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ABSTRACT

We introduce AGSA, an Agent-Gated Shared Autonomy framework that learns
from high-level human feedback to tackle the challenges of reward-free training,
safe exploration, and imperfect low-level human control. Recent human-in-the-
loop learning methods enable human participants to intervene a learning agent’s
control and provide online demonstrations. Nonetheless, these methods rely heavily
on perfect human interactions, including accurate human-monitored intervention
decisions and near-optimal human demonstrations. AGSA employs a dedicated
gating agent to determine when to switch control, thereby reducing the need of
constant human monitoring. To obtain a precise and foreseeable gating agent,
AGSA trains a long-term gating value function from human evaluative feedback
on the gating agent’s intervention requests and preference feedback on pairs of
human intervention trajectories. Instead of relying on potentially suboptimal hu-
man demonstrations, the learning agent is trained using control-switching signals
from the gating agent. We provide theoretical insights on performance bounds
that respectively describe the ability of the two agents. Experiments are conducted
with both simulated and real human participants at different skill levels in challeng-
ing continuous control environments. Comparative results highlight that AGSA
achieves significant improvements over previous human-in-the-loop learning meth-
ods in terms of training safety, policy performance, and user-friendliness. Project
webpage is at https://agsa4rl.github.io/.

1 INTRODUCTION

Human-in-the-loop Learning (HL) methods (Kelly et al., 2019; Celemin et al., 2022) integrate human
participants in the training process of RL and facilitate safe-guarded RL training without relying
on environment rewards. Existing HL methods leverage low-level human involvement in two main
aspects: (1) Monitoring the agent training process for potential safety violations (Peng et al., 2021;
Luo et al., 2024) and intervening agent control when necessary; (2) Providing online demonstrations
during intervention (Li et al., 2022b; Peng et al., 2023). However, human participants may exhibit
suboptimal behaviors (Xue et al., 2023c;a) when either monitoring or providing demonstrations. For
example, human participants can be unfamiliar with the task requirements or the interface for shared
autonomy. They may get tired as training goes on and fail to figure out whether the learning agent is
in a dangerous situation. Network latency may also occur stochastically when human participants
perform remote operations (Mandlekar et al., 2020). When interacting with embodied agents, human
participants may struggle to control all joints and carry out a high-level policy instead (Li et al.,
2022a). Therefore, one critical challenge of HL is how to improve training safety and efficiency in
face of unpredictable imperfections of human interactions?.

To address the challenge of imperfect human monitoring, recent methods have shifted from human-
gated training to agent-gated approaches, where a separate gating agent oversees the environment
interaction of the learning agent and calls for human intervention when necessary. EnsembleDAg-
ger (Menda et al., 2019) uses high uncertainties in decision making as the trigger of human interven-
tion. But as we demonstrate in Sec. 3.1, dangerous regions may have low uncertainty after they are
visited for a few times, so such heuristic criteria often fail to detect dangerous regions and safeguard
the learning agent. To handle imperfect human demonstrations, some approaches attempt to model
human behavior through environment reward and request intervention only when the learning agent is
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Figure 1: The learning agent (in purple) interacts with the environment under the monitoring of the
gating agent (in black). The gating agent decides when to request human intervention. Learning agent
trajectories are in green and human trajectories are in red and yellow. Human feedbacks are denoted
with thumbs up and down. Feedbacks at t1 and t3 are human evaluations on whether the gating agent
triggers control switch at proper timesteps. Feedbacks at t2 and t4 are human preferences on whether
the current intervention trajectory is better than the previous one. For example, the trajectory between
t3 and t4 is better than that between t1 and t2, so human may provide positive feedback on t4.

likely to act incorrectly (Xue et al., 2023d; Liu et al., 2023b). But they assume access to environment
rewards which are not available in reward-free settings.

In this work, we propose a novel Agent-Gated Shared Autonomy (AGSA) framework that simultane-
ously addresses both aspects of imperfect human interactions, as shown in Fig. 1. AGSA is built upon
the agent-gated training pipeline and learns from human feedback, both on whether the gating agent
proposes intervention at proper timesteps and on whether the current human intervention trajectory is
better than the previous one. Conceptually, rather than fully relying on low-level human monitoring
or human demonstrations—both of which can be imperfect—we assume the accuracy of high-level
human feedback, as it is easier for humans to make relative judgements that compare trajectories as
better or worse, than to provide absolute optimal decisions (Helson, 1964; Kahneman & Tversky,
2013). The reliance on human feedback empowers recent success of applying RL from Human
Feedback (RLHF) to train large language models (Ouyang et al., 2022), but has not been thoroughly
investigated in HL for continuous control tasks. As in RLHF, we train reward models that capture
human preferences, which are further used to train gating value functions that estimate the long-term
effect of the gating actions. In this way, the gating agent can provide more accurate, human-aligned,
and forseeable intervention signals than previous methods. To train the learning agent without
environment reward, we regard states that require intervention as undesirable, assigning negative
proxy rewards to state-action pairs that precede human intervention. Since the gating agent fully
controls human interventions, the learning agent is insulated from imperfect human demonstrations.

Theoretical analyses show that optimizing human feedback provides performance and safety bounds
for the mixed behavior policy that interacts with the environment, demonstrating the effectiveness
of the gating agent. Meanwhile, training with negative proxy rewards ensures a lower-bound
performance guarantee for the learning agent. For empirical evaluations, we select two challenging
continuous control tasks of robotic locomotion and autonomous driving, using the MuJoCo (Todorov
et al., 2012) and MetaDrive (Li et al., 2023) simulator. We employ neural policies with varying
performance levels, along with human participants inexperienced in evaluation tasks, to provide
imperfect human involvement. Comparative results demonstrate that AGSA learns efficiently from
imperfect data while maintaining overall training safety. Our contributions in this paper can be
summarized as follows: (1) We identify the challenges posed by imperfect low-level human control
and propose to utilize high-level human feedback instead. (2) We design a novel framework for
agent-gated shared autonomy, where the gating agent is trained with human feedback and the learning
agent is trained with intervention decisions from the gating agent. (3) We provide both theoretical
and empirical evidence to support the efficiency and safety of the proposed framework.

2 BACKGROUND

2.1 PRELIMINARIES

To model agent-gated shared autonomy, we consider two Markov Decision Processes (MDPs) for the
learning agent and the gating agent. The learning MDP is defined by the tuple Ml = ⟨S,Al, Tl, γ, d0⟩
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including a state space S, an action space Al, a transition function Tl, a discount factor γ, and an
initial state distribution d0. The gating MDP is defined by the tuple Mg = ⟨S,Ag, Tg, γ, rg, d0⟩
with the same state space S, discount factor γ, and initial state distribution with Ml. Ag = {0, 1} is
the binary indicator of whether to let human policy πh intervene. rg is the learned reward function
for training the gating agent. Policies of the gating MDP πg(s) have deterministic binary outputs
and are regarded as gating functions, i.e., πg(s) = 1 denotes human intervention and control, and
πg(s) = 0 denotes learning agent’s control. The overall behavior policy, or the data collection policy,
can be defined as πb(·|s) = (1− πg(s))πl(·|s) + πg(s)πh(·|s), where πl is the policy in the learning
MDP. The goal of agent-gated shared autonomy is to optimize the learning policy πl and maximize
its expected return η(πl) = Eτ∼d0,πl,Tl [

∑∞
0 γtr(st, at)], where r is the inaccessible environment

reward function. Therefore, there is no form of human involvement during testing. The state-action
value function for πl is defined as Ql(s, a) = Eπl,T [

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a]. Qg for πg is
defined as Qg(s, a) = Eπb,T [

∑∞
t=0 γ

trg(st, at)|s0 = s, a0 = a].

