expressiveness. We expect the extracted features to contain as much information as possible
about long-term engagement rewards, suggesting an intuitive approach to maximize the mutual
information between zh and r(s, a). However, estimating and maximizing mutual information
Iθh(zh; r) =

∫∫
pθh(zh)p(r|zh) log

p(r|zh)
p(r) dzhdr is practically intractable. Instead, we derive a

lower bound for the mutual information objective based on variational inference (Alemi et al., 2017):

Iθh(zh; r) ≥
∫∫

pθh(zh)p(r|zh) log
o(r|zh; θo)

p (r)
dzhdr;

=

∫∫
pθh(zh)p(r|zh) log o(r|zh; θo)dzhdr +H(r),

(11)

where o(r|zh; θo) is a variational neural estimator of p(r|zh) with parameters θo, H(r) =
−
∫
p(r) log p(r)dr is the entropy of reward distribution. Since H(r) only depends on user re-

sponses and stays fixed for the given environment, we can turn to maximize a lower bound of
Iθh(zh; r) which leads to the following expressiveness loss (the derivation is in Appendix C):

LExp
θh,θo

= Es,zh∼pθh
(zh|sh) [H(p(r|s)||o(r|zh; θo))] , (12)

where s is state, sh is session-level state, pθh(zh|sh) = N (µh, σh), and H(·||·) denotes the cross
entropy between two distributions. By minimizing LExp

θh,θo
, we confirm expressiveness of zh.

Conciseness. If maximizing Iθ(zh; r) is the only objective, we could always ensure a maximally
informative representation by taking the identity encoding of session-level state (zh = sh) (Alemi
et al., 2017); however, such an encoding is not useful. Thus, apart from expressiveness, we want zh
to be concise enough to filter out redundant information from sh. To achieve this goal, we also want
to minimize Iθh(zh; sh) =

∫∫
p(sh)pθh(zh|sh) log

pθh
(zh|sh)

pθh
(zh)

dshdzh such that zh is the minimal
sufficient statistic of sh for inferring r. Computing the marginal distribution of zh, pθh(zh), is usu-
ally intractable. So we introduce m(zh) as a variational approximation to pθh(zh), which is conven-
tionally chosen as the multivariate normal distribution N (0, 1). Since KL(pθh(zh)||m(zh)) ≥ 0,
we can easily have the following upper bound:

Iθh(zh; sh) ≤
∫∫

p(sh)pθh(zh|sh) log
pθh(zh|sh)
m(zh)

dshdzh. (13)

Minimizing this upper bound leads to the following conciseness loss:

LCon
θh

=

∫
p(sh)

[∫
pθh(zh|sh) log

pθh(zh|sh)
m(zh)

dzh

]
dsh;

= Es [KL(pθh(zh|sh)||m(zh))] .

(14)

By minimizing LCon
θh

, we achieve conciseness in zh.

4 EXPERIMENT

We conduct experiments on a synthetic dataset MovieLensL-1m and a real-world dataset RecL-25m
to demonstrate the effectiveness of ResAct. We are particularly interested in : Whether ResAct is
able to achieve consistent improvements over previous state-of-the-art methods? If yes, why?

4.1 EXPERIMENTAL SETTINGS

Table 1: Statistics of RecL-25m.
Users Sessions Requests
99,899 6,126,583 25,921,753

Avg return time (h) Avg session length Avg # of sessions
Mean - 4.0449 61.3277
75% 11.2794 4.8792 85
25% 4.3264 2.1358 30

Datasets. As there is no public dataset
explicitly containing signals about long-term
engagement, we synthesize a dataset named
MovieLensL-1m based on MovieLens-1m (a
popular benchmark for evaluating recommen-
dation algorithms) and collected a large-scale industrial dataset RecL-25m from a real-life streaming

6

Published as a conference paper at ICLR 2023

Table 2: Performance comparison
on MovieLensL-1m. The “±” in-
dicates 95% confidence intervals.

Return
DDPG 1.7429 ±0.0545
TD3 1.7363 ±0.0546
TD3_BC 1.7135 ±0.0541
BCQ 1.7898 ±0.0320
IQL 1.7360 ±0.0546
IL 1.7485 ±0.0310
IL_CVAE 1.7344 ±0.0316
ResAct (Ours) 1.8123 ±0.0319

Table 3: Performance comparison on RecL-25m in various
tasks. The “±” indicates 95% confidence intervals.