2.2 RELATED WORK

Human-Gated Shared Autonomy Human-gated HL algorithms rely on human participants to
monitor the environment interaction of the learning agent and intervene on dangerous or repetitive
states. HG-DAgger (Kelly et al., 2019) and IWR (Mandlekar et al., 2020) let human participants
provide corrective demonstrations after intervention and perform Imitation Learning (IL) on hu-
man sampled trajectories. CEILING (Chisari et al., 2022) takes evaluative feedback with human
demonstrations, assigning different weights in the imitation loss. Other algorithms combine HL
with RL under human monitoring. Under the reward-free setting, RL agents resort to human-gated
intervention for proxy feedback. HACO (Li et al., 2022b) and PVP (Peng et al., 2023) train the
Q-value function by maximizing it on (s, a) pairs from human generated trajectory and minimizing it
on (s, a) pairs from the agent. RLIF (Luo et al., 2024) assigns a reward of -1 to state action pairs that
are one-step prior to human-gated intervention. While some human-gated shared autonomy methods,
such as CEILING and RLIF, take suboptimal human demonstrations into consideration, they can still
be negatively influenced by inaccurate human monitoring. Instead, this paper introduces a separate
gating agent and no longer relies on humans to monitor the training process.

Agent-Gated Shared Autonomy Existing agent-gated methods include EnsembleDAgger (Menda
et al., 2019) which estimates uncertainty in decision making and asks for human intervention when
the uncertainty level is high. But uncertainty is only an empirical criterion and cannot be aligned with
human instructions. Liu et al. (2023a) introduce model-based failure prediction that foresees potential
danger in a few steps. But the prediction still learns from human interventions that can be inaccurate.
EGPO (Peng et al., 2021) lets human intervene if the learning agent has low action likelihood under
human’s policy distribution. ThriftyDAgger (Hoque et al., 2021) and BCVA (Gokmen et al., 2023)
use goal reaching rewards to learn proxy value functions. Human intervention will be triggered if
the proxy value drops below pre-defined thresholds. TS2C (Xue et al., 2023d) and AdapMen (Liu
et al., 2023b) compare the value functions of the agent action and human action, and only let human
intervene if their actions are guaranteed to have better outcomes. But human policy distribution or
environment reward are hardly accessible in many real-world applications. The reliance on such
information hinders broader applications of these methods. We request additional human feedback to
train the gating agent. The feedback is collected when the human intervention starts and terminates,
which is easy to implement and adds minimal burden to human participants.

We leave relevant researches on reward-free RL in Appendix A, where we mainly discuss the
advantage of our framework over Preference-based RL (PbRL) methods.

3 POLICY OPTIMIZATION WITH AGENT-GATED SHARED AUTONOMY

In this section, we first provide motivating examples in Sec. 3.1 and discuss the drawbacks of previous
agent-gated methods. Then we discuss our approach of training a long-term gating value function
from human feedback in Sec. 3.2. In Sec. 3.3, the learning agent is trained from proxy reward signals
based on the intervention decisions of the gating agent. We conduct theoretical analysis on the
presented training framework in Sec. 3.4 and conclude the section with practical algorithm pipeline
in Sec. 3.5.
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Figure 2: Probabilities of the gating agent requesting human intervention, with the uncertainty
estimation method and the failure detection method. Timesteps highlighted in red have problematic
intervention probabilities, either failing to recognize danger or being overly conservative.

3.1 MOTIVATING EXAMPLE

Among existing agent-gated shared autonomy algorithms, the uncertainty estimation method (Menda
et al., 2019) triggers human intervention when state-action uncertainty exceeds a pre-defined threshold.
The failure detection method (Liu et al., 2023a) imitates human intervention decisions. In Fig. 2,
we illustrate the probabilities of both methods requesting human intervention along a trajectory
in the MetaDrive (Li et al., 2023) simulator. In the presented trajectory, t1 and t4 are safe steps
which should exhibit low intervention tendencies, but the failure detection method assigns a high
intervention probability at t4. This is likely due to human participants being overly conservative in
the presence of nearby dangerous zones, leading to unnecessary intervention even when the learning
agent operates correctly. t2 and t3 are dangerous steps due to incorrect vehicle direction, but the
uncertainty estimation method assigns a low intervention probability at t2. This is because state-action
uncertainty is related to the complexity of environment components that is poorly aligned with the
actual dangerous zones.

These examples highlight the limitations of current agent-gated algorithms, which cannot ensure
appropriate timing to switch to human control. Instead of learning from potentially inaccurate human
intervention decisions, in AGSA the gating agent first makes intervention decisions itself and then
learns from human evaluative feedback on whether the intervention decisions are appropriate. AGSA
also learns from human preference feedback on subsequent trajectories influenced by intervention
decisions, getting rid of the heuristic criterion in the uncertainty estimation method.

3.2 TRAINING GATING AGENT FROM HUMAN FEEDBACK

The motivating examples demonstrate that to train an effective gating agent, relying solely on
heuristics or step-wise imitation of human instructions is insufficient, mainly because these metrics
are loosely connected to the training process of the learning agent. Overall, the central role of the
gating agent is to help train the learning agent safely and effectively. Such a role can be characterized
by the performance of the mixed behavior policy πb, as it is in charge of collecting meaningful
training data in the environment and avoid safety violations. Therefore, we analyse the impact of
policy switching on the long-term performance of the mixed behavior policy πb. We employ the
gating value function Qg to quantify such long-term effect. Qg takes environment states s and the
binary intervention decisions ag as input. The gating policy can derived from Qg by selecting the
gating action with higher long-term value:

πg(s) =

{
1 if Qg(s, 1) > Qg(s, 0), (Human Intervention)
0 otherwise. (Agent Control)

(1)

To properly train the gating value function Qg for optimal intervention timing, human participants
follow three steps, as illustrated in Fig. 3 (upper):

1. Providing a binary signal I(st) that assesses whether the current environment state is indeed
worth intervention. Such human evaluation provides a direct feedback on whether gating
agent’s intervention decisions successfully indicates dangerous or unexplored areas. Its
advantage over directly imitating human intervention decisions is that humans have time
to examine the intervention quality, rather than making real-time decisions that can be
influenced by tiredness, carelessness, or network latency.
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Figure 3: The framework for training both the gating agent and the learning agent. Upper: The gating
agent generates actions agt ∈ {0, 1} to determine whether human intervene is required, receiving
rewards rgt based on human feedback. Lower: The learning agent generates actions aπ to interact
with the environment. Its rewards rπ are set to -1 on states preceding human intervention and to 0 on
other states.

2. Interacting with the environment for T steps and offering online demonstration segment
σ = (st, a

human
t , . . . , st+T−1, a

human
t+T−1), aiming at guiding the learning agent out of the

region that is dangerous or no longer needs exploration.

3. Providing a preference signal pt = Pψ[σ ≻ σ′] ∈ {0, 0.5, 1}, indicating whether current
segment σ is better than the previous segment σ′. As human participants are familiar with
recent trajectories of themselves, this way of online preference pair construction saves the
burden for humans of reviewing previously sampled trajectories, as shown by the user study
in Sec. 4.2. Bad human samples can happen due to imperfect human behaviors or untimely
intervention decision of the gating agent. By assigning low human preference on these
samples, the gating agent can learn from human demonstrations at all performance levels
and mistakes in the intervention decision made by itself.