Return Time Session Length Both
DDPG 0.6375 ±0.0059 0.3290 ±0.0056 0.5908 ±0.0092
TD3 0.6756 ±0.0133 0.4015 ±0.0073 0.5498 ±0.0103
TD3_BC 0.6436 ±0.0059 0.3671 ±0.0037 0.5563 ±0.0050
BCQ 0.6837 ±0.0061 0.3836 ±0.0033 0.5915 ±0.0049
IQL 0.6296 ±0.0094 0.3430 ±0.0057 0.5579 ±0.0067
IL 0.6404 ±0.0058 0.3186 ±0.0032 0.5345 ±0.0048
IL_CVAE 0.6410 ±0.0058 0.3178 ±0.0031 0.5346 ±0.0047
ResAct (Ours) 0.7980 ±0.0067 0.5433 ±0.0045 0.6675 ±0.0053

platform of short-form videos. MovieLensL-1m is constructed by assuming that long-term engage-
ment is proportional to the movie ratings (5-star scale) in MovieLens-1m. RecL-25m is collected
by tracking the behaviors of 99,899 users (randomly selected from the platform) for months and
recording their long-term engagement indicators, i.e., return time and session length 3. The statistics
of RecL-25m are provided in Table 1, where 25% and 75% denote the corresponding percentile. We
did not count the average return time because there are users appearing only once whose return time
may go to infinity. The state of a user contains information about gender, age, and historical inter-
actions such as like rate and forward rate. The item to recommend is determined by comparing the
inner product of an action and the embedding of videos (Zhao et al., 2020a). Rewards are designed
to measure the relative influence of an item on long-term engagement (details are in Appendix D).

Evaluation Metric and Baselines. We adopt Normalised Capped Importance Sampling
(NCIS) (Swaminathan & Joachims, 2015), a standard offline evaluation method (Gilotte et al., 2018;
Farajtabar et al., 2018), to assess the performance of different policies. Given that πβ is the behavior
policy, π is the policy to assess, we evaluate the value by

J̃NCIS(π) =
1

|T |
∑
ξ∈T

[∑
(s,a,r)∈ξ ρ̃π,πβ

(s, a)r∑
(s,a,r)∈ξ ρ̃π,πβ

(s, a)

]
, ρ̃π,πβ

(s, a) = min

(
c,

ϕπ(s)(a)

ϕπβ(s)(a)

)
.

(15)
Here T is the testing set with usage trajectories, ϕπ(s) denotes a multivariate Gaussian distribution
of which mean is given by π(s), c is a clipping constant to stabilize the evaluation. We compare
our method with various baselines, including classic reinforcement learning methods (DDPG, TD3),
reinforcement learning with offline training (TD3_BC, BCQ, IQL), and imitation learning methods
(IL, IL_CVAE). Detailed introduction about the baselines are in Appendix E. Our method empha-
sises on the learning and execution paradigm, and is therefore orthogonal to those approaches which
focus on designing neural network architectures, e.g., GRU4Rec (Hidasi et al., 2016).

4.2 OVERALL PERFORMANCE

0 1K 2K 3K 4K 5K
Steps

1.7

1.8

1.9

Te
st

 R
et

ur
n

ResAct (ours)
IQL

TD3_BC
TD3

DDPG
BCQ

Figure 4: Learning curves of RL-
based methods on MovieLensL-1m.

MovieLensL-1m. We first evaluate our method on a bench-
mark dataset MovieLensL-1m which contains 1,000,209
anonymous ratings of approximately 3,900 movies made by
6,040 MovieLens users. We sample the data of 5000 users
as the training set, and use the data of the remaining users as
the test set (with 50 users as the validation set). As in Table
2, our method, ResAct, outperforms all the baselines, indi-
cating its effectiveness. We also provide the learning curve
in Figure 4. It can be found that ResAct learns faster and
more stable than the baselines on MovieLensL-1m.

RecL-25m. We test the performance of ResAct on RecL-25m in three modes: i) Return Time mode,
where the reward signal r(δ) is calculated by Eq. 21; ii) Session Length mode, where the reward
signal r(η) is calculated by Eq. 22; and iii) Both, where reward signal is generated by a convex
combination of r(δ) and r(η) with weights of 0.7 and 0.3 respectively. The weights is determined
by real-world demands on the operational metrics. We also perform sensitivity analysis on the
reward weights in Appendix G. Among the 99,899 users, we randomly selected 80% of the users

3Data samples and codes can be found in https://www.dropbox.com/sh/btf0drgm99vmpfe/
AADtkmOLZPQ0sTqmsA0f0APna?dl=0.

7

https://www.dropbox.com/sh/btf0drgm99vmpfe/AADtkmOLZPQ0sTqmsA0f0APna?dl=0
https://www.dropbox.com/sh/btf0drgm99vmpfe/AADtkmOLZPQ0sTqmsA0f0APna?dl=0

Published as a conference paper at ICLR 2023

as the training set, of which 500 users were reserved for validation. The remaining 20% users
constitute the test set. As shown in Table 3, our method significantly outperforms the baselines in all
the settings. The classic reinforcement learning algorithms, e.g., DDPG and TD3, perform poorly
in the tasks, which indicates that directly predicting an action is difficult. The decomposition of
actions effectively facilitates the learning process. Another finding is that the offline reinforcement
learning algorithms, e.g., IQL, also perform poorly, even though they are specifically designed to
learn from logged data. By comparing with imitation learning, we find that the residual actor has
successfully found a policy to improve an action, because behavior reconstruction cannot achieve
good performance alone. To compare the learning process, we provide learning curves for those RL-
based algorithms. Returns are calculated on the validation set with approximately 30,000 sessions.
As in Figure 5, the performance of ResAct increases faster and is more stable than the other methods,
suggesting that it is easier and more efficient to predict the residual than to predict an action directly.