As RL environments usually have high-frequency actions, we allow humans to continuously intervene
for T steps to provide more accurate preference feedback, where T is a predefined hyperparameter.
The preference reward model rψ is trained from human preference signals with the Bradley-Terry
model (Bradley & Terry, 1952; Lee et al., 2021):

Pψ [σ ≻ σ′] =
exp

∑
(s,a)∈σ rψ(s, a)

exp
∑

(s,a)∈σ rψ(s, a) + exp
∑

(s′,a′)∈σ′ rψ(s′, a′)
, (2)

LReward = −E(σ,σ′,pt) [(1− pt) logPψ [σ′ ≻ σ] + pt logPψ [σ ≻ σ′]] . (3)

The overall reward function rg to train the gating value function Qg is the linear combination of the
evaluation feedback I(st) and the preference reward: rg(st, a

g
t ) = I(st) + λ

∑N−1
n=0 rψ(st+n, a

πb
t+n),

where λ is the hyperparameter for reward balancing and aπbt denotes actions from the learning agent
or human, depending on the control switching decision. The gating value function can therefore
be trained with standard value-based RL methods with rg. Besides being able to measure long-
term performance, this training procedure does not require human to monitor or provide feedback
during the learning agent’s control. Compared to human-gated methods that require constant human
oversight, this approach achieves more efficient utilization of human involvements and is more
user-friendly, as demonstrated by the human study in Sec. 4.2.

3.3 TRAINING LEARNING AGENT FROM INTERVENTION SIGNALS

When training the learning agent in the reward-free setting, direct imitation will lead to degraded
policy performance due to potentially suboptimal human demonstrations. So we need to design a
proxy reward model rπ on the training data. One straightforward approach is to use the learned
reward model rψ as rπ. But as shown in Tab. 2, the learning agent cannot benefit much from rψ,
mainly because of the instability of rψ that keeps updating. Instead, we propose to set rπ based on the
binary actions of the gating agent agt , which are generated through comparisons of gating values and
filter out most of the noisy signals. As shown in Fig. 3 (lower), state-action pairs that precede control
switching, such as (s2, aπ2 ) in Fig. 3, are likely to result in suboptimal outcomes and are assigned
with a negative reward rπ(s2, a

π
2 ) = −1. Other agent-generated state-action pairs, such as (s1, aπ1 )

and (s5, a
π
5 ), receive a zero reward rπ = 0. Therefore, rπ can be set as follows:
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rπ(st, a
π
t ) =

{−1 if agt+1 = 1,

0 otherwise.
(4)

While the learning agent may have erroneous actions far before the intervention, these mistakes cannot
be identified without accurate human monitoring and access to environment reward. We instead rely
on the ability of RL to perform implicit credit assignment (Pignatelli et al., 2024), allowing the agent
to correct mistaken actions. This credit assignment problem is less challenging than that in tasks with
sparse rewards (Rengarajan et al., 2022) thanks to the relatively dense intervention signals.

Human-generated samples, such as (s3, ahuman
3 ) and (s4, a

human
4 ) in Fig. 3, are expected to guide the

agent out of the dangerous or stagnant regions. However, given the potential suboptimality of human
demonstrations, the learning agent is not directly trained on human-generated samples and proxy
rewards rπ are undefined for these samples. From the perspective of the learning agent, the trajectory
temporarily terminates at st when t+ 1 is the human intervention step. Agent control will resume
at st+T (s5 in Fig. 3) if the human successfully navigates through dangerous or unexplored areas.
Otherwise, the environment will be reset to the initial state. In this way, the learning agent benefits
from human-guided state recovery while remaining unaffected by imperfect human demonstrations.

3.4 THEORETICAL ANALYSIS

We provide theoretical justifications for the proposed training framework of AGSA. One important
evaluation criteria of the gating agent is the ability of the mixed behavior policy πb(·|s) = (1 −
πg(s))πl(·|s) + πg(s)πh(·|s)(∗), which is used to interact with the environment and collect training
samples1. A well-performing πb facilitates efficient exploration and safety protection for the learning
agent. In the following theorem, we show that the gating agent of AGSA can secure a performance
lower bound of the behavior policy.

Theorem 3.1. With the gating policy πg defined in Eq. (1) and Qg trained with rψ , the behavior policy
πb defined in Eq. (*) has the following performance lower-bound2: η(πb) ⩾ max {η(πh), η(πl)} −

2εr
(1−γ)2 , where εr = maxs,a |r(s, a)− rψ(s, a)| is the error of preference-based reward modelling.

The bound contains the higher performance among the human and learning policy. This demonstrates
that the gating agent facilitates efficient exploration by leveraging human demonstrations. Meanwhile,
when human policies are suboptimal, the performance of the behavior policy will be lower-bounded
by the learning policy itself, which deals with the issue of imperfect human demonstrations. In
safety-critical scenarios, the step-wise training cost c(s, a), i.e., the penalty on the safety violation
during training, can be regarded as a negative reward. The gating agent can also provide safety
guarantee for πb, as discussed in Appendix B.2. We further show in the following theorem that the
learning policy has a lower-bound performance guarantee when optimized with the proxy reward
function rπ , demonstrating the effectiveness of the proxy reward from the intervention signal.

Theorem 3.2. Let π̃ be the optimal policy trained with proxy rewards rπ(s, a). π̃ has the following
performance lower bound: η(π̃) ⩾ η(πh)− 4εr

(1−γ)2 .

Similar performance lower-bounds are derived in previous human-in-the-loop methods with human-
gated training (Luo et al., 2024) or with access to environment rewards (Liu et al., 2023b). AGSA
obtains such lower bound with a milder assumption on the bounded error of preference-based reward
modelling. Meanwhile, thanks to the gating agent that measures long-term intervention outcome,
AGSA does not have a performance upper bound and may outperform imperfect human participants,
as shown by the results in Sec. 4.

3.5 PRACTICAL ALGORITHM

Summarizing previous analysis, we present the detailed workflow of AGSA in Alg. 1. Line 5 and
Line 10 construct the replay buffer Dl for training the learning agent, assigning rewards based on
gating agent outputs. Line 6 corresponds to three kinds of human interactions, including human
demonstrations, human evaluative feedback on the intervention decision, and human preference
feedback on the demonstrations. Line 7 constructs the replay buffer Dg for training the gating value
Qg and the dataset Dp for training the reward model rψ. Line 8 denotes that the preference pair

1While human generated samples are mostly excluded when training the learning agent, the state st+T at
intervention termination will influence the subsequent agent-generated samples.

2Proofs to the theorems are in Appendix B.1.
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Algorithm 1 The practical workflow of AGSA.

1: Input: Gating value function Qg; Learning agent policy πl; Human policy πh; Human preference
model Pψ; Reward model rψ; Learning agent replay buffer Dl; Preference Replay buffer Dp;
Gating agent replay buffer Dg; Preference reward ratio λ; Human intervention steps T .

2: for epoch i = 0, 1, 2, . . . do
3: for timestep t = 1, 2, . . . do
4: if Qg(st, 1) > Qg(st, 0) and not previous_intervene then
5: Append (st−1, at−1, st,−1) to Dl.
6: Apply human policy πh for T steps, getting trajectory segment σ; Query human for

intervention evaluation I(st) and preference feedback pt = Pψ(σ ≻ σ′).
7: Append (st, 1, st+1, I(st) + λ

∑T
n=0 rψ(st+n, at+n)) to Dg . Append (σ, σ′, pt) to Dp.

8: Set σ′ = σ, previous_intervene=True, t = t+ T − 1.
9: else

10: Append (st−1, at−1, st, 0) to Dl and (st, 0, st+1, λrψ(st, at)) to Dg .
11: Apply learning agent policy πl for 1 step; Set previous_intervene=False.
12: Train πl, rψ , Qg on D, Dp, Dg , respectively.