0 5K 10K 15K 20K 25K 30K
Steps

0.5

0.6

0.7

Te
st

 R
et

ur
n

Return Time

0 5K 10K 15K 20K 25K 30K
Steps

0.2

0.3

0.4

0.5
Te

st
 R

et
ur

n
Session Length

0 5K 10K 15K 20K 25K 30K
Steps

0.4

0.5

0.6

Te
st

 R
et

ur
n

Both

ResAct (ours) IQL TD3_BC TD3 DDPG BCQ

Figure 5: Learning curves of RL-based methods on RecL-25m, averaged over 5 runs.

0 5K 10K 15K 20K 25K 30K
Steps

0.5

0.6

0.7

Te
st

 R
et

ur
n

Return Time

0 5K 10K 15K 20K 25K 30K
Steps

0.3

0.4

0.5

Session Length

0 5K 10K 15K 20K 25K 30K
Steps

0.5

0.6

Both

ResAct
ResAct w/o CVAE

Figure 6: Learning curves for ResAct with CVAE and a deterministic reconstructor (w/o CVAE).

4.3 ANALYSES AND ABLATIONS

INIT
BEST
RECON
IMPRO

Figure 7: The t-SNE vi-
sualization of actions.

How does ResAct work? To understand the working process of ResAct,
we plot t-SNE (Van der Maaten & Hinton, 2008) embedding of actions
generated in the execution phase of ResAct. As in Figure 7, the recon-
structed actions, denoted by the red dots, are located around the initial
action (the red star), suggesting that ResAct successfully samples sev-
eral online-behavior estimators. The blue dots are the t-SNE embedding
of the improved actions, which are generated by imposing residuals on
the reconstructed actions. The blue star denotes the executed action of
ResAct. We can find that the blue dots are near the initial actions but
cover a wider area then the red dots.

Effect of the CVAE. We design the CVAE for online-behavior reconstruction because of its
ability to generate multiple estimators. To explore the effect of the CVAE and whether a de-
terministic action reconstructor can achieve similar performance, we disable the CVAE in Re-
sAct and replace it with a feed-forward neural network. The feed-forward neural network is
trained by using the loss in Equation 2. Since the feed-forward neural network is deterministic,

n=
5

n=
10

n=
15

n=
20

n=
25

0.78

0.79

0.80 Return Time

n=
5

n=
10

n=
15

n=
20

n=
25

0.45

0.50

0.55 Session Length

n=
5

n=
10

n=
15

n=
20

n=
25

0.64

0.65

0.66

0.67 Both

Figure 8: Ablations for the number of online-
behavior estimators.

ResAct does not need to perform the selection
phase as there is only one candidate action. We
provide the learning curves of ResAct with and
without the CVAE in Figure 6. As we can
find, there is a significant drop in improvement
if we disable the CVAE. We deduce that this
is because a deterministic behavior reconstruc-
tor can only generate one estimator, and if the
prediction is inaccurate, performance will be
severely harmed.

8

Published as a conference paper at ICLR 2023

Number of Online-behavior Estimators. Knowing that generating only one action estimator might
hurt performance, we want to further investigate how the number of estimators will affect the perfor-
mance of ResAct. We first train a ResAct and then change the number of online-behavior estimators
to 5, 10, 15, 20 and 25. As in Figure 8, consistent improvement in performance can be observed
across all the three tasks as we increase the number of estimators. The fact suggests that generating
more action candidates will benefit the performance, in line with our intuition. We also perform
analysis about how the quality of online-behavior estimators could affect the performance in Ap-
pendix H. Because the sampling of action estimators is independent, the parallelization of ResAct is
not difficult to implement and we can easily speed up the inference.

Table 4: Ablations for the information-theoretical regulariz-
ers. The “±” indicates 95% confidence intervals.

Return Time Session Length Both
ResAct 0.7980 ±0.0067 0.5433 ±0.0045 0.6675 ±0.0053

w/o LExp
θh,θo

0.6610 ±0.0060 0.3895 ±0.0034 0.6074 ±0.0052
w/o LCon

θh
0.6944 ±0.0061 0.4542 ±0.0038 0.6041 ±0.0051

w/o LExp
θh,θo

, LCon
θh

0.7368 ±0.0064 0.3854 ±0.0033 0.6348 ±0.0049

Information-theoretical Regular-
izers. To explore the effect of the
designed regularizers, we disable
LExp
θh,θo

, LCon
θh

and both of them in
ResAct, respectively. As shown in
Table 4, the removal of any of the
regularizers results in a significant
drop in performance, suggesting that the regularizers facilitate the extraction of features and thus
ease the learning process. An interesting finding is that removing both of the regularizers does not
necessarily results in worse performance than removing only one. This suggests that we cannot
simply expect either expressiveness or conciseness of features, but rather the combination of both.