Table 1: Results of experiments with different performance levels of neural policies. Numbers are
normalized scores according to D4RL (Fu et al., 2020). Numbers after ± are standard deviations
across trials with four different seeds.

Domain Expert
Level DAgger Ensemble-

DAgger
Failure

Prediction BCVA RLIF AGSA (Ours)

Hopper Low 19.54 ± 2.14 11.91 ± 6.43 33.27 ± 7.36 -29.69 ± 0.59 89.39 ± 9.76 94.18 ± 3.54
Medium 38.70 ± 3.70 10.30 ± 6.68 50.02 ± 10.85 -17.95 ± 21.13 92.40 ± 2.82 92.44 ± 3.83

High 70.58 ± 9.74 39.44 ± 1.04 65.28 ± 12.32 55.27 ± 18.56 94.71 ± 1.04 95.79 ± 0.90
Average 42.94 ± 5.19 20.55 ± 4.72 49.52 ± 10.18 2.55 ± 13.43 92.16 ± 4.54 94.14 ± 2.76

Walker2d Low 12.37 ± 2.96 -9.15 ± 3.30 23.50 ± 5.34 -19.11 ± 9.63 115.24 ± 12.09 114.16 ± 2.17
Medium 20.49 ± 3.15 23.93 ± 12.33 31.29 ± 8.07 -14.53 ± 10.56 69.50 ± 38.44 109.38 ± 2.29

High 57.94 ± 8.69 51.57 ± 1.22 50.82 ± 3.28 7.85 ± 45.88 65.53 ± 35.63 129.09 ± 2.98
Average 30.27 ± 4.93 22.12 ± 5.62 35.20 ± 5.56 -8.60 ± 22.02 83.43 ± 28.72 117.55 ± 2.48

HalfCheetah Low 18.19 ± 1.97 11.42 ± 8.89 11.53 ± 1.29 47.45 ± 5.44 20.54 ± 2.93 83.01 ± 0.80
Medium 31.53 ± 2.32 24.18 ± 0.35 15.91 ± 5.44 60.62 ± 7.40 15.79 ± 2.38 88.63 ± 0.20

High 52.67 ± 5.77 28.99 ± 0.67 25.05 ± 4.67 71.99 ± 1.48 12.16 ± 3.62 89.66 ± 0.69
Average 34.13 ± 3.35 21.53 ± 3.30 17.50 ± 3.80 60.02 ± 4.77 16.16 ± 2.98 87.10 ± 0.56

(σ, σ′) is constructed with the current and the previous human generated trajectory. In Line 13, πl
and Qg can be trained with any value-based RL algorithms, such as TD3 (Fujimoto et al., 2018) and
SAC (Haarnoja et al., 2018), and rψ is trained with Eq. 3.
4 EXPERIMENTS

In this section, we conduct experiments to investigate the following questions: (1) Can AGSA
facilitate efficient training and safe exploration in various challenging tasks, compared to previous
human-in-the-loop training methods? (2) How does the components of AGSA, such as the evaluative
and preference feedback to train the gating agent, contribute to its overall performance? (3) How
do human participants evaluate AGSA in terms of performance alignment and interacting workload,
compared with other algorithms? To answer these questions, we consider the task of robotic
locomotion and autonomous driving, as shown by Fig. 5 in Appendix C.1. We conduct comparative
analysis and ablation studies, as well as designing questionnaires for human-centered studies.

Experiments that involve real human participants are usually expensive and cost-sensitive. Their
interaction can also exhibit large variance in different trials. Therefore, existing literature highly
depend on trained neural policies as proxies for human policies (Peng et al., 2021; Xue et al., 2023d;
Luo et al., 2024). We follow this setting in the robotics simulator MuJoCo (Todorov et al., 2012) and
use neural policies with different performance levels to simulate imperfect human policies. We also
conduct experiments with real human participants in the autonomous driving simulator MetaDrive (Li
et al., 2023). Though neural policies or human participate are involved in the training process, all
reported metrics in this section are obtained by the learning agent alone in separate evaluation rollouts.

4.1 EXPERIMENTS WITH NEURAL POLICIES AS PROXY HUMAN POLICIES

Setup To obtain neural experts with different performance levels as proxy human policies, we use
RLPD (Ball et al., 2023) to train RL policies and load checkpoints at different training steps. We
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Figure 4: Learning curves of methods in ablation study. We consider the Walker2d environment. Full
results are in Appendix C.5. The lines are average return across four different trials and the shadow
areas denote the standard deviation.
Table 2: Results of ablation studies on different module combinations. The results are averaged and
normalized in the same way as in Tab. 1.
Domain Expert

Level
AGSA w/

Failure Prediction
AGSA w/
Ensemble

AGSA w/o Human
Preference Feedback

AGSA w/o Human
Evaluative Feedback

AGSA w/
rψ as rπ

AGSA (Ours)

Hopper Low 94.97 ± 3.46 88.29 ± 12.60 80.48 ± 14.35 83.28 ± 13.53 12.21 ± 20.47 94.18 ± 3.54
Medium 91.79 ± 3.89 77.66 ± 13.93 80.03 ± 4.97 93.13 ± 1.71 -4.64 ± 32.08 92.44 ± 3.83

High 83.99 ± 5.08 77.47 ± 12.87 56.72 ± 2.70 70.86 ± 30.45 -16.07 ± 25.62 95.79 ± 0.90
Average 90.25 ± 4.14 81.14 ± 13.13 72.41 ± 7.34 82.42 ± 15.23 -2.83 ± 26.06 94.14 ± 2.76

Walker2d Low 58.90 ± 47.85 16.87 ± 5.66 38.14 ± 52.61 70.52 ± 37.57 103.50 ± 16.98 114.16 ± 2.17
Medium -17.37 ± 17.04 40.84 ± 33.34 -4.74 ± 23.45 111.51 ± 14.94 83.06 ± 31.73 109.38 ± 2.29

High -23.06 ± 6.52 -4.47 ± 9.30 75.26 ± 16.73 118.94 ± 6.74 101.37 ± 38.82 129.09 ± 2.98
Average 6.16 ± 23.80 17.75 ± 16.10 36.22 ± 30.93 100.33 ± 19.75 95.98 ± 29.18 117.55 ± 2.48

HalfCheetah Low 64.69 ± 4.61 8.43 ± 8.71 78.76 ± 0.55 84.31 ± 0.32 70.82 ± 3.86 83.01 ± 0.80
Medium 82.38 ± 0.13 25.18 ± 13.70 85.69 ± 0.00 86.29 ± 0.82 85.17 ± 5.07 88.63 ± 0.20

High 83.96 ± 1.34 32.75 ± 8.15 86.01 ± 0.92 85.36 ± 0.99 93.93 ± 0.74 89.66 ± 0.69
Average 77.01 ± 2.03 22.12 ± 10.19 83.49 ± 0.49 85.32 ± 0.71 83.31 ± 3.22 87.10 ± 0.56

use policies at around 20%, 50%, and 100% performance levels compared with the optimal policy
and term them as “low”, “medium”, and “high” policies, respectively. Detailed discussions on neural
policies are in Appendix C.1. We follow previous preference-based RL methods (Lee et al., 2021; Xue
et al., 2023b) and use comparisons of environment rewards to simulate human preferences feedback
pt = Pψ[σ ≻ σ′]. Human evaluative feedback I(st) is simulated by value function comparisons (Luo
et al., 2024) with details discussed in Appendix C.1. For baseline algorithms, we mainly select
previous agent-gated methods, including DAgger (Ross et al., 2011), EnsembleDAgger (Menda et al.,
2019), Failure Detection (Liu et al., 2023a), and BCVA (Gokmen et al., 2023). RLIF (Luo et al.,
2024) is also considered as the state-of-the-art human-gated algorithm in robotics locomotion. We
use SAC (Haarnoja et al., 2018) to train both agents with rψ and rπ. Detailed descriptions on the
baseline algorithms are in Appendix C.2.
Comparative Results As shown in Tab. 1, our AGSA achieves the highest performance across
all tasks and performance levels, demonstrating its ability of efficient learning from both optimal
and imperfect simulated human policies. Imitation Learning-based methods, including DAgger,
EnsembleDAgger, and failure detection, cannot outperform neural policies at each performance level
and show suboptimal results. BCVA has poor performance in Hopper and Walker2d, due to the
high variance in trajectory terminating signals. RLIF can outperform imperfect neural policies as
value-gated intervention introduces additional information related to environment reward. But its
performance drops significantly when value functions cannot provide accurate intervention signal,
especially on HalfCheetah tasks.
Ablation Study The results of ablation studies on different module combinations are demonstrated
in Tab. 2. We present performance curves for these methods in the Walker2d environment in Fig. 4.
Full performance curves are left in Appendix C.5. The x-axis of Fig. 5 illustrates in the Walker2d
environment, the experiments require 50k human intervention steps. AGSA takes an average of 30k
human intervention steps to converge and is faster than all ablation methods. “AGSA w/ Failure
Prediction” and “w/ Ensemble” are alternative approaches for constructing the gating agent. Both
methods keep the learning agent training unchanged. “AGSA w/o Human Preference Feedback” and
“w/o Human Evaluative Feedback” remove rψ(st, at) and I(st) respectively when computing the
gating agent reward rG. “AGSA w/ rψ as rπ” refers to using the reward model rψ trained from
human preference feedback as the proxy reward rπ to train the learning agent, in the same way as
PbRL algorithms (Lee et al., 2021).
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Table 3: Results of ablation studies on different values of hyperparameters λ and T . The results are
averaged and normalized in the same way as in Tab. 1.

Domain Expert Level AGSA w/
λ = 0.01

AGSA w/
λ = 0.1

AGSA w/
T = 2

AGSA w/
T = 10

AGSA (Ours) w/
λ = 0.03, T = 4

Hopper Low 85.73 ± 8.12 92.47 ± 3.49 84.70 ± 0.50 17.48 ± 33.65 94.18 ± 3.54
Medium 84.24 ± 14.62 93.14 ± 1.84 96.43 ± 0.83 39.43 ± 20.90 92.44 ± 3.83

High 85.18 ± 12.62 59.31 ± 47.68 53.22 ± 8.74 35.80 ± 12.22 95.79 ± 0.90
Average 85.05 ± 11.79 81.64 ± 17.67 78.12 ± 3.35 30.91 ± 22.26 94.14 ± 2.76

Walker2d Low 111.03 ± 4.49 90.48 ± 36.48 119.76 ± 1.27 55.92 ± 62.15 114.16 ± 2.17
Medium 83.42 ± 45.98 102.30 ± 20.67 110.53 ± 14.93 85.65 ± 32.98 109.38 ± 2.29

High 127.71 ± 5.13 130.58 ± 2.33 120.72 ± 11.34 50.05 ± 22.41 129.09 ± 2.98
Average 107.39 ± 18.53 107.79 ± 19.83 117.00 ± 9.18 63.87 ± 39.18 117.55 ± 2.48

HalfCheetah Low 83.33 ± 0.82 83.12 ± 0.90 86.86 ± 0.56 67.78 ± 2.28 83.01 ± 0.80
Medium 87.99 ± 0.36 87.36 ± 0.61 89.09 ± 0.24 85.83 ± 0.50 88.63 ± 0.20

High 88.66 ± 0.23 88.49 ± 0.52 88.72 ± 1.22 87.49 ± 0.32 89.66 ± 0.69
Average 86.66 ± 0.47 86.32 ± 0.68 88.22 ± 0.67 80.37 ± 1.03 87.10 ± 0.56

Compared with the gating agent of AGSA that optimizes long-term performance, failure prediction
and ensembled-based gating agent have comparable performance in the Hopper environment which
is relatively simple to solve, but fail to achieve good performance in Walker2d and HalfCheetah
environments. Compared with failure prediction and EnsembleDAgger in Tab. 1 that involve imitation
learning, AGSA uses the proxy reward function rπ to train the learning agent and obtains better
performance in the Hopper and HalfCheetah environment. But rπ is less effective when the gating
agent is highly suboptimal, such as in the Walker2d environment with failure prediction.

According to the ablation results, AGSA also have degraded overall performance without either
human preference feedback pt or human evaluative feedback I(st), where preference feedback leads
to larger performance gaps. As shown in Fig. 4, evaluative feedback is helpful to stabilize the training
process with neural policies that have poorer performance. Meanwhile, the learning agent will not
benefit from the preference reward model rψ as the proxy reward rπ , as is employed in PbRL. This is
because rψ which is trained on human generated samples cannot accurately generalize to (s, a) pairs
that are more likely to be sampled by the learning agent. While rψ is effective to train QG with binary
action space, such noisy reward signal may ruin the more complicated training of the learning agent.

We also conduct ablation studies on the hyperparameters in Tab. 3, including the preference reward
ratio λ and human intervention steps T . AGSA is robust with different scales of λ and maintains
superior performance compared with baseline algorithms. AGSA also fits well to fewer steps of
continual intervention, but will have degraded performance if human demonstrations are extended to
10 steps. Large numbers of human control will increase distribution shift (Xu et al., 2022) of training
samples and may lead to early termination due to imperfect interactions.

4.2 EXPERIMENTS WITH REAL HUMAN PARTICIPANTS

Setup We select the MetaDrive simulator (Li et al., 2023) to conduct experiments with real human
participants that provide both low-level human demonstrations and high-level human feedback.
Human participants are college students that are familiar with keyboard control but have little or no
knowledge of the MetaDrive simulator. The instruction they receive is in Appendix C.3. Random
control latency and environment speedup are inserted during training to simulate remote operation.
Therefore, human participants are likely to provide imperfect interactions during training. For baseline
algorithms, apart from EnsembleDAgger (Menda et al., 2019), Failure Detection (Liu et al., 2023a),
BCVA (Gokmen et al., 2023), and RLIF (Luo et al., 2024) that are used in MuJoCo experiments, we
consider imitation learning algorithms BC and GAIL (Ho & Ermon, 2016), as well as PVP (Peng
et al., 2023) which is the state-of-the-art human gated algorithm. We use TD3 (Fujimoto et al., 2018)
to train the agents.

For more accurate algorithm evaluation, we utilize the feature of procedure generation in MetaDrive
and make a split of training and test environments with different maps and traffic. For the training
process, we report the total human involvement steps that include steps of human monitoring and
human taking actions in the simulator, total environment interaction steps of the learning agent and
the human participants, and total safety cost which reflects the number of potential dangers exposed
to the autonomous vehicle during training. We also report the episodic return, episodic safety cost of
the learning agent, and the success rate as the test performance of the algorithms. The safety cost is
a metric used to evaluate the safety performance of driving agents. It is incurred when the agent’s
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Table 4: Comparison of different human-in-the-loop methods in the MetaDrive environment. The
human attention rate is given besides the human attention steps. We run all algorithms with three
different seeds and report their average score as well as standard deviation.