5 RELATED WORK

Sequential Recommendation. Sequential recommendation has been used to model real-world rec-
ommendation problems where the browse length is not fixed (Zhao et al., 2020c). Many existing
works focused on encoding user previous records with various neural network architectures. For
example, GRU4Rec (Hidasi et al., 2016) utilizes Gated Recurrent Unit to exploit users’ interac-
tion histories; BERT4Rec (Sun et al., 2019) employs a deep bidirectional self-attention structure to
learn sequential patterns. However, these works focus on optimizing immediate engagement like
click-through rates. FeedRec (Zou et al., 2019) was proposed to improve long-term engagement
in sequential recommendation. However, it is based on strong assumption that recommendation
diversity will lead to improvement in user stickiness.

Reinforcement Learning in Recommender Systems. Reinforcement learning (RL) has attracted
much attention from the recommender system research community for its ability to capture po-
tential future rewards (Zheng et al., 2018; Zhao et al., 2018; Zou et al., 2019; Zhao et al., 2020b;
Chen et al., 2021; Cai et al., 2023b;a). Shani et al. (2005) first proposed to treat recommendation
as a Markov Decision Process (MDP), and designed a model-based RL method for book recom-
mendation. Dulac-Arnold et al. (2015) brought RL to MDPs with large discrete action spaces and
demonstrated the effectiveness on various recommendation tasks with up to one million actions.
Chen et al. (2019) scaled a batch RL algorithm, i.e., REINFORCE with off-policy correction to real-
world products serving billions of users. Despite the success, previous works required RL agents to
learn in the entire policy space. Considering the expensive online interactions and huge state-action
spaces, learning the optimal policy in the entire MDP is quite difficult. Our method instead learns
a policy near the online-serving policy to achieve local improvement (Kakade & Langford, 2002;
Achiam et al., 2017), which is much easier.

6 CONCLUSION

In this work, we propose ResAct to reinforce long-term engagement in sequential recommendation.
ResAct works by first reconstructing behaviors of the online-serving policy, and then improving the
reconstructed policy by imposing an action residual. By doing so, ResAct learns a policy which is
close to, but better than, the deployed recommendation model. To facilitate the feature extraction,
two information-theoretical regularizers are designed to make state representations both expressive
and concise. We conduct extensive experiments on a benchmark dataset MovieLensL-1m and a real-
world dataset RecL-25m. Experimental results demonstrate the superiority of ResAct over previous
state-of-the-art algorithms in all the tasks.

9

Published as a conference paper at ICLR 2023

Ethics Statement. ResAct is designed to increase long-term user engagement, increasing the time
and frequency that people use the product. Therefore, it will inevitably cause addiction issues. To
mitigate the problem, we may apply some features, e.g., the age of users, to control the strength of
personalized recommendation. This may be helpful to avoid addiction to some extent.

Reproducibility Statement. We describe the implementation details of ResAct in Appendix F, and
also provide our source code and data in the supplementary material and external link.

ACKNOWLEDGEMENT

This research is supported by the National Research Foundation, Singapore under its Industry Align-
ment Fund – Pre-positioning (IAF-PP) Funding Initiative. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the author(s) and do not reflect the views
of National Research Foundation, Singapore.

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International Conference on Machine Learning, pp. 22–31. PMLR, 2017.

Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information
bottleneck. ICLR, 2017.

Qingpeng Cai, Shuchang Liu, Xueliang Wang, Tianyou Zuo, Wentao Xie, Bin Yang, Dong Zheng,
Peng Jiang, and Kun Gai. Reinforcing user retention in a billion scale short video recommender
system. arXiv preprint arXiv:2302.01724, 2023a.

Qingpeng Cai, Zhenghai Xue, Chi Zhang, Wanqi Xue, Shuchang Liu, Ruohan Zhan, Xueliang
Wang, Tianyou Zuo, Wentao Xie, Dong Zheng, et al. Two-stage constrained actor-critic fo short
video recommendation. arXiv preprint arXiv:2302.01680, 2023b.

Yash Chandak, Georgios Theocharous, James Kostas, Scott Jordan, and Philip Thomas. Learn-
ing action representations for reinforcement learning. In International Conference on Machine
Learning, pp. 941–950. PMLR, 2019.

Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed H Chi. Top-
k off-policy correction for a reinforce recommender system. In Proceedings of the 12th ACM
International Conference on Web Search and Data Mining, pp. 456–464, 2019.

Minmin Chen, Yuyan Wang, Can Xu, Ya Le, Mohit Sharma, Lee Richardson, Su-Lin Wu, and
Ed Chi. Values of user exploration in recommender systems. In Proceedings of the 15th ACM
Conference on Recommender Systems, pp. 85–95, 2021.

Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and Hongyuan Zha.
Sequential recommendation with user memory networks. In Proceedings of the 11th ACM Inter-
national Conference on Web Search and Data Mining, pp. 108–116, 2018.