Training Testing

Method
Human

Involvement
Steps

Environment
Interaction

Steps

Total
Safety
Cost

Episodic
Return

Episodic
Safety
Cost

Success
Rate

BC 30K (1.0) - - 113.32 ± 10.21 2.17 ± 0.65 0.07 ± 0.02
GAIL 30K (0.015) 2 M 25.90 K ± 8.15 K 81.51 ± 9.43 1.31 ± 0.23 0.0 ± 0.0

EnsembleDAgger 17.3K (0.865) 20K 55 ± 3.09 38.44 ± 3.98 8.38 ± 1.73 0.00 ± 0.00
Failure Detection 9.4K (0.47) 20K 66 ± 5.72 71.37 ± 15.24 1.92 ± 0.34 0.00 ± 0.00

BCVA 12.9K (0.645) 20K 74 ± 4.55 143.19 ± 12.28 5.04 ± 1.16 0.06 ± 0.01

PVP 20K (1.0) 20K 64 ± 2.05 174.71 ± 8.41 6.05 ± 0.85 0.17 ± 0.01
RLIF 20K (1.0) 20K 63 ± 1.25 169.54 ± 6.39 3.90 ± 1.22 0.19 ± 0.02

AGSA (Ours) 7.9K(0.395) 20K 51 ± 2.94 263.56 ± 8.22 5.78 ± 1.63 0.40 ± 0.02

vehicle collides with other objects or deviates from the designated road. This metric is crucial for
assessing the agent’s ability to navigate complex driving scenarios without accidents.

Performance Comparison Tab. 4 shows the performance comparison of the baseline algorithms
and AGSA. AGSA requires the least human attention steps that is helpful for reducing human stress
during training. Human-in-the-loop methods all have much lower training safety cost compared with
the online imitation learning algorithm GAIL, with AGSA encountering the fewest safety violations.
AGSA also obtains the highest test episodic return and test success rate, demonstrating its ability to
train generalizable policies with imperfect human interactions. PVP and RLIF benefit from human
monitoring and outperform agent-gated baseline algorithms. GAIL has the lowest test safety cost,
mainly because of its poor performance and truncated trajectory.

Table 5: The result of user study. The maximum score
is 5 for each metric. Metrics with (↑) are better with
higher scores and vise versa.

PVP RLIF Failure Detection AGSA

Devotion (↓) 4.5 ± 0.5 4.7 ± 0.5 2.0 ± 0.9 1.6 ± 0.7
Anxiety (↓) 3.5 ± 1.0 4.3 ± 0.6 2.2 ± 0.7 2.0 ± 0.8
Performance (↑) 3.2 ± 0.8 2.2 ± 0.6 1.9 ± 0.7 4.5 ± 0.7

Survey on Human Participants We de-
sign a user study to analyse the feelings of
human participants during training. Detailed
instructions are in Appendix C.3. We con-
sider three metrics: devotion which is the de-
gree of mental concentration, anxiety which
measures the level of human stress and ten-
sion, and performance which is the human
evaluation on agent behaviors. As shown in
Tab. 5, AGSA exhibits more user-friendliness compared with baseline algorithms. The agent-gated
framework frees human participants from constant monitoring and reduces the amount of human
devotion to the experiment. It also leads to less human stress because humans are not directly
responsible for safety violations and only in charge of providing feedback. AGSA also has the highest
human rated performance level, in line with numerical evaluations.

5 CONCLUSION

In this paper, we present a novel Agent-Gated Shared Autonomy (AGSA) framework for human-in-
the-loop RL from imperfect human interactions, achieving reward-free, sample-efficient, and safe
training of RL agents. Unlike previous approaches that rely on accurate human monitoring or optimal
human demonstrations, we propose to learn from human evaluative and preference feedback. The
gating agent is trained with both types of feedback to accurately model the long-term influence of
control switch decisions. The learning agent is directly trained with the intervention decisions of
the gating agent, mitigating the issue of suboptimal human demonstrations. We also provide both
theoretical and empirical analysis to verify the effectiveness of AGSA.
Limitations AGSA only considers the interaction between one human participant, one learning
agent and one environment. It will be interesting to scale AGSA up for interactions between N
human participants and M learning agents, where M ≫ N . In the MetaDrive experiment with real
human participants, the action space has 2 dimensions, which makes human involvement relatively
easy. Potential human interaction interfaces to solve tasks with higher-dimensional action spaces are
discussed in in Appendix D.
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A ADDITIONAL RELATED WORK

Reward-free RL To train RL policies without environment rewards, unsupervised skill discovery
methods (Eysenbach et al., 2019; Sharma et al., 2020) aim to maximize policy diversity and
coverage. Inverse RL methods learn the reward model by maximizing it on human-generated
samples and minimizing it on agent-generated samples. But the it can be hard for learned reward
models to generalize due to insufficient and suboptimal human demonstrations. Recently, preference-
based RL (PbRL) methods (Lee et al., 2021; Kim et al., 2023) that learn the reward model from
human preference pairs have achieved success in aligning large language models with human
intentions (Ouyang et al., 2022; OpenAI, 2023; Touvron et al., 2023), primarily due to the relatively
low cost of constructing large-scale human preference datasets. PbRL has also shown promising
capabilities in continuous control tasks (Mattson et al., 2024; Hejna et al., 2024; Biyik et al., 2024a;
Wilde et al., 2021; Biyik et al., 2024b). However, PbRL methods can be inefficient in training RL
policies from scratch (Lee et al., 2021), as poor performing policies can hardly generate informative
preference pairs. They may also encounter safety issues when policies trained from inaccurate reward
models are interacting with the environment. Our AGSA method proposes to train a gating agent
from human preferences that can guide and safeguard the learning agent.

B THEORY

B.1 PROOFS

Theorem B.1 (Restatement of Thm. 3.1). With the gating policy πg defined in Eq. (1), the behavior
policy πb defined in Eq. (*) has the following performance lower-bound:

η(πb) ⩾ max {η(πh), η(πl)} −
εr

(1− γ)2
, (5)

where εr = maxs,a |r(s, a)− rψ(s, a)| is the error of preference-based reward modelling.

Proof. We first show that by learning from preference-based reward rψ , the gating value function Qg

has a bounded discrepancy with the value function Qπb under the behavior policy πb.

Qg(s, 1) = Ea∼πh(·|s)
[
rψ(s, a) + γEs′∼Tl(·|s,a),a′∼πg(·|s′)[Qg(s

′, a′)]
]

Qg(s, 0) = Ea∼πl(·|s)
[
rψ(s, a) + γEs′∼Tl(·|s,a),a′∼πg(·|s′)[Qg(s

′, a′)]
] (6)

So we have
Qg(s, 1)− Ea∼πh(·|s)Q

πb(s, a) = Ea∼πh(·|s) [rψ(s, a)− r(s, a)]

+ γEs′
[
Ea′∼πg(·|s′)Qg(s

′, a′)− Ea′∼πb(·|s′)Q
π
b (s

′, a′)
]
,

(7)

Qg(s, 0)− Ea∼πl(·|s)Q
πb(s, a) = Ea∼πl(·|s) [rψ(s, a)− r(s, a)]

+ γEs′
[
Ea′∼πg(·|s′)Qg(s

′, a′)− Ea′∼πb(·|s′)Q
π
b (s

′, a′)
]
.

(8)

Ea∼πg(·|s)Qg(s, a) can be computed by linearly combining Eq. (7) and Eq. (8):

Ea∼πg(·|s)Qg(s, a)− Ea∼πb(·|s)Q
πb(s, a)

= Ea∼πb(·|s) [rψ(s, a)− r(s, a)] + γEs′
[
Ea′∼πg(·|s′)Qg(s

′, a′)− Ea′∼πb(·|s′)Q
π
b (s

′, a′)
]

= Ea∼πb(·|s) [rψ(s, a)− r(s, a)] + γEa∼πb(·|s′) [rψ(s
′, a)− r(s′, a)]

+ γ2Es′′
[
Ea′∼πg(·|s′′)Qg(s

′′, a′)− Ea′∼πb(·|s′′)Q
π
b (s

′′, a′)
]
.