Gabriel de Souza Pereira Moreira, Sara Rabhi, Jeong Min Lee, Ronay Ak, and Even Oldridge. Trans-
formers4Rec: Bridging the gap between NLP and sequential/session-based recommendation. In
Proceedings of the 15th ACM Conference on Recommender Systems, pp. 143–153, 2021.

Tim Donkers, Benedikt Loepp, and Jürgen Ziegler. Sequential user-based recurrent neural network
recommendations. In Proceedings of the 11th ACM Conference on Recommender Systems, pp.
152–160, 2017.

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap,
Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep rein-
forcement learning in large discrete action spaces. arXiv preprint arXiv:1512.07679, 2015.

Mehrdad Farajtabar, Yinlam Chow, and Mohammad Ghavamzadeh. More robust doubly robust
off-policy evaluation. In ICML, pp. 1447–1456, 2018.

10

Published as a conference paper at ICLR 2023

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
NeurIPS, 34, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In ICML, pp. 1587–1596, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In ICML, pp. 2052–2062, 2019.

Alexandre Gilotte, Clément Calauzènes, Thomas Nedelec, Alexandre Abraham, and Simon Dollé.
Offline a/b testing for recommender systems. In Proceedings of the 11th ACM International
Conference on Web Search and Data Mining, pp. 198–206, 2018.

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based rec-
ommendations with recurrent neural networks. In ICLR, 2016.

Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y Chang. Improving se-
quential recommendation with knowledge-enhanced memory networks. In The 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 505–514,
2018.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
International Conference on Machine Learning, pp. 267–274. PMLR, 2002.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In ICML, 2014.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with in-sample
Q-Learning. In ICLR, 2022.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. ICLR,
2016.

Michael A Nielsen. Neural Networks and Deep Learning, volume 25. Determination Press San
Francisco, CA, USA, 2015.

Bruno L Pereira, Alberto Ueda, Gustavo Penha, Rodrygo LT Santos, and Nivio Ziviani. Online
learning to rank for sequential music recommendation. In Proceedings of the 13th ACM Confer-
ence on Recommender Systems, pp. 237–245, 2019.

Jérémie Rappaz, Julian McAuley, and Karl Aberer. Recommendation on live-streaming platforms:
dynamic availability and repeat consumption. In Proceedings of the 15th ACM Conference on
Recommender Systems, pp. 390–399, 2021.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering Atari,
Go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Guy Shani, David Heckerman, Ronen I Brafman, and Craig Boutilier. An MDP-based recommender
system. Journal of Machine Learning Research, 6(9), 2005.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In ICML, pp. 387–395, 2014.

11

Published as a conference paper at ICLR 2023

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of Go
without human knowledge. Nature, 550(7676):354–359, 2017.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. BERT4Rec:
Sequential recommendation with bidirectional encoder representations from transformer. In Pro-
ceedings of the 28th ACM International Conference on Information and Knowledge Management,
pp. 1441–1450, 2019.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.

Adith Swaminathan and Thorsten Joachims. The self-normalized estimator for counterfactual learn-
ing. NeurIPS, 28, 2015.

Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional sequence
embedding. In Proceedings of the 11th ACM International Conference on Web Search and Data
Mining, pp. 565–573, 2018.

Choon Hui Teo, Houssam Nassif, Daniel Hill, Sriram Srinivasan, Mitchell Goodman, Vijai Mohan,
and SVN Vishwanathan. Adaptive, personalized diversity for visual discovery. In Proceedings of
the 10th ACM Conference on Recommender Systems, pp. 35–38, 2016.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research, 9(11), 2008.

Shoujin Wang, Liang Hu, Yan Wang, Longbing Cao, Quan Z. Sheng, and Mehmet Orgun. Sequential
recommender systems: Challenges, progress and prospects. In IJCAI, pp. 6332–6338, 2019.

Yuyan Wang, Mohit Sharma, Can Xu, Sriraj Badam, Qian Sun, Lee Richardson, Lisa Chung, Ed H
Chi, and Minmin Chen. Surrogate for long-term user experience in recommender systems. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 4100–4109, 2022.

Qingyun Wu, Hongning Wang, Liangjie Hong, and Yue Shi. Returning is believing: Optimizing
long-term user engagement in recommender systems. In Proceedings of the 2017 ACM on Con-
ference on Information and Knowledge Management, pp. 1927–1936, 2017.

Dongyang Zhao, Liang Zhang, Bo Zhang, Lizhou Zheng, Yongjun Bao, and Weipeng Yan. Mahrl:
Multi-goals abstraction based deep hierarchical reinforcement learning for recommendations. In
Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 871–880, 2020a.

Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang, and Dawei Yin. Recommenda-
tions with negative feedback via pairwise deep reinforcement learning. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1040–
1048, 2018.

Xiangyu Zhao, Xudong Zheng, Xiwang Yang, Xiaobing Liu, and Jiliang Tang. Jointly learning to
recommend and advertise. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 3319–3327, 2020b.