(9)

Iteratively computing the last term in Eq. (9), we have∣∣Ea∼πg(·|s)Qg(s, a)− Ea∼πb(·|s)Q
πb(s, a)

∣∣ = ∣∣∣Es′∼dπbs (·),a∼πb(·|s′)[rψ(s
′, a)− r(s′, a)]

∣∣∣
⩽

εr
1− γ

.
(10)

Combining Eq. (10) with Eq. (7) and Eq. (8), we have∣∣Qg(s, 1)− Ea∼πh(·|s)Q
πb(s, a)

∣∣ ⩽ εr +
γεr
1− γ

=
εr

1− γ
,∣∣Qg(s, 0)− Ea∼πl(·|s)Q

πb(s, a)
∣∣ ⩽ εr +

γεr
1− γ

=
εr

1− γ
.

(11)
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When the gating action ag = 0, we have Qg(s, 0) ⩾ Qg(s, 1), so

Ea∼πh(·|s)Q
πb(s, a)− Ea∼πl(·|s)Q

πb(s, a) ⩽ Qg(s, 1)−Qg(s, 0) +
2εr
1− γ

⩽
2εr
1− γ

(12)

for all state s. Similarly, when the gating action ag = 1, we have Qg(s, 0) ⩽ Qg(s, 1), so

Ea∼πl(·|s)Q
πb(s, a)− Ea∼πh(·|s)Q

πb(s, a) ⩽
2εr
1− γ

. (13)

According to the performance difference lemma (Kakade & Langford, 2002), we have

η(πh)− η(πb) =
1

1− γ
Es∼dπh

[
Ea∼πh(·|s)A

πb(s, a)
]

=
1

1− γ
Es∼dπh

[
Ea∼πh(·|s)Q

πb(s, a)− Ea∼πb(·|s)Q
πb(s, a)

]
=

1

1− γ
Es∼dπh

[
Ea∼πh(·|s)Q

πb(s, a)− πg(s)Ea∼πh(·|s)Q
πb(s, a)

− (1− πg(s))Ea∼πl(·|s)Q
πb(s, a)

]
=

1

1− γ
Es∼dπh

[
(1− πg(s))

[
Ea∼πh(·|s)Q

πb(s, a)− Ea∼πl(·|s)Q
πb(s, a)

]]
⩽

2εr
(1− γ)2

Es∼dπh [(1− πg(s))]

=
2εr(1− β)

(1− γ)2

⩽
2εr

(1− γ)2
.

(14)

Rearranging terms, we have

η(πb) ⩾ η(πh)−
2εr

(1− γ)2
. (15)

A similar bound can be derived from Eq. (13) as

η(πb) ⩾ η(πl)−
2εr

(1− γ)2
. (16)

So we have
η(πb) ⩾ max {η(πh), η(πl)} −

2εr
(1− γ)2

, (17)

which concludes the proof.

Theorem B.2 (Restatement of Thm. 3.2). Let π̃ be the optimal policy trained with proxy rewards
rπ(s, a). π̃ has the following performance lower bound:

η(π̃) ⩾ η(πh)−
4εr

(1− γ)2
. (18)

Proof. The following proof borrows the main idea from RLIF (Luo et al., 2024). Since we assign
negative rewards for human intervention steps with Qg(s, 1) > Qg(s, 0), in order to maximize the
cumulative proxy rewards, π̃ should make Qg(s, 1) ⩽ Qg(s, 0). According to Eq. (11), we have

Ea∼π̃(·|s)Qπb(s, a)− Ea∼πb(·|s)Q
πb(s, a) ⩾ Qg(s, 0)−Qg(s, 1)−

2εr
1− γ

⩾
2εr
1− γ

(19)

According to the performance difference lemma, we have

η(π̃)− η(πb) =
1

1− γ
Es∼dπ̃

[
Ea∼π̃(·|s)Aπb(s, a)

]
=

1

1− γ
Es∼dπ̃

[
Ea∼π̃(·|s)Qπb(s, a)− Ea∼πb(·|s)Q

πb(s, a)
]

⩾
2εr

(1− γ)2
.

(20)
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Figure 5: Environment visualizations of the robotics locomotion tasks Hopper, HalfCheetah,
Walker2d, as well as the autonomous driving task.

Demonstrations Preferences Evaluations I(st) Value-based Intervention Ground Truth Reward
DAgger and
EnsembleDAgger ✓ × × × ×

Failure
Prediction ✓ × ✓ ✓ ✓

BCVA
✓ × × × ✓ (partially)

RLIF
✓ × × ✓ ✓

AGSA w/
Failure Prediction ✓ × ✓ ✓ ✓

AGSA w/
Ensemble ✓ × × × ×

AGSA w/o
Preference Feedback ✓ × ✓ × ✓

AGSA w/o
Evaluative Feedback ✓ ✓ × × ✓

AGSA w/
rψ as rπ

✓ ✓ ✓ × ✓

AGSA
(Ours) ✓ ✓ ✓ × ✓

Table 6: Comparison of environment information required by baseline and ablation methods.

Combining with Eq.( 14), we have

η(π̃)− η(πh) = η(π̃)− η(πb) + η(πb)− η(πh)

⩾
2εr

(1− γ)2
+

2εr
(1− γ)2

=
4εr

(1− γ)2
,

(21)

which concludes the proof.

B.2 SAFETY BOUND

Corollary B.3. With the gating policy πg defined in Eq. (1), the behavior policy πb defined in Eq. (*)
has the following safety bound:

C(πb) ⩽ min {C(πh), C(πl)}+
εr

(1− γ)2
, (22)

where εr = maxs,a |rc(s, a)−rψ(s, a)| is the error of preference-based reward modelling, rc(s, a) is
the cost function, and C(π) = Eτ∼d0,π,T [

∑∞
0 γtrc(st, at)] is the expected total cost of a trajectory.

Proof. The proof can be obtained by replacing the r(st, at) in the proof of Thm. 3.1 with rc(st, at).

C ADDITIONAL EXPERIMENT DETAILS

C.1 SETUP

The training tasks are visualized in Fig. 5. Neural policies used in the Hopper and Walker2d envi-
ronment are the same as those in RLIF (Luo et al., 2024) experiments. For the Hopper environment,
neural policies have about 20%, 70%, and 110% performance level compared with the optimal policy
in D4RL (Fu et al., 2020). For the Walker2d environment, neural policies have about 15%, 40%,
and 110% performance level compared with the optimal policy in D4RL (Fu et al., 2020). For the
HalfCheetah environment, we train with RLPD (Ball et al., 2023) and use policies trained at 20k, 40k,
60k steps as neural policies with “low”, “medium”, and “high” policies. They have about 40%, 60%,
and 100% relative performance, respectively. In MuJoCo experiments, we follow the approach in
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RLIF (Luo et al., 2024) and obtain the simulated human intervention decision πhuman
g from the value

function of the expert policy:

πhuman
g =

{
1, if Qπ

(
s, πhuman (s)

)
> Qπ (s, πl(s))

0, otherwise.

I (st) is then obtained by comparing the gating agent’s decision πg with πhuman
g when πg = 1. If

the gating agent proposes human intervention but human finds it unnecssary, i.e., πhuman
g = 0, I (st)

will be set to 0 , indicating a bad gating action. Different from RLIF that queries πhuman
g on each

timestep, we only query πhuman
g for evaluative feedback when πg = 1. We will add this discussion in

the revision.