Yifei Zhao, Yu-Hang Zhou, Mingdong Ou, Huan Xu, and Nan Li. Maximizing cumulative user
engagement in sequential recommendation: An online optimization perspective. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 2784–2792, 2020c.

Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan, Xing Xie, and
Zhenhui Li. DRN: A deep reinforcement learning framework for news recommendation. In
WWW, pp. 167–176, 2018.

Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and Dawei Yin. Reinforcement
learning to optimize long-term user engagement in recommender systems. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
2810–2818, 2019.

12

Published as a conference paper at ICLR 2023

A OVERALL ALGORITHM

We provide the learning process of ResAct in Algorithm 1. Particularly, the CVAE is trained to
reconstruct the online-serving policy, the residual actor is trained for predicting the optimal residual
for each reconstructed action, and the critic networks is trained to guide the optimization of the
decoder in CVAE and the residual actor. For the target networks (line 2), {θd, θh, θl, θa, θq1} is
for the target policy, and {θq1 , θq2} is for the target critics. The execution process of ResAct is
summarized in Algorithm 2. Only the decoder of the CVAE, the residual actor and one of the critics
are used during execution.

Algorithm 1: ResAct-LEARNING
Input: Logged data collected by the online-serving policy D = {(st, at, rt, st+1)}

1 Initialize the CVAE: {E(c|s, a; θe), D(a|s, c; θd)}, the residual actor:
{fh(zh|sh; θh), fl(zl|sl; θl), fa(∆|z, a; θa)}, the critic networks
{Q1(s, a; θq1), Q2(s, a; θq2)}, and the variational estimator o(r|zh; θo)

2 Set soft-update rate τ and initialize the target networks θ′ ← θ for θ ∈ {θd, θh, θl, θa, θq1 , θq2}
3 for k = 1 to K do
4 Sample a batch of transitions (st, at, rt, st+1) from D
5 θe ← θe −∇θeL

Rec
θe,θd

(LRec
θe,θd

is in Eq. 3)
6 Update θd according to Eq. 9
7 Update {θh, θl, θa} according to Eq. 8
8 θqj ← θqj −∇θqj

LTD
θqj

, j = {1, 2} (LTD
θqj

is in Eq. 7)

9 θh ← θh −∇θhL
Exp
θh,θo

−∇θhL
Con
θh

10 θo ← θo −∇θoL
Exp
θh,θo

(LExp
θh,θo

is in Eq. 12, and LCon
θh

is in Eq. 14)
11 Update the target networks:

θ′ ← τθ + (1− τ)θ′ for θ ∈ {θd, θh, θl, θa, θq1 , θq2}
12 end

Algorithm 2: ResAct-EXECUTION
Input: State s, number of estimators n
// Reconstruction

1 Generate n estimators of aon: {ãion = D(a|s, ci; θd), ci ∼ N (0, 1)}ni=0
// Prediction

2 for ãon ∈ {ãion}ni=0 do
3 Predict the residual ∆ = f(∆|s, ãon; θf) as in Eq. 4
4 Apply the residual: ã = ãon +∆
5 end

// Selection
6 a∗ = argmaxa Q1(s, a; θq1), a ∈ {ãi}ni=0

Output: Action a∗

13

Published as a conference paper at ICLR 2023

B THE DERIVATION OF PERFORMANCE GRADIENTS

We begin by deriving the gradients of J (π̂) with respect to the parameters of the residual actor.

∇θfJ (π̂) =
∫∫

p(c)pπ̂(s)∇aQ
π̂(s, a)|a=π̂(a|s,c)∇θf π̂(a|s, c)dcds

=

∫∫
p(c)pπ̂(s)∇aQ

π̂(s, a)|a=π̂(a|s,c)∇θf f(∆|s, a; θf)|a=D(a|s,c;θd)dcds

= Es,c

[
∇aQ

π̂(s, a)|a=π̂(a|s,c)∇θf f(∆|s, a; θf)|a=D(a|s,c;θd)
] (16)

The decoder D(a|s, c; θd) also affects the policy. The gradients of J (π̂) with respect to θd) is
derived similarly:

∇θdJ (π̂) =
∫∫

p(c)pπ̂(s)∇aQ
π̂(s, a)|a=π̂(a|s,c)∇θd π̂(a|s, c)dcds

=

∫∫
p(c)pπ̂(s)∇aQ

π̂(s, a)|a=π̂(a|s,c)∇θdD(a|s, c; θd)dcds

= Es,c

[
∇aQ

π̂(s, a)|a=π̂(a|s,c)∇θdD(a|s, c; θd)
] (17)

C DERIVING THE EXPRESSIVENESS LOSS

We expect the extracted features to contain as much information as possible about long-term en-
gagement rewards, suggesting an intuitive approach to maximize the mutual information between
zh and r(s, a). The mutual information Iθh(zh; r) is defined according to

Iθh(zh; r) =

∫∫
p(zh, r) log

p(zh, r)

p (zh) p (r)
dzhdr

=

∫∫
pθh(zh)p(r|zh) log

p(r|zh)
p (r)

dzhdr

(18)

However, estimating and maximizing mutual information is practically intractable. Inspired by vari-
ational inference (Alemi et al., 2017), we derive a tractable lower bound for the mutual information
objective. Considering that KL(p(r|zh)||q(r|zh)) ≥ 0, by the definition of KL-divergence, we have∫
p(r|zh) log p(r|zh)dr ≥

∫
p(r|zh) log q(r|zh)dr where q(r|zh) is an arbitrary distribution. Here,

we introduce o(r|zh; θo) as a variational neural estimator with parameters θo of p(r|zh). Then,

Iθh(zh; r) ≥
∫∫

pθh(zh)p(r|zh) log
o(r|zh; θo)

p (r)
dzhdr

=

∫∫
pθh(zh)p(r|zh) log o(r|zh; θo)dzhdr +H(r)

(19)

where H(r) = −
∫
p(r) log p(r)dr is the entropy of reward distribution. Since H(r) only depends

on user responses and stays fixed for the given environment, we can turn to maximize a lower bound
of Iθh(zh; r) which leads to the following expressiveness loss:

LExp
θh,θo

= −
∫∫

pθh(zh)p(r|zh) log o(r|zh; θo)dzhdr

= −
∫∫∫

p(s)pθh(zh|s)p(r|s, zh) log o(r|zh; θo)dsdzhdr

= −
∫∫∫

p(s)pθh(zh|sh)p(r|s) log o(r|zh; θo)dsdzhdr

= Es,zh∼pθh
(zh|sh)

[
−
∫

p(r|s) log o(r|zh; θo)dr
]

= Es,zh∼pθh
(zh|sh) [H(p(r|s)||o(r|zh; θo))]

(20)

where s is state, sh is session-level state, pθh(zh|sh) = N (µh, σh), and H(·||·) denotes the cross
entropy between two distributions. By minimizing LExp

θh,θo
, we confirm expressiveness of zh.

14

Published as a conference paper at ICLR 2023

D DATASETS

D.1 MovieLensL-1m

MovieLensL-1m is synthesized from MovieLens-1m which is representative benchmark dataset for
sequential recommendation. MovieLens-1m provides 1,000,209 anonymous ratings of approxi-
mately 3,900 movies made by 6,040 MovieLens users. Ratings are made on a 5-star scale. As
MovieLens-1m does not contain any information about long-term user engagement, to generalize it
to long-term engagement problem, we make an assumption that a user’s long-term engagement is
proportional to the movie ratings. Specifically, we assume that recommending a movie for which a
user rates 2-stars will not affect engagement, a movie with 3-stars, 4-stars and 5-stars will benefit the
long-term engagement by 1, 2, and 3, respectively. Recommending a movie with 1-star is harmful
to engagement and will be given a negative reward, -1. The task in MovieLensL-1m is to maximize
cumulative benefits on long-term engagement.

D.2 DESIGNING OF REWARDS IN RecL-25m

The rewards of long-term engagement in RecL-25m are designed based on the statistics of the
dataset. As a general guideline, we expect rewards to reflect the influence of recommending an
item on a user. However, behaviors of users have large variance which makes the influence difficult
to measure. For example, if we simply make rewards proportional to session length, or inversely
proportional to return time, the recommender system would focus on improving the experience of
high activity users, because by doing so it can obtain larger rewards. However, in reality, it is equally
if not more important to facilitate the conversion of low activity user to high activity user, which re-
quires us to improve the experience of low activity users. To address this issue, we turn to measuring
the relative influence of an item. Concretely, we calculate the average return time δuavg and the av-
erage session length ηuavg for a user u, and use these two statistics to quantify rewards. For user u,
given a time duration δu between two sessions, the corresponding reward is calculated by

r(δu) =

(
⌊
min(δuavg, δ75%)

δu
⌋
)
.clip(0, 5) (21)

where δ75% is the 75th percentile of the average return time for all users, which is designed to
differentiate active users and inactive users. Rewards for the session length is calculated similarly as

r(ηu) =

(
⌊ ηu

ηuavg × 0.8
⌋
)
.clip(0, 5) (22)

where ηu is the length of a session in the logged data of user u. Since δu and δ can only be
calculated at session-level, without loss of generality, we provide rewards at the end of each session,
where rewards for return time is assigned to the previous session.

E BASELINES

Our method is compared with various baselines, including classic reinforcement learning meth-
ods (DDPG, TD3), offline reinforcement learning algorithms (TD3_BC, BCQ, IQL), and imitation
learning methods (IL, IL_CVAE):

• DDPG (Lillicrap et al., 2016): An reinforcement learning algorithm which concurrently
learns a Q-function and a policy. It uses the Q-function to guide the optimization of the
policy.

• TD3 (Fujimoto et al., 2018): An off-policy reinforcement learning algorithm which applies
clipped double-Q learning, delayed policy updates, and target policy smoothing.

• TD3_BC (Fujimoto & Gu, 2021): An reinforcement learning designed for offline training.
It adds a behavior cloning (BC) term to the policy update of TD3.