C.2 BASELINES

We consider the following methods as baselines:

• BC: Use supervised learning to train the learning agent with the human-generated dataset.

• GAIL (Ho & Ermon, 2016): Use trajectory matching to train the learning agent. The
learning agent needs full control to interact with the environment.

• DAgger (Ross et al., 2011): No gating agent is involved, with random control switches
between the learning agent and the neural policy. The learning agent is trained by imitating
the neural policy.

• EnsembleDAgger (Menda et al., 2019): The gating agent uses the output variance of the
ensembled learning policy to determine when to let neural policies intervene.

• Failure Detection (Liu et al., 2023a): The gating agent is trained by imitating human gating
behaviors. We follow previous approaches (Luo et al., 2024; Xue et al., 2023d) and use
value function comparisons as a proxy of human gating. The learning agent is trained with
imitation loss and next state reconstruction loss.

• BCVA (Gokmen et al., 2023): Use goal reaching rewards to learn proxy value functions. In
robotics locomotion tasks, we set goal reaching rewards to -1 if the trajectory terminates.
For the HalfCheetah environment without termination, we use the reward of the last step as
the goal reaching reward. In the autonomous driving task, we send the goal reaching reward
when the agent reaches the last checkpoint of the trajectory.

• RLIF (Luo et al., 2024): In robotics locomotion tasks with simulated human interactions, the
learning agent is trained with human intervention signals that are generated by comparing the
environment state-action value function Qenv(s, a) between actions from the neural policy
and the learning agent. As Qenv itself is learned from a fixed replay buffer, such value-gated
intervention can be inaccurate, which simulates the imperfect human intervention. In the
autonomous driving tasks, we rely on human monitoring for human-gated training.

• PVP (Peng et al., 2023): Use human-gated training and directly optimizes the Q-value
function of the learning agent to be close to +1 on human generated samples and close to -1
on agent generated samples.

In Tab. 6, we make a detailed comparison on which information is required by baselines and ablation
methods in Tab. 1 and Tab. 2. All involved methods require expert demonstrations. Only DAgger,
EnsembleDAgger, and AGSA with Ensemble (one of the ablation methods) do not require access to
the ground truth reward, all of which have poor performances according to the experiment results.

C.3 HUMAN STUDY

In human-gated training, human participants are instructed to perform active intervention whenever
they identify that the learning agent is in dangerous or under-explored regions. The order of
experiments with different approaches is randomized for each human participant. We use the
following questionnaire to conduct user studies. Among the three metrics, “Performance” was
chosen as a straightforward indicator of how effectively the agent completed tasks with minimal
safety violations. “Anxiety” was included to evaluate the level of stress and fatigue experienced
by participants. This measure captures the emotional and psychological responses to the agent’s
oscillations, unexpected behaviors, or limitations in intervention timing. It allows us to capture a

17



Preprint. Under Review.

Table 7: Hyperparameters for the training algorithms.

Algorithm Hyperparameter Values

Common Batch Size 256
Learning Rate 3e-4
Weight Decay 1e-3
Discount Factor γ 0.99
Hidden Dims (256,256)
τ for Target Network Update 0.005

DAgger Pretrain Steps 60,000
Steps Per Iteraction 2500

Algorithm Hyperparameter Values

EnsembleDAgger Uncertainty
Threshold 0.03 (Hopper)

0.1 (Walker2d)
0.05 (HalfCheetah)
0.01 (MetaDrive)

AGSA Reward Balancing
Ratio λ 0.03

Human Intervention
Steps T 4

range of participant experiences and their immediate reactions to agent behavior. This stress-related
metric offers insights beyond raw task performance, highlighting how smoothly the participants
feel they can monitor the agent without stress from unpredictable events. “Devotion” was intended
to measure the concentration required from participants, indicating whether the agent demanded
continuous attention or if participants could rely on the agent to function independently. This feedback
helps assess the cognitive workload AGSA imposes, reflecting whether participants feel the need to
remain vigilant throughout training, thus directly correlating with workload.

Performance: Do you think the agent performs well with little safety violations when solving
the task? The higher score the better.
Choices: 1, 2, 3, 4, 5

Anxiety: Do you think training with this agent is stressed? The higher score the more fatigue
and stress. A lower score means you are more relaxed. Anxiety might come from many sources:
Oscillating trajectory, unexpected behaviors, being unable to intervene on time, etc.
Choices: 1, 2, 3, 4, 5

Devotion: Do you think you have to keep focused when training with this agent? The higher
score the more concentrated. A lower score means you do not need to take special care of the
training agent.
Choices: 1, 2, 3, 4, 5

C.4 HYPERPARAMETERS

We present the hyperparameters of the training algorithms in Tab. 7. “Common” refers to common
hyperparameter settings shared by all algorithms. In EnsembleDAgger (Menda et al., 2019), human
intervention will be triggered if the variance in proposed actions exceeds the uncertainty threshold.
The thresholds need to be tuned in different environments. λ and T in AGSA keeps the same across
all environments.

C.5 RESULTS

We present the full learning curves of ablation studies in Fig. 6. In the Hopper environment, alternative
gating algorithms facilitate more efficient training and achieve comparable overall performance. In
the HalfCheetah environment, the “AGSA w/ Failure Prediction” method is also more efficient
at the early stage of training. This is because alternative methods are either free of training or
trained with more stable imitation loss, more quickly obtaining gating agents that have relatively
good performance. Their performances also demonstrate the effectiveness of the proxy reward rπ
to train the learning agent from diverse gating agents. But in the Walker2d environment where
these alternative methods have respective drawbacks, the performance of the learning agent will be
degraded. Alternative methods cannot achieve higher asymptotic performance than AGSA either.
We also illustrate the probability of AGSA requesting human intervention along the trajectory in the
motivating example in Fig. 7. Although AGSA still assigns a little higher intervention probability
on t4 than on t1, it successfully detects the potential danger in t2 and t3 and correctly assigns high
intervention probabilities.
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Figure 6: Learning curves of methods in ablation study. The lines are average return across four
different trials and the shadow areas denote the standard deviation.

Figure 7: Probabilities of the gating agent requesting human intervention, with the uncertainty
estimation method and AGSA.

D FUTURE WORK

We briefly discussed the limitation of AGSA in high-dimensional action spaces in the main paper.
Such limitation is in fact a longstanding challenge in human-in-the-loop learning. Existing researches
largely focus on tasks with small action spaces, such as simple robotic arms and autonomous driving.
Therefore, we believe that generalization to higher-dimensional action spaces is orthogorical to the
scope of this paper. Our method focuses on learning from imperfect human interaction and may still
be helpful when human-in-the-loop RL is applied to higher-dimensional action spaces.

Nevertheless, we share our thoughts on potential challenges and solutions of this generalization. One
of the major challenge of high-dimensional action spaces is that human participants may not be able
to handle all dimensions simultaneously. Learning policies may also need an exponential increase
in human interaction data to maintain the same demonstration coverage. This requires us to design
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more scalable and efficient training algorithms. One potential solution is the hierarchical structure. A
high-level planner agent with a low-dimensional action space can be designed to guide the behavior
of the low-level controller agent with a high-dimensional action space. Human participants may
only intervene the planner agent and provide demonstrations. Another potential solution is Policy
Dissection (Li et al., 2022a), which is a simple yet effective frequency-based approach that aligns
the intermediate representation of the learned neural controller with the kinematic attributes of the
agent behavior. It has the potential of becoming a novel human interaction interface for tasks with
high-dimensional action spaces.
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