• BCQ (Fujimoto et al., 2019): An off-policy algorithm which restricts the action space in
order to force the agent towards behaving similar to on-policy.

• IQL (Kostrikov et al., 2022): An offline reinforcement learning method which takes a state
conditional upper expectile to estimate the value of the best actions in a state.

15

Published as a conference paper at ICLR 2023

• IL: Imitation learning treats the training set as expert knowledge and learns a mapping
between observations and actions under demonstrations of the expert.

• IL_CVAE (Kingma & Welling, 2014): Imitation learning method with the policy con-
trolled by a conditional variational auto-encoder.

F EXPERIMENTAL DETAILS

Across all methods and experiments, for fair comparison, each network generally uses the same ar-
chitecture (3-layers MLP with 256 neurons at each hidden layer) and hyper-parameters. We provide
the hyper-parameters for ResAct in Table 5. All methods are implemented with PyTorch.

Table 5: Hyper-parameters of ResAct.
Hyper-parameter Value
Optimizer Adam (Kingma & Ba, 2014)
Actor Learning Rate 5× 10−6

Critic Learning Rate 5× 10−5

Batch Size 4096
Normalized Observations Ture
Gradient Clipping False
Discount Factor 0.9
Number of Behavior Estimators 20
Weight of LExp 5× 10−2

Weight of LCon 5× 10−1

Target Update Rate 1× 10−2

Number of Epoch 5

G SENSITIVITY ANALYSIS FOR THE REWARD WEIGHTS

When setting the reward weights in the Both mode, we use some usual empirical values by following
the real-world requirements for operational metrics. The reward occurs only at the end of each
session, which makes it representative for sequential recommendations. If we try other designs,
only the value of the reward will change, not the frequency of learning signal. To justify that our
algorithm is robust to different reward weights, we perform sensitivity analysis for the weights
(return time: session length) of rewards in the Both mode. As shown in Table 6, our algorithm
consistently outperforms the baselines under different reward weights.

Table 6: Sensitivity Analysis for the Reward Weights in the Both Mode.
(0.7: 0.3) (0.5: 0.5) (0.3: 0.7)

DDPG 0.5908 ±0.0092 0.5040 ±0.0073 0.4172 ±0.0059
TD3 0.5498 ±0.0133 0.4941 ±0.0086 0.4385 ±0.0076
TD3_BC 0.5563 ±0.0050 0.4978 ±0.0043 0.4393 ±0.0038
BCQ 0.5915 ±0.0049 0.5261 ±0.0042 0.4605 ±0.0037
IQL 0.5579 ±0.0067 0.4812 ±0.0054 0.4046 ±0.0044
IL 0.5345 ±0.0048 0.4727 ±0.0041 0.4111 ±0.0036
IL_CVAE 0.5346 ±0.0047 0.4726 ±0.0041 0.4107 ±0.0036
ResAct (Ours) 0.6675 ±0.0053 0.5948 ±0.0045 0.5220 ±0.0039

16

Published as a conference paper at ICLR 2023

H QUALITY OF ONLINE-BEHAVIOR ESTIMATORS

Despite the selection phase, the quality of the online-behavior estimators, or the action candidates,
still significantly affects the performance. On the one hand, the action candidate directly constitutes
the final action. On the other hand, the sampled action candidates serve as inputs of the residual
module and the selection module. It is certain that sampling an infinite number of action candidates
will cover the best action which is sampled by the CVAE. However, action candidates which are
far from online-behavior policy may be incorrectly selected. The reason is that the residual mod-
ule and the selection module are unlikely to encounter such out-of-distribution (OOD) actions and
therefore cannot make accurate predictions. The distribution of action candidates should be as close
as possible to the distribution of online services to ensure that the output of the residual and selec-
tion modules is reliable. We conduct experiments by uniformly sampling 20 action candidates and
adding them to the action candidates reconstructed by the CVAE. As in Table 7, there is a significant
decrease in performance even though we increase the number of action candidates.

Table 7: Performance comparison between ResAct and ResAct with uniformly augmented action
candidates. The “±” indicates 95% confidence intervals.

Return Time Session length Both
ResAct 0.7980 ±0.0067 0.5433 ±0.0045 0.6675 ±0.0053
ResAct + 20 candidates (uniform) 0.5501 ±0.0068 0.3489 ±0.0041 0.4839 ±0.0054

17

	Introduction
	Problem Statement
	Reinforcing Long-term Engagement with Residual Actor
	Reconstructing Online Behaviors
	Learning to Predict the Optimal Residual
	Facilitating Feature Extraction with Information-theoretical Regularizers

	Experiment
	Experimental Settings
	Overall Performance
	Analyses and Ablations

	Related Work
	Conclusion
	Overall Algorithm
	The Derivation of Performance Gradients
	Deriving the Expressiveness Loss
	Datasets
	MovieLensL-1m
	Designing of Rewards in RecL-25m

	Baselines
	Experimental Details
	Sensitivity Analysis for the Reward Weights
	Quality of Online-behavior Estimators

